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We derive scaling laws for the percolation properties of an elongated lattice, i.e., those with dimensions of
Ld213nL in d dimensions, wheren denotes the aspect ratio of the lattice. Based on statistical arguments it is
shown that, in the direction of the extension, the percolation threshold scales approximately as lnn1/a in both
two and three dimensions. Extensive Monte Carlo simulations of the site percolation model confirm this
scaling behavior. It is further shown that the density of the incipient infinite cluster at the percolation threshold
scales differently in two and three dimensions.

PACS number~s!: 64.60.Ak, 47.55.Mh, 05.70.Jk

I. INTRODUCTION

Percolation@1# is perhaps the simplest nontrivial model in
statistical mechanics. A broad array of techniques have been
used to study percolation, and it has continued to be an ac-
tive research area due to its relevance to a wide variety of
disciplines@2–4#. In most studies of percolation theory lat-
tices of sizeLd have been used. Surprisingly, the study of
percolation properties in an elongated geometry, i.e., a
d-dimensional lattice of sizeLd213nL, has received little
attention, despite the fact that in many applications one must
consider such geometries. Motivated by the study of adsorp-
tion on terraced substrates, Monetti and Albano@5,6# pre-
sented a study of the finite-size effects on percolation thresh-
olds in an elongated geometry. Other groups@7–9# have
recently considered the spanning probability along elongated
grids at the critical occupation probabilitypc . Our interest in
this problem is motivated by the common measurements of
multiphase flow properties in porous media performed in the
petroleum industry on rock cores of 1–5 cm in diameter and
up to a meter in length@10#. Measurements on these elon-
gated cores are used as input to reservoir simulation models.
Interpretation of laboratory measurements on cores requires
understanding the effect of the aspect ratio of a sample on its
resultant multiphase flow process. Of particular interest is the
residual or trapped fluid-phase saturations in two-phase dis-
placements@3,11#, where the amount of residual fluid is
analogous to the percolation thresholdpc . Since percolation
theory has been successful in providing valuable insight into
two-phase flow in porous media, we consider the problem of
percolation on an elongated lattice.

Using scaling arguments and small-scale numerical simu-
lations, Monetti and Albano@5# presented scaling laws for
the percolation probability in the elongated geometry that
depend on the aspect ratio of the lattice. In this paper we
derive new scaling laws for percolation properties of elon-
gated lattices in both two and three dimensions, and present
extensive numerical data to confirm the theoretical results.

We also define a connection probability that individual per-
colating clusters on square or cubic grids are connected
across an intersecting surface. We consider scaling of the
percolation probability, the percolation thresholds, the con-
nection probability, the spanning probability, and the density
of the percolating cluster on elongated lattices~EL!.

The outline of the rest of this paper is as follows. The next
section contains the theoretical derivation of scaling of the
percolation threshold, the spanning probability, and the den-
sity of the incipient infinite cluster at the threshold. In Sec.
III we describe the simulation methods and numerical results
are presented. Comparison with the predictions of the theo-
retical section are also made. The conclusions are given in
Sec. IV. A shorter version of this paper, comparing the scal-
ing predictions for ordinary percolation on ELs to those ob-
tained for invasion percolation, has been published else-
where@12#.

II. THEORY

A. Scaling of the percolation threshold: Simple lattice

Consider ad-dimensional lattice of sizeLd, which we
refer to as the simple lattice~SL!. The expected value of its
percolation threshold,̂pc(L)&, depends on the sizeL of the
system. For L→` numerical estimates indicate that,
^pc(`)&50.592 746 and 0.311 608@9# for site percolation on
the square and simple-cubic lattices, respectively. Due to the
finite-size effects, the effective percolation threshold of any
finite-size lattice is distributed around this expected value
according to a probability distributionF(pc ,L) with the ex-
pected valuê pc(L)& and a size-dependent standard devia-
tion s(L).

Both ^pc(L)& ands(L) follow scaling laws governed by
the universal scaling exponentn

^pc~L !&2^pc~`!&}L21/n ~2.1!

and
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s~L !}L21/n, ~2.2!

where n is the critical exponent of percolation correlation
length, andn54/3 andn.0.88 in two and three dimensions,
respectively@1#. The value of the proportionality factors de-
pends on the lattice type, as well as on the definition of the
percolation rule. Different rules were first considered by
Reynoldset al. @13#; one for percolationeither horizontally
or vertically, one for a specified direction, and the third for
percolation inboth directions. As we are motivated by labo-
ratory core measurements, we consider percolation in a
specified direction—along the elongated axis.

B. Scaling of the percolation threshold: Elongated lattice

Now consider an EL consisting ofnLd SL’s linked to-
gether in series. Each of the SL’s percolates at a percolation
threshold pc(L) according to the probability distribution
F(pc ,L). The percolation thresholdpc

(n)(L) of the EL,
specified along the direction of the extension, is determined
by the SL with the highest percolation threshold; this lattice
forms the ‘‘bottleneck’’ to percolation of the EL. The prob-
ability P(p,L) of having a SL percolating atpc(L),p is
given by

P~p,L !5E
0

p

F~pc ,L !dpc , ~2.3!

assuming thatF(pc ,L) is normalized. The probability
Pn(p,L) that the EL percolates atpc

(n)(L),p is given by
the product ofn independent probabilitiesP(p,L), i.e.,

Pn~p,L !5@P~p,L !#n3@C~p,L !#n21, ~2.4!

which is essentially an exponential decay withn, a behavior
expected from the transfer matrix formulation of crossing
@14#. In Eq.~2.4! C(p,L) denotes the connection probability,
i.e., the probability that individual percolating clusters of the
SL’s are mutually connected in order to form a percolating
cluster across the whole EL. In the next section we will
derive equations to estimate this connection probability. For
the moment we assume thatC(p,L)51, i.e., if each of the
SL’s percolate, so does the EL.

The probability distributionFn(pc
(n),L) for an EL perco-

lating atpc
(n)(L) is then

Fn~pc
(n),L !5dPn@pc

(n)~L !,L#/dpc
(n)~L !, ~2.5!

with the expected valuêpc
(n)(L)& given by

^pc
(n)~L !&5E

0

1

pc
(n)~L !Fn~pc

(n) ,L !dpc
(n)~L !. ~2.6!

In order to predict the scaling behavior for the percolation
threshold of EL, we now assume that the percolation prob-
ability distributionF(pc ,L) can be accurately described by a
distribution of the form:

F~pc ,L !5ce2(xc
a) ~2.7!

with xc5@pc(L)2^pc(L)&#/b, a, b, and c being constants.
With this assumption, Eq.~2.3! becomes

P~p,L !5bcE
x0

x

e2(xc
a)dxc ~2.8!

with x5@p2^pc(L)&#/b and x052^pc(L)&/b. For large
x, P(p,L) can be approximated by

P~p,L !512
bc

a
x12ae2(xa) ~2.9!

Substituting this expression into Eq.~2.4! @taking C(p,L)
51# we obtain

Pn~p,L !5H 12
bc

a
x12ae2(xa)J n

. ~2.10!

This function approaches a Heaviside step function for large
n. For one definition of a threshold, the position of the step
x@step# can be estimated fromPn(p,L)50.5, implying that

x@step#5H lnS bc

a D2 ln~12221/n!1~12a!ln x@step#J 1/a

,

~2.11!

which, after a Taylor expansion around 1/n50, gives

x@step#5H lnS bc

a ln 2D1 ln n1~12a!ln x@step#J 1/a

.

~2.12!

This equation shows that, in the limit of largen, the step
takes place at largex. Therefore, the approximation leading
to Eq. ~2.9! is expected to be accurate. Neglecting the con-
stants and the lnx terms @ ln x, ln(bc/a ln 2)! ln n#, the ex-
pression simplifies to the remarkably simple result

x@step#5~ ln n!1/a. ~2.13!

With this result, Eq.~2.5! reduces to a delta function:

Fn~pc
(n),L !5d~x(n)@step# ! ~2.14!

with x(n)@step#5@pc
(n)(L)2^pc(L)&#/b. The equation for

the expected value of the percolation threshold@Eq. ~2.6!#
then becomes:

^pc
(n)~L !&5^pc~L !&1b~ ln n!1/a. ~2.15!

Assuming@15,16# that the distribution of percolation thresh-
olds is approximately Gaussian@a52,b5A2s(L)}L21/n#
we have

^pc
(n)~L !&2^pc~L !&}L21/nAln n. ~2.16!

However if the correlation lengthj becomes very small com-
pared to the lattice size it has been observed numerically@15#
and shown rigorously@17# that F(pc ,L) is not Gaussian.
Instead the distribution is characterized bya5n and b
5L21/n, which results in

^pc
(n)~L !&2^pc~L !&}L21/n ~ ln n!1/n ~2.17!

for L@j. Both Eqs. ~2.16! and ~2.17! show that the
L-dependent scaling of^pc

(n)(L)& for an EL will be similar to
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that of an SL@Eq. ~2.1!#. In the limit of L→`, the percola-
tion threshold for the elongated lattice will be simply
^pc(`)&.

Due to the limiting condition thatpc
(n)<1.0, the derived

n-dependent scaling in Eq.~2.15! will break down for very
largen or smallL. A crossover towards the one-dimensional
universality class should then occur, with^pc

(n)(L)&51 for
n→`. From Eq.~2.15! the aspect rationcross(L) at which
this crossover occurs is expected to be

ncross~L !5e([12^pc(L)&]/b)a
. ~2.18!

It is instructive to compare the scaling relation for the
percolation probability that we derived to the one derived by
Monetti and Albano@5# based on scaling arguments. Their
Eq. ~13! can be rewritten as

^pc
(n)~L !&2^pc~L !&5c1L21/n2c2L21/nn21/n ~2.19!

with c1 andc2 denoting constants. Their equation shows the
sameL-dependent scaling as our derivation but a completely
different n-dependent scaling@Eqs.~2.16! and ~2.17!#.

We also consider the critical crossing probability along
the elongated axis at the critical threshold of the SL, i.e., at
p5pc . In two dimensions with periodic boundary conditions
along the nonelongated axes, the crossing probability was
given by@18# Pn(pc ,L).e25n/24p. For open boundary con-
ditions, Cardy @7# suggestedPn(pc ,L).Ce2np/3 with C
51.426 348 @8,19#. While higher-order correction terms
have been evaluated for this expression@20#, significant de-
viations from the leading exponential term occur only forn
less than about 1.5. Also in three dimensions it was hypoth-
esized@9# that an exponential form describes the crossing
probability Pn(pc ,L).aebn and the constants were evalu-
ated for a system with periodic boundary conditions. Using
Eq. ~2.4! we observe that the scaling of the percolation
~crossing! probability Pn(pc) of an EL at the percolation
thresholdpc of the SL in general follows this exponential
form:

Pn~pc ,L !5P~pc ,L !n3C~pc ,L !(n21)5aebn, ~2.20!

wherea5C(pc ,L)21 andb5 ln P(pc ,L)1ln C(pc ,L).

C. Connection probability

The above equations were derived using the assumption
that an EL of sizenLd percolates as soon as each of then
SL’s percolate. This, however, is not necessarily the case
when we deal with finite size samples. The chance that the
total grid percolates given that each of the SL’s percolates
depends on the densityXsurf of the percolating cluster at the
surfaces that form the connecting interface. Using simple
statistical arguments, the chance of connection between two
SL’s, Ci j , is given by the following expression, assuming
that the sites belonging to the percolating cluster are ran-
domly distributed over the surface:

Ci j 512
~Ld212Ld21Xi

surf!! ~Ld212Ld21Xj
surf!!

~Ld212Ld21Xi
surf2Ld21Xj

surf!!Ld21!
,

~2.21!

whereXi
surf andXj

surf are the surface-cluster densities of the
two SL’s. The above formula applies to the situation when
the total surface density of the two SL’s is less than one, i.e.,
Xi

surf1Xj
surf,1. In the caseXi

surf1Xj
surf>1 the grids will

always be connected, soCi j 51. Note that Eq.~2.21! ne-
glects the possibility that the percolation clusters of the two
SL’s can still be connected on an EL via smaller clusters that
traverse the connecting surfaces. Also the assumption of a
random distribution of percolating surface sites is not ex-
pected to be realistic as one would rather expect a fractal
distribution.

For two arbitrary SL’s that are part of an EL, the surface
densitiesXi

surf andXj
surf obey a probability distribution that

depends on the value ofpn , which we denote
Fsurf(Xsurf,p,L). The connection probability for two of these
SL’s is given by

C~p,L !5E
0

1

Fsurf~Xsurf,p,L !

3E
0

1

Fsurf~Xsurf,p,L !Ci j dXi
surfdXj

surf

~2.22!

The functional form ofFsurf(Xsurf,p,L) is not straightforward
to predict, however. In the results section we will try to
evaluate this distribution using the following expression:

Fsurf~Xsurf,p,L !5E
0

p

F~pc ,L !Fc
surf~Xsurf,p,pc ,L !dpc ,

~2.23!

whereFc
surf(Xsurf,p,pc ,L) is the surface density distribution

for an SL with occupation densityp and percolation thresh-
old pc . F(pc ,L) is the probability for an SL to percolate at
thresholdpc . For largen, the distributionFsurf(Xsurf,p,L) is
expected to approach the true distribution of surface densi-
ties in an EL.

To give insight into the scaling of the connection prob-
ability, we make the following further assumptions.
First assume that the surface density distributions are
delta functions, corresponding to the expectation value
of the distribution. We now haveFsurf(Xi

surf,p,L)
5Fsurf(Xj

surf,p,L)5d(^Xsurf&). Second, approximate Eq.
~2.21! by the formula, usingn!/(n2c)! .(n2c/2)c:

Ci j 512S 12
Xi

surf

12Xj
surf/2

D Xj
surfLd21

. ~2.24!

Together with the first approximation we have

C~p,L !512S 12
^Xsurf&

12^Xsurf&/2
D ^Xsurf&Ld21

, ~2.25!

which equals

C~p,L !512e(2Ld21^Xsurf&2) ~2.26!
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to first-order expansion of ln@12^Xsurf&/(12^Xsurf&/2)#,
which is accurate for̂Xsurf&!0.5. We recall that for̂ Xsurf&
>0.5, C(p,L)51.

The extent to which the approximations we have made are
valid will become clear in the results section, where we com-
pare the connection probability curves calculated according
to Eqs.~2.22!, ~2.25!, and~2.26! to the connection probabil-
ity curve derived from simulation results for the EL and the
use of Eq.~2.4!:

C~p,L !5H Pn~p,L !

@P~p,L !#nJ 1/~n21!

. ~2.27!

The evaluation ofC(p,L) using this expression is expected
to be independent ofn.

D. Scaling of percolation density

The density of the sample-spanning cluster is the prob-
ability at pc that a given site belongs to the percolating clus-
ter. Considering then SL’s of the EL independently, then the
local densityX of the percolating cluster in each of the SL’s
depends both on the value of the percolation threshold
pc

(n)(L) of the EL and on the percolation thresholdpc(L) of
the SL. From random percolation on SL’s we can distinguish
three regimes:

X}L2b/n @pc
(n)~L !5pc~L !#, ~2.28!

X}@pc
(n)~L !2pc#

b @pc
(n)~L !.pc~L !#, ~2.29!

X}pc
(n)~L ! @pc

(n)~L !@pc~L !#, ~2.30!

where b55/36 and 0.41 in two and three dimensions, re-
spectively. As shown in the previous section,pc

(n)(L) is ex-
pected to be larger thanpc(L), so that all the SL’s other than
the ‘‘bottleneck’’ lattice are above their percolation thresh-
old. Therefore, the densities of the individual SL’s are ex-
pected to scale according to either Eqs.~2.29! or ~2.30!. Only
the bottleneck SL scales according to Eq.~2.28!.

For smalln, or largeL, pc
(n)(L) is still close topc(L)

and we expect most SL’s to follow Eq.~2.29!. In this case
the density of the ELX(n)(L) scales analogously:

X(n)~L !}@pc
(n)~L !2pc~L !#b @smalln; largeL#.

~2.31!

Substituting the scaling law forpc
(n)(L) from Eq. ~2.15! we

obtain

X(n)~L !}L2b/n~ ln n!b/a @smalln; largeL#.
~2.32!

This equation shows that theL-dependent scaling of the den-
sity of the percolating cluster of an EL is similar to a SL@cf.
Eq. ~2.28!#. Then-dependent scaling of the percolation den-
sity is distinct from that of the percolation threshold. In the
limit of large n, a large number of the SL’s enter the scaling
region of Eq.~2.30!, leading to a scaling prediction for the
density of the elongated lattice in this limit:

X(n)~L !5pc
(n)~L ! @ largen; smallL# ~2.33!

and using Eq.~2.15!

X(n)~L !2pc~L !}L21/n~ ln n!1/a @ largen; smallL#.
~2.34!

In this case, theL-dependent scaling of the EL is different
from that of a SL and the exponentb no longer appears in
the scaling law.

III. NUMERICAL RESULTS AND DISCUSSION

A. Details of the simulations

The numerical results that we present are all obtained us-
ing random site percolation on a square two-dimensional
~2D! and simple cubic~3D! lattice with open boundary con-
ditions. We consider the lattice to be percolating as soon as a
cluster spans it in the direction of the extension regardless of
percolation in the other direction~s! ~rule R1 in the terminol-
ogy of Reynoldset al. @13#!. The percolation threshold is
defined in this paper as the average value ofp of the perco-
lating ~crossing! configurations defined along the extended
direction. While this is one of many possible definitions@21–
23# we expect that the precise definition will not affect the
scaling behavior shown in this paper. The number of realiza-
tions per lattice size depends on its dimension—in general
the number of realizations was chosen to obtainpc

(n)(L) and
X(n)(L) to within a standard error of 0.0001 and 0.001, re-
spectively. As an example, for a small 2D lattice of sizeL
532 and aspect ration54, 250 000 independent realizations
were required, whereas for a large 3D lattice of sizeL580
and aspect ration510, 200 realizations proved sufficient. In
all the figures the standard error of the results is never larger
than the size of the data points. More extensive computations
were performed, especially in 3D, to obtain accurate predic-
tions of the percolation and connectivity probabilities of the
EL at the percolation thresholdpc of the SL.

In order to get an accurate prediction of the connection
probability based on Eqs.~2.22! and ~2.23!, we have com-
puted the surface density distributionFsurf(Xsurf,p,L) from
percolation results of a SL. Random grids were generated
with a percolation thresholdpc following the probability dis-
tribution F(pc). For each grid the surface densityXsurf was
evaluated forpc,p,1, i.e., all possible densities larger than
the percolation density, and binned to obtain
Fc

surf(Xsurf,p,pc ,L). The integral of Eq.~2.23! was then
solved numerically to obtainFsurf(Xsurf,p,L). These distribu-
tions were then used to generate random pairs of surfaces,
for which the connection criterion was tested. The average
connection probability obtained with this Monte Carlo ap-
proach corresponds toC(p,L). Note that the surface density
Xsurf of an SL differs from the average densityX of the
percolating cluster when using open boundary conditions.

B. Connection probability

In Figs. 1~a! ~2D! and 1~b! ~3D! we verify that the con-
nection probability we compute from our numerical results
according to Eq.~2.27! is indeed n independent. Curves
computed for smalln values have higher accuracy at low
values of p, whereas largen values give higher accuracy
towards larger values ofp. Within the uncertainty of the
results, all curves coincide for all of theL values studied.
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In Figs. 2~a! ~2D! and 2~b! ~3D! the connection probabili-
ties derived from the simulation and use of Eq.~2.27! are
plotted for three values ofL, and compared to the approxi-
mated solutions, Eqs.~2.22! and ~2.26!, based on the mea-
surement of the surface densities of the SL. In almost all
cases the approximation of Eq.~2.25! by Eq. ~2.26! is accu-
rate so we only show Eq.~2.26!. The use of Eq.~2.26!,
which is based on the average surface densities, slightly
overestimates the connection probability compared to the
more realistic approach of Eq.~2.22! which takes into ac-

count the full distributions. Results in 3D show that Eq.
~2.22! correctly predicts the simulated connection probabil-
ity, especially at largeL. In 2D this is not the case. The
difference in 2D probably originates from our assumption of
a homogeneously distributed surface densityXsurf when cal-
culating the connection probability according to Eq.~2.22!.
A fractal distribution seems more appropriate. Moreover, due
to the use of open boundary conditions, the true distribution
of the surface density across the connecting interface is ex-
pected to be lower along the boundaries than in the bulk.
Another possible explanation for the remaining discrepancy
between approximated and observed connection probabilities
is the occurence of loops that would tend to make the appar-
ent connection probability in the EL lower. Either of these
effects seem smaller in 3D than in 2D.

We note the near coincidence of the connection probabil-
ity curves at the percolation threshold of the SL. In 3D, but
not in 2D, the fixed point also occurs in the set of curves
based on the average surface densities@Eqs. ~2.22! and
~2.26!#. We again attribute the discrepancy in 2D to either
the assumption of a homogeneously distributed surface den-
sity or to the contribution of loops. Using Eq.~2.26! the fixed
point implies that the average surface density at the fixed
point scales asXsurf(pc)}L2(d21)/2. Verification of this scal-
ing relation is made in Fig. 3, which shows a log-log plot of
Xsurf(pc) vs L. Straight lines are observed both in 2D and in
3D. The slope in 3D equals21.0, in accordance to the an-
ticipated slope of21. In 2D we find a slope of20.33,
which indeed implies a small remainingL dependency of the
connection probability atpc computed according to Eqs.
~2.25! and ~2.26!. The reason for the exponent of20.33 in
2D remains unclear.

C. Connection probability vs percolation probability of SL

In Figs. 4~a! ~2D! and 4~b! ~3D! we compare the connec-
tion probabilityC(p,L), i.e., the probability that the perco-
lating cluster of two SL’s are connected at the interface, to
the percolation probability of the SL. It appears that both
probability curves are very similar, which is an unanticipated

FIG. 1. Connection probabilities for EL’s with different aspect
ratios. Connection probabilitiesC(p,L) are calculated according to
Eq. ~2.27!. ~a! D52, with n52 ~dotted lines!, n54 ~dashed lines!,
and n5100, (L532), andn510, (L5128) ~solid lines!. ~b! D
53, with n52 ~dotted lines!, n54 ~dashed lines!, and n510
~solid lines,L516,41 only!.

FIG. 2. Realized and predicted connection probability for EL’s.
Comparison of connection probabilityC(p,L) computed according
to Eq. ~2.26! ~short-dashed lines!, Eq. ~2.22! ~long-dashed lines!,
and derived from simulation using Eq.~2.27! ~solid lines!. ~a! D
52, L532, 128, and 512.~b! D53, L516, 41, and 80. The
steepest curves correspond to the biggest lattice size. The vertical
line indicates the position of the percolation threshold of the SL.

FIG. 3. L-dependent scaling of the surface density of the SL.
Double-logarithmic plot of the surface densityXsurf of the SL evalu-
ated atpc versus lattice sizeL. The solid lines indicate linear fits to
the data points.
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result. Intuitively one might expect that, at a given occupa-
tion densityp, it is much easier to connect two percolating
interfaces rather than connectL subsequent interfaces. How-
ever, the probability of connecting any two interfaces de-
pends on the occupation fractionp, which is much higher
than the probability of connecting two percolating clusters at
an interface that depends on the surface densityXsurf of the
percolating cluster. On the square lattice with open boundary
conditions we obtainP(pc ,L).0.50, while the fixed point
of the connection probabilityC(pc ,L).0.68 is significantly
higher. In 3D the fixed point of the connection probability
C(pc ,L).0.23 almost coincides with the fixed point of the
percolation probabilityP(pc ,L)50.286. The observation of
the fixed point of the percolation probability is consistent
with results on the square lattice@21# and recent results based
on extensive simulations on a cubic lattice@23#.

For values ofp much larger thanpc ~see insets of Fig. 4!
the connection probability and the percolation probability be-
come indistinguishable, except for the smallestL value stud-
ied, where the coarseness of the grid becomes important. The
underlying reason for the similarity betweenP(p,L) and
C(p,L) remains unclear to the authors, but it allows us to
simplify Eq. ~2.4!. SettingC(p,L)5P(p,L) we obtain

Pn~p,L !5@P~p,L !#2n21, ~3.1!

which we expect to be especially accurate in 3D and in 2D
for large values ofn wherepc

(n)(L)@pc(L). Another way of
interpreting Eq.~3.1! is by considering the EL to be con-
structed of 2n21 partially overlapping SL’s, requiring each
of them to percolate. The probability that the percolating
clusters of two SL’s with a 50% overlap are connected is
much higher, so if each of the 2n21 individual SL’s perco-
late, so does the EL. Following the same derivation as be-
fore, but now using Eq.~3.1! instead of Eq.~2.4!, we have

Pn~p,L !5H 12
bc

a
x(12a)e2(xa)J (2n21)

~3.2!

leading to only a small modification of Eq.~2.12!:

x@step#5H lnS 2bc

a ln 2D1 lnS n2
1

2D1~12a!ln x@step#J 1/a

,

~3.3!

which still equals Eq.~2.13! in its simplified form (n@ 1
2 ).

D. Percolation probability distributions of EL’s

We now compare the different theoretical approximations
used to describe the percolation probability function
Pn(p,L) for the EL. In Fig. 5Pn(p,L), the probability that
an EL percolates atpc

(n)(L),p, is shown forn51, 4, 100,
and 10 000, where four curves are compared. One curve is
the prediction based on directly applying Eq.~3.1! to the
numerically-realized percolation threshold distribution
F(pc ,L) of the SL. A second curve approximates the perco-
lation threshold distributionF by a Gaussian according to
Eq. ~2.7! (a52), beforeapplying Eq.~3.1!. The third curve
is based on Eq.~3.2!, while the fourth curve gives the prob-
ability defined by a Heaviside step function at the position
given by Eq.~2.13! ~with a52). Figure 5 shows that the
approximation of the probability curves by Eq.~3.2! yields
very accurate results for alln. The approximation of the po-
sition of the step by Eq.~2.13! deviates from the position for
which Pn(p,L)50.5 only at very highn (104 in this case!.
This deviation originates from neglecting the lnx term in Eq.
~2.13!.

For extremely largen, the second curve based on a Gauss-
ian percolation probability distribution deviates significantly
from the prediction based on directly applying Eq.~3.1! to

FIG. 4. Comparison of the percolation probabilityP(p,L) of a
SL ~dashed lines! and the connection probabilityC(p,L) computed
according to Eq.~2.27! with n52 ~solid lines!. ~a! D52, L532,
128, and 512, and~b! D53, L516, 41, and 80. The steepest
curves correspond to the biggest lattice size. The inserts show the
almost identical behavior of the percolation and connection prob-
ability for p.pc . Inset in ~a! shows n5100, 10, and 4 forL
532, 128, and 512, and in~b! givesn510, 10, and 4 forL516,
41, and 80-respectively. The vertical line indicates the position of
the percolation threshold of the SL.

FIG. 5. Comparison of theoretical predictions for the percolation
probability of EL’s. Example for lattice of size 16316316n. Four
levels of approximation are shown: points: first level@application of
Eq. ~3.1! using simulated percolation distribution of the SL#; solid
curve: second level@application of Eq.~3.1! using Gaussian fit to
percolation distribution of the SL#; dashed curve: third level@appli-
cation of Eq.~3.2!#; vertical lines: fourth level@approximation by
Heaviside step function according to Eq.~2.13!#.
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the numerical distribution. For largen the percolation prob-
ability Pn(p,L) is determined by the tail of the distribution,
P(p,L)→1.0, of the SL. Due to the numerical noise and the
limited accuracy of the numerical distribution for the SL at
p@pc , we believe that the Gaussian fit captures this tail
without the numerical noise, and therefore gives a better fit
for larger n. We show in Fig. 6 that the assumption of a
Gaussian distribution gives an excellent match to the numeri-
cal data obtained at largen. Figure 6 displays as an example
the numerically obtained percolation probability distribution
Fn for a 3D lattice of size 41341341n plus the predictions
based on Eq.~2.5! and Eq.~3.1! using a Gaussian fit to the
percolation probability distributionF of the SL.Fn was ob-
tained fromPn as a numerical derivative, as there is no ana-
lytical expression forFn . As we will see when we present
the full n-dependent scaling results of both 2D and 3D per-
colation thresholds, the assumption of a Gaussian distribu-
tion for the SL fits the 3D data only. One should realize that,
even in 3D, the percolation probability distributions of an EL
are not Gaussian. As can be seen from Fig. 6 the probability
distributions are skewed.

E. L-dependent scaling of percolation threshold of EL

In Fig. 7~a! we show numerical results obtained on 2D
lattices with sizeL ranging from 16 to 2048 and aspect ratios
1,n<103. Independent ofn, all the curves follow the same
scaling law over a broad range ofL, confirming the
L-dependent scaling of the percolation threshold of an EL as
given by Eqs.~2.16! and~2.17!. The straight lines are linear
fits to all the data points, except for those forL516, which
seem to be consistently smaller. As in site percolation on
SL’s in the limit of smallL, the scaling relations may break-
down. ForL→`, all the curves extrapolate to a percolation
threshold very close to that of a SL. Any difference disap-
pears if the fit is based on progressively higher values ofL
for larger values ofn. Figure 7~b! shows the results obtained

with 3D lattices with 16,L,80 and 1,n,50. Again, the
scaling is consistent with our predictions.

F. n-dependent scaling of percolation threshold of EL

The n-dependent scaling of the percolation thresholds is
summarized in Fig. 8. The data are shown as lnn versus
pc

(n)2pc on a log-log scale. As anticipated by the theoretical
analysis in the previous section, the data appear as straight
lines with a slope equalling 1/a. Leaving out the largestn
values, we find that the slope of the curves equals 0.72
60.05 in 2D, and 0.5060.02 in 3D, without any obviousL
dependency. Comparing these results to the anticipated
slopes of 1/2@Eq. ~2.16!# and 1/n @Eq. ~2.17!# reveals that the
2D data scale according to Eq.~2.17! (1/n50.75) whereas
the 3D data scale according to Eq.~2.16!. Apparently, for the

FIG. 6. Comparison of theoretically predicted and simulated
percolation probability distributions. Example for lattices of size
41341341n. Open symbols are used for simulated percolation
probability distributions for the SL~circles!, and for EL’s with n
54 ~diamonds!, andn5100 ~squares!. Solid lines are theoretical
predictions based on approximatingF(pc ,L) by a Gaussian and
applying Eq.~3.1!.

FIG. 7. L-dependent scaling of the percolation threshold for
EL’s. Points represent numerical data, and solid lines linear fits to
the data excluding the smallestL value.~a! D52, from bottom to
top,n51, 2, 4, 8, 16, 32, 64, and 1000.~b! D53, n51, 2, 4, 10, and
50.

FIG. 8. n-dependent scaling of the percolation threshold of
EL’s. Data are shown on a log-log scale. Points represent actual
percolation results for EL’s and solid lines are linear fits to these
results excluding, for smallL, the smallest and the largestn values.
~a! D52, L516, 32, 128, and 512 from top to bottom, and~b! D
53, L516, 41, and 80. The dotted lines give the prediction of
Monetti and Albano@Eq. ~2.19!, with c15c251.0#.

PRE 62 3211FINITE SIZE SCALING FOR PERCOLATION ON . . .



2D case the correlation length drops rapidly upon extension
of the lattice and scaling is determined by the tails of the
percolation distribution that follow a non-Gaussian decay
characterized by the correlation length exponentn. On the
contrary, in 3D the correlation length remains large and the
scaling is according to a Gaussian distribution of percolation
thresholds.

We do note that the scaling observed here describes nei-
ther the limiting behavior in the smalln or the largen limit
but describes a crossover behavior for intermediaten. For
small n the approximation leading to Eq.~2.9! breaks down.
For largen the theoretical predictions overestimate the nu-
merical values, due to the neglect of the lnx term in Eq.
~2.13!. Numerical estimates indicate an overestimation of
about 10% atn5105. A crossover to one-dimensional be-
havior is not observed for finiten considered here. There is
no indication in the 2D data of Fig. 8 of a crossover to the
one-dimensional universality class (n51). Substituting the
numerical values ofa,b, and pc(L) into Eq. ~2.18! reveals
that the crossover may be expected to occur at extremely
largen. For example,ncross(L)5O(1012) for a 2D lattice of
sizeL532, andncross(L)5O(10200) for a 3D lattice of size
L516.

Except for small aspect ratios (n,8) we find a signifi-
cantly differentn-dependent scaling of the percolation prob-
ability than conjectured by Monetti and Albano@5# ~see Fig.
8!. Our numerical results for larger values ofn very closely
match the (lnn)1/a-type scaling we derived from our theoret-
ical arguments, and certainly not then21/n type of scaling
proposed by Monetti and Albano@5#. These authors also pre-
sented limited numerical results that seemed to confirm their
scaling law. Only 2D results were reported, with small aspect
ratios n52, 4, 8, and 16 only, and very small lattice sizes
ranging fromL56 to 48. Fitting of our data to their pro-
posed scaling@Eq. ~2.19!# we indeed find a good match for
smalln(n,8), with the nontrivial resultc15c251.0 in both
2D and 3D. However, the more extensive data set leads to
large systematic deviations from their proposed scaling law.
Therefore we conclude that Eq.~2.19! only holds in the lim-
iting case of small aspect ratio. At larger values a crossover
to lnn1/a-type scaling occurs.

G. n-dependent scaling of percolation probability of EL at pc

Figure 9 shows a logarithmic plot ofPn(pc ,L) vs n
showing straight lines in both two and three dimensions, in
accordance with Eq.~2.20!. Within the error bars~reflected
by the size of the data points!, the results are independent of
L. From the slope and intercept we calculatea51.5, andb
521.10 in 2D, implying P(pc ,L)50.50 and C(pc ,L)
50.67, consistent with our earlier results and with the pre-
diction of @19#, a51.426 35 andb52p/3521.05. In three
dimensions we find a54.5 and b522.7, implying
P(pc ,L)50.286 and C(pc ,L)50.23, also in agreement
with our earlier results. The 3D results forP(pc ,L) are simi-
lar to the recent predictions of Linet al. @24# P(pc ,L)
50.265 and Gimelet al. @23# P(pc ,L)50.28. The values
for a andb are very different from those given by Lorenz and
Ziff @9# who obtaina51.45 andb521.37 for a cubic grid
with periodic boundary conditions in eachL3L plane. The
latter result predicts that the crossing probability atpc de-

creases by a factore2b.0.254 for each additional cube
added to anL23nL lattice with periodic boundary condi-
tions. The current paper givese2b.0.105. This result high-
lights the effect of the choice of boundary condition@25# on
the spanning probability.

Both 2D and 3D findings indicate that the connection
probability atpc remains finite, even in the limit of largeL.
Furthermore, in 3D it appears that the connection probability
is smaller than the percolation probability itself.

H. L-dependent scaling of density of EL

Figures 10~a! ~in 2D! and 10~b! ~in 3D! show the
L-dependent scaling of the density in elongated lattices. In
the 3D case the scaling is in accordance with Eq.~2.32! over
the entire ranges ofL andn studied. Apparently, the perco-
lation thresholdpc

(n)(L) of the EL is still close enough to the
individual percolation thresholdspc(L) of the SL’s, so the
contribution of SL’s scaling according to Eq.~2.34! remains
negligible. In 2D, this is only true for largeL and smalln. As
L decreases, orn increases, the curves do approach the lim-
iting scaling law, Eq.~2.33!.

I. n-dependent scaling of density of EL

Figures 11~a! and 11~b! present then-dependent scaling
behavior of the percolation density. As was concluded from
the L-dependent scaling in the previous section, in the 3D
case@Fig. 11~b!# the scaling relation given by Eq.~2.32!
holds well over the range ofn studied~except for the largest
n values at smallL and in the smalln limit !. Straight lines
are obtained when we assume an underlying Gaussian distri-
bution of percolation thresholds~i.e., a52), although due to
the small exponent (b/2.0.2) it is difficult to predicta ac-
curately. Note that a log-log plot ofX versus lnn cannot be
used to determine the appropriate exponent due to the pres-
ence of a nonzero constant in Eq.~2.32!. Comparing the

FIG. 9. n-dependent scaling of the percolation probability of an
EL at pc . Logarithmic plot ofPn(pc ,L), the percolation probabil-
ity of an EL at the percolation threshold of the SL vsn. Two-
dimensional results are given forL532 ~circles!, L5128 ~triangles
down!, andL5512 ~triangles up!, and three-dimensional results for
L516 ~circles!, L530 ~triangles down!, andL541 ~triangles up!.
Solid lines are linear fits to all data points.

3212 PRE 62S. J. MARRINK AND MARK A. KNACKSTEDT



density to the percolation thresholds, Fig. 11~b! shows that,
even for the smallestL value studied, the next anticipated
scaling regime@Eq. ~2.34!# is not yet reached in 3D. In 2D
@Fig. 11~a!, left panel# the situation is different. Scaling ac-
cording to Eq.~2.32! is observed but with an exponent of
b/n instead ofb/2 in accordance with the observed scaling
of the percolation threshold. For largern the next scaling
regime is entered@Fig. 11~a!, right panel#, and the limiting
curves that scale according to Eq.~2.33! start coinciding with
the density curves.

IV. CONCLUSION

Statistical arguments show that the percolation threshold
of a lattice that is elongated in one direction is shifted to-
wards higher values. The shift in percolation threshold with
respect to the simple lattice~SL! was derived to scale as
approximately lnn1/a, with n being the aspect ratio of the
lattice anda being the appropriate exponent of the percola-
tion probability distribution of the SL. The scaling with lat-

tice sizeL is shown to be identical to that of a SL. Both
scaling laws apply in 2D and 3D. Numerical results over
wide ranges ofn and L confirm the theoretically-derived
scaling relationships. For the density of the percolating clus-
ter two different scaling laws are derived. Numerical results
indicate that one of them, in which the percolation threshold
is still close to that of the SL, applies partly to the 2D, and
fully to the 3D case. The critical exponentb of random
percolation appears in the scaling relations. The other re-
gime, in which the percolation threshold has shifted substan-
tially away from that of the SL is reached in 2D. In this case
the density of the percolating cluster and the percolation
threshold become almost identical, i.e., almost all the occu-
pied sites are in the percolating cluster.

ACKNOWLEDGMENTS

M.A.K. is grateful to the Australian Research Council for
financial support. We thank the ANU Supercomputing Facil-
ity for generous allocations of computer time. M.A.K. ac-
knowledges discussions with K. Mecke, M. Sahimi, and D.
Stauffer.

@1# D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.~Taylor and Francis, London, 1994!.

@2# M. Sahimi,Applications of Percolation Theory, 1st ed.~Taylor
and Francis, London, 1994!.

@3# M. Sahimi, Rev. Mod. Phys.65, 1393~1993!.
@4# M. Sahimi, Phys. Rep.306, 213 ~1998!.
@5# R. A. Monetti and E. V. Albano, Z. Phys. B: Condens. Matter

82, 129 ~1991!.
@6# R. A. Monetti and E. V. Albano, Z. Phys. B: Condens. Matter

90, 351 ~1993!.
@7# J. L. Cardy, J. Phys. A17, L961 ~1984!.

@8# R. P. Langlands, C. Pichet, P. Pouliot, and Y. S. Aubin, J. Stat.
Phys.67, 553 ~1992!.

@9# C. D. Lorenz and R. M. Ziff, J. Phys. A31, 8147~1998!.
@10# M. Honarpour, L. Koederitz, and A. H. Harvey,Relative Per-

meability of Petroleum Reservoirs~CRC Press, Boca Raton,
FL, 1986!.

@11# R. Larson, L. E. Scriven, and H. T. Davis, Nature~London!
268, 409 ~1977!.

@12# S. J. Marrink and M. A. Knackstedt, J. Phys. A32, L461
~1999!.

@13# P. J. Reynolds, H. E. Stanley, and W. Klein, Phys. Rev. B21,

FIG. 10. L-dependent scaling of the density of EL’s. Points
represent numerical results.~a! D52. In the left panel EL’s of size
n51, 2, 4, 16, 64, and 1000 are given from bottom to top. Thick
lines represent linear fits to the largeL range of the data, indicating
scaling according to Eq.~2.32!. In the right panel results forn
52, 16, and 1000 are compared to the percolation thresholds~open
circles!, indicating scaling according to Eq.~2.33!. ~b! D53, n
51, 2, 4, 10, and 50 from bottom to top. Thick lines represent linear
fits to all but the smallestL value, indicating scaling according to
Eq. ~2.32!.

FIG. 11. n-dependent scaling of the density of EL’s.~a! D
52. In left panel filled circles are numerical data for EL’s of size
L516, 32, 64, 128, and 512 from top to bottom. The thick lines
represent linear fits to intermediate values ofn. The right panel
shows the same data plus the observed percolation thresholds~open
circles! for L516, 32, and 128.~b! D53. L516, 41, and 80 from
top to bottom. Open circles denote the percolation threshold in case
of L516.

PRE 62 3213FINITE SIZE SCALING FOR PERCOLATION ON . . .



1223 ~1980!.
@14# J. Vannimenus and J. P. Nadal, Phys. Rep.103, 47 ~1984!.
@15# R. M. Ziff, Phys. Rev. Lett.72, 1942~1994!.
@16# U. Haas, Physica A215, 247 ~1995!.
@17# L. Beryland and J. Wehr, J. Phys. A28, 7127~1995!.
@18# J. Cardy, J. Phys. A31, L105 ~1998!.
@19# J. L. Cardy, J. Phys. A25, L201 ~1992!.
@20# R. M. Ziff, Phys. Rev. E54, 2547~1996!.

@21# R. M. Ziff, Phys. Rev. Lett.69, 2670~1992!.
@22# J.-P. Hovi and A. Aharony, Phys. Rev. E53, 235 ~1996!.
@23# J. C. Gimel, T. Nicolai, and D. Durand, J. Phys. A32, L515

~1999!.
@24# C. Y. Lin, C. K. Hu, and J.-A. Chen, J. Phys. A31, L111

~1998!.
@25# M. Acharyya and D. Stauffer, Int. J. Mod. Phys. C9, 643

~1998!.

3214 PRE 62S. J. MARRINK AND MARK A. KNACKSTEDT


