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Abstract

A modified generic model controller is developed and tested through a simulation study. The application involves model-based control of a
propylene polymerization reactor in which the monomer conversion and melt index of the produced polymer are controlled by manipulating the
reactor cooling water flow and the inlet hydrogen concentration.

Non-linear control is designed using a simplified non-linear model, in order to demonstrate the robustness of the control approach for modeling
errors. Two model parameters are updated online in order to ensure that the controlled process outputs and their predicted values track closely.
The controller is the static inverse of the process model with setpoints of the measured process outputs converted to setpoints for some of the state
variables.

The simulation study shows that the proposed controller has good setpoint tracking and disturbance rejection properties and is superior to the
conventional generic model control and Smith predictor control approaches.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Non-linear control; Model-based control; Polymerization; Non-linear model; Model parameter update

1. Introduction

Control of polymerization reactors is probably one of the
most challenging issues in control engineering. The difficulties
in operating such processes are numerous. Firstly, the process
dynamics are often highly non-linear because of the compli-
cated reaction mechanisms associated with the large number of
interactive reactions. Secondly, on-line monitoring of polymer
quality is often hampered by a lack of on-line measurements
for key quality variables such as composition (or monomer con-
version), molecular weight and copolymer composition [1]. If
measuring quality variables is at all possible, there may still be a
number of problems associated with these measurements, such
as (i) sampling problems, (ii) large dead times, (iii) off-line anal-
ysis, and (iv) sometimes large measurement errors and/or high
noise levels. A more detailed discussion of measurement dif-
ficulties in the field of polymerization can be found, amongst
others, in Kiparssides [2]. To cope with the lack of on-line
measurements of polymer quality, researchers have employed
different inferential and estimation techniques [1,3–5].

∗ Corresponding author.
E-mail address: b.roffel@utwente.nl (B. Roffel).

Many articles have been published in the area of polymer
reactor control in the last few years. They can be divided into
linear and non-linear control approaches. There are numerous
examples in the literature of linear control approaches applied
to polymerization reactor control, such as, PI cascade control
[6], dynamic matrix control [7,8], generalized predictive control
[9] and adaptive internal model control [10]. Examples of the
application of non-linear control approaches are, amongst oth-
ers, globally linearizing control [11–13] and non-linear model
predictive control [14,15]. There are also some approaches in
which linear control is used, combined with non-linear models
for setpoint updating [16].

Another type of control that has received moderate attention
is generic model control (GMC). This method uses a non-linear
process model and assuming a desirable process output trajec-
tory, a non-linear control law can be derived. A recent example
of its application in combination with extended Kalman filtering
is found in Arnpornwichanop et al. [17].

In the current paper an approach similar to generic model
control is being proposed, although its implementation and tun-
ing is simpler. It implements the non-linear model of the process
directly and gives an on-line estimation for the delayed measure-
ments (Fig. 1); thus, there is no need to design an estimator, such
as a Kalman filter. This control strategy is applied to the polymer-
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Fig. 1. Reactor control based on simplified non-linear model, using model and
controller update.

ization of propylene in a fully-filled hollow shaft reactor [18].
In case of a perfect non-linear model, a perfect non-linear con-
troller can be designed. In case of a simplified non-linear model,
the control system is improved by updating two model parame-
ters of the simplified process and control models using an online
model parameterization method. The efficiency of this control
algorithm is compared to the performance of a conventional PI
control system with Smith predictor dead time compensation.

The advantages of the proposed control approach over other
approaches are: (i) there is no need for use of an extended
Kalman filter to estimate unknown states or parameters, (ii) there
is no need to solve the coupled set of non-linear ordinary differ-
ential equations, and (iii) the controller shows a good robustness
the adaptation of the model parameters, as a result of which
errors in dynamics and kinetics can easily be dealt with.

2. Non-linear control

Consider a process, which can be described by the following
equations:

dx

dt
= f (x, p) + g(x, u) + l(x, d)

y = h(x)
(1)

where x is the vector of state variables, y the vector of measured
variables, u the vector of input variables, d the vector of distur-
bance variables, p the vector of process parameters, and h, f, g,
l are the non-linear function vectors.

Let the model be a simplified description of the process with
a different parameter set p and be given by:

dx̂

dt
= f (x̂, p̂) + g(x̂)u + l(x̂)d

ŷ = h(x̂)
(2)

where the hat refers to the model values. In the development
of the generic model control algorithm it is assumed that the
derivative of y obeys the following equation [19]:

dy

dt
= K1(ysp − y) + K2

∫ tf

0
(ysp − y) dt (3)

were K1 and K2 are tuning parameters and ysp is the setpoint
value of the process output. Using Eq. (2), the derivative of the

state variable can be expressed as:

˙̂x = ˙̂y

[
dh(x̂)

dx̂

]−1

(4)

Substitution of the derivative of x̂ in Eq. (2) results in:

˙̂y

[
dh(x̂)

dx̂

]−1

= f (x̂, p̂) + g(x̂)u + l(x̂)d (5)

from which the equation for the control input vector can be
derived:

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K1(ysp − y) + K2
∫ tf

0 (ysp − y) dt

−(dh/dx̂)[f (x̂, p̂) + l(x̂)d]

(dh/dx̂)g(x̂)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

If the model is not linear in the control vector u, its values have
to be computed through iteration. The parameters K1 and K2 are
tuning parameters. If the model is not perfect, control perfor-
mance will deteriorate, and the integral action in the controller
will eliminate offset. However, it is preferred to use parameter
estimation in order to update the model and thus account for
parameter and structural errors. Farza et al. [20] suggested a
simple non-linear observer, although other estimation schemes
are possible, such as, e.g. a Kalman filter.

The tuning parameters K1 and K2 enable us to tune such
that even some overshoot can be realized. This can primarily be
realized through adjustment of K1. A disadvantage of tuning for
some overshoot in one variable is that it also affects the response
of the other controlled variables. A smoother response without
overshoot will show a smoother response of the other controlled
variables.

If parameter update ensures that the model output tracks the
true process output, the integral term in Eq. (6) is not required,
since there will be no sustained offset in the controlled variables.
Hence if K2 = 0 and tuning of K1 is done very conservatively to
suppress variable interaction, one may wonder why one would
not use a controller with both tuning values K1 and K2 set equal
to zero, i.e. use a controller that is based on a static process model
with parameter update. This may give a conservative response
for setpoint changes, which approaches the open loop response
of the system, however, disturbance rejection properties are
expected to be good. The controller can then be calculated by
the following set of equations:

u = −f (x̂sp, p̂) − l(x̂sp, d)

g(x̂sp)
, x̂sp = h∗(ysp, x̂) (7)

where the estimated setpoint values of the output vector could
be filtered values of the true setpoint values and the parameter
p̂ needs to be updated. In Eq. (7) the dimension of the y vector
is usually smaller than the dimension of the x vector, therefore
not all state variables setpoint values can be calculated, conse-
quently, some setpoint values are set equal to the current values
of the state variables from the model. This is also one of the
main differences with generic model control where all the state
variables follow from the process model and none of them have
setpoint targets.
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The parameter update should be realized such that the pre-
dicted process output values do track the true process measure-
ments. Assume that it is required that the predicted process
output values follow the true process outputs according to a
first order response with time constant τ:

τ
dŷ

dt
= y − ŷ (8)

In a steady state situation, when u and d are constant, an offset
between y and ŷ can only be minimized through adjustment of
the model parameter p̂. Eq. (8) can then be rewritten as:

dp̂

dt
= 1

τ

y − ŷ

∂ŷ/∂p̂
(9)

In some cases it may be easier to rewrite Eq. (9) in a some-
what different manner. In that case, Eq. (8) is differentiated with
respect to p̂ and substituting back into Eq. (9), which gives:

dp̂

dt
= − 1

τ2

y − ŷ

∂[dŷ/dt]/∂p̂
(10)

3. Process description

The hollow shaft reactor is an experimental extruder-like con-
tinuous reactor with internal recycling of the reaction medium.
It has been designed for polymerizations at high viscosities up
to a few hundred Pa s, and to work under high pressure and
temperature, 250 bar and 250 ◦C. The reactor possesses the fol-
lowing properties: minimum dead volume, maximum recycle
ratio, fast and predictable macro mixing; the recycle ratio and
macro-mixing do not depend on the viscosity of the reaction
mass in a wide range of viscosities [18].

The reactor is used for liquid-pool propylene polymeriza-
tion with a multi-site heterogeneous Ziegler–Natta catalyst. The
inlet flow to the reactor consists of pure monomer, catalyst and
hydrogen, the latter is used as a transfer agent to provide a bet-
ter control of the molecular weight of the produced polymer. A
coolant removes the heat released due to polymerization.

One of the first considerations in establishing a control strat-
egy is to arrange the system inputs and outputs into manipulated,
controlled and disturbance variables. The polymerization pro-
cess studied in this work has five inputs (manipulated and dis-
turbance variables) and four controlled variables. Assuming fast
cooling water dynamics, input variables include cooling water
flow (Fw), outlet liquid flow rate (F) and feed rate of monomer
(Finym,in), hydrogen (FinyH2,in), and catalyst (Finycat,in). Reactor
pressure (P), polymer melt index (MI), reaction conversion (C)
and temperature (T) could be used as controlled outputs.

The reactor system is equipped with an automatic valve at
the outlet that controls the reactor pressure P by manipulating
the outlet flow F. In a pilot setup, it is aimed to keep the catalyst
and monomer feed rates constant. Consequently, they will not
be used in designing the control system. The control problem
can therefore be simplified to a system with two manipulated
inputs FinyH2,in and Fw, and two controlled variables MI and C.

4. Dynamic process model

The process model consists of dynamic material balances, a
dynamic energy balance and algebraic equations for kinetic rate
expressions and physical properties, as described in Appendix
A. The mechanism of propylene polymerization is explained
elsewhere [21]. In order not to complicate the model description
too much, a number of assumptions were made, also listed in
Appendix A.

The measurements of the process outputs, i.e. the monomer
conversion and polymer melt index are subject to measurement
delays, the delay for the conversion is 1 h and for the melt index
it is 2 h.

The detailed model as described in Appendix A is used as
the process description. If the model used for prediction of the
controlled output is the same as this set of equations, a perfect
prediction is obtained and the non-linear controller is a perfect
non-linear controller.

5. Model simplification

In order to demonstrate the robustness of the control approach
to modeling errors, the following deliberate simplifications were
introduced. The rate of reaction, Eq. (A.9), is approximated by:

Rp = k1K3mycρ̄mX (11)

where K3 is a tunable parameter with an initial value of 0.91,
ρ̄m the constant value for the monomer density and a 5% error
in the calculation of k1 is introduced.

Since the density is assumed constant, the equation for the
outlet flow, Eq. (A.13), can be simplified to:

F =
(

Fin

ρm
+ Rp

(
1

ρp
− 1

ρm

))
ρ (12)

Eq. (A.19) was approximated by a linear first order differential
equation:

0.9
dMIc

dt
= MIi − MIc (13)

and the exponent in Eq. (A.16) was assumed to have a value equal
to one. Another tunable parameter K4 was therefore introduced
in Eq. (A.16) to compensate for structural and parametric model
mismatch:

MIi = K4κX (14)

with the initial value of K4 equal to 0.88.
If the inaccuracies in the model are not known, a sensitivity

analysis should be performed to find out which equations have
the largest impact on the controlled variables in order to be a
candidate for introduction of the parameter update.

Summarizing, the simplified model consists of Eqs.
(A.1)–(A.20), with Eq. (A.9) replaced by Eq. (11), Eq. (A.13)
replaced by Eq. (12), Eq. (A.16) replaced by Eq. (14) and Eq.
(A.19) replaced by Eq. (13).
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6. Parameterization of the simplified model

The implementation of a simplified model in non-linear
controller design will usually result in unacceptable perfor-
mance, the main problem being offset in the controlled vari-
ables. Thus, the parameters in the simplified model should
be updated for prediction and control to be effective. Dif-
ferent updating approaches can be used. McAuley and Mac-
Gregor [1] implemented the recursive prediction error method
for updating a set of parameters in the instantaneous melt
index and density correlations. Because of its flexibility, other
researchers [6,22,1] preferred to use extended Kalman filtering
or other types of observers such as the Luenberger estima-
tor [23]. Rhinehart and Riggs [24] used Newton’s method and
an intuitive relaxation method to calculate the model parame-
ter update, our proposed method shows some resemblance to
this method. In our case we do not use relaxation as a tuning
parameter, instead, we propose to use a first-order time con-
stant, which will be more acceptable from an engineering point
of view.

Fig. 2. Response to step changes in melt-index and conversion setpoints.

As shown in Appendix B, update of the model parameters K3
and K4 proceeds according to the following equation:

Kj,k+1 = Kj,k + αpv,kepv,k (15)

in which k is the time step, j = 3 when the process variable pv
is the conversion and j = 4 when the process variable is the melt
index; e is the error between the measured process output and
the estimated process output using the simplified model. The
coefficient α depends on the process conditions.

7. Non-linear controller design

Starting point for the controller design is the static simplified
model. The setpoint for the melt index MIc,sp can be written as
a setpoint for ratio of hydrogen to monomer concentration by
using Eq. (14):

Xsp = MIc,sp

κK4
(16)

Fig. 3. Response of manipulated variable to step changes in melt-index and
conversion setpoints.
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The setpoint for the conversion can be written as a setpoint for
the monomer concentration by using Eq. (A.20):

ym,sp = ym,in(1 − Csp) (17)

By combining Eqs. (A.2)–(A.6), the inlet hydrogen concentra-
tion can be written as:

yH2,in = yH2,sp + RH2

Fin
(18)

in which RH2 follows from the simplified model equations and
Fin is a measured variable. Eq. (A.12) can be used to calculate
the specific heats of the reactor inlet flow and the fluid inside the
reactor, using the reactor temperature from the simplified model.
The static version of the reactor energy balance, Eq. (A.11) can
subsequently be used to calculate the reactor jacket temperature:

Tj,sp = Tm + 1

UA
[Fin(Cp,inTin − CpTm) − Rp �HR,p] (19)

after which the linear relationship between the jacket tempera-
ture and cooling water flow can be used to compute the water
flow through the reactor jacket. Tm represents the reactor tem-
perature from the simplified model.

Fig. 4. Update of model parameters during setpoint changes.

The control law of Eqs. (18) and (19) is rather similar to
the one that can be derived for generic model control, how-
ever, there are two main differences: (i) this controller does not
have proportional integral control action to ensure that the pro-
cess output follows a prescribed trajectory. In this case model
updating ensures that there will be no process-model mismatch
and the process output approaches setpoint; (ii) the setpoints for
the controlled process outputs are converted to setpoints for the
same number of state variables. This can easily be achieved,
since in reactor modeling component concentrations and tem-
peratures are often measured and they are also the state variables
of the model. The control approach as described in this section
is therefore called mGMC, modified generic model control.

8. Conventional proportional-integral control with dead
time compensation

In many polymer producing companies, classical control
techniques such as proportional integral (PI) control is still being
used, the designed non-linear controller will therefore be com-
pared to a conventional PI controller with Smith predictor dead
time compensation. Using the relative gain array method (RGA)

Fig. 5. Controlled variable responses to a +20% disturbance in feed rate.
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[25], it was found that the melt index can be best controlled by
the inlet hydrogen concentration, yH2,in, and the conversion by
the jacket temperature, Tj (i.e. cooling water flow). Due to the
presence of measurement dead times of 1 and 2 h for conversion
and melt index, respectively.

9. Results and discussion

Since the process model is represented by a simplified model,
the responses will show process/model mismatch. As a result, the
parameter update scheme will come into effect to ensure that the
model output tracks the process output. It should be mentioned
that the update scheme uses fixed values of αC,k in Eq. (A.4) and
αMI,k in Eq. (A.7), equal to 0.6 and 0.001, respectively, since
changes in these values were found to be limited to a maximum
change of 20%.

9.1. Performance of the non-linear and PI control
algorithms

In this section, the performance of the following control
approaches will be discussed: (i) the generic model controller,
(ii) the modified generic model controller and (iii) the PI–Smith

Fig. 6. Manipulated variable responses to a 20% disturbance in feed rate.

predictor controller. Performance is examined for four different
cases:

• polymer grade change,
• conversion setpoint change,
• disturbance rejection,
• error in dead time of the melt index measurement of 1 h and

conversion measurement of 0.5 h.

In the closed-loop simulations, it is assumed that the val-
ues of MIc and C are available every 2 and 1 h, respectively;
within these time intervals, estimated values are obtained using
the property models and the parameter-updating scheme. The
controller algorithms are executed every 6 min.

In addition to monitoring the controlled variables, also the
manipulated variable moves are monitored.

Figs. 2 and 3 show the closed-loop responses of the controlled
and manipulated variables for a change in melt index setpoint
from 15 to 30 at time t = 5 h and a change in conversion setpoint
from 0.18 to 0.22 at time t = 35 h. Fig. 2 shows the response of
the controlled outputs, Fig. 3 shows the responses of the manip-
ulated variables for completeness. Controller tuning settings are
given in Table 1. In Fig. 2 it can be seen that the generic model

Fig. 7. Controlled variable responses to a 20% disturbance in catalyst activity.
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Table 1
Controller tuning for setpoint changes

PI/SP conversion controller Kc = 2, Ti = 2.0
PI/SP melt index controller Kc = 0.00125, Ti = 4.0
Melt index setpoint filter τ = 0.2 h
Conversion setpoint filter τ = 0.1 h

controller gives a rather large overshoot for a setpoint change
in the cumulative melt index, at the same time the interaction
is visible in the conversion response (around t = 10 h). Detuning
the GMC controller improves the response, since the interaction
between the variables is reduced but also reduces the speed of
response.

On the one hand the GMC controller decouples the process
variables through the static inverse of the process model, on the
other hand a PI controller is added which introduces process
variable interaction. The Smith predictor controller also suffers
from the interaction between the process variables, detuning
slows down the response. As can be seen, the mGMC controller
outperforms the other two controllers. Fig. 4 shows the parame-
ter update during these transients. As can be seen, the response
is smooth.

Fig. 8. Manipulated variable responses to a 20% disturbance in catalyst activity.

Another issue that should be considered is load or disturbance
rejection. The first type of disturbance that will be considered is a
measurable change in the propylene inlet flow rate; the rejection
tests were conducted with a 20% increase in inlet flow rate at
t = 5 h, retaining the controller settings for setpoint changes. As
can be seen from Fig. 5, also in this case the mGMC controller
outperforms the other two controllers. The melt index is not
affected much by the disturbance, the conversion suffers from a
momentary decrease (at t = 6 h) which is the largest for the Smith
predictor controller (Fig. 6).

Another type of unmeasurable disturbance that is considered
is a 20% change in the catalyst activity. As can be seen from
Fig. 7, the GMC controller outperforms the other two controllers.
This is due to the aggressive tuning of the integral action in case
of GMC control, this also causes the response to be slightly more
oscillatory than the other two responses. All controllers reach a
new steady state around the same time, the maximum deviation
for the mGMC and SP/PI controller are somewhat larger than
for the GMC controller in case of the melt index. The response
of the conversion to this change is very much the same for all
controllers (Fig. 8).

Fig. 9. Controlled variable responses to setpoint changes in case of dead time
discrepancy.
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Fig. 10. Manipulated variable responses to setpoint changes in case of dead time
discrepancy.

Another type of disturbance that could occur is a discrepancy
in sampling times of the controlled outputs from the model and
from the plant. The dead time of the melt index is assumed to
be 2 h, the dead time of the conversion is assumed to be 1 h.
Figs. 9 and 10 show the impact of a discrepancy in dead time
between the process and the model, the dead time of the process
melt index is decreased by 1.0 h and the dead time of the process
conversion is decreased by 0.5 h. All controllers are affected,
the mGMC controller performed better than the other two con-
trollers.

10. Conclusions

Non-linear process model based control was studied for
control of liquid propylene polymerization under varying con-
ditions. The controller manipulated the hydrogen flow rate
and cooling water flow to follow the setpoints for cumula-
tive melt index and reaction conversion and to remove the
effects of various process disturbances. The non-linear con-
trol strategy was called modified generic model control, it
used the static inverse of the process model with setpoints

of the measured process outputs converted into setpoints
for the state variables. In addition, model parameters were
updated to ensure good setpoint tracking and disturbance rejec-
tion. Tuning of the proposed control strategy is simple, the
time constant of the setpoint filters can be adjusted and the
speed at which the parameter update is accomplished can be
selected.

Performance of the control strategy was compared to a
generic model controller and a proportional integral controller
with Smith predictor dead time compensation.

Closed loop simulations revealed that for setpoint changes
the modified generic model controller was superior to the other
two controllers, also for measurable feed disturbances it outper-
formed the other control approaches.

For unmeasurable disturbances in the catalyst activity, the
response of the melt index was somewhat faster for the generic
model controller due to aggressive tuning of the integral action,
this also lead to a more oscillatory response.

Appendix A. Dynamic model of the polymerization
process

In order to develop a model of limited complexity, the fol-
lowing assumptions were made:

• The polymerization reactions are irreversible and first order
with respect to each reactant.

• The reactor is ideally mixed. Thus, no temperature and con-
centration gradients are present. If the stirrer speed in the
reactor is in the range of 100 rpm, the reactor is (macro) mixed
within 40–80 s, meanwhile, the reactor average residence time
may reach 1 h.

• The reactor is fully filled, no gas phase is present in the reactor.
• The energy produced due to mixer rotation is negligible.
• The catalyst decay through different chemical mechanisms at

various types of active sites may be lumped together into a
single deactivation. In addition, the active site concentration
decreases in accordance with a first order decay mechanism
constant [26].

• Monomer equilibrium concentration near the active sites is
assumed the same as the monomer bulk concentration. Thus,
it can be calculated using a monomer density correlation.

• The reactor contains two phases: (i) a liquid monomer phase
and (ii) a polymer phase. The liquid phase consists of propy-
lene monomer with dissolved hydrogen and the polymer
phase consists of crystalline polymer and amorphous poly-
mer, which is swollen with the monomer.

In this model, all variables should have a hat in order to show
they are model values, however, it has been omitted for reasons
of simplicity of notation.

The overall mass balance of the reactor can be described as:

dm

dt
= Fin − F (A.1)
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where m is the total mass inside reactor and F the outlet mass
flow rate in kg/h, Fin = 1.0 kg/h. The monomer mass balance is:

m
dym

dt
= Fin(ym,in − ym) − Rp (A.2)

ym is the mass fraction of monomer in the outlet flow stream, and
Rp is the propagation reaction rate. The hydrogen mass balance
can be described as:

m
dyH2

dt
= Fin(yH2,in − yH2 ) − RH2 (A.3)

in which yH2 is the hydrogen mass fraction in g H2/kg material
inside the reactor and RH2 is the apparent hydrogen consumption
rate. An apparent consumption rate is used, since the reaction
rate constants for the hydrogen reactions, transfer with hydrogen
and dormant sites reactivation, are not known for the catalyst
system used in this work.

The hydrogen consumption rate, RH2 , can be calculated from:

RH2 = 2Rp

42.1Pn
(A.4)

where 2 and 42.1 are the molecular weight for hydrogen and
propylene, respectively, Rp is the polymerization rate. The num-
ber average degree of polymerization Pn can be calculated from:

Pn = 2

qPD
(A.5)

where PD is the polydispersity of the produced polymer, for
the catalyst used in this study it has an average value of 6.8.
The polymerization termination probability q is experimentally
determined from [21]:

q = d + eX, X = 0.02104yH2

ym
(A.6)

where X is the molar ratio of hydrogen to monomer in the reactor.
The values of d and e are given in Table 2.

Based on the assumption that the catalyst is being activated
before injecting it, the mass balance for the active catalyst, yc,
can be described as:

m
dyc

dt
= Fin(yc,in − yc) − Rd (A.7)

where Rd is the deactivation reaction rate. The concentration of
the deactivated catalyst, yd, can be calculated from the following
balance:

m
dyd

dt
= Fin(yd,in − yd) + Rd (A.8)

The reaction rates are calculated using the following equations:

Rp = k1mycρmX

Rd = kdmyc
(A.9)

in which k1 and kd are rate constants and ρm is the monomer
density. For the rate constants the following equations hold:

k1 = K01 + K02T + K03T
2

kd = kd0e
−Ea1/RT + kd1e

−Ea2/RT (1 − e−Ea3/X)
(A.10)

Table 2
Thermodynamic and physical parameters for propylene polymerization

Parameter Value

Physical parameters
Reactor volume (V) 1.86 × 10−3 m3

Reactor heat transfer area (A) 0.0961 m2

Thermodynamic parameters
Overall heat transfer coefficient (U) 1.62 MJ/h K m2

Heat of propagation reaction (�HR,p) 2.03 MJ/kg
Specific heat of polypropylene (Cp,p) 2.25 × 10−3 MJ/kg K
Density of polypropylene (ρp) 900 kg/m3

Specific heat of propylene (Cp,m)
a 2.785 × 10−3 MJ/kg K
b −9.18 × 10−6 MJ/kg K2

c 2.93 × 10−8 MJ/kg K3

Density of propylene monomer (ρm)
ρm,a −263.7 kg/m3

ρm,b 6.827 kg/K m3

ρm,c −0.0143 kg/K2 m3

Parameters for Eq. (A.16)
κ 6818.3
γ 1.03

Parameters for Eq. (A.17)
β −2.34
for X < 0.00144

d 5.32 × 10−5

e 0.115
else

d 1.52 × 10−4

e 0.0405

K0 in Eq. (A.10) [−204256.61, 1153.3314,
−1.626207]

kd0 3746 h−1

kd1 1.748 × 10−7 h−1

Ea1/R 1620.8 K
Ea2/R 5570.7 K
Ea3 498.9

Since the mass of the reactor wall is not small compared to the
mass of the reactor contents, the heat capacities of the reactor
wall and reactor contents are lumped together in the reactor
energy balance. This balance can be written as:

(mcp + mscp,s)
dT

dt
= Fin(cp,inTin − cpT ) − Rp �HR,p

−UA(T − Tjacket) (A.11)

where the subscript ‘s’ refers to steel. The dependence of the
jacket temperature on the cooling water flow can be calculated
from a static energy balance and is approximated by a simple
linear relationship. The specific heat of the reactor contents can
be given by:

cp = ym(a + bT + cT 2) + Cp,pyp (A.12)

The values of the coefficients are summarized in Table 2. Cp,p is
the heat capacity of the polymer, it is assumed to have a constant
value.

Since the reactor is completely filled and there is a significant
change in density because the low-density monomer is converted
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to the high-density polymer, the reactor outlet flow rate, F, will
vary. It can be shown that the following equation can be used to
calculate this flow [27]:

F =
(

Fin

ρm
+ Rp

(
1

ρp
− 1

ρm

)
− mym

dT

dt

1

ρ2
m

dρm

dT

)
ρ (A.13)

where ρp is the polymer density and ρm is the monomer density,
which can be calculated from:

ρm = −ρm,a + ρm,bT − ρm,cT
2 (A.14)

The constants of this equation are summarized in Table 2. ρ is
the density of the reaction mixture inside the reactor, it can be
written as:

ρ = ρmρp

ymρp + ypρm
(A.15)

The easily available measurements of the melt index are often
utilized to control the polymer quality in a homo-polymerization
reactor. In polyolefin production plants, it is well-known that
the concentration ratio of hydrogen to monomer, X, has a strong
effect on the instantaneous melt index MIi. In the literature [1,28]
different relationships have been proposed to relate MIi to X. In
this work, the following relationship is used:

MIi = κXγ (A.16)

The numerical values of κ and γ are obtained from experimen-
tal work and are listed in Table 2. Because the direct on-line
measurement of the instantaneous polymer molecular proper-
ties is not practically realizable, the melt index is correlated to
the polymer average molecular weight (Mw). In this study the
following semi-empirical equation is employed [29]:

MIc = αM̄β
w (A.17)

the values of α and β were calculated by fitting MI measurements
to the off-line measurements of Mw, the values are presented in
Table 2. To calculate the cumulative melt index, the differential
balance for the cumulative weight average molecular weight,
M̄w, is employed [30]:

dM̄w

dt
= 1

mp
(yp,inFin[M̄w,in − M̄w] + Rp[Mw − M̄w]) (A.18)

where mp is the mass of polymer inside the reactor. Substituting
Eq. (A.17) into Eq. (A.18), in addition to the assumption of
a free-polypropylene inlet stream, i.e. yp,in = 0, results in the
following differential equation for the cumulative melt index:

m(1 − ym)

βRp

d

dt
MIc = [MI1/β

i MI1−(1/β)
c − MIc] (A.19)

which is a first-order relationship with variable gain and time
constant.

To complete the model description, the monomer conversion
is calculated from:

C = 1 − ym

ym,t=0
(A.20)

Appendix B. Parameterization of the simplified model

To parameterize the conversion model, a relationship between
the conversion and the model parameter K3 has to be derived.
This relationship can be obtained by differentiating the conver-
sion equation, Eq. (A.20) with respect to time:

dC

dt
= − 1

ym,t=0

dym

dt
(B.1)

Using Eqs. (A.2) and (11), this equation can be rewritten as:

dC

dt
= −1

ym,inm
[Fin(ym,in − ym) − k1K3mycρ̄mX] (B.2)

Since the relationship between C and K3 is represented by a
differential equation, Eq. (10) is used for parameter update. The
difference between the conversion using the plant measurement
and the estimated conversion using the simplified model is used
to make incremental adjustments to K3 at each execution interval
of the discrete controller:

eC,k = Cplant,k − Cmodel,k (B.3)

After a simple Euler discretization of Eq. (10), the updating of
the parameter K3 can be evaluated according to:

K3,k+1 = K3,k + �teC,k

τ2(∂(dC/dt)/∂K3)
= K3,k + αC,keC,k

(B.4)

The partial derivative of the conversion-time derivative with
respect to the adjustable parameter K3 is calculated using Eq.
(B.2):

∂(dC/dt)

∂K3
= k1ycρ̄mX

ym,in
(B.5)

In the melt index model, Eq. (14) the parameter K4 is a tunable
parameter. The difference between the cumulative melt index
from the plant measurement and the simplified model is used
to make the corrections to the model parameter every controller
execution interval:

eMI,k = MIc,plant,k − MIc,model,k (B.6)

The value of K4 is updated using the discretized version of Eq.
(10):

K4,k+1 = K4,k + �teMI,k

τ2(∂(dMIc/dt)/∂K4)

= K4,k + αMI,keMI,k (B.7)

The partial derivative of the cumulative melt index-time deriva-
tive with respect to the adjustable parameter K4 is calculated
by substituting Eq. (14) into Eq. (A.19) and differentiation with
respect to K4:

∂(dMIc/dt)

∂K4
= Rp

mK4(1 − ym)
MI1/β

i MI1−(1/β)
c (B.8)
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Appendix C. Nomenclature

A area of heat transfer (m2)
C reaction conversion
Cp heat capacity of monomer (kJ/kg K)
F outlet flow rate from the reactor (kg/h)
Fin inlet flow rate to the reactor (kg/h)
�HR,p heat of polymerization (MJ/kg)
kd deactivation constant (1/h)
kp propagation constant (m3/gcat h)
m total mass inside the reactor (kg)
MIi instantaneous melt index (g/10 min)
MIc cumulative melt index (g/10 min)
Mw weight average molecular weight (kg/kmol)
Pn number average degree of polymerization
Rd catalyst deactivation reaction rate (kg/m3 h)
RH2 average hydrogen reaction rate (m3/gcat h)
Rp propagation reaction rate (kg/h)
t process time (h)
T reactor temperature (K)
Tj jacket temperature (K)
U heat transfer constant (MJ/h m2 K)
V reactor volume (m3)
X hydrogen molar ratio (mol H2/mol)
yc active catalyst mass fraction (g/kg)
yd deactivated catalyst concentration (g/kg)
yH2 hydrogen mass fraction (g/kg)
ym monomer mass fraction in the reactor (kg/kg)
yp polymer mass fraction in the reactor (kg/kg)

Greek symbols
ρ density of reaction mixture (kg/m3)
ρm monomer density (kg/m3)
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