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Preface

Stripped to its essentials, statistics is about inferences and decisions on the basis
of numerical evidence which is statistical in the sense that things could have been
different. Which inferences and decisions are ‘most appropriate’, given some initial
ideas and a set of data? That is the question to which the mathematical statistician
restricts his attention. The applied statistician has a more comprehensive task. He
will have to participate in the discussion about the design of the experiments, the
choice of the data to be evaluated, the interpretation of the inferences, etcetera.

It is true, and completely natural, that the ‘procedures’ proposed by mathematical
statisticians are based on principles which can be modified. In practice, the relevant
data should be sufficiently abundant to accept the corresponding inferences or deci-
sions as ‘reasonable’. If factual information is scarce or irrelevant or not trustworthy
then one should not rely on the precise results prescribed by such procedures. Any-
body should be aware of what Kant called the limits of reason (‘die Grenzen der
Vernunft’).

Procedures for making inferences on the basis of data are usually based on a math-
ematical model which comprises a specification of the probabilistic context within
which the data arise, and a specification of the inferential or decision-making con-
text.

Probability statements and distributional inferences are of particular interest, e.g. as
an intermediary between data and decision. ‘The making of statistical inferences in
distributional form is conceptionally complicated because the epistemic ‘probabilities’
assigned are mixtures of fact and fiction. In this respect they are essentially different
from ‘physical’ or ‘frequency-theoretic’ probabilities. The distributional form is so
attractive and useful, however, that it should be pursued’1.

In Part I of this thesis it will be made very clear, by elaborating on examples, that
the precise probability statements and distributional inferences prescribed by some
‘rational’ mathematical-statistical procedure are sometimes not relevant. If, however,
the factual information is sufficiently abundant, then the inferences based on it deserve
to play a part in the discussion. ‘As workers in Science we aim, in fact, at methods
of inference which shall be equally convincing to all freely reasoning minds, entirely
independently of any intentions that might be furthered by utilizing the knowledge
inferred’2. Mathematical statisticians try to be as ‘objective’ as possible, even if they
declare themselves to be subjectivists.

1
A.H. Kroese et al., Distributional Inference, Statistica Neerlandica, 49:1, 63–82, 1995

2
R.A. Fisher, Statistical Methods and Scientific Inference, third edition, Macmillan, New York,

1973, p. 107
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148 Summary

the statistical model. Secondly, a similar example, the two-envelopes problem, is
considered. Again, the difficulties involving the numerical specification of conditional
probabilities are in the forefront.

The second and most important part deals with the situation where one has a random
sample x1, . . . , xn from a distribution with density f . The goal is to use the sample
to form an estimate of f or, almost equivalently, to generate a distributional inference
about y(= xn+1). A new method is discussed to estimate the density f , where ‘initial
knowledge’ of f is incorporated in the model. This is done by specifying a probability
density ψ as the ‘initial guess’ for f . Also the degree of confidence in this ψ is
quantified and incorporated in the method. By means of a multi-modal approach,
incorporating aspects from both Classical and Bayesian statistics, and on basis of
the sample x, ‘initial guess’ ψ (and the degree of confidence in ψ), an estimate f̂ of
f is generated. When the initial guess ψ is not unreasonable, this density estimate
performs better, in general, than the generally used kernel methods. This is no
surprise, since the kernel method makes no use of ψ. It is at this point unclear how
the comparison will turn out when ψ is incorporated in the kernel method.

To study the applicability of the developed method, an extensive data set about the
pollution of Dutch waters is considered. Previous investigations showed that the
different concentrations of pollutants can reasonably well be described by lognormal
distributions. A complication is that the concentrations can only be measured when
they are above a certain detection threshold. The density estimation theory of this
thesis, adapted to mentioned complication, is used to ‘fine-tune’ the ‘initial guess’ of
lognormality to the data. The resulting density estimates are better than the density
estimates obtained previously by fitting lognormal densities.

The density estimation theory of this thesis can usefully be applied to the goodness of
fit context where a statement is required about the truth or falsity of the hypothesis
H0: f = ψ. The resulting goodness of fit tests have interesting relations with the
well-known χ2-test, Kolmogorovs test, and Neymans ‘smooth tests’.

To emphasize the usefulness of distributional inference, an example from the interface
of multivariate analysis and time-series analysis is discussed.
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In Part II two types of (distributional) inference will be examined. The first one is
that of a density (e.g. the density of a future observation) which has to be estimated
on basis of a combination of a sample and a priori ‘knowledge’. The second one is that
of a statement which has to be made about the truth or falsity of the hypothesis that
the density is exactly the one specified. In the latter case an accept-reject statement
may be more appropriate than the assignment of a probability.

In Part III applications are made of the theory developed in Part II, but also with
a concrete problem in mind. This two-way traffic is essential. Statistics needs appli-
cations and many applications need statistics. ‘As regards mathematics, you cannot
separate it from its applications to the external world, and you cannot separate statis-
tics from mathematics, or mathematical statistics from applied statistics.’3

The reader might wonder whether something ‘new’ can be found in this thesis: many
of the arguments to be used were already availably half a century ago. It is the
combination of such arguments which is pursued. A specific feature of Chapter 3
is that it goes one step into the direction of a Bayesian approach by claiming that
an a priori guess is available. The second step, the specification of an entire a priori
distribution, is not made because it does not seem appropriate. The density estimates
provided seem to be ‘very good’, though, slight modifications can still lead to further
improvements.

Multi-modal ‘compromises’ can, of course, differ. The rational man likes logical
validity and unicity of solution. Unfortunately, such niceties are not attainable in
statistics. One will study a variety of approaches to the same problem, each one
resulting in an expert opinion. If these opinions are sufficiently alike then any one of
them will do, a summary can be presented. If the opinions are too much different,
then one should not present such concluding summary.

Directions for the reader: this thesis contains a report of some of the problems I
encountered for the past four years. Although these problems were of interest for my
own development, not all of them are of direct interest to the ‘average reader’. Such
cases are mentioned where they occur, and the sections concerned could be skipped
from reading.

Casper Albers
Groningen, December 2002

3
M. Kac et al., Discrete thoughts — Essays on Mathematics, Science, and Philosophy,

Birkhäuser, Boston, 1986
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