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The aim of our studies was to further develop the assays of fecal fat and urinary calculi. 
The development consisted of the investigation of the applicability of new infrared 
spectroscopic methods for routine use in the clinical laboratory. Because most of these 
assays made use of authentic sample material, quantification of the analyte concentrations 
was often hampered, because of the complex sample matrices. Therefore, we also 
investigated the application of chemometrical methods for quantification of the analyte 
concentrations from the spectral results. We applied artificial neural networks and partial 
least-squares regression analysis for both calibration and prediction of the outcome of both 
kinds of assays. Furthermore, we gave some information about the pathophysiology 
background of our studies. 
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1. Pathophysiology 
 
1.1. Steatorrhea 
 
Introduction 
Digestion and absorption of nutrients in the gastro-intestinal (GI) tract is a complex process 
in which a great number of steps are involved. Normally, food is digested, followed by 
absorption of the nutrients into the bloodstream. The absorption mainly occurs in the small 
bowel area of the GI tract. In case of impaired absorption, malabsorption occurs, either 
because a disorder disturbs the digestion of food, or directly disturbs the absorption of 
nutrients from the small intestine. Malabsorption may occur for many nutrients 
simultaneously, or for specific nutrients such as carbohydrates, proteins, fats, or 
micronutrients (e.g. vitamins) separately. Sometimes, secondary nutritional deficiencies 
develop as a result of primary diseases. For example, malabsorption of fat may lead to 
impaired absorption of the fat soluble vitamin K, which in turn may lead to 
hypoprothrombinemia and bleeding disorders (1). Any combination of weight loss, diarrhea 
and anemia should raise suspicion of malabsorption. Laboratory studies can be useful in the 
diagnosis of impaired digestion, or absorption. Most of the laboratory tests used in the 
diagnosis of malabsorption syndromes will indicate the presence of an abnormal absorptive, 
or digestive process, but only a few tests can lead to a more specific diagnosis. Therefore, it 
is often necessary to make use of a combination of tests to increase the specificity of the 
test result. In this introduction, we will limit our discussion to the malabsorption of fat. The 
impaired absorption of fat leads to increased amounts of fat in stool, which is referred to as 
steatorrhea. The direct measurement of fecal fat is the most reliable laboratory test for 
establishing malabsorption, because increased fecal fat concentration is unequivocally 
associated with impaired absorption. Unfortunately, steatorrhea is not always present in the 
patients with malabsorption. 
 
Physico-chemical aspects and pathophysiology of intestinal fat absorption 
The total absorptive area of the small intestine is enormous (200 m2). Not only the length of 
the gut, but also the surface of this part of the bowel contributes to this. The surface is 
arranged in small projections, called villi. Each villus is composed of thousands of 
intestinal absorptive cells, which overlie a core of blood vessels and lymphatics (Figure 1). 
Each absorptive cell itself is further modified to increase its surface area by the projection 
of microvilli on its surface, called the brush border. In this way, the adaptations of the 
intestine increased the surface area over 40-fold, facilitating the absorption of molecules 
that have been made available by digestive processes. 
The motility of the bowel permits the nutrients to remain in close contact with the intestinal 
cells. Although the proximal intestine is the major absorption area for fat (monoglycerides 
and free fatty acids), the entire small intestine is involved in this absorption process (3). 
Most of the ingested dietary fats are in the form of long-chain triglycerides. These 
triglycerides are composed of both saturated (mainly palmitic and stearic acid) and 
unsaturated fatty acids (e.g. linoleic acid) and glycerol. About 30% of the dietary 
triglycerides, mainly medium-chain fatty acids, is digested by lingual and gastric lipase. 
The particle size of the bulk of the dietary lipid is largely decreased by the peristaltic 
contractions and temperature of the stomach (4).  



Pathophysiology 

 

 
5 

 

 
Figure 1. Villus of the intestinal mucosa. The epithelial cells that cover the surface of the villus absorb dietary 
molecules. At the apex of each villus the cells are sloughed off (2). 

 
After a retention time of about 2–4 hours in the stomach, the partly digested food enters the 
duodenum. This process, together with the presence of acid, causes release of secretin and 
cholecystokinin, which in turn leads to a stimulation of the flow of bile and pancreatic 
juice. The pancreatic lipase acts at the oil-water interface of the emulsified triglyceride 
substrate. This emulsion is formed by mechanical moulding of fat in the gut in the presence 
of lipase, bile salts, colipase, phospholipids and phospholipase A2. Pancreas lipase, colipase 
and bile salts form a ternary complex, which generates lipolytic products from tri- and 
diglycerides (Figure 2). Under normal circumstances, more than 98% of all ingested 
triglycerides are hydrolyzed to monoglycerides and free fatty acids by this complex (5).  
Bile salts, which are synthesized by the liver and excreted by the gallbladder into the small 
intestine, not only play an important role in the digestion, but also in the absorption of fat. 
Bile salts are good detergents, having both polar (hydrophilic) and nonpolar (hydrophobic) 
groups that have the ability to lower surface tension. This enables the bile salts, to 
solubilize the free fatty acids, water insoluble soaps and monoglycerides. If the bile salt 
concentration in the lumen is high enough (Critical Micellar Concentration: 5–15 µmol/ml), 
the bile salts aggregate to form micelles. The fatty acids and monoglycerides enter these 
micelles to form mixed micelles. Then, the mixed micelles migrate to the absorbance sites 
of the intestine, where the fatty acids and monoglycerides are released from the micellar 
phase and enter the cell by diffusion. This unilaterial diffusion is promoted, because fatty 
acids and monoglycerides of long-chain fatty acids (≥C14) are promptly reesterified to 
triglycerides, upon entry into the mucosal cell. The esterification occurs by the interaction 
of the tryglycerides with apolipoproteins, cholesterol and phospholipid to form 
chylomicrons and very large density lipoprotein, which in turn are secreted into the 
intestinal lymph (Figure 2). 
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Figure 2. Diagram of intestinal digestion, absorption, esterification, and transport of dietary triglycerides. TG= 
triglycerides; FA = fatty acids; MG = monoglycerides; BS = bile salts (3). 

Most of the bile salts are absorbed in the distal ileum, to reenter the enterohepatic 
circulation. Although the digestion and absorption of dietary fat is not described in 
complete detail, it is apparent that the whole absorption process comprises a very complex 
series of events. Normally, the unabsorbed dietary residue in feces is very small. 
Disturbances of any of the described events may lead to decreased fat absorption and 
subsequently give rise to an increased amount of fat in the stool. Therefore, many disorders 
can result in stools that contain poorly digested nutrients. Since they have diarrhea in 
common, these disorders are generally lumped together under the title malabsorption 
syndrome. These disorders may have vastly different etiologies as noted in Table 1. 
Although this table is far from complete, it shows that there are many etiologies causing 
steatorrhea. Therefore, it is important to distinguish between digestion and absorption. 
 
Diagnosis of steatorrhea 
The analysis of fecal fat is the most definite laboratory test for establishing the presence of 
steatorrhea, but it is not appropriate for the delineation of its cause. Under physiological 
conditions, about half of the fecal fats are non-absorbed, non-dietary fats, also called 
metabolic lipids. From these metabolic lipids, significant amounts (~2 g/day) derive from 
intestinal bacteria and epithelial cells, normally sloughed from the intestinal mucosa (8). 
Furthermore, a certain fraction of total fecal lipids is composed of unsaponifiable matter 
such as sterols (mainly cholesterol and coprostanol). On a lipid-free diet, the fecal fat 
output falls to values between 1 and 4 g/day, representing the sum of non-dietary fat (9). 
Dietary lipid consists of 92–96% triglycerides (10;11), whereas the remainder consists of 
cholesterol esters, plant sterols and phospholipids (12). In normal individuals, a daily 
dietary intake of up to 150 g lipid results in a relatively little change in total lipid excretion. 
Therefore, fecal fat excretions greater than 7 g/day is considered to be abnormal in adults 
consuming a usual Western diet with a daily intake of 50 to 150 g lipid. Children up to 6 
months normally excrete 0.3–2.0 g fecal lipid per day (8;9). Patients with fecal lipid ≥20 
g/day are suspected to suffer from pancreatic insufficiency, whereas fecal lipid contents 
>9.5 g/day but <20 g/day is thought to be the result of malabsorption of fat in the intestine 
(13). Often, the percentage of total lipid absorption is calculated. This percentage or 
coefficient of fat retention is calculated by:  
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%100 x
ingestedfat 

excreted)fat ingested(fat 
(%) absorption lipid

−=   

 
To determine the percentage of total lipid absorption, the method is only claimed to be 
valid if at least 50 g of lipid is ingested per day (14). If the intake falls below 50 g lipid/day, 
the proportion excreted dietary lipid to non-dietary lipid becomes to small, to be important. 
 
 
Table 1. Classification of the malabsorption syndrome (3). 

Inadequate digestion: 
 following gastrectomy (6) 
 exocrine pancreatic insufficiency (7): 
  chronic pancreatitis 
  cystic fibrosis 
  pancreatic carcinoma 
  pancreatic resection 
 Zollinger-Ellison syndrome (ulcerogenic tumor of the pancreas or gastrinomas, 
    which cause inactivation of the pancreatic enzymes 
    by increased amounts of acid) 
 
Reduced intestinal bile salt concentration: 
 liver disease 
     abnormal bacterial proliferation in the small bowel, causing deconjugation of bile  
 salts 
 interrupted enterohepatic circulation, such as ileum resection 
 sequestration, or precipitation of bile salts by drugs (e.g. cholestyramine) 
  
Primary mucosal absorptive defects: 
 celiac disease 
 tropical sprue 
 giardia lamblia infection 
 mastocytosis 
 radiation enteritis 
 cystinuria 
 
Impaired lymphatic transport: 
 a-betalipoproteinemia 
 obstructions 
 cardiovascular disorders 
 
Accelerated passage through the intestine: 
 short bowel syndrome  
 hyperthyroidism 
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The clinical usefulness of the quantitative analysis of fecal fat may be influenced if no 
standardized diet is applied during stool collection (see percentage fat retention). It has 
been noted that fecal fat excretion nearly linearly increases with the intake of dietary fat in 
patients with steatorrhea (24). Dinning et al. (25) described a standardized diet containing 
100 g fat per day, to ensure sufficient accuracy of the test results. Another diet, containing 
135 g lipid per day for lipid balance studies, was described by Nothman (9). Patients should 
be instructed carefully, in order to make them understand the importance of consuming the 
whole meal. After starting consumption of the diet, a 24–48 hour acclimatization period is 
needed preceding stool sample collection. Since the intestinal motility is variable, causing 
erratic frequency of fecal output from day to day, the results on single random sample 
analysis are generally considered to be useless. Therefore, the variation should be 
minimized by pooling at least three consecutive days collections (9). Fecal samples can be 
kept for up to 4 days at refrigerator temperatures (9). If separate lipid classes have to be 
determined, the fecal samples should be frozen as soon as possible after collection (9). 
Representative sampling is of general concern for any kind of analysis, but special attention 
should be given to the homogenization of the stool samples due to their inherent 
inhomogeneity. Despite of this homogenization, statistical averaging of the outcome of 
duplicate, or even triplicate samples of the pooled stool collection is often necessary (26).  
As stated above, the impaired intestinal absorption of fat is only one of the many intestinal 
function disorders. More extensive descriptions are out of range of this consideration, but 
can be found elsewhere (3). 
 
 
1.2. Urolithiasis 
 
Introduction 
Urinary calculi have plagued man over the centuries. Today, approximately 5 % of the 
population of the western world is thought to have formed at least one renal stone at the age 
of 70 years, from which they may suffer at some point in their lives (27-29). The mean age 
of the patients is about 45–50 years and approximately 60–70% of them are male (30-32). 
In the American population, stones are even three to four times more common in men than 
in women (30). In Western countries the portion of the population that is affected annually 
is about 0.5%. The yearly incidence of patients presenting to the hospital with urinary stone 
colic is about 0.1%–0.2% of the population (33;34). In 1% of the patients with urinary 
calculi the course of the disorder is without symptoms. Urinary calculi, or renal stones, may 
occur in different parts of the urinary tract, such as the kidney, renal pelvis, ureter, or 
urinary bladder (vesicle). In 80% of all cases, the urinary calculi will pass the urinary tract 
spontaneously, if the stones have a diameter smaller than 8 mm. Vesicle calculosis (bladder 
stones) are found fairly widespread in Asia. Bladder stones, due to malnutrition in the very 
early years of life, is currently frequent in areas of Turkey, Iran, India, China, Indochina 
and Indonesia, although the incidence is decreasing (in proportion) as social conditions 
gradually improve. At the beginning of the 20th century and beyond bladder stones were 
relatively frequent in Europe also, but in the course of the last 100 years, there has been a 
gradual decrease in its incidence, whereas the upper tract kidney stones became more 
common. This trend, defined as "stone wave", has been explained in terms of changing 
social conditions and the consequent changes in eating habits (more animal meat and fat). 
In Europe, Northern America, Australia, Japan, and, more recently Saudi Arabia, affluence 
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has spread to all social classes, and with it the tendency to eat "rich" food in large quantities 
(35). In these affluent societies the kidney is the most common site of urinary stones in the 
urinary tract, estimated to 58% of all cases (36). Stones, originating from the kidney, may 
traverse the ureter symptomless, but most of the time this passage is accompanied with 
severe pain and bleeding. Stones in the distal portion of the ureter or the bladder cause 
frequency, urgency and dysuria that may be confused with urinary tract infections. 
Classical symptoms of an acute renal colic are excruciating flank pain spreading 
downwards and anteriorly toward the ipsilateral loin and genitals. Renal colic is also often 
accompanied by nausea and vomiting, because the pain is so severe. Patients are often 
restless, tossing and turning in a futile attempt to find a comfortable position, which 
symptoms are also referred to as a renal colic (27).(30) Another problem of renal stones is 
that they tend to recur. The recurrence rate is about 50% in 10 years, and 75% in 25 years 
(34). These serious implications of urinary lithiasis cause high socio-economic cost, which 
justifies the investigation of its creation and prevention of recurrences. Therefore, much 
effort has been invested in the research of urinary calculi, comprising a great number of 
aspects such as the etiology, or pathogenesis of stones, the physico-chemical base of stone 
formation, risk factors, epidemiology and dietary, or medical treatments of urinary calculi. 
However, despite intensive research the knowledge of stone pathogenesis, which is the 
basis of every rational stone metaphylaxis, has remained rather scanty. Stone formation in 
most patients is probably caused by a coincidence of different environmental and genetic 
factors. 
 
Pathogenesis, including risk factors 
Urinary stones usually arise because of disturbance of a delicate balance. On the one hand 
the kidney must conserve water, on the other hand it is supposed to excrete waste and 
materials that have a low solubility. These two opposing requirements must be balanced 
against one another during adaptation to a particular combination of diet, climate and 
activity. The equilibrium is changed to some extent by the fact that urine contains 
substances that inhibit crystallization of salts, and others that bind ions into soluble 
complexes. These protective mechanisms however are less than perfect. When the urine 
becomes supersaturated with insoluble materials, due to e.g. a combination of excessive 
excretion rate and excessive water conservation, crystals form and may grow and aggregate 
with one another to form a stone (27). Except for potent inhibitors, human urine also 
contains a number of promoters (albumin, globulins, matrix substance A). A list of 
promoters, inhibitors and other predisposing risk factors is given in Table 2. The 
predominant risk factor is poor hydration. At least this partially explains the increased 
incidence of renal stone formation in hot climates (37). In general the etiology of stone 
formation comprises genetic factors, environmental factors, such as dietary causes (e.g. 
hyperuricosuria), or urinary tract infection. The most commonly occurring component of 
stones is cationic calcium, caused by idiopathic hypercalciuria which probably has a genetic 
origin and occurs in 50–55% of all stones (27;38). 
 
Physico-chemical factors 
The physico-chemical basis of stone formation is mainly supersaturation. If a solution is in 
equilibrium with crystals of e.g. calcium oxalate, the product of chemical activities of 
positive calcium ions and negative oxalate ions in solution is called equilibrium solubility 
product. If crystals are removed and than either calcium or oxalate is added to the solution, 
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the activity equilibrium solubility product will increase, but the solution remains clear. 
Such a solution is considered metastably supersaturated. Alternatively, if new calcium 
oxalate seed crystals are added, the crystals will grow in size (nucleation). If a critical point, 
called the upper limit of metastability, is reached, the solid phase begins to develop 
spontaneously (27;39). 
Nucleation is also considered to be a physico-chemical factor in stone formation. If urine is 
supersaturated, the crystals normally form instable clusters of crystals. However, clusters of 
at least 100 crystals can remain stable, because attractive forces balance surface losses. 
These clusters, called nuclei, can create a permanent solid phase if the urine is frequently 
supersaturated. If supersaturated urine is seeded with nuclei containing crystals of the same 
structure, this is called homogeneous nucleation, whereas seeding of supersaturated urine 
with foreign nuclei is called heterogeneous nucleation. Sodium hydrogen urate, uric acid 
and hydroxylapatite crystals often serve as heterogeneous nuclei that permit calcium 
oxalate stones to form even though urine calcium oxalate never exceeds the metastable 
limit. The previously mentioned inhibitors (Table 2) slow down crystal growth and 
nucleation of calcium phosphate and calcium oxalate (27). Struvite, cystine and uric acid 
stones often grow too large to pass the ureter. These stones gradually fill the renal pelvis to 
form staghorn calculi. Calcium stones often grow in the urinary papillae, some of them 
break loose and cause colic. 
 
Composition of urinary stones 
The majority of all urinary stones contains calcium (31;32;40;41). Table 3 shows the 
incidence rates and etiology of the most commonly occurring components in urinary 
calculi. The distribution of these incidence rates (%) is based on the incidences of the 
components in mixed stones, as found in the St Elisabeth Hospital in Tilburg, in the 
southern part of the Netherlands (31). The incidence rate of 70-80% of calcium oxalate 
(Table 3) was similar to results obtained from an own study (University Hospital in 
Groningen) and a study in France (32). We presume that these incidence rates are the same 
in most Western countries. However, the distribution of the incidence rates may differ in 
certain regions. 
 
Diagnosis and analysis 
Urinary stones can also be detected by means of abdominal radiographic studies, which 
however may miss many stones. Therefore X-rays are often followed by an intravenous 
pyelogram (IVP), which requires an injection of dye. Unfortunately, this dye may cause 
allergic reactions. Another detection method is renal ultrasound, which sometimes misses 
stones in the lower half of the ureter. The newest technique is spiral-computed tomography 
(spiral CT). It is a non-invasive method that produces images of the urinary tract by X-rays 
(30). 
 
Most diagnostic protocols include the analysis of biochemical parameters in 24h urine 
collections for the identification of risk factors of urinary stones (32;34). Normally the 
output of calcium, uric acid, oxalate, citrate, magnesium and urea (as reflection of daily 
protein intake) are measured in 24h urine. Most centers also measure the urinary cystine 
output. Furthermore the urinary pH is often determined, together with the 24h urinary 
volume. In case of high pH (8–9), the urine is sometimes tested for the presence of bacterial 
infection with Proteus species. In addition, the serum concentrations of calcium, uric acid 
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and the parathyroid hormone are often measured. Sometimes the assays are repeated after 
dietary restriction.  
 

 

Table 2. Promoters, inhibitors and pre-disposing risk factors of stone formation (37). 

Promoters 
 Albumin 

 Globulins 

 Matrix substance A  

 

Inhibitors 
 Magnesium 

 Citrate 

 Pyrophosphate 

 Tamm Horsfall glycoprotein 

 RNA 

 

Predisposing factors 
Preurinary 

 Family history 

 Hot climate 

 Stress 

 Decreased fluid intake 

 Protein-rich diet 

 Immobilization 

 

Urinary 

 Increased Ca++, urate, oxalate, pH 

 Decreased Mg++, volume, citrate 

 

Metabolic disorders 

 Primary hyperparathyroidism 

 Renal tubular acidosis type I 

 Hereditary hyperoxaluria 

 Medullary sponge kidney 

 Cushing’s disease 

 Cystinuria 

 Milk-alkali syndrome 

 

Bacterial infection 

 Proteus infection                                              
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The analysis of the composition of the calculi is important for proper treatment of patients 
with urolithiasis, especially in case of recurrence of stones. The compositions of urinary 
stones can be determined by means of wet-chemical analysis, infrared spectroscopy, or X-
ray diffraction. Unfortunately, wet-chemical analysis is only a semi-quantitative assay. 
Therefore, infrared spectroscopy and X-ray diffraction are gradually replacing the less 
specific chemical assay for stone analysis. More detailed information upon the analytical 
methods is given in paragraph 2.1.2 and 2.2. of the introduction. 

 

Table 3. Incidence rate (%) and etiology of the most commonly occurring components of 
urinary calculi. The incidence of the components expresses the presence of the component 
in mixed stones, as found in a hospital in the southern part of the Netherlands (31). 

Component 
name 

Formula / 
Composition 

Incidence 
rate (%) 

 
Etiology (41) 

Whewellite 
 

CaC2O2.H2O / 
Calcium oxalate 

75.0 Hyperoxaluria, hypercalciuria, hyperuricosuria, 
hyperuricaemia and primary hyperparathyroidism 

Weddellite 
 

CaC2O2.2H2O /  
Calcium oxalate 

70.7 See whewellite 

Carbonate 
apatite 

Ca10(PO4)(CO3OH)6(OH)2 

/ 

Calcium phosphate 

48.9 Hypercalciuria, renal tubular acidosis (RTA), 
urinary tract infection (not essential), 
hyperphosphaturia and immobilization 

Brushite CaHPO4.2H2O / 
Calcium hydrogen 

phosphate 

13.0 Hypercalciuria, hyperphosphaturia, RTA and 
immobilisation  

Struvite MgNH4PO4.6H2O / 
Magnesium ammonium 

phosphate 

4.3 Urinary tract infection with urease producing 
bacteria 

Uric acid C5H4N4O3 3.3 Hyperuricosuria and hyperuricaemia 
Ammonium 
urate 

C5H7N5O3 1.1 Hyperuricosuria and urinary tract infection 

Cystine C6H12N2O4S2 1.1 Cystinuria 

 
Medical management of urinary stones 
In most cases stones are lost by time and fluid, allowing passing the stone on its own. 
However patients with stones larger than 6 mm may often need help. In the past, urinary 
calculi could only be removed by operating the kidney, renal pelvis, or ureter. Today, 
alternative methods are available. Stones can be fragmented in situ by exposing them to 
extracorporal shock wave lithotripsy (ESWL). The patient is submerged in a water bath, 
after which high-energy sound waves are focused at the center of the stone by means of a 
parabolic reflector. Subsequently, the stones are fragmented with the use of laser energy, 
electromagnetic or electro-hydraulic transducers. In this way, most stones are reduced to 
powder that passes through the ureter to the bladder. A second method is percutaneous 
ultrasonic lithotripsy. With this method a cystoscope-like instrument is passed into the renal 
pelvis, where an ultrasonic transducer disrupts the stones. The fragments are washed out 
directly. A third method is ureteroscopy, by which a cystoscope-like instrument is passed 
through the bladder into the ureter (27;30). 
 
Rational stone prophylaxis is important, especially in all cases of stone recurrence. 
Conservative treatment should always be offered to patients with stones, whether or not 
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additional treatment with drugs or diets is necessary. Traditional treatment always includes 
high fluid intake of at least 3L/day to ensure a minimum urine volume of 2 L/day, 
irrespective of the composition of the urinary stone (42). The composition of the stone, as 
well as the frequency and extent of severity of stone formation determine the kind of 
additional treatment, which may consist of dietary advise, or medication with drugs. With 
respect to nutrition many interesting studies are available, such as a study of the effect of 
drinking French mineral water containing calcium and magnesium (43). One of the 
remarkable recent findings of new research on urinary stones, is that dietary calcium 
restriction possibly is detrimental in prevention of stone formation and in fact seems to 
make things worse (30). Nevertheless, a more extensive review with respect to additional 
treatment is out of scope of this introduction, but can be found elsewhere (27;34). 
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2. Analytical methods 
 
2.1. Reference methods 
 
2.1.1. Fecal fat analysis: 
 
2.1.1.1. Van de Kamer method: 
 
Introduction 
The titrimetric Van de Kamer method is the most popular method for the determination of 
fecal lipids. As a result of a comprehensive study of Van de Kamer as described in his 
thesis (15), the method was first published in 1949 by Van de Kamer et al (16). Even 
though the method exists for a very long time, it is still used by a great number of 
laboratories and is considered by many as the gold standard procedure for the determination 
of fecal fat. The method is intended for the quantitative measurement of neutral lipids 
(unsplit), as well as medium- and long-chain fatty acids (split). 
With the most common procedure (method A), the determination of the fat content in a 
homogenized stool sample is performed without drying the sample. The lipids of a 
weighted amount of stool sample are saponified by boiling under a reflux condenser with 
concentrated potassium hydroxide in ethanol. After cooling down the alkaline solution, HCl 
is added to liberate the fatty acids from their salts (soaps). After cooling again, ethanol is 
added, and the fatty acids are extracted with petroleum ether. Subsequently, the liberated 
and extracted fatty acids are titrated in a fixed amount of the extract with isobutyl alcoholic 
KOH and thymol blue as indicator. In this way the split and unsplit fat is measured 
simultaneously as total fat. The fecal lipid content is normally expressed in mass percent 
(g%), or g/day wet weight. 
 
Van de Kamer also described an alternative procedure (method B) for the determination of 
split and unsplit fat separately. To measure the amount of split fat, the stool sample is not 
treated with alkali for saponification, but boiled with diluted HCl to convert the fecal soaps 
into free fatty acids. After extraction with petroleum ether, the fatty acids are quantified by 
titration. After titration an excess, but known amount of isobutyl alcoholic KOH is added 
and the unsplit fat is saponified by boiling. The excess of alkali is titrated with HCl and 
thymol blue as indicator, from which the amount of unsplit fat can be quantified. With this 
method, the free fatty acid index related to the amount of ingested triglycerides can be 
calculated. Increased amounts of unsplit fat suggest impaired digestion. Unfortunately, this 
method may lead to false negative results. In the ‘diagnosis of steatorrhea’ section of 
chapter 1.1, we already described the drawback of the free fatty acid index for the detection 
of impaired digestion, because bacterial lipase can split substantial amounts of triglycerides 
in the colon (44).  
Although Van de Kamer has described his method in great detail, some additional notice 
will be given to specific issues in the next section that may be helpful for setting up new 
methods. 
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Additional remarks in relation to the Van de Kamer method. 
Extraction procedure 
Many fatty acids in the stool are present as insoluble divalent soaps (Ca2+ and Mg2+ salts), 
which cannot be extracted with petroleum ether. Lowering the pH to 2 will liberate all fatty 
acids from the soaps. Solvents, such as petroleum ether, chloroform and acetone, normally 
extract triglycerides and fatty acids quantitatively from dry matter. Van de Kamer (15) has 
found that the extraction recovery of fecal lipid from wet stool samples was low, but that 
the distribution coefficients remarkably increased by adding ethanol to the acidified 
solution. A contribution of 60% ethanol (v/v) resulted in nearly 100% recovery of the long 
chain fatty acids with chain length greater than fourteen (mainly palmitic and stearic acid) 
using a single extraction. Under these conditions myristic acid (C14) had a recovery of 90 
%, whereas the recovery of the short chain fatty acids (≤ C6) was very low (< 25%). 
Lowering or raising the ethanol contribution lowers the extraction recoveries. About 1% of 
the 60% ethanol layer dissolves in the petroleum layer. Therefore, Van de Kamer used a 
small correction factor in his calculation formula.  
 
Quantitative analysis of fecal lipids 
Using the Van de Kamer method, the amount of lipid is quantified by titration of the free 
fatty acid COOH group with sodium hydroxide. As a consequence of this titration, the lipid 
content has to be calculated by using the mean molecular weight of fatty acid. It is 
important to notice that the total fecal lipid content is normally expressed as triglycerides in 
g/day, but sometimes the total amount of fecal fat is expressed in fatty acids. Unfortunately, 
the lipid class (triglyceride, or fatty acid) in which the total lipid is expressed is hardly ever 
mentioned. Because the titration is applied on the COOH group of the fatty acids, the 
molecular weight, used in the calculation procedure, must include the molecular weight of 
13 from the glycerol residue (CH) of the triglycerides, otherwise an underestimation of the 
outcome of about 5% will occur if total lipid is supposed to be expressed in triglycerides in 
g/day. Van de Kamer (15) has found that the mean molecular weight of fatty acids in feces 
depends on the composition of the dietary lipids. Dietary habit may vary in different 
countries and may in change in time. Therefore, the exact (mean) molecular weight of the 
calculation formula is important, in order to obtain accurate results. Van de Kamer used a 
mean molecular weight of 276 in this standard formula for the determination of total fecal 
lipid. Van de Kamer estimated his molecular weight by weighing and titration of the fatty 
acids in purified petroleum extracts of feces (mw fatty acids = mg / mmol fatty acids). His 
final molecular weight was based on a mean molecular weight of 263 of the fatty acids in 
normal adults and adding 13 for the glycerol residue. The calculation formula of the Van 
the Kamer method, is defined as: 

Fecal fat in g per 100g feces ≈ mltitrated NaOH x 276 x NNaOH x 1.03 

The dilution and weighing conversion factors are not specified in this formula, because they 
strongly depend on the exact procedure that is used. The factor 3% (1.03) is a combined 
correction factor for the volume increase of ethanol in the petroleum ether layer and an 
adjustment for the average distribution coefficient (15).  
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Origin of fecal lipids 
The aim of the Van de Kamer method is the detection of possible impaired absorption of 
dietary fat. As a consequence, the method should be restricted to the detection of dietary 
lipids (15). To judge this fact, some general understanding of the origin of the various lipid 
classes in feces is necessary. The lipids in stool may be subdivided into dietary lipids, 
volatile fatty acids (VFA) and endogenous lipids. 
 
Dietary lipid: 
The majority of the dietary lipids are triglycerides (up to 150 g/day). The daily diet of an 
average western adult also contains about 4–8 g phospholipids, predominantly lecithin, and 
small amounts of sterols (0.5 g), such as cholesterol and sitosterol. The upper gut of an 
average healthy person normally absorbs over 98% of these ingested lipids. As a 
consequence, about 1–3 g of the dietary lipids is normally excreted in the feces. 
 
VFA 

VFA are fermentation products from carbohydrates produced by the large intestinal 
bacteria. These VFAs, such as acetic acid, propionic acid and butyric acid, are mostly 
absorbed by the colonic wall (45) to provide metabolizable energy.  

 
Endogenous lipids: 

The endogenous lipids are primarily remnants of biliary lipids (bile acids and sterols) 
and phospholipids from membranes of sloughed intestinal and bacterial cells. About 
15–40 g of endogenous lipids (biliary, sloughed cells and other intestinal secretions) are 
normally re-absorbed in the small intestine. 
- Approximately 1 g of cholesterol (secreted from the gall bladder) is eliminated from 

the body per day. About half of the cholesterol is excreted in the feces in the form of 
neutral sterols, whereas the rest is excreted as bile acids. Coprostanol is the major 
sterol in feces, which is formed from cholesterol by the bacterial flora. The majority 
of the so-called primary bile acids (e.g. cholic acid) is re-absorbed in the small 
intestine, whereas the rest (approximately 0.5 g/day) is metabolized by colonic 
bacteria and are subsequently excreted in the feces (46). 

- Most (1–3 g/day) endogenous fecal lipids (phospholipids) derive from membranes 
of sloughed cells and bacteria. During transit through the colon several bacterial 
modifications occur, including hydrolysis of the phospholipids by various bacterial 
lipases (5). 

 
Care et al. (5) have fractionated the fecal lipids based on their different physical properties. 
Each fraction was successively quantified chromatographically. Table 4 shows the relative 
amounts of lipids that are usually excreted in stools of healthy man with a daily total output 
of 4–6 g/day. From this table it can be seen that no glycerides are found. Only in case of 
severe pancreatic insufficiency glycerides may be present. Furthermore it can be seen that 
the majority of lipids are in the form of fatty acids or soaps. 
 
The principle of the Van de Kamer method is based on additional saponification of the 
glyceryl-, sterol- and phospholipid esters, liberating the fatty acids from the soaps by 
lowering the pH, extraction of the apolar components in petroleum ether and detection by 
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titration of the carboxyl group (COOH) of the fatty acids with sodium hydroxide. As a 
consequence, the phospholipids in stool, most of them originating from cellular debris and 
bacteria, are additionally measured as free fatty acids. Van de Kamer has shown that VFA 
are not quantitatively extracted into petroleum ether from the alcoholic HCl solution, using 
a single step (15). As a consequence, the Van de Kamer method measures all non-neutral 
lipids and other acidic organic components (such as bile acids and other apolar organic 
acids), but hardly any VFA. Other methods for the determination of fecal fat are even more 
non-specific. Some of these methods, such as the gravimetric method of Sobel (9) measure 
the total fecal lipid content (neutral and non neutral lipids). 
 
 
Table 4. Relative distribution of lipids in feces 
of individuals with normal lipid excretion rates. 

Lipid fraction % of total lipid 
Fatty acids and 
Na+ and K+ soaps 

70 

Ca2+ and Mg2+ soaps 10 
Glycerides (TG and DG) 0 
Neutral sterols and bile acids 15 
Other (e.g. phospholipids) 5 

TG, triglycerides; DG, diglycerides 
 
As shown above, stools contain various lipid classes, many of these lipid classes have 
different origins and the physical and chemical properties of the lipids may be modified at 
different sites in the intestine. None of the methods for determination of fecal fat is able to 
measure the excretion of lipids of dietary origin alone. Under normal physiological 
conditions, about half of the fecal lipid is endogenous, the remainder of dietary origin (47). 
Therefore, one should notice that all methods for determination of fecal fat measure a 
certain amount of background noise (non dietary lipids) with a certain amount of dietary 
lipids superimposed on top of it. Fortunately, the amount of non-dietary lipids is fairly 
constant. Therefore, the upper reference limit of 7 g/day fecal fat is based on a combination 
of excreted endogenous and dietary lipids. Even today, there are no methods available that 
can measure fecal lipids of only dietary origin in a simple, or inexpensive way. If patients 
with steatorrhea consume a lipid free diet during the test, increased fecal lipid 
concentrations will not be found. Therefore, it is recommended that patients consume a 
standardized diet containing at least 100 g fat per day, to ensure sufficient accuracy of the 
test results. 
 
 
2.1.1.2.  Gas chromatography: 
 
Introduction 
Gas chromatographic analysis of different lipid classes may be used to gain a better insight 
in the distribution of different lipid classes of fecal lipid. In addition, the GC analysis of FA 
in fecal lipid may be used for the determination of the mean molecular weight of FA in 
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stool (48). As stated in the previous chapter, fecal lipids may originate from different 
sources (diet, bacteria, cell membranes, etc.). Apart from their origin, there is no generally 
accepted definition of ‘lipid’. Christie (49) has defined lipids as ‘fatty acids’ and their 
derivates, and substances related biosynthetically or functionally to these components. A 
major classification is generally made between simple and complex lipids. The simple lipid 
class contains lipids such as fatty acids (FA), fats (esters of fatty acids with glycerol), 
whereas the complex lipid class contains lipids like phospholipids and precursors of lipids 
and derived lipids. The neutral lipids, such as sterols (e.g. cholesterol) and sterol esters 
belong to this last category (50). In a certain sense, bile acids may be reckoned among the 
complex lipid class also, since they are derived from cholesterol. 
To obtain better insight in the composition of different lipid classes, separation of the 
different lipid fractions of feces may be performed by a variety of techniques such as 
preparative thin layer chromatography (51), high-performance liquid chromatography 
(HPLC) (49), or solid phase extraction (52). Hoving et al (53) have used capillary gas 
chromatography (GC) for characterizing the fatty acid compositions of cholesterol ester and 
triglyceride fractions in plasma, using a preceding solid phase extraction with an 
aminopropyl-silica column. Because of its high separation power, GC analysis, using 
capillary columns and flame ionization detection (FID), is definitely an important technique 
available to the lipid chemist for the analysis of FA in various biological fluids (54). This 
method is suitable for the quantitative analysis of different kinds of fatty acids in total lipid, 
or separate lipid classes. GC analysis of lipid can be applied on a wide variety of biological 
materials such as plasma, erythrocytes, amniotic fluid, tissue, or in feces as described 
hereafter. Contemporary methods for the analysis of FA make use of apolar capillary GC 
columns. With this column type, the fatty acids are separated in the order of their mass. 
With the standard GC analysis, the saturated, as well as the unsaturated fatty acids from 
C14 (myristic acid) up to C26 can be separated in a quantitative manner with sufficient 
separation power. Cholesterol, bile acids and other sterols elute after the fatty acids from 
the GC column. By using an adjusted temperature program and an appropriate isolation 
procedure that is capable of a quantitative extraction of the more volatile FA, the medium 
chain fatty acids, as low as C6, may also be analyzed.  
 
FA analysis of different lipid classes, using GC. 
Verkade et al (19) described the determination of the fatty acid composition of the 
triglyceride, cholesterol ester and free fatty acid fractions of feces, after separation of these 
lipid classes with solid phase extraction. Their method was adapted from a method of 
Kaluzny et al (52). Kaluzny and associates used a bonded phase aminopropyl column for 
the separation of 7 lipid classes (FA, triglycerides, diglycerides, monoglycerides, 
cholesterol esters, phospholipids and cholesterol) on the basis of lipid polarity, solvent 
strength and polarity. With this separation method, recoveries of at least 97% were reached 
for each of the lipid classes. 
Before isolation of the lipids from feces in a relative pure state, the pH of the fecal sample 
has to be brought to pH 2, in order to liberate the fatty acids from their potential soaps. This 
step was however not used by Verkade. The extraction of the fecal samples is performed 
with a chloroform-methanol mixture (2:1 by volume) which was described by Folch (55). 
To prevent auto-oxidation of the polyunsaturated fatty acids, butylated hydroxytoluene 
(BHT) is usually added during extraction. Once extracted in the Folch solvent mixture, the 
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fecal lipids can be separated into their respective lipid classes. The Folch extract is 
evaporated to dryness and redissolved in hexane. The hexane is brought onto the 
aminopropyl-silica column and eluted with 2 separate aliquots of hexane. The combined 
hexane eluate contains the cholesterol-ester (CE) fraction. The triglyceride (TG) fraction is 
subsequently collected by elution (3x) with diethyl ether:dichloromethane:hexane (1:10:89, 
vol:vol:vol). The FA fraction is collected by eluting the column with 2% acetic acid in 
diethylether (2x). Finally, the phospholipid (PL) fraction is eluted from the column with 
methanol. The FA, TG, CE and PL fractions are evaporated to dryness. The fatty acids of 
the fractions are transmethylated with a methanol:6 mol/l HCl (5:1, vol:vol) mixture to fatty 
acid methyl esters. The fatty acid methyl esters (FAME) are purified by extraction of the 
mixture with hexane. Figure 3 shows the separation process of the different fecal lipid 
classes. The collected FAME in hexane is analyzed by GC with FID, by injecting a small 
amount of the hexane extract on an apolar cross-linked methyl silicone column. The fatty 
ester methyl esters are identified on the basis of their retention times, using standard 
solutions containing even- and odd numbered saturated and unsaturated fatty acids. 
Quantification of the fatty acids is performed by adding a known amount of C17 fatty acid 
to the samples at a certain point in the extraction procedure. This C17 is used as an internal 
standard in the GC procedure (19). 
If FAME analysis of the combined lipid classes (total lipid) is required, the fecal samples 
must be brought to pH 2, extracted with a Folch mixture, evaporated to dryness, 
transmethylated and extracted with hexane. Except for FAME the hexane may contain 
neutral sterols and bile acid methyl esters. GC analysis of these components, using a 
capillary column with an apolar stationary phase, may show tailing peaks. This peak tailing 
may be caused by the polar 3-OH group of the cholesterol backbone of these components. 
Therefore, the hexane layer should be dried and the sterol and bile acid fraction should be 
trimethylsilylated with tri-sil-TBT. After forming of the fatty ester methyl esters and 
trimethylsilylated sterols and bile acids, the components must be extracted with hexane. 
Figure 4 shows the extraction process of FAME, sterols and bile acids from stool. Figure 5 
shows a GC lipid profile. The fatty ester methyl esters are identified and quantified as 
described before. A description of the identification and quantification of the sterols (56) 
and bile acids (57) may be found elsewhere.  
 
Based on the selectivity of GC analysis, the method may be used as a reference method for 
fecal fat determination. The selectivity could even further be enhanced by a combination of 
gas chromatography and mass spectrometry (GCMS). Nevertheless, the method should not 
be used for routine analysis of fecal fat, because of its rather high complexity. 
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Figure 3. GC analysis of FAME in Figure 4. GC analysis of FAME 
the fractionated fecal lipid classes.  sterols and bile-acids in total  
 fecal lipid. 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FAME, fatty acid methyl esters; CE, cholesterol esters; 
TG, triglycerides; FA, fatty acids; PL, phospholipids 
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Figure 5. GC transmethylated fatty acid profile of feces. The relative response is defined as the peak height of the 
respective fatty acids in relation to the height of the internal standard (17:0). 
 
 
 
2.1.2. Urinary calculus analysis: 

 
2.1.2.1. Wet and dry chemical analysis: 

 
Introduction 
The chemical analysis of urinary calculi has been an often-neglected field in clinical 
chemistry. However, the quantitative determination of the chemical composition of urinary 
calculi is important. Accurate analysis of the composition of calculi may provide an 
indication of the underlying condition and direct efforts towards its identification and 
treatment. Qualitative methods have dominated the investigation of urinary calculi for more 
than 100 years. In 1860, J. F. Heller (58) proposed a scheme for chemical investigation of 
urinary stones. His method was based on the colour of the sample, the odour at ignition of 
the pulverized material, and a number of chemical reactions performed on the dry sample. 
Even today, this scheme is utilized in a number of clinical laboratories (59). Although the 
method has gone through some modifications, it is commercially available in the form of 
kits, with tests for routine qualification of the composition of the urinary calculus. Of these 
kits, the Merckognost 11003 kit for urinary calculus analysis (Merck, Darmstadt, Germany) 
is widely used. Other kits, such as the Oxford and the Temmler kit are no longer 
commercially available. The tests of these kits all rely on spot colour end-point detection of 
the ions of the components of dried samples (60). Another method, often combined with the 
qualitative dry ‘spot test’, is quantitative ‘wet chemistry’. In the wet chemistry method, ions 
derived from dissolved stone material are quantified using automated chemistry analyzers. 
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Subsequently, the quantified ions can be combined into salts by calculation (61). In contrast 
to dry spots tests and wet chemical analysis, which only measure ions, infrared 
spectroscopy and X-ray diffraction provide information on the actual salts. The latter two 
physical-chemical analytical methods also provide information about the degree of 
hydration of the components, and demonstrate better quality in the analysis of spurious 
calculi. Table 5 shows the absolute and relative distribution of the techniques used by a 
number of laboratories of the Netherlands in 1986 and 10 year later. These data were 
reported by the Stichting Kwaliteitsbewaking Ziekenhuis Laboratoria [SKZL, the Dutch 
quality control society] (62). From this table, it can be seen that the total number of 
participants using own chemicals or commercially available kits decreased in favor of 
laboratories using infrared spectroscopy. A similar shift, in the direction of physical-
chemical techniques, was also observed in quality control programs, organized by the 
German quality control society between 1980 and 1989 (63). The physical-chemical 
methods will be described in the next chapters. No single method of analysis is perfect. 
Sometimes, the best approach is using a combination of techniques. Below, the dry spot test 
and wet chemical analysis is described in more detail.  
 
Dry spot test 
Preceding performance of the spot tests, the colour, shape, size, and consistency (hardness) 
of the calculus have to be recorded. A description of the specific characteristics of a number 
of urinary calculus components may be found elsewhere (64;65). If only pulverized sample 
material is available, the colour and the consistency have to be recorded. After weighing the 
sample, the calculus must be washed with de-ionized water and completely dried with filter 
paper, or with silica gel. It is important to dry the calculus at ambient temperatures, because 
some of the calculus components may lose crystal water when drying at higher 
temperatures. Struvite (MgNH4PO4.6H2O) not only loses crystal water, but also ammonia, 
when dried at 37 °C (61;66). 
 
Table 5. Absolute and relative distribution of urinary calculus analysis 
techniques, used in different laboratories in the Netherlands in 1986 and 1996. 

 1986 1996 
Total number of participants:  69 37 
   
Own reagents (qualitative) 17 25% 2 5% 
Own reagents (quantitative) 3 13% 4 11% 
Oxford kit 16 23% -  
Temmler kit 8 11% -  
Merckognost kit 14 20% 17 46% 
Infrared spectroscopy 3 4% 10 27% 
X-ray diffraction 1 1% 1 3% 
Polarization microscopy 1 1% 2 2% 

 
Urinary calculi are normally formed over a long period. Therefore, the calculus may be 
layered and the nucleus and each layer may contain different components. However, in the 
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routine laboratory the calculi from each patient are pulverized and mixed very well and the 
examination is carried out on samples of this material.  
Urinary calculus components can be divided in organic and inorganic components. Urate 
and xanthine components are classified as organic components, whereas oxalate, phosphate 
and carbonate containing components belong to the inorganic component class (64). A 
distinguishing feature of organic components is that they will burn in a flame, resulting in 
loss of volume. This can be tested by burning a small, but known amount of calculus 
powder in a flame (oxalate will burn partly). For this reason and in this context, oxalate is 
classified to the inorganic component class. 
About 50 mg of dry, pulverized calculus material is needed to perform the spot tests. With 
the spot tests of e.g. the Temmler kit the following ions and organic components can be 
identified: oxalate, carbonate, phosphate, magnesium, ammonium, calcium, uric acid and 
cystine (Figure 6). For example, the detection of effervescence of CO2 after addition of acid 
(HCl) to a small amount of stone powder indicates the presence of carbonate in the urinary 
calculus (present in calcium carbonate, or carbonate apatite). 
Unfortunately, often little information can be obtained about the major constituent of the 
urinary calculus, using this method.  
 
Wet chemistry analysis 
Wet chemical analysis is based on the quantification of ions and organic components, from 
which the quantitative composition of the salts and components may be calculated. In 
mixed stones these calculations may be rather complex. Therefore, it is particularly 
important that the stone is carefully examined before analysis. As a consequence, it is often 
undesirable to crush and analyze the whole calculus, as minor components may be diluted 
out and overlooked. After drying the pulverized calculus sample(s) on silica gel, an 
accurately weighed amount of sample is dissolved in HCl, sulphuric acid, or nitric acid. 
Larsson et al (61) found that nitric acid was the only effective agent for complete 
dissolution, however others have reported (67) that organic components do not dissolve into 
acid quantitatively. For each analysis, about 10–15 mg of sample material is needed. After 
dissolution of the calculus the ions (magnesium, calcium, oxalate, ammonium and 
phosphate) and organic components (urate and cystine) may be measured with automated 
laboratory analyzers. Especially wet chemistry of urinary stones may be prone to errors, 
because the quantitative results are always based on the assumption of 100% recovery. 
Most urinary calculi contain small amounts of protein and mucopolysaccharides (68), 
causing only a minor decrease of the recovery. However, if other unusual components (such 
as xanthine and spurious components) are present in the sample, the recovery may 
definitely not be 100%. If small recoveries are obtained (<70%) the sample should be 
examined by further chemical or physical-chemical techniques. 
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Figure 6. Part of the procedure of the Temmler kit for qualitative analysis of urinary calculus compositions. 

 
Based on the results of external quality control surveys (63), the single use of the 
qualitative dry spot tests and semi-quantitative wet chemistry analyses is not recommended 
(69). On the other hand the use of both techniques may provide additional information to 
infrared analysis or X-ray diffraction for the determination of the composition of urinary 
calculi. 
 
 
2.1.2.2. X-ray diffraction: 
 
Nearly 95% of all solid urinary calculus materials appears in a crystalline form, whereas the 
remaining 5% is amorphous. The atoms, ions, or molecules of the crystalline solids are 
arranged in regular patterns, which are repeated in three dimensions. In amorphous 
substances, the atoms are ordered in a random way (70). Sometimes, crystals are embedded 
in amorphous structures of the same material, in which case one speaks of the amount of 
crystallinity (70).  

When an X-ray beam hits an atom, the electrons around the atom will start to oscillate at 
the same frequency as the incoming wave, resulting in destructive inference in almost all 
directions. This means that the combining beams are out of phase and no energy will leave 
the solid sample. Because the atoms in a crystal are arranged in regular patterns, a few 
directions will have constructive interference. Therefore, according to Bragg’s law (71), 
crystals appear to reflect X-rays when an X-ray beam hits parallel atomic layers at certain 
angles of incidence (theta, θ). By stepwise changing the angles of incidence, the X-rays 
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interact with crystalline substances, resulting in highly specific diffraction patterns. As a 
consequence, every crystalline substance produces its own specific pattern, and in mixtures 
each substance produces its own pattern together with each of the other substances. An 
extensive description of X-ray diffraction can be found in a publication of Dosch et al. (72). 
 
An X-ray diffraction (XRD) analyzer (Figure 7) is composed of a source of X-rays, a 
sample holder and a detector. A narrow beam of X-rays, which strikes the crushed 
(pulverized) crystalline substance, is scattered in patterns that depend upon the electron 
densities in the different parts of the crystal. The scattered or diffracted beams can also be 
detected by means of a Debije-Scherrer-Hull camera on X-ray photographic film (73), or 
with a solid state electronic detector (74). The films, obtained with the Debije-Scherrer-
Hull camera contain patterns of dark concentric rings. The radius of each ring is a measure 
of the crystal lattice distance, whereas the amount of blackening of the ring on the emulsion 
indicates the intensity of the reflected radiation, which in turn can be used for the 
calculation of the relative composition of the components in a mixture (75). Today, the 
Debije-Scherrer-Hull camera is not used very often anymore for urinary calculus analysis 
and has been replaced by X-ray diffractometers (Fig. 7). By stepwise moving the detector 
with an angle from 0° – 50° over the sample, the detector records the measured intensity as 
a function of the diffraction angle.  
 

 
Figure 7. Diagram of a X-ray diffraction analyzer 

 
After mathematical conversion of the detector signals, the typical diffraction spectra 
(diffractograms) can be shown. These diffractograms consist of a plot of reflected 
intensities against the detector angle 2-theta (degrees 2θ), or theta (degrees θ), depending 
on the goniometer configuration. In case of urinary calculus analysis, about 4 mg of the 
grinded sample is applied on a mono-crystalline silicon powder applicator disk. 
Figure 8A shows a typical diffraction spectrum of whewellite, whereas Figure 8B shows 
the diffractogram of apatite [Ca10(PO4)6(OH)2]. The samples are measured from diffractor 
angles 7° to 49.5° (2θ), in steps of 0.01°. Apatite is known for its microcrystalline structure 
and therefore lacking sharp and well defined peaks.  
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After acquisition of the diffractograms, the obtained patterns have to be interpreted for the 
estimation of the composition of the urinary calculus. The International Center Diffraction 
Data (ICDD) database, formerly known as Joint Committee on Powder Diffraction 
Standard (JCPDS) is often used as reference database for comparison of the diffractograms. 
Despite the availability of the ICDD reference database, the interpretation of the patterns 
still has to be performed by specialists with many years of experience. Therefore, Wulkan 
and associates al have developed an expert system (LITHOS) for the evaluation of X-ray 
diffractograms of urinary calculi (76).  
 

 
Figure 8. XRD spectrum of whewellite (A) and apatite (B). The data of the diffractograms were 
obtained from the Clinical Chemical laboratory of the University Hospital of Rotterdam, The Netherlands  
 
X-ray diffraction and infrared spectroscopy both are well suited for the quantitative analysis 
of the atomic composition of urinary calculi (77). X-ray diffraction can detect crystalline 
components in low concentrations. Unfortunately, the quantitative determination of 
amorphous components by XRD may be problematic (see Figure 8B). This is especially 
true when amorphous substances are present in mixed stones. Moreover, the XRD 
apparatus, and ICDD reference library are very expensive. The XRD apparatus is 
potentially dangerous with respect to accidental exposure to X-rays and has no other 
application in the routine clinical chemical laboratory. 
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2.2. Infrared spectroscopy and sample handling techniques 
 
Introduction 
In analytical chemistry infrared spectroscopy (IR) is mainly used for the analysis of organic 
components. The qualitative assessment of organic components is performed for the 
identification of unknown compounds, or for the determination of the chemical structure of 
the components. In addition, IR analysis may be used for quantification of the components. 
IR spectroscopy is also known as vibration spectroscopy, since the spectra arise from 
transitions between the vibrational energy levels of a covalent bond of a molecule. The 
infrared spectrum, which ranges from 1 µm to 1000 µm, is part of the electromagnetic 
spectrum and is surrounded by the visible and microwave regions (Figure 9). The IR region 
may be further subdivided in the near infrared, the mid infrared and the far infrared regions 
(78). 

 
Figure 9. Infrared region of the electromagnetic spectrum. 

The energy, associated with the radiation of the IR region, is sufficient to cause rotational 
and/or vibrational changes of the atomic bonds of the molecule. In order to absorb IR 
radiation the covalent bond of a molecule must undergo a net change in dipole moment as a 
consequence of its rotational or vibrational motion (79). According to the quantum theory, 
when a molecule absorbs IR radiation, a vibration transition occurs from the ground state to 
the first excited state (V0–V1). This occurs when the frequency of the radiation matches the 
natural vibrational frequencies of the molecule. Except for this first level transition, other 
transitions may also occur (V0–V2, V0–V3). In theory, a single absorption band should be 
observed for each transition level. Second and higher order transitions always give rise to 
weaker absorbances. The bands causing the higher order transitions are often called the 
overtone bands. The energy required for the transitions V0–V1, V1–V2, etc, are about equal. 
Therefore, the first overtone of a band is often found at wavenumbers two times the 
wavenumber of the first transition level (V0–V1) ± 20 cm–1. The same is true for higher 
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overtones. For example, the first overtone band of the strong CH2 band at 890 cm–1 is found 
at 1780 cm–1. 
 
Infrared spectra of substances are characterized by three major properties, namely the 
number of bands of molecule in the spectrum, the wavenumber positions of the bands and 
the intensities of the bands. 
 
The number of bands. 

Except for bands found at different wavenumbers resulting from the various transition 
levels, different bands may occur as a result of the freedom of movement of the single 
atoms in the molecule along their X, Y and Z-axis. The relative positions of the atoms 
in a molecule are not fixed, but fluctuate as a consequence of different types of 
vibration. Apart from rotation, normally two major modes of vibration occur, namely 
stretching (Figure 10A) and bending or deformation vibrations (Figure 10B). Both 
vibrational modes can be further classified in symmetric and asymmetric types of 
vibration. Carbon dioxide (CO2) is a symmetric molecule. Therefore, no change in the 
dipole moment will occur by symmetric stretch vibration, and as a consequence no 
symmetric stretch band will be seen in the IR spectrum of a CO2 molecule (Figure 
10A) (80).  

A

B

 
Figure 10. Symmetric stretch vibration (A) of CO2. Infrared inactive. 
Symmetric bending vibration (B) of CO2. Infrared active. 

 
Based on the transition levels and vibrational modes of the molecule, a great number 
of bands should be seen in the IR spectrum. In practice the number of observed bands 
is frequently much less because the symmetry of the molecules results in no dipole 
moment at a certain vibration frequency (see e.g. CO2), the absorption intensity is too 
low to be detected, the energies of two or more vibrations are nearly identical, or the 
vibrational energy is beyond the wavenumber range of instrument. 

The position of the bands. 
For diatomic molecules it is possible to predict the theoretical position of the bands for 
the stretch vibrational modes. This can be performed by calculating the vibrational 
frequencies, by using a formula for harmonic oscillations (79). Usually there is a good 
agreement between the calculated and experimental values for the wavenumbers. 
However, in practice the specific groups rarely absorb at definite positions but occur 
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over a range (band) of wavenumbers, because the simple calculations do not take into 
account the effects arising from other neighboring atoms of the molecule. While these 
interaction effects may lead to uncertainties in the identification of the functional 
groups of a molecule, the combination of the bands of an IR spectrum is very 
important for a positive identification of a specific organic or anorganic component. 
For this reason, IR spectra represent one of the unique physical properties of organic 
and some anorganic components, with the exception of optical isomers. 
The amount of energy to cause a change in rotational level is very small, which 
primarily occurs in the far infrared region (200–10 cm–1). In this spectral region, 
which is mainly used for the determination of gasses, the absorption bands of the 
gasses are found by discrete, well-defined lines. Rotation is highly restricted in liquids 
and solids. Their vibrational bands are found in the mid IR (4000–200 cm–1) and the 
near IR (12500–4000 cm–1) regions. Because the energy required for deformation is 
much lower than for stretching, the deformation bands are found at lower 
wavenumbers than those for the stretching vibrations. In the near infrared spectral 
region, mainly weak absorption overtone bands of the OH, NH, CH and C=O groups 
can be found.  

The intensity of the bands. 
Just like in ultraviolet-visible (UV–VIS) spectroscopy, the intensity of an absorption 
band is usually expressed as the molar extinction coefficient (ε). This intensity is 
proportional to the square of the change of the dipole moment during vibration. 
Therefore, if no change in the dipole moment occurs (e.g. symmetrical stretch 
vibration of CO2), no absorption band will be seen. The intensity of overtone 
absorption is frequently low and the bands may not be observed. Fortunately the 
intensity of carbon-carbon single bond stretching vibration is usually very low. 
Therefore, the majority of the bands, observed in an IR spectrum, arise from the 
substituent groups and not from the carbon skeleton of the organic molecules. 

 
IR spectra are plots of the absorbance against wavelength, similar to the plots of UV–VIS 
spectroscopy. However, ordinarily the ordinate of IR plots is expressed in transmittance 
units (%), whereas the abscissa is expressed in wavenumbers. The wavenumber scale is the 
reciprocal of the wavelength scale and has the units cm–1.  
 
An advantage of the weak absorbance in the NIR region is that sample dilution is often 
unnecessary and that longer pathlengths may be used. For this reason NIR analysis is well 
suited for remote analysis (e.g. transcutaneous glucose measurement). Because of the 
limited number of functional groups that can be detected (OH, NH, CH and C=O) with NIR 
spectroscopy, more complex data handling routines are often necessary for quantitative 
analysis. Another specific problem of the NIR region is that the shorter wavelength areas 
are prone to excessive scattering, causing loss of light. The most important region for 
identification of organic components is the mid IR region. Today the majority of the 
analytical IR applications are confined to the IR region between 1700 and 400 cm–1, 
because most of the functional groups have relatively sharp absorption bands in that area. 
With this region, which is also called the fingerprint area of the spectrum, quantification of 
the components may often be done with simple data handling methods. Some of the more 
complex data processing techniques used in IR spectroscopy will be described in more 
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detail in the next chapters. Structure analysis may be performed by comparing the bands 
from the spectrum with the approximate band positions of infrared absorption bands. This 
information may be obtained from spectroscopic software (e.g. Sadtler software, Bio-Rad 
Laboratories LTd, London, UK) or be found in tables and correlation charts in different 
publications (41;78;79;81). Figure 11 shows a correlation chart of the IR region between 
2000–650 cm–1.  

 

Figure 11. Correlation chart with a number of functional groups in the IR region from 2000–650 cm–1. 

IR Instrumentation 
IR spectrometers have the same basic components as the instruments used for UV-VIS 
spectroscopy. They consist of three basic components: a source to provide IR radiation, a 
wavelength selector to disperse the source energy and isolate the required wavelength, and 
a detector to measure the intensity of the dispersed radiation. Interference filters are often 
used as wavelength selector for the NIR infrared region. 
For the (mid) IR region often diffraction gratings are used as infrared monochromators. The 
energy of infrared sources is generally low. Using a narrower slit width of the 
monochromator to increase the quality of the spectral resolution will usually be 
accompanied by a decrease of the signal to noise (SN) ratio. Fortunately, weak spectra may 
be extracted from noisy environments by means of signal averaging. The SN ratio of a 
spectrum may be improved by a factor √ n by averaging n replicated spectra. This 
implicates, that averaging of 16 replicated scans gives a four-fold enhancement the SN 
ratio. Using conventional infrared spectroscopy, the resulting radiant power is recorded as a 
function of the radiant frequency, which is inversely related to the wavenumber. With this 
so-called frequency domain spectroscopy, the absorbance intensity is measured at each 
wavenumber or resolution element separately. Therefore, signal averaging of a number of 
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replicated scans, consisting of a great number of resolution elements (e.g. full spectrum 
scans), may be very costly in terms of time. 
 
In contrast with conventional spectroscopy, Fourier transform spectroscopy measures all 
resolution elements of a spectrum simultaneously. Fourier transform spectroscopy is 
concerned with changes of radiant power with time, and is also called time domain 
spectroscopy. It is important to notice that the time domain spectrum contains the same 
information as the frequency domain spectrum. For that reason, the complex time domain 
and frequency domain spectra can be interconverted into each other by complex 
mathematical (Fourier) calculations. In order to obtain a measurable signal for the various 
wavelength regions of the spectrum in time domain spectroscopy, a signal-modulation 
(conversion) has to be employed. For this purpose, the Michelson interferometer (Figure 
12) has been used extensively for the measurement of the infrared region.  
 
This design of the device for modulation of the infrared radiation was first described by 
Michelson in 1891. The Michelson interferometer splits the radiation of an infrared source 
into two beams by means of a semi transparent mirror (beamsplitter) in such a way that the 
two beams with almost equal power are positioned at right angles of each other. The 
resulting twin beams are reflected from mirrors, one of which is fixed and the other of 
which is movable between position X and -X (see Figure 12).  
 

 
Figure 12. Michelson interferometer for signal-modulation in FT-IR spectroscopy. 
 
These beams meet the beamsplitter again and half of each beam is directed toward the 
sample and detector. If an absorbing material placed in the sample compartment in these 
beams, the resulting interferogram (Figure 13) will carry the spectral characteristics of the 
analyte. An interferogram is a plot of the output power of the detector against the 
retardation. The retardation is the difference of the path length of the two beams. The actual 
conversion of the interferogram into a conventional infrared spectrum is very complex and 
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is done by computers. In modern FT-IR instruments, precise signal sampling is obtained by 
using a so-called laser-fringe system. It consists of a helium neon laser source, an 
interferometric system and a laser diode detector (Figure 12). This system gives highly 
reproducible and regularly spaced sampling intervals. The interested reader is referred to 
publications of Skoog et al. (79) and Griffith (82) for more information about FT-IR 
spectroscopy. 
 

FT-IR spectrometers have several benefits over the conventional scanning spectrometers. 
The differences between both methods are summarized in Table 6. Today, most IR 
spectrometers employed for measurement in the mid IR region are FT-IR spectrometers. If 
only absorbance data have to be collected from one, or a limited number of wavenumbers, 
low cost filter or dispersive spectrometers may still be used. 
 

Table 6. Comparison of conventional and FT-IR spectroscopy. 

Conventional FT-IR 
Lengthy scan times of full scans 
Measuring each resolution element 
separately 

Short scan times of full scans  
Measuring all resolution elements 
simultaneously 

Resolution non continuous over the 
wavenumber region 

Resolution steady over the whole 
wavenumber region  

Calibration of wavenumbers by 
external standards 

Internal calibration by means of the 
laser beam 

Sensitive to stray light Insensitive to stray light 
Low energy throughput High energy throughput 

 

 
Figure 13. Interferogram of a continuous IR source.  
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Normal optical materials such as glass or quartz absorb strongly in the infrared region and 
therefore cannot be used. Quartz can however be used in the near IR region, because it is IR 
transparent from 5000–2760 cm–1. Absorption cells, sampling devices and other optical 
parts of an (mid) IR spectrometer must be made of infrared transparent material in the 
region from 4000–200 cm–1. The substances most commonly used as optical parts in IR 
spectroscopy are given in Table 7, together with their useful transmission ranges, refractive 
indices and relative hardness relative to NaCl. 
  
Table 7. Physical properties of some materials for IR spectroscopy. 

Materia
l 

Transmission 
range 

Refractive index at 2000 
cm–1 

Hardness relative to 
NaCl 

NaCl 5000 – 590 1.52 1.0 
KBr 5000 – 340 1.53 0.4 
KRS-5 5000 – 250 2.37 2.2 
ZnSe 5000 – 500 2.40 8.3 
Ge 5000 – 600 4.01 160 
Diamon
d 

        5000 – 10 2.40 Very hard 

 
IR sampling handling techniques 
IR spectroscopy may be used for the analysis of gasses, liquids, pastes, powders and 
polymer films. The IR sampling techniques may be subdivided in transmission, and 
reflection techniques. The sampling techniques appropriate for the sample categories that 
were used in our own studies are summarized in Table 8.  
 
Table 8. Some sampling techniques. 

 Sampling techniques 
Sample category Transmission Reflection 
Liquid (chloroform extracts) Liquid cells  
Pastes (feces) Liquid cells ATR 
Powder (urinary calculi) KBr  ATR 

KBr, Potassium bromide; ATR, attenuated total reflection 
 
Analysis of liquids using a liquid cell: 
In mid IR spectroscopy water and alcohol are rarely used as solvents, because of their 
strong absorbance intensities. Furthermore, they are less suitable as solvents because of 
their interactions with the metal halide cell window materials that are often used. More 
commonly, organic solvents such as chloroform, carbon tetrachloride, and carbon 
disulphide are used. In mid IR spectroscopy, sodium chloride windows are often employed, 
because they are rather cheap, but must be handled with care because of their tendency to 
absorb moisture. Careful selection of the solvents must also be done to prevent unwanted 
interaction of the solvent absorbance bands with those of the components of interest. 
In mid-IR, the pathlength of infrared liquid cells are normally much smaller (0.1–1 mm) 
than those employed in UV-VIS spectroscopy because of the relatively high absorbance 
caused by the organic solvents. The pathlength of the cells is often fixed or may be adapted 
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by removable spacers. The pathlength in NIR spectroscopy may commonly be much larger 
(e.g. 1 cm) when compared to mid IR spectroscopy. 
We applied NIR spectroscopy, using a liquid cell with polyethylene windows and a 
pathlength of 1 cm for the determination of fecal fat. We also applied mid-IR spectroscopy 
for the determination of fecal fat, by measuring chloroform extracts of feces with a liquid 
cell with NaCl windows and a pathlength of 0.1 mm (both studies are described in Part I).  
Sometimes unwanted interference fringes may be observed in the spectra, which are caused 
by internal reflection of the light by the two cell walls. These fringes may occur when the 
refractive index of the cell window material and solvent differ too much. The fringes are 
observed as regular sinusoidal curves, superimposed upon the spectrum. Interference 
fringes may be beneficially used for the prediction of the exact pathlength of a cell (78).  
 
Analysis of powder with KBr tablets: 
The composition of solid samples are often measured by using the potassium bromide 
(KBr) disk technique. This technique is especially applicable for crystalline material. The 
solid sample is totally grinded, manually by using an agate pestle and mortar, or by using a 
mechanical mill. About 0.5–2.0 mg of grinded sample is thoroughly mixed with 100–200 
mg dry KBr. This mixture is applied to a special pellet die. The KBr disk is produced by 
applying about 10 kbar pressure to the pellet die construction with a hydraulic press. The 
resulting disk is typically 13 mm in diameter and has a thickness of less than 1 mm. The 
transparent disk is placed in a special tablet holder and measured in transmittance in the 
mid IR region. 
We applied the KBr sampling technique for the determination of the composition of urinary 
calculi (see Part II). 
Also when this technique is used, small inference fringes may be observed in the spectrum. 
These fringes may be prevented by the preparation of thicker disks (≥ 1 mm), by using 
more KBr. Spectral distortion may also be caused when the particle size of the sample is 
too large. In theory, the particle size of the sample should be less than the lowest 
wavelength to which it is exposed (2.5 µm = 4000 cm–1). If the sample is not sufficiently 
grounded, the spectrum may contain distorted bands and often sloping backgrounds caused 
by loss of energy by scattering. In such cases, prolonged grinding of the sample may 
enhance the spectral resolution and sloping background effects. Another spectral distortion 
may occur when the refractive indexes of the sample and the halide (e.g. KBr) differ too 
much. In practice this may not be a serious problem because the refractive index of most 
organic and inorganic components are almost similar to the refractive index of KBr (1.5). In 
case of serious band distortions, alternative halides (e.g. caesium iodide) may be used for 
the preparation of the disks. Both distortions due to a combination of the particle size 
effects and refractive index are known as the Christiansen effect.  
 
Analysis of pastes or powders with the attenuated total reflection technique: 
Attenuated total reflection (ATR) is a relatively new technique that can be applied to a wide 
range of sample materials, such as liquids, pastes and powder (83;84). This reflectance 
technique can be applied without sample pre-treatment. ATR is based upon the fact that IR 
radiation propagated through an optically dense medium is reflected when it arrives at an 
interface with a less optical dense medium. The reflection becomes complete when the 
angle of incidence is greater than a certain critical angle. It has been shown that, due to the 
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wave nature of radiation, the reflection does not occur directly at the interface of the two 
media, but after penetrating a small distance into the less dense medium. The depth of 
penetration of the radiation is a function of the wavelength of the radiation, the angle of 
incidence at the interface and the refractive indices (RI) of both media. Figure 14 shows the 
relationship between the wavelength (wavenumber) and the depth of penetration in a 
sample with a refractive index of 1.0, using a ZnSe ATR crystal with an angle of incidence 
of 45°. ATR can only be effective if the difference of the RI between the sample and the 
ATR crystal is large enough (∆ RI ≥ 1). Table 7 shows the RI values of some of the ATR 
crystal materials, whereas most sample materials have RI values close to one. Today, the 
majority of ATR sampling accessories are flat crystal plates with fixed angles (45°, 30° or 
60°) employing about 10 reflections (Figure 15). The incident light from the IR source is 
directed with a fixed angle onto the entrance of the crystal plate by means of a plane mirror 
system. At the gate of the ATR crystal plate the retarded radiation is directed towards the 
detector by the same kind of mirror. Because the source radiation is not directed by lenses, 
the whole sample upon the crystal plate is flooded with the radiation. Absorption and 
attenuation will take place at each of the internal reflections. The number of reflections may 
be increased or decreased by obtaining thinner or thicker ATR plates, by changing the 
length of the ATR plate, or by changing the angle of incidence. We applied the horizontal 
ATR technique for the determination of fecal fat (see Part I). 
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Figure 14. Relation between the depth of penetration and the wavelength using ZnSe as ATR crystal. 
 
Horizontal flat plate ATR crystals require a reasonable amount of sample material. More 
recently, micro-sampling ATR devices became available (Figure 16). Single reflection 
micro-ATR devices are usually equipped with diamond crystals and enable the 
measurement of very small amounts of sample material (liquids, pastes and solids). The 
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practical benefits of diamond as ATR crystal are its strength and chemical inertness. The 
intrinsic hardness of diamond, as well as the small sampling area of the micro-ATR 
(diameter usually < 1 mm) enables the application of high pressure to the sample on the 
crystal, without the risk of crushing the crystal. This pressure is needed to achieve sufficient 
sample contact between the solid sample and the sense area of the crystal. 
 

Detector

IR source

ATR crystal

Sample

 
Figure 15. Multiple reflection horizontal ATR system. 

 
For quantitative analysis, it is important that the pressure applicator of the micro-ATR is 
equipped with a pressure restraint in order to prevent irreproducible outcome as a result of 
the pressure-induced phase transitions (85). These transitions may result in changes of the 
polymorph distribution of the sample components. On the other hand, this pressure 
dependency is sometimes also beneficially used to obtain an extra spectroscopic dimension 
(see paragraph: Diagnostic applications of IR spectroscopy). We have applied micro-ATR 
(Golden Gate) for the determination of the composition of urinary calculi (see Part II).  
ATR is usually not practical in NIR spectroscopy because the very small penetration depth 
causes weekly absorbing bands in NIR. 
 
The ATR spectra are similar, but not identical to ordinary transmission spectra. The spectral 
bands will be the same, but their relative absorbances will differ because the depth of 
penetration varies as a function of the frequencies (Figure 14).  

  
Figure 16. Single reflection micro-ATR sampling device. 
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ATR sampling may be applied to almost any sample substance. Infrared analysis normally 
avoids the use of water as solvent because of its strong absorption in the mid IR region and 
for the reason that many of the materials used in IR analysis are typically non resistant to 
water. However, by using horizontal ZnSe ATR plate systems, quantitative analysis of 
samples dissolved in water is possible in mid IR. Liquids and pastes can normally be 
measured very reproducibly with ATR, but solid samples and powders may cause 
irreproducible results as a consequence of poor sample contact, as was described above. 
Therefore, the sample contact of the solid samples must be enhanced by clamping the 
sample onto the ATR plate with a pressure applicator. 
 
The list of the preceding sampling devices applied in IR spectroscopy is far from complete. 
Since the 1980s many sampling techniques evolved and became available to handle almost 
any sample. More information about these accessories, such as specular reflectance, diffuse 
reflectance (DRIFT), folded path cells for gas measurements, photoacoustic detection, IR 
microscopes (86) for micro-sampling and hyphenated techniques such as GC-IR. may be 
found in literature (87;88). More general background information about IR spectroscopy 
may be found elsewhere (78-80;82;89). 
 
Clinical and biomedical applications of IR spectroscopy  
IR spectroscopy has been employed for the analysis of several analytes in different 
biofluids and solid biosamples. IR spectroscopy has been applied for the analysis of 
pathological samples, for diagnostic applications and for non-invasive in vivo monitoring.  
 
Analysis of patient samples 
FT-IR spectroscopy has been used for fast multi-component analysis of different analytes in 
biological sample materials. Fecal fat, sugar, nitrogen and water contents have been 
quantified simultaneously using NIR reflectance spectroscopy (90). The fecal fat content 
has also been analyzed using mid IR spectroscopy (23). FT-IR spectroscopy has been 
employed for the determination of the composition of urinary stones (31) and human gall 
stones (91). Shaw et all (92) described an IR spectroscopic method for the simultaneous 
quantification of serum concentrations of total protein, albumin, triglycerides, cholesterol, 
glucose urea, creatinine and uric acid. The serum samples were spread as a thin film onto 
an IR-transparent material. After drying of the serum film, the samples were measured in 
transmission in the mid IR region. Other authors described a method for the IR 
determination of the lecithin/sphingomyelin ration in amniotic fluid (93). 
 
Diagnostic applications of IR spectroscopy  
IR spectroscopy has been applied for the 13C urea breath test for diagnosis of Helicobacter 
pylori infections inside the stomach (94;95). The Helicobacter pylori bacteria produce large 
quantities of urease. The test exploits the hydrolysis by urease of orally administrated 13C-
urea into ammonia and 13CO2, which diffuse into the blood. The 13CO2/

12CO2 enrichment in 
breath is measured using an isotope-selective nondispersive infrared spectrometer. 
Combinations of visible microscopy and IR spectroscopy are used in the development of 
methods for the diagnosis and identification of cancer cells. FT-IR microscopy (FT-IR-MC) 
is a hyphenating technique of an optical microscope and an infrared spectrometer. It allows 
visual and infrared assessment of different spatially localized parts of the sample on a 
microscopic scale. FT-IR-MC is very sensitive in visual and infrared transmission and 



Introduction 

 

 
38 
 

reflection. Healthy and cancerous cells have different infrared spectra. These differences 
are often based on changes in the DNA/RNA complexes and differences in lipid cellular 
membranes. The changes involve the phosphate, the C–O stretching bands and the CH 
stretch region. Another remarkable difference is the dissimilarity of the pressure 
dependence of the CH2 and C=O stretching modes of the normal and cancerous cells (96). 
Pressure dependency is a normal functional relationship between an increasing pressure (0 
– 20 kbar) applied to the sample and the spectral parameters (e.g. frequency, intensity, band 
shape) (97).  
A recent study, using FT-IR microspectroscopy, described the spectral differences between 
healthy and cancerous human lung cells (98). Another study described the improved 
discrimination by IR spectroscopy, between different types of tissue structures of human 
melanoma and colon carcinoma (96). FT-IR spectroscopy was also applied to samples of 
normal, and malignant and dysplastic cervical smears (99;100) . 
 
Noninvasive in vivo monitoring in IR spectroscopy 
Usually, NIR instrumentation is used for metabolic monitoring, because of its longer 
pathlength in relation to the mid IR region and availability of fiber-optics for the NIR 
region. In vitro monitoring is inherently invasive, causing relative lengthy turn-around 
times because the samples usually have to be analyzed in a central laboratory. In case of in 
vivo measurement, which is often not invasive, the analysis can be performed near the 
patient. Unfortunately, the accuracy of the non-invasive in vivo IR measurements does not 
yet match the accuracy of in vitro measurements (101). Therefore, the in vivo 
measurements are best suitable for the detection of a trend of change in one patient. Except 
for non-invasive patient monitoring in intensive care and surgery units, in vivo monitoring 
might be used for patient self-monitoring. 
A well-known example of in vivo monitoring is tissue oxygenation monitoring. Quaresima 
and associates described two approaches to non-invasive NIR spectroscopic measurements 
of cerebral hemoglobin oxygen saturation (102). Much effort has been put in near infrared 
reflectance spectroscopy for non-invasive monitoring of blood glucose. In some of the 
studies, glucose was measured through the surface of the finger (103), while others 
measured through the oral mucosa (101). Both kinds of transcutaneous glucose 
measurements were performed by using fiber optics and diffuse reflectance probes 
(104;105).  
 
From the previous descriptions we conclude that infrared spectroscopy is very useful for the 
determination of analytes in complex biochemical samples. The instrumentation is not very 
expensive, and there is a large number of sampling devices and optics available for 
invasive, as well as noninvasive measurement of almost any kind of bio-sample. In general, 
IR spectroscopy can save time and expense in terms of sample preparation.  
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3. Chemometrics 
 

3.1. General 
Today, clinical laboratories can produce an almost unlimited number of test results on body 
fluids from each patient sample submitted to the laboratory. Consequently, the clinical and 
hematological laboratories generate a lot of numerical information, which contributes to the 
patients’ database. Sometimes, the information of the laboratory tests is redundant, what not 
only may lead to saturation, but even to a decline of information. Furthermore, the 
interpretation of the results obtained from some of the analytical methods used in the 
clinical and hematological laboratories has become more and more complex. This is caused 
by for example the improved separation power of the analytical instrumentation (e.g. 
capillary GC) and by the increased demand for measurement of analytes in authentic 
sample material, which is often a complex sample matrix containing many interfering 
substances. Both phenomena, the increased amount of analyte information obtained from a 
single sample, and difficulties with the interpretation of the test results obtained from a 
complex sample matrix has led to the development and application of statistical and 
mathematical methods in the past decades.  

These statistical and mathematical methods have resulted in new analytical applications, 
often by omitting the otherwise imperative sample pretreatment. Svante Wold was the first 
investigator who applied the so-called ‘chemometrics’ to organic chemistry applications. 
Nowadays, many of the statistical and mathematical methods developed for analytical 
chemistry applications, are referred to as ‘chemometrics’. Chemometrics is concerned with 
the application of mathematical and statistical methods, as well as those methods based on 
mathematical logic, to extract useful information from chemical measurements (106). 
Similar disciplines have emerged in other fields of science, such as biometrics, 
psychometrics, econometrics or medicometrics. Sometimes, the chemometric techniques 
are applied to sub-fields of analytical chemistry, such as qualimetrics, which is concerned 
with the use of chemometric methods to improve the quality control and quality assurance, 
or pharmacometrics in which the methods are used in the synthesis, analysis and 
formulation of pharmaceuticals. 
Medicometrics has relationship to the medical sciences, because the methods evaluate 
clinical and laboratory test results from patients (107). Medicometrics is not involved in the 
administration of patient medical records, but e.g. in the extraction of useful information 
from chemical and hematological data (108;109), automated pattern recognition of signal 
processes such as electrocardiograms (110) and electroencephalograms (111), pattern 
recognition of digitized microscopic images of urothelial cell carcinoma (112) or malignant 
gastric cells (113), simulation studies of arm movements (114), validation of test results of 
patient samples by means of a rule based system (115) or a statistical method (116), and 
other application areas.  
 
During their development, the medicometric methods applied to laboratory test results 
always need specific background information about the patients (diagnosis, medication, 
gender, etc.). Chemometrics on the other hand can be performed within the walls of the 
laboratory, without needing any patient background information. It can be used to optimize 
the analytical, or post-analytical processes. 
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Our own studies with respect to the analysis of urinary calculi and fecal fat and concerned 
with difficult quantitative interpretations of infrared spectra, made use of chemometrics. 
Apart from these studies, chemometric methods are applied to a great number of analytical 
techniques, such as gas chromatography, high-pressure liquid chromatography (HPLC), 
mass spectrometry, infrared spectroscopy, etc. The chemometric methods may be 
subdivided in the following categories: statistics (e.g. method validation, sampling 
strategies, detection limits, etc), optimization (minimization or maximization of a function 
of one or more independent variables, e.g. mixture designs, liquid/liquid extractions, HPLC 
parameters, etc.), signal processing (digital filtering, smoothing, background correction, 
domain transformations, trend analysis, image analysis, etc), resolution (e.g. identification 
of peak patterns in unresolved regions), parameter estimation (curve fitting and 
mathematical modeling of chemical properties of e.g. spectral band shapes), structure-
activity relationships (relation of the molecular structure to its chemical, physical or 
biological properties), pattern recognition (classification of an unknown into one of a set of 
predetermined classes), artificial intelligence (e.g. automated chemical workstations, 
including a scheduler for the initiation and monitoring of parallel experiments), calibration 
(relating or modeling measured responses to the composition of a set of analytes), exploring 
chemical data (for understanding/finding underlying phenomena), and library searching 
(identification of unknowns and qualitative analysis of mixtures). Our own studies only 
make use of calibration techniques (partial least squares regression and neural networks) 
and simple library search algorithms. These methods are described in the following 
chapters. Interested readers in other methods may find reference to a large number of 
articles concerning the development and application of chemometric methods applied to 
each of the above-mentioned categories, in a series of review articles (106;117-119). A 
general introduction to chemometrics may be found in a book of Massart et al (120).  
 
Data structures used in chemometrics 
Chemometrics is concerned with the extraction of ‘useful’ information from measurements. 
The characteristics of these data are generally stored in one or two data sets. Some of the 
chemometric techniques will, however, work on only one data set. Such a data set is 
normally referred to as the X data and they may contain the more easily accessible 
variables, such as spectroscopic data (NIR, UV-VIS), chromatographic data (GC, HPLC, 
MS), process measurements, image analysis data, etc. Table 9 shows an example of a data 
set, containing absorbance data of some patient samples. The data set consists of a number 
of objects (patient samples). Each object is a set of values such as absorbances, measured at 
different variables (wavenumbers). In this data set each line represents one object and each 
column represents one variable. Statisticians have found matrix mathematics a very useful 
concept for the formulation of data sets, because they permit extremely efficient and 
accurate calculations for carrying out multivariable analyses on large data sets. Therefore, 
chemometricians always use matrix formulations for there data sets. For this reason the data 
set of table 9 would normally be defined as matrix X. 
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Table 9. Data set X containing spectroscopic data (Absorbances). 

Patient sample Wavenumber (cm-1) 
 2000 1996 1992 1988 1984 1980 1976 1972 …… 
1 1.8 1.9 2.0 1.8 1.6 1.2 0.8 0.4  
2 1.7 1.9 2.3 1.9 1.4 0.8 0.5 0.3  
3 1.2 1.4 1.2 1.0 0.8 …..    
…….          

 
A matrix is defined as a rectangular array of numbers. For example the data of table 9 
would look like: 
 

 

















…
=

..   0.8   1.0   1.2   1.4   1.2

0.3   0.5   0.8   1.4   1.9   2.3   1.9   1.7

0.4   0.8   1.2   1.6   1.8   2.0   1.9   1.8

X  

 
The dimension of a table is often defined as XNxK in which N is the number of rows (1..N) 
and K the number of columns (1..K). In case of the example, the dimension of the matrix X 
would be X3x8. Matrices may contain only one row, or column. These matrices are normally 
referred to as a row vector (e.g. x’(1x4) = [-1 15 3 -2]), or a column vector (e.g. x4x1). As 
mentioned before, matrices are used in almost any kind of statistical calculation. More 
information about mathematical matrix manipulations, such as matrix inversion, 
multiplication, transposition, etc. can be found elsewhere (121;122). 
 
By definition, the chemometric techniques are applied on matrices for the extraction of 
information from chemical measurement data. In case of chemical problems where only a 
single (X) matrix is available, principal component analysis (PCA) is one of the most 
commonly used techniques for this purpose. This technique extracts systematic variation 
from the data by turning the interrelated X-variables into unrelated ones. This is performed 
in such a way that the original dimensionality of the problem may be reduced without 
losing much of the information (123). The so called data structure modeling, or data 
decomposition of PCA can be used for e.g. variable reduction by selection of the most 
important variables, for finding patterns, or for the classification of variables or groups of 
objects (samples) that are similar. PCA can be schematized as follows: 
 
 
 

Except for the analysis of one X-matrix, chemometrics is also often involved in the 
determination of the relation of the X-matrix with another matrix. The other matrix is often 
referred to as the Y-matrix. The Y-matrix may be a vector or a matrix containing variables 
such as the chemical concentrations, product qualities, etc. In order to find a useful relation 
between the two matrices it is necessary e.g. to determine the regression relationship 
between the two data sets. In this case the two data sets contain ‘known data’, also referred 
to as the training set, to make a model of the relationship. This process is called calibration. 
The calibration model (comparable with regression coefficients of a regression line) may be 

X-data PCA model 
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used to predict ‘unknown’ Y-values from the measurements of new X-variables. Both 
calibration and prediction is schematized as follows: 
 
Calibration:  
 
 
Prediction: 
 
 
Because most of the post-analytical quantifications of our studies described in Part I and II 
were based on multivariate calibration and prediction, the next two chapters will describe 
some of the multivariate chemometric quantification methods in greater detail. 
 
 
3.2. Multivariate calibration methods 
 
3.2.1. PLS regression  

 
Introduction 
Generally speaking, every mathematical calibration model has a structure part representing 
the systematic variation and a residual part representing the difference between the data and 
the structure (DATA = STRUCTURE + RESIDUALS). The mathematical description of 
the well known standard linear regression equation is: y= b0 +b1x + e, in which b0 is the 
intercept, b1 the slope of the regression line and e the residuals. This formula may be 
rewritten as y = Xb + e, in which Xb represents the structure. Good calibration modeling 
requires attention both to the structure and the residual parts. The prior aim to calibrate is to 
determine a function f( ) that allows quantitative predictions of Y (e.g. one or more 
concentrations) from X (e.g. measured absorbances):  

f(X)Ŷ =  in which Ŷ  is a matrix with the predicted y-values and X are the  

 predictor variables 
 

The accuracy of the outcome of this function will only be good enough if there is sufficient 
correlation between X and Y. Although this is not the primary aim of their studies, 
chemometricians should always be concerned about the causal relation of their 
observations, in order to understand what the calibration data mean. The mathematical 
methods for simple linear regression and sophisticated multivariate calibration methods 
such as PLS, do not require causal understanding before starting calibration. This lack of 
insight can be compensated by the choice of empirical, but well considered calibration 
objects (training data). The training samples should be collected by selection of a set of 
representative samples with sufficient variability, in order to take care that the training data 
will span the whole concentration space. Further understanding about the X-Y relation can 
be obtained during the subsequent calibrations and predictions, by studying the structures 
and residuals of the objects (124;125). Sometimes it may help if some causal relationship is 
known in advance. In such cases, applying a proper transformation function could e.g. 
linearize known nonlinearities before calibration.  

X-data Y-data + Calibration model 

X-data Calibration model + Y-data 
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Figure 17A shows a part of an IR spectrum where it is presumed that the absorbance band 
(x) at wavelength 1320 nm accounts for the entire information about the concentration (y) 
of a certain component. In this case we can calibrate and predict the concentration of that 
component entirely on the basis of the absorbance of that band. We applied linear 
regression in our own studies on IR spectra obtained from petroleum ether and chloroform 
extracts of stool samples, for the quantitative prediction of fecal fat (see Part I).  
 
A well-known problem in clinical chemistry is interference or the lack of selectivity. These 
interferences, or chemical matrix effects, may occur from other chemical constituents (e.g. 
interaction by overlapping IR bands), from physical phenomena (e.g. light scattering) or 
from the measurement process itself (e.g. temperature variation during measurement). 
Traditionally, interferences had to be removed physically, e.g. by extraction, filtering, or 
centrifuging, to ensure selectivity and in order to ensure linearity within the narrow range of 
the instrument scales. Unfortunately, this is time consuming and expensive. Today, there is 
a general tendency to measure samples with a minimum of sample pre-treatment 
(purification), but this often results in loss of selectivity. However by applying modern 
chemometric multivariate calibration techniques, interferences and non-linearity are often 
less of a problem. 

 

Figure 17. Part of an IR spectrum showing the absorbance band(s) at one or more wavelengths that are used for 
linear regression (A), multiple linear regression (B) and partial least-squares regression (C). 
 
 
The calibration models are generally divided in the following distinct ways: 
- Inverse calibration. As described before, the major purpose of calibration is prediction, 

not causal modeling. This is therefore called the forward direction from X to Y, with the 
predictor formula )X(fŶ = . The predictor can be obtained by regressing the calibration 

data Y on X, using the following model: 

Y = XB + F 

where X represents e.g. the spectra (absorbances), Y the concentrations of one or more 
analytes of a sample, B the regression coefficients and F the residuals. Standard linear 
regression and multiple linear regression (MLR) models used for prediction of the 
analyte concentrations are typical examples of inverse calibration. A brief description 
of MLR will be given later. 
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- Classical calibration. This is the traditional way to present the functional relationship 
between X and Y. This relationship resembles the causal structure of most analytical 
applications. In this case the predicting variables X (e.g. absorbances) are caused by the 
analytes Y (e.g. concentrations), and can be described with the predictor formula 

)Y(gX̂ = . The Beer’s law in spectroscopy is a well-known example of this last 

relationship, namely: 
A = εcl (A, Absorbance; c, concentration; ε, molar extinction coefficient; l, pathlength) 

- Regression on latent variables. The predictor formula of this kind of models is adapted 
from the domain of inverse calibrations and is generally described as )U,X(fŶ =  in 

which U are the unmeasured phenomena. In this relationship both X (e.g. absorbances) 
and Y (e.g. concentrations) are influenced by unmeasured interferents U. In this case, 
the concentration is directly predicted from the absorbances, avoiding explicit 
determinations of the component and interference concentrations. In case of IR 
spectroscopy, the interference problem may be solved by measuring the absorbances at 
several different spectral wavenumbers. 

To solve the predictor )U,X(fŶ = , the so-called ‘regression on latent variables 

models’ is used as calibration model. In general these models are described as follows: 

T ⇐  f1(X) (T, represents systematic structure, possibly unidentified) 
X ⇐  f3(T) + E (E, residuals)   
Y ⇐  f2(T) + F (F, residuals) 

Both Principal Component Regression (PCR) and Partial Leased Squares (PLS) 
regression belong to this class of models and will be described in one of the following 
paragraphs. More information about inverse and classical calibration may be found 
elsewhere (126). 

 
Before describing PLS regression in more detail, some background information is needed 
about MLR, PCA and PCR.  
 
 
Multiple linear regression  
Classical MLR analysis deals with the estimation of the conditional mean of a random 
variable y from several X-variables (see Fig. 17B), rather than from a single x as in 
standard linear regression. The basic equation relating to these variables may be written as:  

yi = β0 + β1Xi1 + …. + βkXik + ei  

This equation describes that the y-value of the i-th object (individual, or sample) is a 

function of k+1 regression coefficients (βs) and k independent X-variables of the i-th 
object. Furthermore, the equation describes the residual error ei of the i-th object. The 
coefficient β0 represents the systematic offset, whereas the other β coefficients express the 
rate of change of the respective X-variables. The variable y is usually referred to as 
dependant, because its value is predicted on the basis of the known values of the 
independent X-variables.  
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The matrix (X) and vectors (y, e and β) of the previous model may be described as follows: 
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which n is the number of objects (samples) and k is the number of Xs. The previous 
equation may be written in a simple matrix notation: y = Xβ + e. To obtain reliable 
predictions from the calibration model, it is important that some assumptions are fulfilled 
during calibration, that is: the n residuals (e) must be independent and must follow a 
multivariate normal distribution with constant variance [homoscedastic] (127). If the 
number of objects (n) is larger than the number of variables (k), the regression coefficients 
of the previous calibration model can be estimated with the following matrix formula: 

y'X)X'X(ˆ 1−=β  (121)1. The y-values of unknown samples may be predicted by using the 

estimated regression coefficients with the following formula: β= ˆXŷ
 

. 

 
When applying MLR, it is important to work with a number of predictors (X) as small as 
possible. This is needed due to the principle of scientific parsimony, to obtain an optimal 
n/k (object/variable) ratio and also because the incremental information content of the new 
variables is often low as the measurements (e.g. absorbances) tend to overlap in content 
because of their possible intercorrelations (see e.g. Fig 17C). Since MLR is a mathematical 
maximization procedure, there is a considerable opportunity for capitalization of chance. 
Therefore, an n/k ratio greater or equal to 15 is needed in order to obtain a reliable 
regression equation and to provide sufficient reproducible predictive power. As a rule of 
thumb, it is recommended to select those predictors that highly correlate with the dependent 
variable (y), but that have low intercorrelations. Most statistical computer programs (e.g. 
SPSS) for MLR regression contain the three most popular procedures for selection of a 
good set of predictors, namely: forward, backward and stepwise selection (127;128). 
Another less commonly used selection procedure is the all possible subset regression 
procedure, which computes the multiple correlation coefficients (R2) and regression 
equations for all possible subsets of predictor variables (128).  
 
In practice, a problem called collinearity or multicollinearity may occur when some of the 
X-variables are redundant, because they are highly intercorrelated. The term collinearity is 
used to indicate that one or more of the predictors are approximately or exactly linear 
dependent of the others (121). As mentioned before, ideally a high R2 would be obtained 
when each of the predictors is significantly correlated with the dependent y-variable and 
being uncorrelated with each other, so that they are able to predict different parts of the 
variance of y. Unfortunately, in practice this does not often occur, since almost all so-called 
‘independent’ X-variables are intercorrelated to some degree. The consequence of 
collinearity can be illustrated with the following two-independent variable regression 
example: 

                                            
1 'X , transpose of matrix X; 1)X'X( − , the inverse of the matrix product X'X  
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yi = β0 + β1Xi1 + β2Xi2 + ei In general, 1β̂ and 2β̂ are calculated as follows: 

















−
=β

)X,X(r1
1cˆ

212
 j  j    for j=1 and j=2, cj is a value depending on the  

data and r2(X1,X2) is the squared correlation coefficient between both predictors. The term 
between the square brackets is also referred to as the variance inflation factor (VIF). From 
this equation it follows that the estimated regression coefficients become indeterminate if 
the correlation coefficient of X1 and X2 is one (VIF = 1/0 = ?). Thus, for the MLR solution, 
multicollinearity in X may have a detrimental effect on the computed coefficients of β̂  and 
render them useless for prediction of ŷ . Fortunately, certain kinds of collinearity such as 

those involved in polynomial regression can be expressed as scaling problems and therefore 
can easily be resolved by subtraction of a constant (centering). In e.g. IR spectroscopy it is 
sometimes necessary to retain a great number of X-variables in order to get calibration 
models that include all spectral information and in order to stabilize the predictions against 
noise. In such cases, a great number of consecutive absorbances is used for the calibration 
and prediction of the component(s) of interest (Fig. 17C). PCA is an alternative 
computational method for rank reduction to avoid the impasse created by collinearity or 
near collinearity and forms the basis of the multivariate calibration methods that will be 
described in the following paragraphs.  

Principal Component Analysis 
There are three common problems when we want to predict Y from X (126): 
- Collinearity: There is interrelation and hence redundancy between the X-variables. 
- Lack of sensitivity: No single X-variable is sufficient to predict y. 
- Lack of knowledge: A priori information of the mechanisms behind the data may be 

incomplete or wrong.  

The most important way of dealing with these problems is PCA, which essentially 
transforms the correlated X-variables into new uncorrelated ones. Besides creating 
uncorrelated variables, PCA is a general framework for ‘rank-reduction’ or ‘data-
compression’. The general characteristic of PCA are summarized and depicted in Figure 18. 
In PCA the original X-variables are treated equally, i.e. they are not divided into dependent 
and independent variables, as in regression variables.  
 
The new variables of PCA are called the ‘principal components’ (or factors). To simplify 
the interpretation, the data of the original variables are normally scaled by subtraction of the 
sample mean from each observation (centering), thus obtaining e.g.: 
 111 XXx −= ,  222 XXx −= , …….. kkk XXx −=  (for k X-variables)2 

 
Each principal component is a linear combination of the original X-variables:  
 t1 = v11x1 + v12x2 + …. + v1kxk t1 is called the first principal component 
 t2 = v21x1 + v22x2 + …. + v2kxk t2 is called the second principal component 
 etc. tk is called the k-th principal component 

                                            
2 X , mean of variable X 
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In matrix terminology the linear combinations (PCs) are described as: T = XV  
(V, PCA coefficients).  
 

 
Figure 18. General purpose of principal component analysis. 

 
One measure of the amount of information represented by each principal component is its 
variance. PCA is performed in such a way that the principal components are arranged in 
order of decreasing variance. Thus the most informative principal component is the first, 
and the least informative is the last (a variable with zero variance does not distinguish 
between the members of the population). The coefficients V of the PCA model are chosen 
in such a way to satisfy the following requirements: 
1. The variance of t1 is as large as possible [Var(t1) ≥ Var(t2) ≥ ….. ≥ Var(tk)] 
2. The k principal components t1, t2, … tk are uncorrelated  

3. 1vvvvvv k
'
k2

'
21

'
1 ==== L  (the sum of the squared coefficients or scalars are one) 

 
The normalization of the coefficients (see point 3) is needed as a constraint to prevent that 
the variances of the principal components (t1..k) become arbitrarily large. A plot to illustrate 
the transformation of bivariate hypothetical data to principal components is given in Figure 
19. This figure shows the scatter plot of the original variables X1 and X2 (Fig 19A) and the 
centered variables x1 and x2 ( iii XXx −= , i=1, 2) (Fig. 19B). The probability ellipse 

describes the relation between x1 and x2. The straight (dotted) line coinciding with the 
longest axis of the ellipse is called the first principal axis of the ellipse, and it is not 
surprising that the projection onto this axis is identical to the first principal component (t1 in 
Fig. 19C). The second coordinate axis of the new coordinate system is uniquely defined by 
the following two conditions: it has to pass through the origin of the ellipse ( 0xx 21 == ), 

and it has to be perpendicular or orthogonal (uncorrelated) to the first axis. This second 
principal axis of the ellipse is the second principal component (t2). Figure 19C shows the 
new coordinate system with the first and second principal components. The data points in 



Introduction 

 

 
48 
 

this plot are usually called the factor scores. These scores express the relation between the 
objects and are the projected locations of the objects on the components. In case of higher 
dimensions, the ellipse is replaced by a sphere (k=3) or a hypersphere (k>3).  
 
Mathematical treatment of PCA consists mainly of the computation of the so-called 
eigenvalues of the covariance matrix (or correlation matrix). The eigenvalue (λi) is the 
variance of the principal component (ti). The eigenvalues of all principal components 
always add up to the total variance of the k original independent X-variables 

( ∑
=

λ=
k

1i
i

2
totalss ). Another characteristic of PCA is the so-called loading. PCA actually 

performs a redistribution of the variance of the original X-variables. The coefficients (v) of 
the principal components (linear combination of the X-variables) are usually transformed to 
factor loadings by dividing the coefficients by the square root of the corresponding 

eigenvalue of the component. Thus, if )v,,v,v(v jp2j1j
'
j K=  is the row-vector with the 

coefficients of the p original variables corresponding to the j-th largest eigenvalue jλ , than 

the loading of the k-th original variable on the j-th component is calculated by jjkv λ . 

These factor loadings express the variable/component relation and therefore reveal which of 
the X-variables are dominant in determining the model, and tell how they are related to 
each other. The set of loadings is also referred to as the i-th eigenvector (latent vector or 
factor). 
 

 
Figure 19. Principle of Principal Component Analysis. Scatterplots of bivariate hypothetical data (A), centered X-
data (B) and after PCA transformation (C) 
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As mentioned before, one of the objectives of PCA is reduction of the dimensionality. 
Because the principal components are arranged in decreasing order of their variances 
(eigenvalues), it is common to select only the first few as representatives of the original set 
of X-variables {xi, i = 1, 2, …k). The Kaiser criterion (129) is probably the most widely 
used criterion to select the number of components }t̂,,t̂{T̂ A1 L=  (A<k). According to the 

Kaiser criterion, the principal components whose eigenvalues are less than the average, i.e. 
less than one if a correlation matrix of the X-variables has been used, have to be excluded. 
Another often-used method is the so-called scree test (130). With this method the 
magnitude of the eigenvalues (vertical axis) are plotted against the ordinal component 
numbers (Figure 20). Using this method, a recommendation is to retain only eigenvalues 
(and hence components) in the sharp descend and to discard these where the rate of change 
between the successive eigenvalues starts to become small. Unfortunately, the method is 
sometimes slightly conservative by retaining too much components. Several other rules for 
deciding how many components to retain exist. The selection of the dimensionality needs 
much attention, but provision of a detailed review of these rules is out of scope of this 
introduction. A good summary of these rules may be found elsewhere (127). The PC model, 
which describes the decomposition of the X-variables, is generally denoted as: 

X = TP' + E      in which P' is the transposed loading matrix and E the residuals  
 

 
Figure 20. Scree plot expressing the relation between the eigenvalues and the component numbers 

 
The PCA method is illustrated with a simple data set used by Hemel et al. (131). Although 
these data are intended for classification of patients, they illustrate the technique very well. 
Clinical chemical parameters creatinine (CREAT), glutamic pyruvic transaminase (GGT), 
total bilirubin (TBI), lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT) and 
alanine aminotransferase (ALAT) were measured in serum samples from 27 patients 
suffering from heart (n=9), liver (n=9) and kidney (n=9) disease. PCA was performed using 
the correlation matrix of the six analyte results of the 27 patients samples. Table 10 shows 
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the eigenvalues, the proportional and cumulative proportional variances of the 6 principal 
components obtained from the 6 analytical parameters. From this table it can be seen that 
the last two latent vectors (component 5 and 6) only contain 1% and 0.2% of total variance. 
They can be removed without loosing any information. Based on the Kaiser criterion only 
the first two components should be retained, because their eigenvalues are both greater than 
one.  
 

Table 10. Eigenvalues of the patient data set. 

Component Eigenvalue % of variance Cumulative % 
1 2.394 39.9 39.9 
2 1.983 33.1 73.0 
3 0.830 13.8 86.8 
4 0.710 11.8 98.6 
5 0.062 1.0 99.7 
6 0.019 0.2 100.0 

  
Figure 21 shows the score plot (A) and the loading plot (B) of the first two components of 
these data. The first and second eigenvalues are about equally important with 40% and 33% 
of total variance, respectively. From the score plot (Fig 21A) it can be seen that the data of 
the 3 diagnosis groups are perfectly separated from each other. Furthermore, it can be seen 
that the group of liver patients contains an extreme outlier (probably a patient with a viral 
infection) and the group of heart patients contains 2 outliers (probably caused by acute 
myocardial damage).  
 

 
Figure 21. Score and loading plot of the data set of Hemel et al. 

 
From the loading plot (Fig. 21B) it can be seen that all variables have moderate or high 
loadings on at least one of the two components. From these loadings it can be concluded 
that all analytes are important in this PCA model. It should be noticed that the two 



Chemometrics 

 

 
51 

 

components are totally uncorrelated to each other (inherent to PCA), so that no information 
can be obtained from that point of view. The first component of the loading plot shows that 
the loading value of CREAT is opposite to the loadings of LDH, ALAT and ASAT. In this 
case we have a component that is also called a bipolar factor. These findings can be related 
to the results of the score plot. Both the loading of the CREAT, as well as the scores of the 
kidney patients can be found at the left side of the loading and score plot, respectively. 
These findings are in line with the expectation that a high outcome of CREAT is found in 
kidney patients. The same is true with the LDH, ALAT and ASAT parameters and their 
relation to hearth diseases. The second component shows the contrast between the GGT, 
TBI and the ALAT, ASAT and LDH loadings, respectively (Fig. 21A). Therefore, this 
component is mainly responsible for the separation between the scores of the liver and 
hearth disease patients (Fig. 21A). 
 
From this example it can be concluded that PCA can: graphically depict outliers, show the 
relevance and the relation of the original variables to the scores, result in less uncorrelated, 
but more meaningful new variables (six X-variables ! two components), and can be used 
for classification.  
 
If has been suggested that the sample size to obtain a reliable number of factors with PCA 
should be at least 5 samples per X-variable, and not less than 100 samples per analysis 
(132). Because of its data-reduction qualities, PCA forms the basis of the multivariate 
calibration methods as described in the next paragraphs. 
 
More general background information about PCA can be found in books of e.g. Stevens 
(127), Flury et al. (133), or Afifi et al. (128), whereas more mathematical oriented 
background can be found in Mardia et al. (122) and Morrison (123). 
 
Principal component regression (PCR) 
PCR, a so-called bilinear calibration method, performs the regression of Y on selected 
principal components of X (see Fig. 22). PCR is most suitable in case of a single Y-variable 
(just like MLR), since it handles one Y-variable at a time. In case of several Y-variables it 
is possible to perform several subsequent PCR runs for one Y-variable at a time, but PLS is 
a better choice if the Y-variables are correlated. 
 
In the discussion about MLR, it was noted that the estimated regression coefficients will be 
very imprecise if the independent variables are highly interrelated. In the previous 
paragraph dimension reduction was obtained by performing PCA. Using PCA, often ≤ 5 
components will account for most of the variance of the X-variables and become the new 
predictors in the regression analysis. As a consequence, much better N/k (object/variable) 
ratios will be obtained for the regression analysis. PCR is in essence a MLR analysis on the 
selected principal components, instead of the original X-variables. The choice of the 
components in the regression context is however somewhat different from that in PCA. In 
contrast to MLR, the principal components with the largest variances are selected in PCA in 
order explain as much of the total variation of the X-variables as possible. In MLR the 
correlations (explained variances) with each of the dependent X-variables must be defined. 
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Fortunately, the components with the largest variation (highest eigenvalues) often have 
good correlation with the dependent Y-variable(s). 
 

 

Figure 22. Principal component regression by regressing the Y-variables onto the latent vectors ( T̂ ) representing 
the hidden main variations of the X-data. 

 PCR on the centered X and Y data can be formulated as follows: 

Calibration: 
 V̂XT̂ =  The scores T̂  obtained from the linear combinations of X; 
  V, loadings of the X-variables 
 EPT̂X +′=  decomposition of the X-variables;  
  in PCR the loadings P are equal to V; E, residuals  
 FQT̂Y +′=  the loadings Q may be compared to β in MLR; F, residuals 
Prediction: 
 V̂xt̂ ii ′=  ix′ , the measured values (e.g. Abs.) of prediction sample i 

 Q̂t̂ŷ ii ′=  iŷ , the predicted outcome of sample i 

 P̂t̂-xê iii ′′′=  iê , the residual of sample i 
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If only the first few factors are collected in T̂ , Ê  represent the residuals in the model 
because X is approximated by PT̂ ′ . But, if all the A=k factors would have been extracted 
from X, than X can be written as PT̂X ′= . In this case Q would be equal to the regression 
coefficients β in MLR. 
Selection of the optimal number of factors (eigenvectors) is PCR also an important issue. 
This selection is described in a next paragraph treating some of additional calibration 
features. More information about PCR can be found elsewhere (122;126). 
 
Partial least-squares regression 
PLS is also a bilinear calibration method. It usually handles several Y-variables better than 
both PCR and MLR, and should be chosen in case several intercorrelated Y-variables have 
to modeled. Another important difference of PLS from PCR is that PLS uses the Y-variance 
actively during the decomposition of the X-variables. By balancing the X-, and Y-
information, the PLS method reduces the effect of large but unrelated X-variations in the 
calibration model. PLS therefore, produces a calibration model with as few dimensions as 
possible and in such a way that these dimensions are as relevant as possible. As a 
consequence, the PLS method has somewhat greater flexibility compared to PCR, but at the 
expense of the need of an extra loading vector, referred to as the loading weights W. As a 
drawback, PLS has a stronger tendency to overfit noisy Y-data than PCR (126). Usually 
there are two PLS techniques employed: PLS1 for one Y-variable and PLS2 for the 
simultaneous calibration of several Y-variables. As described, in PLS calibration the Y-data 
affect the data compression modeling of X. The different Y-variables will therefore give 

somewhat different modeling of X, and hence different regression factors ( T̂ ). With the 
PLS1 regression algorithm, each y-variable is modeled separately. With the PLS2 
regression algorithm, a jointly optimized calibration is accommodated for several Y-
variables by using a linear combination of the Y-variables. The PLS2 analysis may be 
especially useful during calibration, if the Y-variables are strongly intercorrelated with each 
other. The PLS2 algorithm uses this intercorrelation structure to stabilize the random noise 
of the individual Y-variables. However, if the different Y-variables have different types of 
curvature in their relationship to the X-variables, the PLS2 solution will find a suboptimal 
approximation solution. In such cases it may be advantageous to use separate PLS1 
modeling for each separate y-variable. Good mathematical descriptions of both PLS 
algorithms, including the use of the methods with several samples can be found in Martens 
et al. (126).  
 
General features of calibration 
Data pretreatment 
Except for the previously described centering (see PCA paragraph) various pretreatments 
exist to obtain more easily interpretable models. This includes linearization of strong non-
linearities, weighting, normalization and other transformations. The book of Martens et al. 
(126) treats these issues in a comprehensive way, including applications. 
 
Calibration and prediction 
Every calibration model has to be validated before it can be used for prediction purposes. 
The average prediction error is often used to get an impression about the predictive 
performance of the calibration model. This average prediction error is frequently denoted as 
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the mean squared error (MSE) or the root of the mean square error (RMSE = √ MSE). The 
MSE is generally formulated as: 

2)ŷy(EMSE −=  in which E  is the expectation of the squared differences 

)ŷy( − ; y  the real outcome; ŷ  the estimated outcome 

of a sample. 

To obtain reliable predictions of the ‘unknown’ samples, the calibration modeling process 
is usually subdivided in three phases, the training-, the calibration validation and the 
prediction-testing phase (see Figure 23). Each step is associated with a separate dataset. In 
the context of (multivariate) calibration two kinds of validations should be distinguished. 
The first validation step concerns the validation of the calibration data themselves and is 
also referred to as ‘internal validation’. In case of bilinear calibration models (PCR and 
PLS) internal validation is used to assist in identifying the optimal number of factors, which 
should be retained. With bilinear calibration models, the MSE (SEC: standard error of 
calibration) of the calibration data (training-set) will continue to be reduced, when more 
factors are included (see Figure 24). The SEC, however, does not reflect the real predictive 
ability of a calibration model. Therefore a separate set of samples is needed, referred to as 
validation samples, to determine the actual predictive ability. At low model complexity (not 
enough factors), the MSE (SEP: standard error of prediction) of the validation samples is 
high (Fig. 24). In this case, the calibration model is underfitted due to e.g. unmodeled 
interferences. After increasing the number of factors, the SEP will begin to rise again and 
this indicates how many factors should be retained − usually one factor less than the 
minimum SEP. Calibration beyond the optimum model complexity will result in an 
opposite trend with increasing SEP values, because the model starts to adapt to noise 
instead of to the relevant features of the data.  
 

 
Figure 23. Calibration and validation steps necessary before prediction. 

 
There are several strategies for selecting the validation samples for the internal validation. 
Ideally, the best strategy is to have a set of samples that are independent of the training 
samples. This method can be used if sufficient calibration samples are available to split the 
dataset into two halves, one for the calibration and one for the calibration validation. 
Unfortunately, it is often difficult to obtain a sufficient number of authentic samples to form 
a representative sample set for the calibration process itself. The size of the independent 
validation set is ideally as large as the training set, but must be at least ≥ 25% than the 
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number of training samples. Another validation strategy is the so-called cross-validation 
(CV) method (134), which allows to validate the calibration without using an extra set of 
validation samples. CV is performed by partitioning the calibration set into various careful 
selected data subsets. With the current powerful computers the calibration set is often 
partitioned into subsets of size one, which is also referred to as full CV or the leave-one-
out-method. A drawback of the crossvalidation methods is that the results are often 
suboptimal (slightly overoptimistic), when compared to the results obtained with a set of 
independent validation samples. In this case, the samples are repeatedly taken out and 
replaced out of the calibration set (n) one by one and the calibration is successively 
performed on the remaining n-1 samples. 
 

 
Figure 24. Prediction error as function of the complexity (dimensionality) of the training- and the validation-data. 

The sample left out of the calibration set is treated as an independent prediction or 
validation sample. This process is repeated until all the samples have been left out and 
predicted. The SEP of the cross-validated samples is also referred to as the standard error of 
cross-validation (SECV) and can be plotted in a graph as Figure 24.  
 
The second important validation step after the calibration modeling is needed to obtain an 
objective assessment of the magnitude of the prediction errors (Figure 23). After the 
optimal dimensionality has been determined, the predictive ability of the model must 
always be determined by using an independent set of data, also referred to as the test- or 
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external validation-set. If the results form the prediction testing is satisfactory, the 
calibration model may be used for the prediction of the results of ‘unknown samples’. 
More information about some of the sampling strategies for validation and 
recommendations about the sample set sizes may be found in a paper of Davies (135).  
 
Outlier detection 
In calibration modeling outlier detection is very important. Outliers are measurement values 
that do not fit with the rest of the dataset. These outliers may arise from different kinds of 
measurement errors or misreadings. The outliers may be detected in the X-, or Y-matrix or 
occur in the X-Y relationship. These outliers may seriously affect the future predictions 
using the calibration model. Detection of the abnormal observations is therefore important. 
Once detected, the observations should be corrected or be removed from the dataset, if they 
appear to damage the calibration model. However, whenever possible one should try to 
understand the reason for every outlier. Outliers can be detected in the score and loading 
plots (see the SMAC dataset in the PCA paragraph) or by using other outlier detection 
criteria (e.g. studentized residuals, leverage warnings, etc.). For comprehensive background 
information with respect to outliers statistics we refer to e.g. Kleinbaum et al. (121) and 
Martens et al. (126). 
 
 
3.2.2. Neural networks  
 
Introduction 
In the previous chapter about PLS regression some methods were described that were based 
on precisely defined mathematical and statistical algorithms. Artificial neural networks 
(ANNs) use a different approach. They are based on algorithms that are capable of storing 
the various characteristics of different input patterns (e.g. absorbance and concentration 
patterns), in a system of multiple connections between so-called neurons. As can be 
guessed by the name, artificial neural networks are models adapted from the structures in 
the brain that makes thoughts possible. The brain interprets imprecise information from the 
senses and learns − without any explicit instructions − to create the internal representations 
enabling many skills. In the brain, a typical neuron collects many signals through a host of 
fine structures, called dendrites (Figure 25). The neuron sends spikes of electrical activity 
through a thin strand known as the axon, which ends in thousands of branches. At the end 
of each branch, a structure called synapse converts the activity from the axon into electrical 
effects that inhibit or excite activity to the connected (downstream) neurons (136).  
 
Artificial neurons 
ANNs do not reflect the detailed geometry of the dendrites, axon and synapses, but are 
made of much simpler, structured patterns of interconnected artificial neurons. These 
neurons (nodes) express a single number, similar to the electrical output of the biological 
neurons that represents the rate of firing or activity. Figure 26 illustrates the concept of a 
type of an artificial neuron. Both X1 and X2 represent a measured value (e.g. absorbance), 
whereas Y is the outcome (e.g. concentration) of the neuron. After applying a certain 
threshold function to the sum of the X-values, the outcome of the neuron will be forced to 
either zero or one (Fig. 26). Normally, an artificial neuron is slightly more complex. 
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Figure 25. Illustration of a biological neuron. 

 
 

 
Figure 26. Artificial neuron with a simple threshold function. 

The nodes of an ANN are made up of mathematical formulas, in two interconnected units. 
In the first unit of the artificial neuron the function of the synapse is modeled by a 
modifiable weight, which is associated with each connection. This part of the node is a 
computational device, which receives a number of input signals (values). Each input is 
associated with a weight (number), which represents the stimulating or inhibiting influence 
of the input signal. These weighted inputs are added together to create a quantity, which is 
called the net input (Figure 27). This weighted sum is formulated as:  

∑
=

=
n

1i
iijj xwnet  wij denotes the weight connecting the neuron i in the previous layer  

(see later) to neuron j in the current layer; xi denotes the i-th input value of the n 
input signals.  
 

Because in multilayer networks (see later) the input value xi of the l-th (current) layer is 
usually the output (out) of the (l-1)-st previous layer, the last equation can be written as: 
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The second unit (bottom half of Fig. 27) of the artificial neuron uses an input-output 
function that transforms the total input value to an outgoing activity. 
 
Transfer functions 
The behaviour of a node depends on both the weights and the input-output functions. These 
functions, also called activation functions, may be defined as: out = f(net). 
These functions are categorized in three classes: linear, threshold and nonlinear (136). If a 

neuron does not transform its net input ( ∑
=

=
n

1i
iijj outwnet ), it is said to have an identity or 

linear activation function. (Figure 28A). The so-called hard-limiter function (Figure 28B) is 
a threshold function that sets the output at one of two levels (0 or 1), depending on whether 
the total input value (net) is greater or less than some threshold value. The neuron of Figure 
25 is an example of a typical hard limiter function. The threshold function can be used 
where binary output values are used. In these cases an output of 1 signifies a Boolean 'true' 
and 0 a Boolean ‘false’. The threshold logic function (Figure 28C) is another activation 
function, which is in some respect similar to the hard-limiter function but has in addition a 
swap interval, within which out is linearly proportional to net. These threshold functions 
should not be used for direct quantitative analysis, where continuous input and output 
values directly represent the desired values such as concentrations. The third group of 
functions is the nonlinear functions. The nonlinear functions bear greater resemblance to 
the real neurons than do linear or threshold functions, but all functions must be considered 
as rough approximations. For the nonlinear functions the output varies continuously but not 
linearly, as the input changes.  

 
Figure 27. Artificial neuron. The sum of all weighed input signals is computed before the transfer function 
(sigmoid) is evaluated, using the latest value of net.  



Chemometrics 

 

 
59 

 

In principle the form of the function of this category is quite arbitrary, with only three 
conditions attached to it: 
- Its outcome must be confined to the interval [0, 1] 
- It must increase monotonically 
- Its must be possible to define a derivative of the function (see later) 
 
Because these activation functions have a bounded range they are also referred to as 
squashing functions. From all squashing functions representing this group, the sigmoid or 
logistic function is probably most used (137). A standard sigmoid neuron j having an input 
netj is described as: 

 
]net[j jexp1

1
out Θ+−+

=   in which outj is the outcome of the squashing function and Θ is the bias 

The shape of this function is an S-curve, scaled between 0 and 1 and it has a threshold value 
Θ. Negative and positive values of the Θ just move the S-curve to the left and the right and 
can therefore be regarded as a threshold value at which the output of the neuron is released 
(Figure 29). The middle most S-curve of Figure 29 has a Θ value of zero. The goal of the 
network training is to change most of the weights (and Θ) so that most of the neurons will 
have net-values spread around the non-linear parts of the S-curve (output-values between 
about 0-0.2 and 0.8-1). The use of the parameter Θ is not limited to the sigmoid activation 
function, but is applied to most of the activation functions (137), and is generally denoted 
as: f(net, Θ).  
 
Another nonlinear function is the symmetric sigmoid squashing function, which has the 
same input (netj) as the sigmoid neuron, but has outputs, which are scaled between –1 and 
1. This function is formulated as follows: 

 1
exp1

2
out ]net[j j

−
+

= Θ+−  

Bos et al (138) has found that this activation function needs much lower learning rates (see 
later) than standard sigmoid neurons. 
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Figure 28. Activation functions. Linear (A), hard-limiter (B), threshold logic (C) and sigmoid (D). 
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Figure 29. Effect of the parameter Θ on the sigmoid activation function.  

 
 
Network topology 
Like biological neurons, a single neuron is not sufficient to perform a specific task. In 
ANNs, the neurons have to be connected to one another and the set of weights have to be 
set properly. The way in which the neurons are connected is called the network topology. 
The topology determines whether it possible for one neuron to influence another and the 
weights indicate the strength of the influence. In a certain sense, the whole set of weights 
represents the knowledge of a specific learning task. Artificial neural networks can roughly 
be subdivided in four groups, namely networks that are capable of association (e.g. 
character recognition), classification, transformation (mapping a multivariate space into a 
smaller dimensionality), and modeling. Modeling, one of the most frequently used 
mathematical applications in science, is the search for a function or model that can predict a 
specified output from any input pattern. The advantage of a neural network model is that it 
does not require any knowledge of the mathematical function. Using a sufficiently large 
number of parameters (weights) ensures enough freedom to adapt the neural network to any 
relation between the input and output data. Modeling always requires the so-called 
supervised learning. Supervised learning is a training process in which a mechanism is used 
to make a neural network associate the target values with the input values (e.g. associate 
concentrations with absorbances). As a consequence, the training must contain the target 
values for supervised learning to take place. After training, these networks are capable of 
predicting the values of output patterns of new samples, which is actually a form of 
interpolation, and sometimes extrapolation. The so-called backpropagation networks are the 
most widely applied supervised networks. 
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Hopfield networks (139) are often used for solving problems related to association, whereas 
Kohonen networks (140) are often applied for classification and mapping problems. In our 
own studies we were only interested in the modeling capabilities of neural networks (see 
Part II of this thesis). Therefore, the properties of the backpropagation networks will be 
explained in some greater detail in the next paragraphs. More information about the other 
kind of network applications can be found in e.g. Zupan et al (137). 
 
Backpropagation networks 
The name of these networks is derived from the learning algorithm, the backward error 
propagation algorithm. Backpropagation networks may be subdivided in two kinds of 
network systems: the classifier systems and the function approximation systems. The first 
system is the oldest one and is used for classification purposes with dichotomized output 
values (only 0 and 1 values). With the function approximation systems the capabilities of 
the backpropagation networks are used for the approximation of continuously valued 
functions. Because our studies are concerned with calibration and prediction of analytes 
analyzed with spectroscopic methods, we have only given attention to the use of the 
function approximation backpropagation network systems. The majority of this group of 
artificial neural network systems consists of three groups, also called layers, of neurons 
(Figure 30). With these neural networks, which are also referred to as multi-layer 
perceptrons (MLPs), the neurons of the input layer are connected to the neurons of the so-
called hidden layer, which in turn are connected to the neurons of the output layer. Note 
that all neurons of the hidden layer have every possible connection with the input and the 
output neurons (Fig. 30). 
 
As a consequence, a large number of neurons (nodes) will result in a large number of 
connections in the ANN. The signals at the input neurons represent the raw-input data that 
are fed into the network. Each connection carries the signal from the input neuron to a node 
deeper into the network, and each connection applies its own weight (w) to the signal (s) so 
that the received signal is the product w•s. In this way the hidden neurons are free to 
construct their own representations of the input data. After applying a non-linear transfer 
function, the same process is repeated between the hidden and the output neurons. 
 
Because the weights of a network are not known in advance, the starting values of the 
weights are normally randomized between –1 and +1 before assignment to the nodes of the 
neural network. The process of carrying the signals through the network from the input- to 
the output-neurons is also called the forward step of the network processing. In supervised 
neural networks, however, the weights are not totally free to construct their own 
representations of the input data, because the patterns of input activities (e.g. absorbances 
of a spectrum) have to be mapped to the patterns of the output activities (e.g. concentrations 
of one sample). The adaptation of the input to the output data, is a process that is generally 
referred to as learning by back-propagation.  
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Figure 30. Three layer ‘multi-layer perceptron’ neural network. The input signals X(0)..X(10) represent the values 
of an input pattern (e.g. the absorbances of a spectrum) and Y(1)..(Y3) the values of an output pattern (e.g. the 
concentrations of different analytes of a sample).  

 
With back-propagation, the ANN is provided with a set of training samples (e.g. spectra) 
with known outcome (e.g. concentrations). The ANN is set to iterate around a loop where 
for each sample of the training set it predicts the outcome in the forward step. 
Subsequently, the ANN compares the predicted outcome (Out) to the real sample outcome 
(t, target) and changes the weights by either strengthening or weakening their values 
proportional to the size of the prediction error. The backpropagation network derives its 
name from the fact that the errors propagate back into the network from the output layer to 
the preceding layers. The global prediction error function E of the network for a pattern p in 
the training set is defined as (141): 

∑ −=
j

2
jj )Outt(

2
1

E  in which jt is the required (target) value of output neuron j 

of pattern p, jOut  the calculated value of the neuron of 

pattern p, and ½ is a factor added for mathematical reasons. 
 
The forward and backward steps occur for each sample in turn, and then are repeated many 
times over the complete training data set in order to reduce the prediction error, or 
ultimately eliminate it completely. What actually happens is that the weights are juggled 
around, so that the output becomes closer and closer to the actual solution. This is called 
convergence. In order that the weights do not fluctuate (oscillate) wildly, the change of the 
weights is controlled by application of the so-called delta-rule. This delta-rule, presented by 
Widrow and Hoff (142) as the ‘least mean square’ learning procedure, extended the original 
perceptron learning rule (143) to continuously valued inputs and outputs. The principle of 
the generalized delta-rule is based on gradient descent (137) and is only applicable to MLPs 
with differentiable activation functions. This training algorithm that was popularized by 
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Rumelhart et al. (141) and remains the most widely used supervised training method for 
neural nets. 
In a 3 layer MLP, the first step in the application of the delta-rule is the calculation of the 
error term δ for the neurons of the output layer: 

 )Net(f)Outt( jjjj ′−=δ  jOut ( )Net(f j= ) is the outcome of the j-th neuron of 

the output layer, and f ′  is the derivative of the transfer 
function of jNet , which is )Out1(Out jj −  in case of a 

sigmoid function. 

For each neuron i from the preceding (hidden) layer the term iδ is calculated using the jδ s 

from the succeeding output layer and the weights connecting the neuron i in the hidden 
layer to the neurons j in the output layer: 

 ∑
=

′=
r

1j
jijii δw)  (Netfδ  in which ∑

=

r

1j

is the summation over the r connected 

output neurons 
 
 
Using these error terms (δ), the re-adjustments of the weights can be calculated. The 

correction of the weights )ww(w )old(
ij

)new(
ij

n
ij −=∆  of the neurons, at any layer n during the 

learning process is defined by the delta-rule as: 

1n
i

n
j

n
ij Outw −ηδ=∆  in which 1n

iOut −  is the outcome of the i-th neuron of the previous 

layer (n-1) and hence one of the inputs of the j-th neuron in the 

current layer n ( n
jx ), n

jδ  is the error term of the j-th neuron of the 

current layer (n) and η the so-called learning rate (see later) 

From this formula it can be seen that the change of the weight n
ijw∆  on the layer n is 

proportional to the error n
jδ  and to the signal 1n

iOut −  coming from the neuron i of the 

preceding layer.  
 
 
The described backpropagation algorithm can be used for both batch training (in which the 
weights are updated after processing the entire training set) and incremental training (in 
which the weights are updated after processing each training sample) (144;145). For batch 
training, the weight adjustments ( w∆ ) are temporarily saved by summing them in an 
adaptation-array. After each of the training patterns has been processed in this way, the 
summed adaptations of the weights are added to the weights. After this, the adaptation-
array is zeroed and the process is repeated. Each processing of the entire training set in this 
fashion is referred to as an epoch or iteration. As a rule hundreds or even thousands of 
epochs are necessary to achieve convergence to a global minimum. The summation of the 
weight adjustments in an adaptation-array and re-adjustment of the weights at the end of an 
epoch avoids that the network becomes skewed to the last presented training pattern(s) to 
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the network. For incremental training, the standard backpropagation algorithm does not 
converge to a stationary point of the error surface (see later). To obtain convergence, the 
learning rate must be slowly reduced. This methodology is called ‘stochastic 
approximation’ or ‘annealing’ (146).  
 
This delta-rule is normally associated with two extra variables η, the learning rate and µ the 

momentum. The learning rate η (see the equation about the weight adaptations n
ijw∆ ) is 

normally an empirical fixed step size that determines the size of the steps taken in the 
weight adaptations. The learning rate must have a value between 0 and 1 and needs to be 

chosen in such a way that it ensures the most rapid learning without the n
ijw∆  values 

oscillating wildly. In order to achieve faster convergence, and to avoid getting trapped in 
local minima (see Figure 31), the general equation for correction of the weights is generally 
augmented by an additional term: 

)previous(n
ij

1n
i

n
j

n
ij wOutw ∆µ+ηδ=∆ −  where µ is called the momentum and )previous(n

ijw  is a 

change of the weight n
ijw  from the previous learning 

cycle. The first term of the equation refers to the 
current cycle. 

 
Unfortunately, the addition of the momentum in backpropagation networks requires 
doubling of the computer space, because all weights have to be stored for both the current 
and the previous cycle (epoch), as can be seen from the last equation. This generalized 
delta-rule including the momentum is called the ‘heavy ball method’ in the numerical 
analysis literature (147). Figure 31 shows the effect of the standard backpropagation 
training on the global network error E. The error surface on the X-axis is defined by the set 
of training samples and the applied network topology. The starting point of the training is 
illustrated in this figure by the black ball (circle), which is rolling down from a hill. This 
hill, however, does not only have a downhill slope (gradient descent), but also has a bumpy 
surface with several peaks and valleys before the lowest point (valley) is reached. In 
unfavorable circumstances, the ball may settle into a local minimum (valley) instead of 
finding the global minimum. In network terminology, such an awkward situation may be 
prevented by choosing the right learning rate and momentum. In such a case, the ‘heavy 
ball’ is pushed out of the local minimum and continues its way along the error surface 
towards the optimal solution.  
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Figure 31. Illustration of the change of the global error rate of the network during training. 
 
Practical aspects of backpropagation networks 
Data collection 
All training-, validation- and test-data must be representative for the problem that has to be 
modeled. It is important to have more training samples than the number of neurons of the 
input layer. The number of training samples required depends on the amount of noise in the 
targets and the complexity of the function that has to be learned. As a starting point, it is a 
good principle to have at least 10 times as many training samples as input neurons. It 
should be noted that the data collection and the next step − data pre-treatment − are critical 
aspects in the development of a network system and can account for most part of the time 
of the whole development cycle. 
 
Data pretreatment 
In order to permit the generation of an accurate network model it is sometimes necessary to 
perform pretreatment of the input data. For more information is referred to the same 
passage in the ‘general features of calibration’ section of the previous chapter.  
Rescaling the input and output values 
Rescaling a vector means that a constant is added or subtracted from the vector values and 
subsequently multiplied or divided by (another) constant. This scaling is often applied to 
obtain values between 0 and 1, or between –1 and +1. 
When backpropagation networks with fixed learning rates and sigmoid neurons in the 
hidden layer are used for the approximation of continuous valued functions, scaling of the 
input values is often necessary. Without scaling, large input values will result in extreme 
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(positive or negative) values of the net input function ( ∑
=

=
n

1i
iij

hidden
j outwnet ), which in turn 

results in output values of the sigmoid squashing function close to either 0 or 1. These 
output values ( jOut ) result in derivative values close to 0 [ )Out1(Out jj − ] and hence small 

adaptations and learning will occur. A larger learning rate may be chosen to compensate, 
but this also affects the weight adaptations of the succeeding layers as well and may lead to 
adverse behaviour. Another aspect is that the order of magnitude of an input value with 
respect to other inputs values should be the same, otherwise the learning may be dominated 
by the input with the larger magnitude. For that reason, each of the inputs of the network is 
often scaled separately. On the other hand, scaling the input values may have adverse 
consequences as it can amplify noise (e.g. in case of NIR spectra).  
Linear output functions are often suggested when the mapping of the input and output 
patterns are highly linear (e.g. absorbances mapped to concentrations). When the output of 
a sigmoid neuron approaches the limits of 0 and 1, the derivative and thus the delta term 
approach to 0. In contrast to sigmoid neurons there is no damping of the magnitude of the 
delta term )Outt()Net(f)Outt( jjjjjj −=′−=δ  of the linear neurons, and large errors, or 

even floating point overflow may occur. More information about this scaling subject may 
be found elsewhere (144). 
 
Training and prediction 
The development cycle of the training and prediction of a backpropagation network is 
essentially the same as the process described in the previous chapter about the PLS 
regression (see Figure 23). One of the known problems with backpropagation networks is 
their tendency to over-fit training sets with noisy data. Therefore, it is important to validate 
the performance of the network training with a separate validation set or full cross-
validation and subsequently monitor the prediction error of the training- and validation-data 
as a function of the number of epochs (training cycles), analogous to the plot of Figure 24 
in the previous chapter. Generally, the normalized standard error (NSE) is used to express 
the performance of the prediction. The NSE is an extension of the global prediction error 
function E and is expressed as: 

∑∑ −=
p j

2
j,pj,p )Outt(

PJ

1
NSE  in which j,pt is the required (target) value of 

neuron j of pattern p, j,pOut  the calculated 

value of the neuron of pattern p, and P and J 
are the total number of patterns and neurons of 
the output layer, respectively. 

 
In practice, the square root is often taken from the NSE. This characteristic is also referred 
to as the root mean squared error (RMSE), which is called RMSEC in case of the error of 
the training samples (in which C stands for calibration) and RMSEV in case of the 
validation samples. Except for validation, the predictive performance of the network should 
be tested with an independent test set. 
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Initial weights 
As mentioned earlier, the starting weight values are normally randomized between –1 and 
+1. The function of the backpropagation learning algorithm is to move the network system 
towards a lower error state. By changing the initial conditions of a neural network (other 
randomized weights), the starting point on the error surface can be modified. The gray 
circle in Figure 31 illustrates a different starting point on the error surface. In contrast to the 
former starting point (black circle) the optimal solution is likely to be found in a shorter 
time with fewer epochs. It is recommended to use at least five different starting conditions 
(sets of random initial weights) for each neural network model. Typical validation results 
(RMSEV) should be within a few percentage points of each other. 
 
Early stopping rule 
Overfitting is one of the most serious problems in neural network training. Generally, many 
thousands of cycles are necessary to achieve convergence, if convergence is achieved at all. 
Because the number of connections and thus weights is large in even medium-sized 
networks, the iteration can be very lengthy or even be unattainable. A method, which is 
called early stopping or stopped training, is the most common solution to solve this 
iteration problem. The method is popular because it is fast. Briefly, the method proceeds as 
follows: 
- Judge the error values of the validation set for this method 
- Use relatively small initial weights (e.g. between –0.3 and + 0.3) 
- Use a relatively small learning rate (e.g. < 0.2) 
- Compute the validation error (RMSEV) periodically during training 
- Stop training when the RMSEV value starts to go up 
If the validation error goes up and down several times during training the safest approach is 
to train towards convergence of the RMSEV and then go back to see which iteration 
(epoch) had the lowest validation error. More information about the early stopping rule can 
be found in a manuscript of e.g. Sarle (148).  
 
Number of hidden units 
The optimal number of hidden neurons depends in a complex way on several issues such 
as:  
- The amount of noise in the targets 
- The complexity of the function to learn 
- The hidden unit transfer function 
- The number of training samples 
- The number of input and output neurons 
If too few hidden units are selected, the training error (RMSEC) and validation error 
(RMSEV) will be too high due to underfitting (see Fig. 24). If too much neurons are 
selected, the training error will be low, but the validation error will be high due to 
overfitting (Fig. 24). However there are several rules of thumb described for the selection 
of the optimal number of hidden neurons, none of these is based on heuristic rules. In most 
applications of backpropagation networks, the topology is determined empirically by 
training several times with different numbers of neurons in the hidden layer. As the 
computational effort is large with this approach, an efficient and automated procedure is 
very desirable. 
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Learning rate and momentum 
In normal backpropagation networks, too low learning rates make the network train very 
slowly. Too high learning rates make the weights diverge because the change of the weights 

w∆  (step sizes) becomes too large, so there is no learning at all. The learning rate may be 
constant during the training of each network model, or be changed in the course of the 
training process. In our studies we only applied a fixed learning rate during training of each 
network model. The determination of the optimum (fixed) learning rate is often found by 
trial and error. As a starting point, the learning rate may be set proportional to the number 
of connections with the neurons of the previous layer. In attempt to speed up the 
backpropagation, methods are developed to change the learning rate in the course of the 
training. Many of these methods produce erratic behaviour because they change the weight 
as a function of the magnitude of the gradient (see Fig. 31). The reason for their erratic 
behaviour is that in some cases large step sizes are needed in areas with small gradients 
(e.g. to get out of a local minimum) and in other cases small step sizes are needed in areas 
with small gradients (e.g. to stay into a global minimum). Other methods have been 
developed, such as the Quickprop (149) and RPROP (150) methods, that do not have this 
excessive dependence on the magnitude of the gradient. 
The momentum is usually set to zero. In calibration problems, the application of the 
learning rate has proved to be sufficiently fast, without ever leading to oscillation (138). 
 
Further reading 
An excellent starting point for further reading is a book of Zupan et al. (151) which 
provides the reader with an overview about artificial neural networks including some 
chemical applications. A manuscript of Smits et al. (152) is good general description of 
MLP feed-forward networks, whereas Bos (144) studied some theoretical aspects of 
backpropagation networks and applied them to a number of quantitative analysis problems 
(e.g. spectroscopy).  
 
 
3.3.   Spectral library search 
 
Introduction 
Visual interpretation of IR spectra for the determination of the composition of a sample 
may be difficult and time-consuming. The use of FT-IR spectroscopy coupled with a 
method for searching spectra within a database provides an efficient methodology to the 
identification problem. There are several commercial spectral databases (e.g. Sadler), each 
containing large numbers of FT-IR spectra with various components. The components not 
only occur in their pure state, but also as part of a mixture. For accurate identification of the 
components, the reference spectra of the library have to be sampled under the same 
conditions (sample handling techniques, equipment used, etc.) as the sample spectrum. The 
quality of the library not only depends on the conditions of the reference spectra in the 
library, but also upon their number. For accurate identification of the component(s), the 
search method needs a library with a large number of reference spectra. In practice, 
however, it is often difficult to obtain a commercially available general-purpose library that 
contains reference spectra of all possible components and mixtures of interest. Therefore, it 
is often necessary to build a large in-house reference database specially adapted to more 
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specific analytical problems. The benefit of these in-house databases is that they may be 
used for the prediction of the composition of a sample, provided that the database contains 
a sufficiently large number of reference spectra with known compositions of a limited 
number of components that cover the whole concentration range of the sample spectra.  
 
Computerized library search 
A search program (e.g. SearchMaster from Sadler) calculates which library spectrum is the 
most similar to the sample spectrum. Except for library searching, most programs are also 
provided with features for library creation, development and maintenance. Three issues are 
especially important for obtaining accurate results from library search: the library 
resolution, the search area and the kind of search algorithm. 
 
Library resolution 
For computerized library search, the number of datapoints to be compared between the 
sample spectrum and those in the library must match. The resolution of the library 
determines the size of the library and the processing time. In the mid-IR region, resolutions 
better than 4 cm-1 are rarely if ever necessary. At higher resolutions, the processing time 
may become too long and searching on minor irrelevant bands caused by noise may occur. 
If the resolution of the sample spectrum does not match the resolution of the library, the 
quality of the algorithm for reducing the resolution of the sample spectrum is very 
important. Just dropping datapoints will definitely distort the spectral bands.  
 
Search area 
All library search methods depend on peak matching or full spectrum matching. In any 
case, it is important to choose the correct wavenumber range(s) for searching. All bands of 
interest that originate from the components of the sample spectra must be present in the 
search area. In mid-IR spectroscopy, library search is often performed on the so-called 
fingerprint area of the spectrum (2000 to 400 cm-1), because this area often contains all 
characteristic and unique spectral properties of the components. 
 
Search algorithm 
A number of different search algorithms exist. Each of these algorithms compares the 
absorbances of the selected datapoints of the sample spectrum with the absorbances of the 
matching datapoints of each of the reference spectra. The result of the algorithm is always a 
single characteristic, expressing the degree of resemblance between the sample and 
reference spectrum. Depending on the kind of search algorithm, the characteristics may be 
classified into two groups, namely those expressing a measure of dissimilarity and those 
expressing a measure of similarity. Small values ideally zero or close to zero, express good 
matching in case of the dissimilarity measures. The correlation coefficient is the only 
member of the second group of similarity measures and amounts to 1.000 in case of 
perfectly matching spectra and to 0.000 if no similarly is obtained at all. After the search 
algorithm is applied to each of the reference spectra, the calculated dissimilarity or 
similarity values are ordered in magnitude. The sort direction (ascending or descending) 
depends on the type of algorithm, but the most corresponding reference spectrum is always 
placed on top the ordered list. This list, which is also referred to as the hit list, contains the 
resulting value of the algorithm together with a description of the reference spectrum. 
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Depending on the search program, the entries of the hit list also may be completed with a 
drawing of the chemical structure, the CAS registry information and the physical-chemical 
properties of the component. The quality of the search method may depend on the chosen 
search algorithm. The formula of the six most commonly used criteria will be presented 
here, followed with a short description of each of these methods.  
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In these formulas, si is the absorbance of the i-th datapoint of a sample spectrum, ri the 
absorbance of the i-th datapoint of a reference spectrum and n the number of selected 
datapoints. 
 
Absolute difference 
The absolute difference algorithm emphasizes band heights and has the shortest processing 
time. Results obtained using the absolute difference algorithm may be especially uncertain 
when the unknown spectrum has a sloping or offset baseline. 
 
Squared difference 
The squared difference algorithm is a least-squares metric, which tends to weigh bands in 
the sample spectra more heavily than in the case of the absolute difference algorithm. This 
means that the squared difference tends to minimize the effects of a noisy baseline. The 
squared difference algorithm is also a fast search algorithm. Similar to the absolute 
difference algorithm, the results may be inconclusive when the sample spectrum has a 
sloping or offset baseline. 



Introduction 

 

 
72 
 

Absolute derivative 
This algorithm emphasizes band positions more than band heights and hence tends to 
minimize the effect on the match value when the sample spectrum has a sloping baseline or 
broad non-specific features. If the component of the sample spectrum is not in the library, 
the first matches may not be alike. The processing time for the absolute derivative 
algorithm is longer than the processing time for the difference algorithms. 
 
Squared derivative 
The squared derivative algorithm emphasizes band positions and weights them more 
heavily than the absolute derivative algorithm. The squared derivative algorithm also 
reduces the effect of a sloping or offset baseline in the sample spectrum. If the component 
of the sample spectrum is not in the library the first matches may not be alike. 
 
Euclidean distance 
This algorithm calculates the match values as the sum of vector differences (120). The 
Euclidean distance algorithm is especially suitable for prediction of the composition of 
mixtures. If the sample spectrum has a sloping or offset baseline, the results may be 
inconclusive. The processing time for the Euclidean distance algorithm is larger than that of 
the difference and derivative algorithms. Because the Euclidean distance is not as sensitive 
to differences between spectra as are the other algorithms, it may produce inconclusive 
results for sample spectra that are not mixtures. 
 
Correlation coefficient 
The standard correlation coefficient algorithm (121), can automatically account for factors 
such as baseline drift, differences in scaling and so on. No data preprocessing, such as 
baseline correction, is needed. Furthermore, because the calculated match value is a 
correlation coefficient, the search results are not a measure of relative best fit, but rather 
absolute values with a statistical significance (similarity). It is unlikely that dissimilar 
compounds in the library will display correlation coefficients higher than 0.95. The 
processing time for the correlation coefficient is the longest of all the available algorithms. 
 
Conclusion 
The difficulty with library search is that the method needs a library with a large number of 
reference spectra to obtain reliable results. In practice, it is impossible to build a library 
with all possible compositions of components. So, interpolation and combination of library 
search results is often necessary for the prediction of the composition of sample mixtures.  
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4. Future trends 
 
This chapter briefly describes a few promising techniques related to some of the subjects, 
which are described in this thesis. 
 
13C triglyceride breath test as alternative for fecal fat determination 
Both the traditional (e.g. Van de Kamer) methods as well as some of the new IR methods 
are generally accepted analytical methods for the routine determination of fecal fat for the 
diagnosis of steatorrhea. Nevertheless, the outcome of neither of these methods is a direct 
function of the metabolic state of dietary lipid intake. This is because the amount of fecal 
fat is based on a combination of dietary and metabolic lipids as described in chapter 1.1. 
Additionally, the treatment of the feces samples in each of these methods remains rather 
cumbersome. To avoid the above-mentioned shortcomings, some studies described a 13C 
medium-chain triglyceride breath test (153;154) as alternative for the analysis of fecal fat. 
The principle of the 13C labeled triglyceride tests is based on lipolysis-dependent 13CO2 
excretion via the breath after the ingestion of a certain amount of 13C-enriched triglycerides. 
The 13C enrichment may be measured by means of isotope ratio mass spectrometry, also 
referred to as IRMS (154), or gas isotope ratio measurement with FT-IR spectroscopy 
(155). A general problem of breath tests using labeled lipids for the diagnosis of steatorrhea 
is the poor sensitivity and specificity, probably caused by the various steps involved in the 
metabolism of the labeled compound. Differences in e.g. the gastric emptying rate, 
intraluminal lipolysis, mucosal absorption, lipid metabolism, endogenous CO2 production 
and pulmonary excretion may obscure the relation between the tracer compound expired 
and the metabolic process studied. Up to now, none of the 13C triglyceride breath test 
studies has been clinically validated, so further investigations have to be done. Because of 
the large number of compartments (such as stomach, intestinal lumen, blood and lung) 
involved in the metabolism of the labeled compound, suggestions have been made to 
measure the 13C tracer compound in plasma (156) instead of breath.  

Raman spectroscopy as alternative for FT-IR 
Almost all biological samples contain water. Without sample pretreatment, water may be a 
serious problem in FT-IR spectroscopy, especially in the mid-IR region (see chapter 2.2). 
Water attenuation is not a problem for Raman spectroscopy. With Raman spectroscopy, no 
elaborate specimen preparation is needed and the samples can be remotely detected by 
back-reflection even through glass windows. Raman spectra are also insensitive to 
temperature. This is in marked contrast to FT-IR, in which often very short pathlength is 
required and contamination of the sample probes can cause serious practical limitations. In 
spite of these advantages and even though it is a rather old technique (C.V. Raman received 
the Nobel prize for his work in 1930), Raman spectroscopy has not received much attention 
from analytical and clinical chemists until the invention of the laser.  
 
Raman spectroscopy is a form of optical spectroscopy in which the energy is exchanged 
between the light and the matter. When light impinges upon a substance it can be scattered 
or absorbed (157). Most of the scattered light will have the same frequency as that of the 
incidence light, and is also referred to as elastically scattered light (Rayleigh). Raleigh 
scattering occurs by the interaction of the incident light and an atom. However, a small 
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fraction of the incident light can set the molecules in the material into vibration when it 
impinges upon a molecular bond (Figure 32).  
 

 
Figure 32. Raman scattering (thin arrows around the molecular bond) and Raleigh scattering (dark arrows around 
the N-atoms) of a N2 molecule.  

 
The interaction between the incident light and the molecular bond causes a wavelength 
shift, which is known as the Raman effect (158). The resulting Raman spectrum is a plot of 
the scattered light intensity (y-axis) versus its change in frequency (x-axis), relative to that 
of the incident light. The Raman frequency shifts are conventionally measured in 
wavenumbers (cm–1). The Raman spectra differ from IR spectra, in that the Raman bands 
are sharp and locatable to 1 cm–1 for both organic and inorganic components. The Raman 
and IR bands do not necessarily coincide because different rules govern possible spectral 
transitions. Fewer bands appear in Raman spectra since fewer combinations of fundamental 
frequencies occur, resulting in sharper and less crowded spectra (159). Raman spectra may 
be used for the identification of a sample component as well as for its quantification. 
Because Raman spectroscopy is based on weak inelastic scattering (typically 108 weaker 
than Rayleigh scattering), modern Raman spectrometers are equipped with irradiation lasers 
and sensitive detectors to obtain spectra in a reasonable time. In Raman spectroscopy, 
visible, ultraviolet and infrared light can be used for Raman excitation. Unfortunately, 
many samples (particularly organics) fluorescence quite strongly when excited with visible 
laser light, and as a consequence hide the weak Raman spectra. Therefore, the newest 
generation of compact FT-Raman/IR instruments eliminate fluorescence as much as 
possible by using an infrared laser coupled with the Fourier transform technique by which 
the whole spectral range is sampled and the data are processed in real time. The current list 
of Raman probes include sample (fiber) optics for noninvasive point-and-shoot monitoring 
with working distances from 0.01 to 17 inch, immersion probes for use in process streams, 
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standard (glass) cuvettes and microscopes (160). Because conventional glass does not 
interfere in Raman spectroscopy at all, standard microscope optics may be used. 
 
In clinical chemistry, Raman spectroscopy may provide quantitative chemical information 
of analytes in either the cellular or extracellular compartments of the body. Biochemical 
analysis, using Raman, may be performed in vitro and in vivo. Urinary stones and 
gallstones have extensively been studied in vitro using Raman spectroscopy. Most of these 
studies used visible excitation (161;162), whereas others used near-IR laser light (159). 
Furthermore, Raman spectroscopy has been applied to numerous other bio-medical studies, 
such as in the diagnosis of arteriosclerosis (163) by in vitro invascular tissue investigation 
of human coronary artery samples obtained during autopsy, for the detection of breast 
cancer (164), the classification of drug-resistant bacteria (165), and the analysis of several 
blood analytes, such as glucose, cholesterol, total protein, albumin, triglyceride and urea 
(166). 
One of the most challenging areas of spectroscopy is in non invasive glucose monitoring in 
diabetics, which is one of the fastest growing segments of diagnostic testing. Raman 
spectroscopy has also been applied to the measurement of the blood glucose concentrations 
(167). Currently, glucose specimen sampling is often performed by finger pricking and 
collecting a drop of blood. Therefore, Raman spectroscopy is under investigation as an 
optical technique for non-invasive glucose measurement (168). However, it now appears 
that individual patient calibration models are needed to overcome the physical effects in 
noninvasive patient IR and Raman monitoring (101). Further development of the probes 
aimed at continuous monitoring is also needed. Therefore, the present spectroscopic 
technology and chemometrics still require further improvements. Miniaturizing monitoring 
techniques in diabetes therapy including insulin pumps provide further scientific impetus 
for research into noninvasive glucose assays by Raman and NIR spectroscopy. 
 
Raman spectroscopy is a very promising technique for biomedical applications. 
Nevertheless, some analytical problems need special attention, especially in case of in vivo 
measurements, such as laser wavelength and intensity stability, spectral acquisition times, 
fluorescence blocking and laser heating of the sample.  
 
Genetic algorithms as a method for wavelength selection 
In analytical and clinical chemistry, the purpose of developing a calibration model is 
mainly prediction of the concentration of the components of new samples. It is well known 
that high spectral overlap may cause large prediction errors (see also chapter 3.2.1). When 
multiple linear regression (MLR) is used, selection of wavelengths is the most popular 
method to attempt to reduce the error in the prediction. When a large number of input 
variables is used (e.g. 700 points of an absorbance spectrum) there will be a serious 
problem using MLR without selection (very large prediction error). The simplest method of 
selection would be to examine all possible combinations of the variables exhaustively. 
Using this selection method with 700 variables one has to choose from 244650 possible 
two-term (X-variable) equations. In case of three-term equations there would even be 
56921900 equations to examine. 
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In general the number of possible equations can be calculated by: 
 Number of possible subsets = p!/(m!(p!-m!)) in which p is the number of 

initial variables; m the number 
of best variables; and ! is the 
faculty of p or m. 

Of course it is difficult to predict the number of best variables in the subsets. For this 
reason, and given the large number of possible subsets using even only two- and three-term 
equations in case of large number of initial X-variables (e.g. 700), this selection method is 
computationally expensive and in most situations virtually impossible. The disqualification 
of this selection method has led to the development of other methods, such as PCR and PLS 
(see chapter 3.2.1.). These techniques became popular because they by-pass the selection 
problem by using the whole spectrum or large parts of the spectrum. However, because 
relevant information is often restricted to a few areas of the spectrum, whole spectrum 
selection will potentially cause many variables to be completely irrelevant to the objectives 
of the calibration model. The selection of a large number of variables also necessitates the 
use of a large number of calibration samples in relation to the number of variables to obtain 
reliable estimates of the regression parameters. Genetic algorithms (GAs) are techniques 
that circumvent the use large parts of a spectrum for calibration.  
 
The basic principles of GAs were first described by Holland (169). Since the mid 1980s, 
GAs have been applied to numerous scientific fields, such as to solve search (e.g. 
wavenumber selection) and the optimization of chemical systems (e.g. the optimization of 
temperature and solvent gradients in chromatographic processes). In the problem of 
wavelength selection in multicomponent analysis, GA have shown to be useful in the 
selection of the most important variables for the calibration model (170-172). From this 
literature there is an indication that MLR yields models with the same number of regression 
variables after GA variable selection as PCR or PLS regression, and usually with the same 
or somewhat better predictive ability. 
 
Genetic algorithms are general-purpose search algorithms based upon the principles of 
evolution observed in nature. Analogous to genetic evolution, GAs combine cross-over, 
mutation and selection operators with the goal of finding the best solution to a problem 
(survival of the fittest). Genetic algorithms search for this optimal solution until a specific 
termination criterion is met. In case of GAs, the chromosomes are represented by a number 
of strings. The GAs operate on the populations of the strings, with the strings coded to 
represent some underlying parameter set (see later). Ideally, these strings are coded with 
binary values (0 and 1), though other possibilities exist. Selection, cross-over, and mutation 
operators are applied to the successive string populations to create new string populations. 
These operators are very simple, involving nothing more than random number generation, 
string copying, and partial string exchanging.  
 
The standard genetic algorithm for variable selection 
The first stage of GA is initialization. During this stage, a coding plan and fitness or target 
function have to be defined, followed by a preliminary selection of a subset of strings 
(chromosomes) from the population. After the initialization stage, the evolution phase of 
GA has to be performed. Every evolutionary step in GAs is known as a generation. The 
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generations in GAs consist of a combination of a cross-over, a mutation and a selection 
step. These generation steps are repeated over and over until a certain criterion has been 
reached. The successive steps of GA are briefly described in the next sections.  
 
Initialization of the population 
For a spectral wavenumber selection problem, the general way to code the solution is to 
generate a set of binary coded strings (0100111010…). Such a string is also referred to as a 
subset. The length of each string is the number of wavelengths of e.g. a spectrum. In this 
way each possible subset of wavelength (points) can be represented as a string of 0s and 1s, 
with a 1 in position i if the i-th wavelength is present in the subset and 0 if it is not. The 
number of 1s in any particular string is the number of wavelengths in the subset. An initial 
population of strings is always generated at random. The number of subsets (strings) is 
generally equal to the number of calibration samples available. The whole set of coded 
strings is also referred to as the population, and the strings in this population are also called 
the parents. 
 
Evaluation of the population 
To select good subsets of wavelengths, a fitness function has to be defined for each GA 
selection problem. In spectroscopy, the outcome of such a function is a single numeric 
fitness value that expresses the predictive ability of the calibration model. In principle, any 
sensible fitness measurement can be used. Often, the RMSE values of the validation or test 
sets are used. The fitness value is calculated for each subset of the population. After this 
process, the fitness values and accompanying subsets are sorted in order of their fitness 
rating.  
 
Selection 
During this phase, the subsets with good fitness ratings are selected from the population. 
These subsets have a higher chance of producing offspring (new subsets) with even better 
fitness ratings. The number of selected subsets (strings) is generally only a fraction of the 
number of calibration objects available (e.g. one third). These subsets are allowed to 
produce offspring in the next step of the GA process. The rest of the substrings of the 
population with worse fitness values will ‘die’ off. 
 
Cross-over 
Cross-over is a genetic operator that combines (mates) two parent strings to produce a new 
subset (offspring). The idea behind the cross-over operation is that the new offspring may 
be have better characteristics (selected variables) than both of the parents if it takes the best 
characteristics from each of the parents. The cross-over procedure has two steps, namely 
the strings are mated randomly and the mated strings couples cross-over, using a randomly 
selected crossing site (Figure 33). 
 
Parent 1: 11001|010 offspring 1: 11001111 

 X 
Parent 2: 00100|111 offstring 2: 00100010 

Figure 33. Example of two parent strings creating two offsprings with a single random cross-over point. The 
“|”symbol denotes the randomly chosen cross-over point. 
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Cross-over is not necessarily applied to all mates. A choice for crossing is made depending 
on a probability value selected by the user (typically between 0.6 and 1.0). If cross-over is 
not applied, the offsprings are simply duplicates of the parents. 
 
Mutation 
Mutation is a genetic operator that alters one or more string values in a subset from its 
initial state (0 to 1 or 1 to 0). Mutation is an important part of the genetic search procedure 
as it helps to prevent the population from stagnating in any local optimum. The mutation 
occurs during the generations according to a user-definable mutation probability. This 
probability is generally fairly low (0.01 or 1%). If this value is set to high, the search will 
turn into a primitive random search. 
 
The described genetic algorithm is a stochastic iterative process that is not guaranteed to 
converge. The termination condition may be specified at some fixed, maximal number of 
generations or as the attainment of an acceptable fitness value. Whatever approach is 
chosen, when the process is stopped the final population should at least contain some 
subsets that perform well. 
 
In practice the GA process is usually more complex. For example, other coding strategies 
may be followed, as well as the use of different mutation and cross-over operators. For this 
and other information about GAs, the interested reader is referred to other sources with 
more in depth information about the subject (151;170-176).  
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