7%
university of 5%,
groningen % %

i

University Medical Center Groningen

University of Groningen

Finite size scaling for percolation on elongated lattices in two and three dimensions
Marrink, Siewert; Knackstedt, Mark A.

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.62.3205

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Marrink, S. J., & Knackstedt, M. A. (2000). Finite size scaling for percolation on elongated lattices in two
and three dimensions. Physical Review E, 62(3). DOI: 10.1103/PhysRevE.62.3205

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018


http://dx.doi.org/10.1103/PhysRevE.62.3205
https://www.rug.nl/research/portal/en/publications/finite-size-scaling-for-percolation-on-elongated-lattices-in-two-and-three-dimensions(342f63ed-e75e-4cb0-b748-eed2eb9163ce).html

PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Finite size scaling for percolation on elongated lattices in two and three dimensions
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We derive scaling laws for the percolation properties of an elongated lattice, i.e., those with dimensions of
L9 1xnL in d dimensions, whera denotes the aspect ratio of the lattice. Based on statistical arguments it is
shown that, in the direction of the extension, the percolation threshold scales approximatety’®amIboth
two and three dimensions. Extensive Monte Carlo simulations of the site percolation model confirm this
scaling behavior. It is further shown that the density of the incipient infinite cluster at the percolation threshold
scales differently in two and three dimensions.

PACS numbes): 64.60.Ak, 47.55.Mh, 05.70.Jk

I. INTRODUCTION We also define a connection probability that individual per-
colating clusters on square or cubic grids are connected
Percolatior{1] is perhaps the simplest nontrivial model in across an intersecting surface. We consider scaling of the
statistical mechanics. A broad array of techniques have bedpgrcolation probability, the percolation thresholds, the con-
used to study percolation, and it has continued to be an adection probability, the spanning probability, and the density
tive research area due to its relevance to a wide variety o®f the percolating cluster on elongated latti¢Es ).
disciplines[2—4]. In most studies of percolation theory lat-  The outline of the rest of this paper is as follows. The next
tices of sizeL? have been used. Surprisingly, the study ofsection contains the theoretical derivation of scaling of the
percolation properties in an elongated geometry, i.e., &@ercolation threshold, the spanning probability, and the den-
d-dimensional lattice of siz&9~1xnL, has received little Sity of the incipient infinite cluster at the threshold. In Sec.
attention, despite the fact that in many applications one mudt! we describe the simulation methods and numerical results
consider such geometries. Motivated by the study of adsorpar€ presented. Comparison with the predictions of the theo-
tion on terraced substrates, Monetti and AlbdB¢s] pre- retical section are also made. The conclusions are given in
sented a study of the finite-size effects on percolation threshSec. IV. A shorter version of this paper, comparing the scal-
olds in an elongated geometry. Other groufs-9 have ing predictions for ordinary percolation on ELs to those ob-
recently considered the spanning probability along elongatetfined for invasion percolation, has been published else-
grids at the critical occupation probabilipg . Our interestin ~ Where[12].
this problem is motivated by the common measurements of
multiphase flow properties in porous media performed in the Il. THEORY
petroleum industry on rock cores of 1-5 cm in diameter and
up to a meter in lengthil0]. Measurements on these elon-
gated cores are used as input to reservoir simulation models. Consider ad-dimensional lattice of sizé 9, which we
Interpretation of laboratory measurements on cores requiragfer to as the simple latticgSL). The expected value of its
understanding the effect of the aspect ratio of a sample on itsercolation threshold,p.(L)), depends on the sie of the
resultant multiphase flow process. Of particular interest is thgystem. For L—o numerical estimates indicate that,
residual or trapped fluid-phase saturations in two-phase digp (c))=0.592 746 and 0.311 6Q8] for site percolation on
placements[3,11], where the amount of residual fluid is the square and simple-cubic lattices, respectively. Due to the
analogous to the percolation threshpld Since percolation finite-size effects, the effective percolation threshold of any
theory has been successful in providing valuable insight intdinite-size lattice is distributed around this expected value
two-phase flow in porous media, we consider the problem ofccording to a probability distributioR(p.,L) with the ex-
percolation on an elongated lattice. pected valugp.(L)) and a size-dependent standard devia-
Using scaling arguments and small-scale numerical simution o(L).
lations, Monetti and Alban¢5] presented scaling laws for  Both (p(L)) ando(L) follow scaling laws governed by
the percolation probability in the elongated geometry thathe universal scaling exponent
depend on the aspect ratio of the lattice. In this paper we
derive new scaling laws for percolation properties of elon- (Pc(L)) = (pe(e0)yoc L= (2.9
gated lattices in both two and three dimensions, and present
extensive numerical data to confirm the theoretical resultsand

A. Scaling of the percolation threshold: Simple lattice
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| — v X a

o(L)eL ™1, (2.2 P(p'L):bCJ e~ (Ddx, 2.8
where v is the critical exponent of percolation correlation %o
length, gndv=4/3 andv=0.88 in two and_thre_e dimensions, \ith x=[p—(pe(L))]1/b and xo=—(pc(L))/b. For large
respectively{ 1]. The value of the proportionality factors de- x, P(p,L) can be approximated by
pends on the lattice type, as well as on the definition of the
percolation rule. Different rules were first considered by bc a
Reynoldset al.[13]; one for percolatioreither horizontally P(p,L)=1- ;Xl*aef(x ) (2.9
or vertically, one for a specified direction, and the third for
percolation inboth directions. As we are motivated by labo- sybstituting this expression into E¢R.4) [taking C(p,L)
ratory core measurements, we consider percolation in a 1] we obtain
specified direction—along the elongated axis.

bc al”

B. Scaling of the percolation threshold: Elongated lattice P”(p'l‘):[l_ le e )] : (2.10
Now consider an EL consisting afLY SL’s linked to-
gether in series. Each of the SL’s percolates at a percolati
threshold p;(L) according to the probability distribution

F(pc,L). The percolation thresholg (" (L) of the EL,
specified along the direction of the extension, is determined bc la
by the SL with the highest percolation threshold; this lattice x[step]=[ln(—) —In(1—-2"Y"+(1-a)ln x[step]] ,
forms the “bottleneck” to percolation of the EL. The prob- a (2.19)
ability P(p,L) of having a SL percolating gb.(L)<p is '
given by which, after a Taylor expansion arounch#0, gives

OThis function approaches a Heaviside step function for large
N For one definition of a threshold, the position of the step
X[ step| can be estimated from,,(p,L)=0.5, implying that

p
p(p,L):fop(pc,ude, 23 X[Swp]:('” alI)r::Z

l/a
+Inn+(1-a)ln x[step]] .

, . , " (2.12
assuming thatF(p.;,L) is normalized. The probability
P.(p,L) that the EL percolates gi.("(L)<p is given by  This equation shows that, in the limit of large the step

the product ofn independent probabilitieB(p,L), i.e., takes place at large Therefore, the approximation leading
to Eq. (2.9 is expected to be accurate. Neglecting the con-
Pn(p,L)=[P(p,L)]"X[C(p,L)]"*, (24  stants and the In terms[Inx, In(bdaln2)<Inn], the ex-

o ) ) ) ) pression simplifies to the remarkably simple result
which is essentially an exponential decay witha behavior

expected from the transfer matrix formulation of crossing x[step]=(Inn)*2, (2.13
[14]. In Eqg.(2.4) C(p,L) denotes the connection probability,

i.e., the probability that individual percolating clusters of the With this result, Eq(2.5 reduces to a delta function:
SL’s are mutually connected in order to form a percolating () 1\ o)

cluster across the whole EL. In the next section we will Fa(pe,L)=4o(x"[step]) (214

derive equations to estimate this connection probability. For . (n) —rn (MY .
the moment we assume th@(p,L)=1, i.e., if each of the with x™[step]=[pc"(L) =(pe(L))}/b. The equation for

SL's percolate, so does the EL. :Ezneégce:grﬁgs\./alue of the percolation threshidd,. (2.6)]
The probability distributiorF,(p.(™,L) for an EL perco- '
lating atp:(L) is then (POWL)=(pL))+b(nm™.  (2.19

Fo(pe™,L)=dP[p"(L),L1/dp{"(L), (2.5  Assuming[15,16 that the distribution of percolation thresh-
olds is approximately Gaussidm=2b= 20 (L)xL "]

with the expected valuép{™(L)) given by we have

<pg">(|_)>:flpé”)(L)Fn(pgm,L)dpgm(L). (2.6 (L)) = (pe(L))exL ™MV, (2.18
0

However if the correlation lengté becomes very small com-
In order to predict the scaling behavior for the percolationpared to the lattice size it has been observed numerigsly
threshold of EL, we now assume that the percolation proband shown rigorously17] that F(p.,L) is not Gaussian.

ability distributionF(p.,L) can be accurately described by a |nstead the distribution is characterized by=v and b
distribution of the form: =L~ which results in

F(pe,L)=ce (2.7 (PE(L)) = (Pe(L)yocL =M (Inm)M” (2.17)

with x.=[pc(L) —(pc(L))]/b, @, b, andc being constants. for L>¢. Both Egs. (2.16 and (2.17) show that the
With this assumption, Eq2.3) becomes L-dependent scaling ¢p{™ (L)) for an EL will be similar to
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that of an SL[Eq. (2.1)]. In the limit of L—o, the percola- whereX;"" andXJ-Surf are the surface-cluster densities of the
tion threshold for the elongated lattice will be simply two SL's. The above formula applies to the situation when
(pe()). the total surface density of the two SL'’s is less than one, i.e.,
Due to the limiting condition thap{"<1.0, the derived ~ X;**"™+X;*""<1. In the caseX;*""+X;*'">1 the grids will
n-dependent scaling in Eq42.15 will break down for very — always be connected, 90;;=1. Note that Eq.2.21) ne-
largen or smallL. A crossover towards the one-dimensional glects the possibility that the percolation clusters of the two
universality class should then occur, with{”(L))=1 for ~ SL’s can still be connected on an EL via smaller clusters that
n—o. From Eq.(2.15 the aspect ratimg <L) at which  traverse the connecting surfaces. Also the assumption of a

this crossover occurs is expected to be random distribution of percolating surface sites is not ex-
pected to be realistic as one would rather expect a fractal
Nerosd L) = e~ (Pe(LID)?, (2.19  distribution.

For two arbitrary SL’s that are part of an EL, the surface
It is instructive to compare the scaling relation for the densitiesx;* and X;*"" obey a probability distribution that
percolation probability that we derived to the one derived bydepends on the value ofp,, which we denote
Monetti and Alband5] based on scaling arguments. Their F>*"(X*"",p,L). The connection probability for two of these
Eg. (13) can be rewritten as SL'’s is given by

(n) — — —1lv_ — 1y —1lv 1
(pe”(L))—(pc(L))=csL CoL ™ (2.19 Cip.L)— fo Fsuxur p 1)
with ¢; andc, denoting constants. Their equation shows the
samel-dependent scaling as our derivation but a completely 1
different n-dependent scalingegs. (2.16 and (2.17)]. X fo I:Sm(xsurf'p'I-)Ciidxisurfdxjsurf

We also consider the critical crossing probability along
the elongated axis at the critical threshold of the SL, i.e., at (2.22
p=p.. In two dimensions with periodic boundary conditions
along the nonelongated axes, the crossing probability waghe functional form of>""(X*",p,L) is not straightforward
given by[18] P,(p.,L)=e V24" For open boundary con- to predict, however. In the results section we will try to
ditions, Cardy[7] suggestedP,(p.,L)=Ce "™ with C evaluate this distribution using the following expression:
=1.426348[8,19. While higher-order correction terms
have been evaluated for this expresdigfl], significant de- p
viations from the leading exponential term occur only ffor Feri(xXsp,L) = fo F(pe,L)F(Xp,pe, L)dpe,
less than about 1.5. Also in three dimensions it was hypoth- (2.23
esized[9] that an exponential form describes the crossing
probability P, (p.,L)=ae"™ and the constants were evalu- whereF (XU p p. L) is the surface density distribution
ated for a system with periodic bouqdary conditions. Us_ingfor an SL with occupation density and percolation thresh-
Eq. (2..4) we obs_grve that the scaling of the percol_atlono|d Pe. F(pe,L) is the probability for an SL to percolate at
(crossing probability Pn_(pc) of an EL at thg percolatlo_n thresholdp, . For largen, the distributionF (XU p L) is
thresholdp, of the SL in general follows this exponential gynected to approach the true distribution of surface densi-
form: ties in an EL.

To give insight into the scaling of the connection prob-
ability, we make the following further assumptions.
First assume that the surface density distributions are
delta functions, corresponding to the expectation value
of the distribution. We now haveFs'(X;%"" p,L)

C. Connection probability =Fsui(X;s4p, L) = 8((X*'"). Second, approximate Eq.

The above equations were derived using the assumptiof?-2D by the formula, using!/(n—c)!=(n—c/2)%
that an EL of sizenLY percolates as soon as each of the

Pn(Pe,L)=P(pe,L)"XC(pe,L)""V=ae, (2.20

wherea=C(p.,L) ! andb=InP(p.,L)+In C(p,L).

SL’s percolate. This, however, is not necessarily the case X surf X d

when we deal with finite size samples. The chance that the Cij=1- ( 1- W) (2.249
total grid percolates given that each of the SL’'s percolates 1=X7"12

depends on the densi®*"" of the percolating cluster at the

surfaces that form the connecting interface. Using simpléfogether with the first approximation we have
statistical arguments, the chance of connection between two

SL’s, Cj;, is given by the following expression, assuming (xsurfy (xsurhd-1

that the sites belonging to the percolating cluster are ran- C(p,L)zl—(l— —) , (2.29
domly distributed over the surface: 1= (X342

- (Ld*l_ Ld*lxisul’f)! (Ld*l_ Ld*lxjsul‘f)! which equals

(2.21) C(p,L)=1—glL 1) (2.26

Il_l (Ld*l_Ld*lXiSUI‘f_ Ldflxjsurf)”_dfl!
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to first-order expansion of [a—(Xs'f/(1—(Xx%™/2)],  and using Eq(2.15

which is accurate fotX*'™<0.5. We recall that fo( X" - o A

>0.5, C(p,L)=1. XMW(L)—pe(L)ocL™*(Inn) [largen; smallL].
The extent to which the approximations we have made are (2.34

valid will become clear in the results section, where we comy, this case, the.-dependent scaling of the EL is different

pare the connection probability curves calculated according, that of a SL and the exponestno lonaer appears in
to Egs.(2.22, (2.25, and(2.26 to the connection probabil- the scaling law. ponept g PP

ity curve derived from simulation results for the EL and the

use of Eq.(2.4): IIl. NUMERICAL RESULTS AND DISCUSSION

P.(p,L) vin=1) 2.2 A. Details of the simulations
[P(p,L)]" ' ' The numerical results that we present are all obtained us-
) _ ) o ing random site percolation on a square two-dimensional
The evaluation of(p,L) using this expression is expected (2D) and simple cubi¢3D) lattice with open boundary con-

C(IO.L)={

to be independent af. ditions. We consider the lattice to be percolating as soon as a
cluster spans it in the direction of the extension regardless of
D. Scaling of percolation density percolation in the other directi¢s) (rule R, in the terminol-

ogy of Reynoldset al. [13]). The percolation threshold is
defined in this paper as the average valug of the perco-
lating (crossing configurations defined along the extended
direction. While this is one of many possible definitig@d —
&3] we expect that the precise definition will not affect the

depends both on the value of the percolation threshol lina behavior sh i thi Th ber of reall
p,g”)(L) of the EL and on the percolation threshqg(L) of scaling behavior Snown In this paper. 1he number ot realiza-
tions per lattice size depends on its dimension—in general

the SL. From random percolation on SL's we can distinguisi‘{he number of realizations was chosen to obiR(L) and

three regimes: X(M(L) to within a standard error of 0.0001 and 0.001, re-
XL A [pM(L)=p(L)], (2.29  spectively. As an example, for a small 2D lattice of size
=32 and aspect ratio=4, 250 000 independent realizations
Xe[pM(L)—pel? [pM(L)>pe(L)], (2.29  were required, whereas for a large 3D lattice of dize80
and aspect ratio= 10, 200 realizations proved sufficient. In
XaepM(L) [pM(L)>pe(L)], (2.30  allthe figures the standard error of the results is never larger
than the size of the data points. More extensive computations
where 8=5/36 and 0.41 in two and three dimensions, re-were performed, especially in 3D, to obtain accurate predic-
spectively. As shown in the previous secti(p]é’])(L) is ex- tions of the percolation and connectivity probabilities of the
pected to be larger tham,(L), so that all the SL's other than EL at the percolation threshol}, of the SL. _
the “bottleneck” lattice are above their percolation thresh-  In order to get an accurate prediction of the connection
old. Therefore, the densities of the individual SL's are ex-Probability based on Eqs$2.22 and (2.23, we have com-
pected to scale according to either (29 or (2.30. Only ~ Puted the surface density distributiéi?*"(X**",p,L) from
the bottleneck SL scales according to £229. percolation results of a SL. Random grids were generated
For smalln, or largeL, p.(™(L) is still close top.(L) with a percolation threshold, following the probability dis-
and we expect most SL's to follow E2.29. In this case tribution F(p.). For each grid the surface densky"" was

The density of the sample-spanning cluster is the prob
ability at p. that a given site belongs to the percolating clus-
ter. Considering the SL’s of the EL independently, then the
local densityX of the percolating cluster in each of the SL's

the density of the ELX("(L) scales analogously: evaluated fop.<p<1, i.e., all possible densities larger than
the percolation density, and binned to obtain
XM(L)oc[pM(L)—pg(L)]# [smalln; largel]. FSU(Xs' p,pe,L). The integral of Eq.(2.23 was then

(2.3)  solved numerically to obtaiRS" (X" p,L). These distribu-
tions were then used to generate random pairs of surfaces,
Substituting the scaling law fgp{™ (L) from Eq.(2.15 we  for which the connection criterion was tested. The average
obtain connection probability obtained with this Monte Carlo ap-
" _giv gla _ proach corresponds ©(p,L). Note that the surface density
X (L)L *(Inn) [smalln; largeL . XU of an SL differs from the average densi¥ of the
(2.32 percolating cluster when using open boundary conditions.

This equation shows that thedependent scaling of the den- . o

sity of the percolating cluster of an EL is similar to a Bif. B. Connection probability

Eq. (2.28]. Then-dependent scaling of the percolation den-  |n Figs. 1a) (2D) and Xb) (3D) we verify that the con-

sity is distinct from that of the percolation threshold. In the nection probability we compute from our numerical results

limit of large n, a large number of the SL’s enter the scaling according to Eq.(2.27) is indeedn independent. Curves

region of Eq.(2.30, leading to a scaling prediction for the computed for smalh values have higher accuracy at low

density of the elongated lattice in this limit: values ofp, whereas largen values give higher accuracy

towards larger values gb. Within the uncertainty of the

XMW(L)=p(L) [largen; smallL] (233  results, all curves coincide for all of tHevalues studied.
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FIG. 1. Connection probabilities for EL’s with different aspect
ratios. Connection probabilitieS(p,L) are calculated according to count the full distributions. Results in 3D show that Eq.
Eq.(2.27). (8 D=2, withn=2 (dotted liney, n=4 (dashed lines  (2.22 correctly predicts the simulated connection probabil-
and n=100, (L=32), andn=10, (L=128) (solid lines. (b) D  ity, especially at large.. In 2D this is not the case. The
=3, with n=2 (dotted line, n=4 (dashed lines and n=10  difference in 2D probably originates from our assumption of
(solid lines,L=16,41only). a homogeneously distributed surface den®#/' when cal-

) ) .. culating the connection probability according to Eg.22).

~ InFigs. 2a) (2D) and 2b) (3D) the connection probabili- A fractal distribution seems more appropriate. Moreover, due
ties derived from the simulation and use of Eg.27) are 4 the use of open boundary conditions, the true distribution
plotted for three values df, and compared to the approxi- qf the surface density across the connecting interface is ex-
mated solutions, Eq42.22 and (2.26), based on the mea- nected to be lower along the boundaries than in the bulk.
surement of the surface densities of the SL. In almost alpnother possible explanation for the remaining discrepancy
cases the approximation of EQ.25 by Eq.(2.26 is accu-  peqyeen approximated and observed connection probabilities
rate so we only show E¢(2.26. The use of Eq(2.26, g the occurence of loops that would tend to make the appar-
which is based on the average surface densities, slightlyn; connection probability in the EL lower. Either of these
overestimates the connection probability compared to th@ffects seem smaller in 3D than in 2D.
more realistic approach of E¢2.22 which takes into ac- We note the near coincidence of the connection probabil-
ity curves at the percolation threshold of the SL. In 3D, but
not in 2D, the fixed point also occurs in the set of curves
based on the average surface densifiegs. (2.22 and
1 os (2.26)]. We again attribute the discrepancy in 2D to either
the assumption of a homogeneously distributed surface den-
sity or to the contribution of loops. Using E.26) the fixed
108 point implies that the average surface density at the fixed
point scales a¥s""(p.) <L ~ (@~ V"2 verification of this scal-
ing relation is made in Fig. 3, which shows a log-log plot of
704 XSU(p.) vs L. Straight lines are observed both in 2D and in
3D. The slope in 3D equals 1.0, in accordance to the an-
ticipated slope of—1. In 2D we find a slope of-0.33,
which indeed implies a small remainihgdependency of the
connection probability ap, computed according to Egs.
00 (2.295 and(2.26). The reason for the exponent 6f0.33 in
088 2D remains unclear.

1

- 1.0

CpL)

102

p p

FIG. 2. Realized and predicted connection probability for EL'S. ¢ connection probability vs percolation probability of SL
Comparison of connection probabili§(p,L) computed according )
to Eq. (2.26 (short-dashed linesEq. (2.22 (long-dashed lines In Figs. 4a) (2D) and 4b) (3D) we compare the connec-

and derived from simulation using E€.27 (solid lineg. (@ D tion probability C(p,L), i.e., the probability that the perco-

=2, L=32, 128, and 512(b) D=3, L=16, 41, and 80. The lating cluster of two SL’s are connected at the interface, to
steepest curves correspond to the biggest lattice size. The verticBie percolation probability of the SL. It appears that both
line indicates the position of the percolation threshold of the SL. probability curves are very similar, which is an unanticipated
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FIG. 4. Comparison of the percolation probabilRyp,L) of a

SL (dashed lingsand the connection probabilitg(p,L) computed ) ) o )
according to Eq(2.27) with n=2 (solid lines. (8) D=2, L=32, FIG. 5. Comparison of theoretical predictions for the percolation

128, and 512, andb) D=3, L=16, 41, and 80. The steepest probability of EL’s. Example for lattice of size 2616X 16n. Four
curves correspond to the biggest lattice size. The inserts show tHgVels of approximation are shown: points: first lef@pplication of
almost identical behavior of the percolation and connection probEd- (3.1 using simulated percolation distribution of the JSkolid
ability for p>p.. Inset in (a) showsn=100, 10, and 4 forL curve: second levdlapplication of Eq.(3.1) using Gaussian fit to
=32, 128, and 512, and ifb) givesn=10, 10, and 4 foL =16, percolation distribution of the §t dashed curve: third levéappli-

41, and 80-respectively. The vertical line indicates the position ofcation of Eq.(3.2)]; vertical lines: fourth leve[approximation by
the percolation threshold of the SL. Heaviside step function according to Eg.13)].

. . . (2n—1)
fon densityp. 1 is much-easier t connect o percolating Pu(p.L)=| 1- 2o 52
interfaces rather than conndcsubsequent interfaces. How-

ever, the probability of connecting any two interfaces de-leading to only a small modification of E¢2.12):

pends on the occupation fractign which is much higher
than the probability of connecting two percolating clusters at 2bc 1 la
an interface that depends on the surface dengityf of the x[step]z[ln(m +|”( n—3|+(1-a)inx(stepl|
percolating cluster. On the square lattice with open boundary (3.3
conditions we obtairP(p.,L)=0.50, while the fixed point

of the connection probabilit€(p.,L)=0.68 is significantly ~ which still equals Eq(2.13) in its simplified form (i>3).
higher. In 3D the fixed point of the connection probability

C(pc,L)=0.23 almost coincides with the fixed point of the D. Percolation probability distributions of EL's

percolation probability?(p.,L)=0.286. The observation of . . L
the fixed point of the percolation probability is consistentusgge ?c?w d%%rgrpi)t?ée ttrridIggrr(fcr)llgliqoenorep;urg%la%‘i)lﬁ;oxl‘gqr?:t?onns
with results on the square lattif21] and recent results based P.(p,L) for the EL. In Fig. 5P, (p,L), the probability that

on extensive simulations on a cubic latti@3]. )
i@s] an EL percolates ap{”(L)<p, is shown forn=1, 4, 100,

For values ofp much larger thamp, (see insets of Fig.)4 )
the connection probability and the percolation probability be-2nd 10000, where four curves are compared. One curve is
come indistinguishable, except for the smallesalue stud- e Prediction based on directly applying E&.1) to the

ied, where the coarseness of the grid becomes important. TH&IMerically-realized - percolation  threshold  distribution
underlying reason for the similarity betwee(p,L) and I (Pc.,L) of the SL. A second curve approximates the perco-
C(p,L) remains unclear to the authors, but it allows us toIatlon threshold distributior by a Gaussian according to

el : _ ; Eq. (2.7) (a=2), beforeapplying Eq.(3.1). The third curve
simplity Eq. (2.4. SettingC(p,L)=P(p.L) we obtain is based on Eq3.2), while the fourth curve gives the prob-
Pa(p,L)=[P(p,L)1"" 1, (3.)  ability defined by a Heaviside step function at the position
given by Eq.(2.13 (with a=2). Figure 5 shows that the
which we expect to be especially accurate in 3D and in 2Dapproximation of the probability curves by E@.2) yields
for large values off wherep,("(L)>p.(L). Another way of  very accurate results for afl. The approximation of the po-
interpreting Eq.(3.1 is by considering the EL to be con- sition of the step by Eq2.13 deviates from the position for
structed of 21— 1 partially overlapping SL'’s, requiring each which P,(p,L)=0.5 only at very highn (10* in this casg
of them to percolate. The probability that the percolatingThis deviation originates from neglecting thexiterm in Eq.
clusters of two SL’s with a 50% overlap are connected is(2.13).
much higher, so if each of then2- 1 individual SL’s perco- For extremely large, the second curve based on a Gauss-
late, so does the EL. Following the same derivation as betan percolation probability distribution deviates significantly
fore, but now using Eq3.1) instead of Eq(2.4), we have  from the prediction based on directly applying Eg.1) to
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FIG. 6. Comparison of theoretically predicted and simulated F|G, 7. L-dependent scaling of the percolation threshold for
percolation probability distributions. Example for lattices of size g|'s, Points represent numerical data, and solid lines linear fits to
41X41x41n. Open symbols are used for simulated percolationthe data excluding the smallestvalue.(a) D=2, from bottom to
probability distributions for the Sl(circles, and for EL’s withn top,n=1,2, 4,8, 16,32, 64, and 100®) D=3, n=1, 2, 4, 10, and
=4 (diamond$, andn=100 (squares Solid lines are theoretical g5q,
predictions based on approximatifigp.,L) by a Gaussian and

applying Eq.(3.1). with 3D lattices with 16<L <80 and & n<50. Again, the

scaling is consistent with our predictions.
the numerical distribution. For largethe percolation prob-

ability P,(p,L) is determined by the tail of the distribution,

P(p,L)—1.0, of the SL. Due to the numerical noise and the The n-d dent i f1h lation thresholds i
limited accuracy of the numerical distribution for the SL at € n-dependent scaling ot the percolation tresholds 1S
summarized in Fig. 8. The data are shown as lrersus

p>p., we believe that the Gaussian fit captures this tail_ ) on a loa-loa scale. As anticioated by the theoretical
without the numerical noise, and therefore gives a better ﬁg%al SCS in the gre\?ious séction thep data ay ear as straiaht
for largern. We show in Fig. 6 that the assumption of a y P ' bp 9

Gaussian distribution gives an excellent match to the numeril-mes with a slope equalliing a/ Leaving out the largest

cal data obtained at large Figure 6 displays as an example values, we find that the slope of the curves equals 0.72

X . ) oo e +0.05 in 2D, and 0.5680.02 in 3D, without any obviouk
the numerically obtained percolation probability distribution dependency. Comparing these results to the anticipated
F, for a 3D lattice of size 4% 41><_41n plus the_preo_lictions slopes of 1/2Eq. (2.16] and 14 [Eq. (2.17)] reveals that the
based on Eq(2.5 and Eq.(3.1) using a Gaussian fit to the 5p yata scale according to E(.17) (1/v=0.75) whereas

percolation probability distributiof of the SL.F,, was ob-  ihe 3D data scale according to E8.16. Apparently, for the
tained fromP, as a numerical derivative, as there is no ana-

lytical expression foi,,. As we will see when we present
the full n-dependent scaling results of both 2D and 3D per-
colation thresholds, the assumption of a Gaussian distribu
tion for the SL fits the 3D data only. One should realize that,
even in 3D, the percolation probability distributions of an EL
are not Gaussian. As can be seen from Fig. 6 the probability
distributions are skewed.

F. n-dependent scaling of percolation threshold of EL

0.10

0.10 |

P =P,

E. L-dependent scaling of percolation threshold of EL 001

In Fig. 7(a) we show numerical results obtained on 2D %9}
lattices with sizd. ranging from 16 to 2048 and aspect ratios
1<n=10°. Independent oh, all the curves follow the same
scaling law over a broad range df, confirming the
L-dependent scaling of the percolation threshold of an EL as 1 0 1 0
given by Egs(2.16 and(2.17). The straight lines are linear In fnn
fits to all the data points, except for those to= 16, which FIG. 8. n-dependent scaling of the percolation threshold of
seem to be consistently smaller. As in site percolation ofg| s pata are shown on a log-log scale. Points represent actual
SL’s in the limit of smallL, the scaling relations may break- percolation results for EL’s and solid lines are linear fits to these
down. ForL—c, all the curves extrapolate to a percolation results excluding, for small, the smallest and the largesvalues.
threshold very close to that of a SL. Any difference disap-(a) D=2, L=16, 32, 128, and 512 from top to bottom, aml D
pears if the fit is based on progressively higher valuek of =3, L=16,41, and 80. The dotted lines give the prediction of
for larger values of. Figure 1b) shows the results obtained Monetti and AlbandEq. (2.19, with ¢c;=c,=1.0].
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2D case the correlation length drops rapidly upon extensior 16
of the lattice and scaling is determined by the tails of the
percolation distribution that follow a non-Gaussian decay
characterized by the correlation length exponenOn the

contrary, in 3D the correlation length remains large and the
scaling is according to a Gaussian distribution of percolation
thresholds. - o

We do note that the scaling observed here describes neig
ther the limiting behavior in the smati or the largen limit
but describes a crossover behavior for intermedrat&or 107 |
smalln the approximation leading to E¢R.9) breaks down.
For largen the theoretical predictions overestimate the nu- 3D
merical values, due to the neglect of thexlterm in Eq.
(2.13. Numerical estimates indicate an overestimation of
about 10% ain=10°. A crossover to one-dimensional be- 1", 1 2 3 4 5 6 7 8 9
havior is not observed for finita considered here. There is n
no |nd'|cat|0|.'1 in the _ZD da@a of Fig. 8 of a crossover to the FIG. 9. n-dependent scaling of the percolation probability of an
one-dimensional universality clasg<1). Substituting the g atp . Logarithmic plot ofP,(p,L), the percolation probabil-
numerical values o&,b, andpc(L) into Eq.(2.18 reveals iy of an EL at the percolation threshold of the SL ms Two-
that the crossover may be expected to occur at extremelyimensional results are given far=32 (circles, L =128 (triangles
largen. For exampleng,os{L) =O(10") for a 2D lattice of  dowr), andL =512 (triangles up, and three-dimensional results for
sizeL =32, andn,,s{L) =0(107%9) for a 3D lattice of size L=16 (circles, L =30 (triangles dowj, andL =41 (triangles up.
L=16. Solid lines are linear fits to all data points.

Except for small aspect ration€8) we find a signifi-
cantly differentn-dependent scaling of the percolation prob-
ability than conjectured by Monetti and Albaf®] (see Fig.
8). Our numerical results for larger values miery closely
match the (Im)*3-type scaling we derived from our theoret-
ical arguments, and certainly not tme *” type of scaling
proposed by Monetti and Albarjé]. These authors also pre-
sented limited numerical results that seemed to confirm theirrobabilit atp,, remains finite, even in the limit of large
scaling law. Only 2D results were reported, with small aspecE h Y alpe 3D it ’th tth " b .b'l't
ratiosn=2,4,8, and 16 only, and very small lattice sizes. urthermore, in It appears that the connection probability
ranging fromL =6 to 48. Fitting of our data to their pro- is smaller than the percolation probability itself.
posed scalingEg. (2.19] we indeed find a good match for
smalln(n<8), with the nontrivial result;=c,=1.0 in both
2D and 3D. However, the more extensive data set leads to Figures 10a) (in 2D) and 1@b) (in 3D) show the
large systematic deviations from their proposed scaling lawlL-dependent scaling of the density in elongated lattices. In
Therefore we conclude that E2.19 only holds in the lim-  the 3D case the scaling is in accordance with @82 over
iting case of small aspect ratio. At larger values a crossovethe entire ranges df andn studied. Apparently, the perco-
to Inn*2-type scaling occurs. lation thresholcp{™ (L) of the EL is still close enough to the

individual percolation thresholdg;(L) of the SL'’s, so the
G. n-dependent scaling of percolation probability of EL atp, contribution of SL’s scaling according to E(®.34) remains
negligible. In 2D, this is only true for large and smalin. As
A_ decreases, am increases, the curves do approach the lim-
iting scaling law, Eq(2.33.

= .

creases by a factoe ®=0.254 for each additional cube

added to anL?xnL lattice with periodic boundary condi-
tions. The current paper gives °=0.105. This result high-
lights the effect of the choice of boundary conditi@b] on
the spanning probability.

Both 2D and 3D findings indicate that the connection

H. L-dependent scaling of density of EL

Figure 9 shows a logarithmic plot oP,(ps,L) vs n
showing straight lines in both two and three dimensions, i
accordance with Eq2.20. Within the error bargreflected
by the size of the data pointshe results are independent of ) )
L. From the slope and intercept we calculate 1.5, andb I n-dependent scaling of density of EL
=-1.10 in 2D, implying P(p;,L)=0.50 and C(p,,L) Figures 11a) and 11b) present then-dependent scaling
=0.67, consistent with our earlier results and with the pre-behavior of the percolation density. As was concluded from
diction of[19], a=1.426 35 andb=— 7/3=—1.05. In three  the L-dependent scaling in the previous section, in the 3D
dimensions we finda=4.5 and b=-2.7, implying case[Fig. 11(b)] the scaling relation given by Ed2.32
P(p¢,L)=0.286 andC(p.,L)=0.23, also in agreement holds well over the range of studied(except for the largest
with our earlier results. The 3D results 8(p.,L) are simi-  n values at smalL and in the smalh limit). Straight lines
lar to the recent predictions of Lietal. [24] P(p.,L) are obtained when we assume an underlying Gaussian distri-
=0.265 and Gimekt al. [23] P(p.,L)=0.28. The values bution of percolation thresholdse.,a=2), although due to
for aandb are very different from those given by Lorenz and the small exponentg/2=0.2) it is difficult to predicta ac-

Ziff [9] who obtaina=1.45 andb= —1.37 for a cubic grid curately. Note that a log-log plot of versus Im cannot be
with periodic boundary conditions in eath<L plane. The used to determine the appropriate exponent due to the pres-
latter result predicts that the crossing probabilitypatde-  ence of a nonzero constant in E@.32. Comparing the
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FIG. 10. L-de_pendent scaling of the density of EL's. Ppints FIG. 11. n-dependent scaling of the density of EL'@) D
represent numerical resuli®) D=2. In the left panel EL's of size  _5 | jeft panel filled circles are numerical data for EL's of size
'?:1'2'4’ 16, 64_’ and_looo are given from bottom to top. Th'CkL=16, 32, 64, 128, and 512 from top to bottom. The thick lines
lines represent linear fits to the largeange of the data, indicating represent linear fits to intermediate valuesrofThe right panel
scaling according to Eq(2.32. In the right panel results fon shows the same data plus the observed percolation thregjoplels
=2, 16, and 1000 are compared to the percolation thresfiofzn circles for L=16, 32, and 128(b) D=3. L =16, 41, and 80 from

circles, indicating scaling according to Eq2.33. (b) D=3, n 44 5 hottom. Open circles denote the percolation threshold in case
=1,2,4,10, and 50 from bottom to top. Thick lines represent Ilnearof L=16.

fits to all but the smallest value, indicating scaling according to
Eq. (2.32. tice sizeL is shown to be identical to that of a SL. Both
scaling laws apply in 2D and 3D. Numerical results over
density to the percolation thresholds, Fig(lshows that, wide ranges ofn and L confirm the theoretically-derived
even for the smallest value studied, the next anticipated scaling relationships. For the density of the percolating clus-
scaling regimgEq. (2.34] is not yet reached in 3D. In 2D ter two different scaling laws are derived. Numerical results
[Fig. 11(a), left pane] the situation is different. Scaling ac- indicate that one of them, in which the percolation threshold
cording to Eq.(2.32 is observed but with an exponent of s still close to that of the SL, applies partly to the 2D, and
Blv instead of3/2 in accordance with the observed scalingfully to the 3D case. The critical exponeg® of random

of the percolation threshold. For largarthe next scaling percolation appears in the scaling relations. The other re-

regime is enteredFig. 11(a), right pane], and the limiting
curves that scale according to Eg.33 start coinciding with
the density curves.

gime, in which the percolation threshold has shifted substan-
tially away from that of the SL is reached in 2D. In this case
the density of the percolating cluster and the percolation

threshold become almost identical, i.e., almost all the occu-

IV. CONCLUSION pied sites are in the percolating cluster.

Statistical arguments show that the percolation threshold
of a lattice that is elongated in one direction is shifted to-
wards higher values. The shift in percolation threshold with  M.A.K. is grateful to the Australian Research Council for
respect to the simple latticéSL) was derived to scale as financial support. We thank the ANU Supercomputing Facil-
approximately Im*@, with n being the aspect ratio of the ity for generous allocations of computer time. M.A.K. ac-
lattice anda being the appropriate exponent of the percola-knowledges discussions with K. Mecke, M. Sahimi, and D.
tion probability distribution of the SL. The scaling with lat- Stauffer.
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