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J.3. Lee, and J:J. Kim, “The induced chirali- 
ty in a polyisosycanate film and the polariza- 
tion rotation change under an external elec- 
tric field”, J. Opt. Soc. Am. B (In press). 
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Influence of chain packing 
on the excitation transfer in 
perylene-endcapped polyindenofluorene 

Laura M. Herz, Carlos Silva, Richard H. Friend, 
Richard, T. Phillips, Sepas Setayesh,* 
Klaus Miillen, *Cavendish Laboratory, Madingley 
Road, Cambridge, CB3 OHE, U.K.; 
+M~-Planck-lnstitutfiir Polymerforschung, 
Ackermannweg 10,D-55128 Mainz, Germany; 
Email: lmh33@cam.ac.uk 

We have investigated the excitation transfer in a 
novel polymer/dye system consisting of the blue- 
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CMM5 Fig. 1. Molar extinction coefficient 
spectrum of a polyperylene derivative in chloro- 
form solution (dashed line), together with the PL 
spectrum of perylene-end-capped PIFTEH for 
detection polarization parallel to the excitation 
polarization (41, solid line). The dotted line repre- 
sents the PL difference spectrum (Ill - 11) be- 
tween the emission with polarization parallel and 
perpendicular to the excitation polarization and 
shows clearly the partly polarized emission from 
PIFTEH aggregates in the red (1.8-2.3eV). 
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CMM5 Fig. 2. Time-resolved PL transients 
from perylene-end-capped PIFTEH showing the 
PL decay from PIFTEH chains (2.74 eV) and a 
corresponding rise in the red PL from the pery- 
lene end caps (2.0 eV) together with fits based on 
Forster theory. 

light-emitting conjugated polymer poly(6,6’- 
12,12’-tetra-2-ethylhexyl-2,8-indenofluorene) 
(PIFTEH) as a host and red-light-emitting pery- 
lene molecules covalently bonded to the PIFTEH 
chain ends as a guest. The spectral overlap be- 
tween the host emission and the guest absorption 
leads to an efficient Forster excitation transfer,’ 
such that photo-excitation of the host results in 
emission originating predominantly from the 
guest (see Fig. 1). Using femto-second time-re- 
solved photoluminescence (PL) spectroscopy, we 
find that the transfer of excitations from isolated 
PIFTEH chains to perylene molecules is com- 
pleted within the first 3 0 4 0  ps after excitation, 
and we extract a Forster radius of (1.8 k 0.3) nm 
from fits to the PL transients (Fig. 2). 

We have modelled the polarization anisotropy 
for a guest-host system subject to Forster interac- 
tions using a Monte Carlo simulation and find 
that the emission from the guest becomes unpo- 
larized at sufficiently high guest concentrations, 
even if the host emission displays a significant 
polarization anisotropy due to excitation with 
linearly polarized light. These results allow the 
separation of two overlapping contributions to 
the film emission in the red spectral region: the 
luminescence from perylene molecules and from 
sites where the PIFTEH chains aggregate. We find 
that while spectral overlap calculations’ predict a 
large transfer of excitation to perylene molecules 
from sites where the PIFTEH chains aggregate, 
no transfer is observed experimentally. We attrib- 
ute this to chain packing effects within the film: 
at sites where aggregation effects are dominant, 
the PIFTEH chains will be closely packed and or- 
dered to some extent,’ prohibiting sufficiently 
close contact between the host (PIFTEH) and the 
guest (perylene). The influence of interchain in- 
teractions on the excitation transfer probability is 
an important factor in the design of highly effi- 
cient light-emitting diodes (LEDs) based on con- 
jugated polymer host systems. 

Our novel approach, to bond covalently the 
dye guest molecules to the host polymer has dis- 
tinct advantages over dye doping, since it pre- 
vents the phase separation of the dye molecules 
and therefore reduces the probability of concen- 
tration quenching for the dye emission. By incor- 
poration of various dyes with suitable emission 
wavelengths, full-colour displays based on a 
common polymer matrix may be reali~ed.’,~ 
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The rapid advancement in fullerene chemistry 
allows the covalent functionalization of C60 with 
electron donors. Various C,,-based donor-accep- 
tor dyads have been synthesized and studied to 
gain insight in the intramolecular photophysical 
processes, like energy and electron transfer.’’2 Al- 
though these dyads can serve as a model com- 
pounds for the conjugated photovoltaic cells, 
only a few examples have been reported with 
these Cbo-based Apart from being well- 
defined model systems for photophysical charac- 
terization, the covalent linkage between donor 
and acceptor in these molecular arrays provides a 
simple method to achieve control over the phase 
segregation in donor-acceptor networks. Here, 
we investigate an oligo(pheny1ene viny1ene)- 
fullerene dyad with 4 phenyl groups (C,,-OPV,) 
in solvents of different polarity using femtosec- 
ond pump-probe spectroscopy. We find that 
photoexcitation of the oligomer leads first to an 
intramolecular energy transfer to the fullerene, 
while an electron transer is a secondary process, 
only allowed in polar solvents. 

Pump-probe experiments with 200 fs time 
resolution are performed at 390 nm and single 
probe wavelengths are selected using interference 
filters after the sample. C,,-OPV, solutions 
(-2.104M) are excited mainly at the oligomer 
moiety. 

After photoexcitation of C60-OPV4 in both 
toluene and in o-dichlorobenzene (odcb) at 390 
nm, we observe at 490 nm first a positive signal 
due to a superposition of ground state bleaching 
and stimulated emission (SE) of OPVl as shown 
by the inset of fig. 2(a). This positive signal de- 
cays within 0.4 ps due to an ultrafast photoin- 
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CMM6 Fig. 1. The Cso-OPV4 dyad, for m 
= 3. 
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CMM6 Fig. 2. 
(dotted line) on a 20 ps timescale (inset: 4 ps timescale) and (b) the same on a 400 ps at 490 nm. 

(a) Differential transmission dynamics for c6O-oPv4 in odcb (solid lines) and toluene 

duced. energy transfer to the fullerene moiety by 
which the photoinduced absorption (PA) SI-S, 
band of C60 is obtained. Likewise we observe at 
820 nm initially the PA S I - S ,  band of OPV,, 
which decays in 0.4 ps due to the formation of 
the PA S p S ,  band of CG0, which has a much 
lower cross section. In toluene this PA C60 band 
has a long lifetime as inferred from fig. 2b. How- 
ever, in odcb subsequent to this ultrafast pho- 
toinduced energy transfer, a fast intramolecular 
electron transfer is observed due to the stabiliza- 
tion of the charge-separated state by the polar 
medium. 

A few ps after photoexcitation of C60-OPV4 in 
odcb a rising signal at 490 nm is observed due to 
ground state bleaching of OPV, moiety (fig.2a) 
caused by an intramolecular electron transfer re- 
action. Moreover, at the same time an increase of 
absorption at the position of the OPV, radical 
cation at 820 nm is ob~erved.~ After 100 ps the 
charge separated state disappears and we observe 
a negative signal, which possibly is the hot ground 
state obtained after intramolecular charge recom- 
bination, which decays to the ground state. These 
results confirm the indirect electron transfer 
mechanism, subsequent to singlet energy transfer 
in polar solvents as was predicted fluorescence 
quenching ~ tud ie s .~  
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1. Introduction 
Optical sampling techniq~esl-~ show great 
promise for realizing high-resolution (12 bit) 
analog-to-digital converters (ADCs) with multi- 
gigahertz of instantaneous bandwidth. The ad- 
vantages of optical sampling derive from the d- 
tra-low timing jitter (<lo0 fs) of short-pulse 
mode-locked lasers425 and the negligible electro- 
magnetic crosstalk between the optical sampling 
pulses and the electrical signal being sampled. 

The phase-encoded sampling technique used in 
the 505-MS/s photonic ADC reported here pro- 
vides high linearitf and large suppression (50- 
dB) of laser amplitude noise.5 

2. System description 
Figure 1 illustrates the photonic ADC architec- 
ture. The short-pulse optical source is a mode- 
locked sigma fiber laser that is driven with 130-ps 
electrical pulses produced by a resonant tunnel- 
ing diode (RTD) oscillator. The laser generates 
25-ps pulses at the 505-MHz sampling rate. 
Phase-encoded optical sampling is performed via 
a dual-output LiNbO, Mach-Zehnder modulator 
(V, = 2.9 V, BW = 3 GHz). A pair of 1-to-8 opti- 
cal time-division demultiplexers is used to dis- 
tribute the modulator's complementary output 
pulse streams to an array of photonic integrate- 
and-reset (PHIR) circuits followed by 14-bit 
electronic quantizers (Analog Devices AD6644) 
operating at 1/8 the sampling rate (63 MSls). 
Fiber delay lines are used to time-align the pulses 
at the PHIR circuit inputs to simplify PHIR and 
quantizer timing. The quantized samples are cal- 
ibrated, phase-decoded, and re-interleaved to 
produce a digital estimate of the electrical input 
signal. 

The Ti-indiffused LiNbO, 1-to-8 optical de- 
multiplexers employ a high-extinction design 
(Fig. 2) to minimize crosstalk between parallel 
channels. Each of the seven demux switch stages 
consists of a 1 x 2 switch element with an extra 
extinction modulator at each output arm. The 
stages are driven using phased sinusoids and the 
three elements of a given stage are driven by a 
common signal. The extinction for a single stage 
ranges between 36 and 46 dB. The bandwidth of 
a stage is 600 MHz. The half-wave voltages (Vis) 
vary from 6.5 to 7.4 V with <2.5% variation 
within a single stage. The total insertion loss for a 
channel ranges between 6.8 and 8.4 dB. 

3. Photonic ADC performance 
Initial characterization of the photonic ADC was 
performed by sampling a 220-MH2, 0.32-V,, sig- 
nal (Fig. 3). The linearity of the system can be es- 
timated from the amplitude of the third harmon- 
ic which is 83 dB below the main tone. This 

63 MSls 

BW < 252.5 MHz 

Quantizers 

CMNl Fig. 1. 505-MS/s photonic analog-to-digital converter system architecture. 
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