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1

Introduction

One may think of the starting point of the theory of Gibbs measures as an
(successful) attempt to answer the question about physical reality: �How can
a ferromagnet or a gas or a liquid in thermal equilibrium be described in
mathematical terms?�. The main feature to be captured is the existence of
di�erent phases of a system, for instance positive and negative magnetizations
for magnets, existence as a liquid, steam, or ice for water. However, this ques-
tion could be extended to a whole class of physical systems by identifying the
common features of a ferromagnet, a gas, and a liquid. The most straightfor-
ward and promising characteristic is that all of them contain an enormously
large number of microscopic components taking values in the same state-space.
Therefore the question may be transformed into another: �How can a system
consisting of large number of identical interacting components in equilibrium
be described in mathematical terms?�. The �rst thing we do, to simplify, is
replacing physical space by a suitable graph. As an example one may think of
a lattice , which is actually physically realistic for crystals, but it can also be
used it as a simpli�ed model for continuous space, or a tree (e.g. a Bethe lat-
tice) as an even cruder model, although it is often appropriate for models met
in biological applications. Despite the relative simpli�cation, the microscopic
structure of such a system is still extremely complex, while its macroscopic
characteristics are often not very complicated (temperature or pressure for a
gas, magnetization for a ferromagnet, etc.) The idea of Maxwell, Boltzmann,
and Gibbs rephrased in modern mathematical language was as follows: the
microscopic complexity can be overcome by a statistical approach; the mac-
roscopic determinism may be regarded as a consequence of an application of
a suitable law of large numbers. So to say, no state of a system should be
described by a �xed con�guration of the system's components. This descrip-
tion should rather be given in terms of a family of random variables {σi}.
These random variables are associated with the sites i of the graph chosen as
a mathematical abstraction of a physical space. Consequently, the joint distri-
bution µ of {σi} determines the system's state. The �nite-volume prescription
is given by Gibbs' canonical ensemble prescription

µ(dσ) =
1

Z
e−βH(σ)dσ, (1.1)
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where the function H(σ) refers to the energy of any con�guration σ � the
Hamiltonian � and β is an inverse temperature. H(σ) is formed by the
interactions of all microscopic components and (perhaps) an external force
h. In the case of ferromagnet, h has a meaning of an external magnetic �eld.
The �nite-volume Gibbs measure µ(dσ) is always unique, therefore there exists
only one phase for any �nite-volume system.

The next step in achieving the goal of an adequate description of existence
of several phases is to identify large-volume (physically) or in�nite-volume
(mathematically) behaviour. It is easy to see that the formula (1.1) is ill-
de�ned for any in�nite con�guration. This is due to the fact that the energy of
an event in in�nite volume is also in�nite. There are two approaches developed
to overcome this di�culty. The �rst one is expressing energy of a con�guration
as a function of its size and straightforward taking limits as the volume grows.
Under some suitable conditions such limit(s) exist(s). Existence of several
limiting measures will correspond to a phase transition. The second approach
is based on the very fruitful idea that instead of performing this limiting
procedure, one may study directly the set of all possible limiting objects and
their conditional restrictions on �nite sub-volumes �xing the con�guration
outside of them. These restrictions are given by the �nite-volume prescription
now depending on the changing inside and the �xed outside of particular
volumes in some suitable way (this issue will be discussed shortly). Each
extremal limiting object corresponds to a phase of a system. The family of
the �nite-volume conditional distributions may be compatible with more than
one limiting measure, then a phase transition occurs, this phenomenon has
been widely studied in many articles and books.

The former discussion can be summarized in two ways: physically, a Gibbs
measure is a mathematical idealization of an equilibrium state of a physical
system which consists of a very large number of interacting components, math-
ematically a Gibbs measure is the distribution of a stochastic process which,
instead of being indexed by time, is parametrized by the spatial coordinates of
the system and has the special feature of admitting prescribed versions of the
conditional distributions outside �nite regions, Georgii [26].

To be more speci�c we consider a model living on a lattice. Let L be the
whole lattice and Λ its �nite-volume subset. Let σi be a random variable (a
spin) sitting at site i of L and taking values from S, then the joint distribution
of all spins σΛ in �nite volume Λ takes values in SΛ =: ΩΛ, the probability
space of the whole system is therefore SL = Ω. Within this mathematical
framework the question whether a family of conditional probabilities {γΛ,Λ b
L}, a speci�cation, is Gibbs arises naturally. A beautiful theorem was proven
by Sullivan [54] and later extended by Kozlov [35], stating that uniform non-
nullness and quasilocality properties are necessary and su�cient conditions
for a speci�cation to be Gibbs. Uniform non-nullness refers to the fact that
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all conditional probabilities in the family of any event are separated from zero
by a positive constant. Quasilocality is a property that guarantees that the
energy function is well-de�ned, di�erently this property may be expressed as
follows:

sup
ω,η,η̃∈Ω

|γΛ(σΛ|ωΛnη)− γΛ(σΛ|ωΛn η̃)| n→∞−−−→ 0, (1.2)

for any ω. In mathematical terms, (1.2) corresponds to the fact that all
intermediate con�gurations ω shield σΛ from the in�uence of the outside of
ω; in physical terms, this statement has a more intuitive form: quasilocality
ensures that any local experiment is controllable. Imagine a well-tuned guitar
and an astronaut playing it in a space ship. No matter if a space ship is being
prepared to start its journey from Earth to outer space or if a space ship has
already started and reached the vacuum of the cosmos, the guitar will sound
the same. The exterior of a space ship plays no role. The interior of a space
ship �lled with air (or close to air mixture of gases) creates a barrier preventing
the in�uence of either vacuum or air outside of a space ship. Hence, playing
a guitar is quasilocal experiment.

If the spin space is discrete, as it will mostly be in this thesis, quasilocality
equals continuity (in the product topology).

While non-nullness of a speci�cation is not a property to be ignored, it
is not usually the main problem. The lack of quasilocality leads to more
serious consequences, namely in this case the Boltzmann-Gibbs prescription
is not any more well-de�ned. In heuristic terms and in the light of (1.2), non-
quasilocality means that there is some mechanism transmitting the in�uence
of �far-away� regions to any �nite sub-volume and remaining active even in the
case of no �uctuations in the spins in-between. For a measure to be non-Gibbs
it is enough that there exists only one such con�guration of the in-between
spins. This very idea is the main tool of the Gibbs-non-Gibbs investigation.

Now let us explain why the question whether or not a given measure was
a Gibbs measure �rst arose. This happened in the theory of equilibrium stat-
istical mechanics, in the study of phase transitions. To study the behaviour
of a system close to critical points or to prove the absence of phase transitions
for a system, a renormalization map R was applied to the Hamiltonian of
system's Gibbs measure µ, [27, 28]. Although such maps were studied before,
these papers for the �rst time put the renormalization-group ideas and the
Gibbs formalism together. The absence of phase transitions at high temper-
ature and/or low density was known before, and the analysis in this region
served as an illustration. The map R is expected to de�ne a new Hamiltonian
H ′ := R(H) and moreover induces a map K mapping the original measure µ
to µ′. Having K de�ned, the existence of H ′ depends on whether the image
measure µ′ is Gibbs or not [11, 33]. If the image measure µ′ is Gibbs, then the
associated Hamiltonian H ′ is well-de�ned, otherwise � not. It was found that
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the application of many maps may result in such �pathologies� [12, 19, 41].
When such a phenomenon appears it means that �nite-volume conditional
probabilities of the image system will acquire long-range dependencies (there-
fore lose its quasilocality property), at least for some non-removable con�gur-
ations.

After having discovered this, another question attracted a lot of interest
and attention: �How stable is the Gibbs property of a measure describing a
system in equilibrium, when the last is subjected to a time evolution?�. There
is a long expanding list of references on this: starting from spin contraction
[9, 44], general single-site transformations [38], continuing with stochastic spin
evolutions for bounded and unbounded spins in [7, 12, 14, 36, 37, 39, 48] for
di�erent kinds of underlying graphs of a system, and going further. A good
example of losing Gibbsianness under time evolution is given in [12]. Be-
fore explaining it, we need to discuss informally the celebrated Ising model, a
paradigmatic statistical mechanical model, designed to study magnetic prop-
erties with spins taking values in {−1,+1}. We choose as time evolution the
spin-�ip (or Glauber) dynamics: each spin is �ipped according to independent
Poissonian clocks attached to a site. Rephrasing the proof in [12, see Theorem
6.3, fact 2], we start with the Ising model on lattice. Such a model at low
temperature will typically be found in one of two phases (low-temperature ex-
tremal Gibbs measures) , which look similar to a ground state � state having
the biggest probability to be observed � almost everywhere pluses or almost
everywhere minuses. We start with a low-temperature Gibbs measure. We
choose a site 0, which will be called the origin, let the time �ow and �ip a
spin when an associated to it clock rings. After some time a con�guration
ωΛ\0σΓ\Λ will be observed, where Λ is a �nite subset of Γ with the property
that Γ is a lot larger than Λ. We suppose that the con�guration ωΛ\0 is atyp-
ical (or, very improbable) and σΓ\Λ is typical for any of the possible starting
phases. Though the con�guration in Γ \ Λ may be not typical for the phase
we started with, the cost of creating such a con�guration is proportional to
the length of contour separating Γ from the rest of the lattice. On the other
hand, the cost of inserting any atypical con�gurations in Λ \ 0 is proportional
to the volume of Λ. Suppose Λ\0 is not too small, that it could be considered
as a barrier shielding the origin from the in�uence of σΓ\Λ. Nonetheless, the
e�ectiveness of such a barrier is poor because the values of the spin at the
origin at time 0 and later time are positively correlated. Thus, there exists a
time window (possibly in�nite) with values such that they are large enough
for the dynamics to create an atypical con�guration around the origin and
not too big to keep the correlation between the values of spin at the origin at
di�erent times. Within this time interval σΓ\Λ determines the value of σ0 and
the quasilocality is lost.

The general picture is that for very general dynamics and very general ini-
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tial measures the time-evolved measures are again Gibbsian, for a su�ciently
small time-interval [10, 12, 37, 41, 43]. Long times however, even for simple dy-
namics o�er the possibility for the emergence of non-Gibbsian measures. The
discontinuities in the conditional probabilities which are responsible for the
Gibbs-non-Gibbs transitions are produced by hidden phase transitions which
pop up as a result of the conditioning procedure. Depending on the speci�c
nature of the system there may be many mechanisms of such singularities
[12, 36].

The present thesis attempts to investigate when the Gibbs property of an
initial measure is preserved or lost if the initial Gibbs model is subjected to
some transformation. This question is addressed for two classes of statistical
mechanics models. The �rst class is mean-�eld models, where the underlying
structure is a complete graph, so each component in�uences on all the others.
The simpli�cations made for mean-�eld models allow to develop tractable
results. The importance of these models is due to their ability to mimic the
behaviour of large-dimensional lattices [37, 52], as well as their tractability.
Mean-�eld models are objects of interest on their own in computer science
as they catch well the behaviour of computer networks [2, 40], for example.
We warn the reader that in the mean-�eld case, the notion of Gibbsianness
will be slightly changed. This will be discussed later, and in full detail in
Chapter 4. The second class concerns models on trees, where components
interact in a local fashion. Tree models form a �rst step way from a mean-
�eld setup towards a proper lattice model. The main achievement of this thesis
is a rather complete description of the Gibbs-non-Gibbs regions in the space
of temperature and time followed by explicitly presented equations governing
the dynamics in the mean-�eld setup in vanishing external �eld.

In the end of the present thesis we will address a problem of classi�ca-
tion coming from Information Theory and show how to approach it with the
Gibbsian formalism.

1.1 Strategy

Following the route suggested in [12], the study of a failure of the Gibbs
property under stochastic time evolution is connected with understanding of
a �constrained� or �two-layers� model. This model re�ects the in�uence of a
dynamics. The e�ect of evolution on the initial Gibbs measure results in some
transformations of the energy function of its �nite-volume restrictions. The
lack of phase transitions in �constrained� models immediately guarantees the
Gibbs nature of the evolved system. On the other hand the existence of phase
transitions may or may not imply the non-Gibbsian nature depending on the
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setup, often an extra step to show the lack of the quasilocality property is
needed.

For tree models, as for more general lattice models, quasilocality means
that the in�uence of �far-away� regions on any �nite regions is e�ectively
stopped by the spins in-between, in other words, the interaction between spins
has a local nature. Thus, the conditioning on �middle-distanced� spins is essen-
tially the same as the conditioning on them and any �far-away� con�guration.
This implies that the �nite-volume probabilities of the transformed measure
conditioned on con�gurations di�erent only on �far-away� regions should be
almost equal. If not � the �middle-distanced� con�guration is called bad and
quasilocality is lost. For discrete spins, which are of interest in the present
thesis, the property of quasilocality is equivalent to the continuity property
of �nite-volume conditional probabilities as a function of the conditioning (in
the product topology).

The complete graph, which is used in mean-�eld models, discards the no-
tion of �far-away� regions, because all spins communicate with each other
equally, so the concept of quasilocality is meaningless in this setup. The pres-
ence of a phase transition in the transformed system still plays a role, however.
Due to the graph structure, any con�guration and all its permutations may be
identi�ed with a real number, hence conditioning on a con�guration translates
in conditioning on this real number. The main characteristic of conditioning
becomes a magnetization ( or, more generally, some form of an empirical aver-
age) of a system. A mean-�eld system is called non-Gibbsian if the single-site
conditional probabilities depend in a discontinuous way on the magnetization
of the conditioned spins. The last statement suggests an existence of a phase
transition is a su�cient condition for non-Gibbsianness.

Hence, to deduce a lack of Gibbsianness for the transformed system one
is left with the problem of investigating continuity properties of conditional
probabilities for the �constrained� model.

1.2 Overview of Thesis

In this section we provide an informal guide to what is contained in the main
body of the thesis and outline the main achievements of the present work.

In Chapter 2 we review the formal side of the theory of Gibbs measures,
making rigorous statements and notions used in the introduction. Chapter 2
provides a common description for many models of statistical mechanics. A
broad description of dynamics is given, and the question of how applying a
dynamics can cause the loss of the Gibbsian property for the evolved (ac-
cording to this dynamics) measure starting from an initial Gibbsian measure
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is addressed. A general strategy of proving non-Gibbsianness is described in
detail.

In Chapter 3 we look at tree models. In particular, we consider Cayley
trees for simplicity. As explained in Chapter 3, an Ising model on a Cayley
tree exhibits a phase transition, therefore several (among which there are
three extremal homogeneous) Gibbs measures are admitted. We discuss when
a time-evolved initial Gibbs measure loses its quasilocal property. All three
measures will be shown losing the quasilocality property under time evolution
after some time. Moreover, we keep track of how many con�gurations transmit
an in�uence of �far-away� regions. Surprisingly, for one of the initial measures
after some time all con�gurations become bad. This fact holds independently
of the preference of the system to be in a certain state, but the preference
value has to be smaller than a certain real number. The preference of the
system to a state is expressed by an external magnetic �eld aligning the spins.
At the end of Chapter 3 we point out possibilities to extend the results for
Cayley trees to a more general class and explain why this has to be possible
by identifying common tokens of Cayley and general trees. Chapter 3 has
appeared as [13]. Chapter 3 positively answers on the question whether non-
Gibbsianness becomes worse as time progresses in the Cayley tree setup.

Chapter 4 is devoted to the description of the time evolution of mean-�eld
systems in thermal equilibrium subjected to arbitrary-temperature Glauber
dynamics. The results of Chapter 4 have appeared as [15] and extend the work
of K�ulske and Le Ny [36] contributing an analysis of low-temperature dynam-
ics. The low-temperature dynamics corresponds to a dependent spin-�ip dy-
namics. A detailed description of the decomposition of the time-temperature
space into Gibbs and non-Gibbs regions is given. Each couple of coordinates
in the time-temperature plane depending on its location will correspond to a
Gibbs/non-Gibbs regime of the evolved system. In Section 4.2 of Chapter 4 we
formulate the main result which covers the up-to-now accumulated knowledge
of arbitrary-temperature dynamics for mean-�eld models.

Chapter 5 demonstrates an interplay between the Gibbsian formalism and
applied problems. In particular, we show how the theory of Gibbs measures
can be involved in solving classi�cation problems. Such problems are of great
importance, for example, in biological science and Information Theory. While
solving classi�cation problems or problems of denoising, one is usually given
random samples and aims to (re-)construct a probability distribution which
generated these samples. We build our analysis based on the simple obser-
vation that the nature of the distribution of interest is intrinsically Gibbsian.
This notice allows us to develop an approach related to the potential of a
Gibbs measure. We show that this way of treating problems can successfully
solve problems of classi�cation.

∗ ∗ ∗
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Generalities on Gibbs

measures

In this chapter we collect notation and some known facts about Gibbs meas-
ures for a general class of models which will be used further on in this thesis.
Among the things we discuss are scenarios when the Gibbsian character of a
measure fails.

2.1 Preliminaries

Let S denote the single-site space. The space S is sometimes also called a
state space. This choice of the space S is governed both by physics (what do
we want to model?) and by a wish for simpli�cations to be made. We can
for example think of {0, 1} for lattice-gas models, {−1,+1} for a ferromagnet
or an antiferromagnet. In Chapter 3 and Chapter 4 we will consider S to be
the space of Ising spins {−1,+1}. Let this single-site space be equipped with
an a priori measure α. Let G = (V , E) be a generic graph having countably
many vertices. Each random variable from a family σ = {σi}i∈V is called a
spin and takes values in the space S. We shall call a region a �nite subset of
V . The �niteness property will be indicated by the symbol �b�, i.e. for region
Λ, Λ b V . We set Λc := V \ Λ for any subset Λ of V and whenever Λ = {i}
we write ic for V \{i}. Furthermore a con�guration space, in which the family
{σi}i∈V takes values, is denoted by Ω := SV , which is endowed with a product
σ-algebra A. Each element σ ∈ Ω is called a con�guration, a �nite-volume
con�guration σΛ is a projection of σ, σΛ = {σi}i∈Λ. A con�guration σΛ takes
values in a projection space ΩΛ of Ω. The set of probability measures on Ω is
denoted by P(Ω,A).

A real-valued function f de�ned on the con�guration space Ω is quasilocal
if

lim
Λ→Ω

sup
σ,η∈Ω:σΛ=ηΛ

|f(σ)− f(η)| = 0 (2.1)

For discrete spins quasilocality implies that a function is continuous in the
product topology. Stated in words, it means that a function of a �nite-volume
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�circle� σΛ provided that a con�guration in a �ring� σΛ′\Λ (Λ ⊂ Λ′) is �xed and
thick enough, hardly depends on the outside of Λ′.

By C(Ω) we will mean the set of all continuous functions on Ω.

2.2 Finite-volume Gibbs measures

In statistical mechanics, systems in equilibrium are described via �nite-volume
densities γΛ, which are de�ned through the Boltzmann-Gibbs prescription
γΛ ∝ e−HΛ , where the function HΛ � a Hamiltonian � is the �interaction
energy� of the region Λ. To attach a mathematical sense to the notion of
�energy� we give the following de�nitions.

De�nition 2.2.1. An interaction or interaction potential or potential is a
family Φ = {φΛ : Λ b V} of functions φΛ : Ω 7→ R, such that φΛ ∈ AΛ, that
is, φΛ depends only on the spins in the �nite set Λ, for every Λ b V.

We would like to de�ne the Hamiltonian of a region as the sum of in-
teraction terms over all possible subsets of that region, but the meaningful
de�nition will require something more, this is the convergence of relevant
series. This gives rise to the following de�nition:

De�nition 2.2.2. Let Φ be an interaction.

� The Hamiltonian for a region Λ b V with frozen external condition ω is
the real-valued function de�ned by

HΦ
Λ (σΛ|ωΛc) =

∑
AbV:A∩Λ 6=∅

φA(σΛ ω) (2.2)

for σ, ω ∈ Ω such that the sum exists.

� Φ is summable at ω ∈ Ω if HΦ
Λ (σΛ|ωΛc) exists for all Λ b V and σΛ ∈ AΛ

De�nition 2.2.3. The Boltzmann weights for interaction Φ are the functions
de�ned for all Λ b V and all boundary conditions ω at which Φ is summable
by

ϑΦ
Λ(σΛ|ωΛc) =

e−βH
Φ
Λ (σΛ|ωΛc )

ZΦ
Λ (ω)

, (2.3)

where ZΦ
Λ (ω) is called the partition function.
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Given boundary conditions ω and an a priori measure α we de�ne a �nite-
volume Boltzmann-Gibbs measure γΦ

Λ,ω as follows

γΦ
Λ,ω = γΦ

Λ (dσΛ|ω) = ϑΦ
Λ(σΛ|ωΛc)

∏
i∈Λ

α(dσi)

=
e−βH

Φ
Λ (σΛ|ωΛc )

ZΦ
Λ (ω)

∏
i∈Λ

α(dσi)

=
e−βH

Φ
Λ (σΛ|ωΛc )

ZΦ
Λ (ω)

α⊗(dσΛ)

(2.4)

2.3 In�nite-volume Gibbs measures

As stated before, the Boltzmann-Gibbs distribution does not admit a direct
extension to in�nite systems. However, when dealing with in�nite systems
we can still look at �nite subsystems provided the �outside� is held �xed. In-
deed, for any �nite Λ b V the Boltzmann-Gibbs distribution, satisfying some
requirements, might be viewed as a map mapping each environment to the
corresponding equilibrium distribution of subsystem Λ. Before exploring when
a family of �nite-volume Boltzmann-Gibbs measures indexed with boundary
conditions could be interpreted as a family of conditional probabilities coming
from an in�nite-volume Gibbs measure, we cover two relevant notions.

A probability kernel from the probability space (Ω,A) to itself is a function
π(·|·) having two slots such that: (1) π(·|ω) is a probability measure on (Ω,A)
for each ω ∈ A, (2) π(σ|·) is A-measurable for each A ∈ A.

Remark 2.3.1. Generally, probability kernels can be de�ned between two dif-
ferent spaces. We simpli�ed this more general de�nition here to avoid unne-
cessary (for the present thesis) generality. For more details we refer the reader
to e.g. [26, Chapter 1] or [19, Chapter 3].

De�nition 2.3.2. A speci�cation on (Ω,A) is a family Π = {πΛ, Λ b V} of
probability kernels from (Ω,A) to itself and each πΛ in the family is

(i) proper, πΛ(A) = 1A, if A is measurable w.r.t. AΛc,

(ii) consistent, (π∆πΛ)(A|ω) =
∫

Ω
π∆(dω′|ω)πΛ(A|ω′) = π∆(A|ω), if Λ ⊂ ∆

The above de�ned speci�cation is called Gibbsian if it is quasilocal and
uniformly non-null. A speci�cation is said to be uniformly non-null if each
of its members with �xed second slot to ω ∈ AΛc weighs any event A ∈
AΛ with at least some positive value. Quasilocality requires that for any
quasilocal function f the expectation πΛ(f |ω) is quasilocal as a function of ω,
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for all Λ b V . Although we used a general form of the probability kernels in
De�nition 2.3.2, we are guaranteed that a family Γ = {γΦ

Λ,ω,Λ b V} (where
the γΦ

Λ,ω are as de�ned in (2.4)) is indeed a Gibbsian speci�cation, [26, see
Proposition 2.24 (b)].

De�nition 2.3.3. A measure µ is called is a Gibbs measure with interaction
Φ and a priori measure α, if for all �nite Λ b V and continuous test functions
f the following equation is satis�ed∫

f(σΛ)µ(dσ) =

∫ ∫
f(σΛ)γΦ

Λ,ω(dσΛ)µ(dω), (2.5)

where Γ = {γΦ
Λ,ω : Λ b V} is a Gibbsian speci�cation.

The equations (2.5) in shorthand are written

µ γΛ = µ (2.6)

and are called DLR-equations.
The measure µ is called consistent with the speci�cation Γ.

The equations (2.5) mean that a measure µ is consistent with a quasilocal
and uniformly non-null speci�cation and that γΦ

Λ,ω(dσΛ) is a version or a
realization of conditional probability µΛ(dσΛ|σΛc = ω) =: µωΛ(dσΛ).

Let G(Γ) be the set of Gibbs measures consistent with Γ. Clearly, G(Γ) ⊂
P(Ω,A). If |G(Γ)| > 1, then the statistical mechanics system on G = (V , E)
is said to have a phase transition. If the inverse temperature β is in�nite or
su�ciently high then the Boltzmann weights for any con�guration in a �xed
Λ b V are either equal to 1 (the corresponding in�nite-volume Gibbs measure
is just a product measure) or close to 1 (the corresponding in�nite-volume
Gibbs measure is a small perturbation of a product measure). Both cases
imply that |G(Γ)| = 1, this means that the high-temperature regime is part of
the uniqueness regime.

Hitherto we included the thermal constant (inverse temperature) β separ-
ately, from now on we reserve the right to absorb it into the Hamiltonian.

As was pointed out, consistency of a measure µ with a quasilocal and
uniformly non-null speci�cation is a necessary condition for Gibbsianness. We
would like to identify su�cient conditions for a measure to be Gibbs. This
question was answered in a simple and informative way by [29] for Markovian
�elds. That argument was later generalized by Sullivan [54] and Kozlov [35].
The Kozlov theorem has a constructive character, it answers the Gibbsianness
question by reconstructing a (lattice gas or vacuum) potential from a given
speci�cation of general form.

Theorem 2.3.4. A speci�cation is Gibbs if and only if it is uniformly non-null
and quasilocal.
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2.4 Block transformations, loss of

Gibbsianness, and proving tools

Many examples of non-Gibbsianness refer to transformations of initially Gibbs
measures according to some rule. One important category of these transform-
ations is block transformations. For a moment consider two di�erent prob-
ability spaces Ω = (SV ,A) and Ω′ = (S ′V

′
,A′) . A block transformation is

a rule (which may be either deterministic or stochastic) such that for every
i′ ∈ V ′ there exists a block Bi′ b V such that the value of σ′i′(∈ S ′) is a
function on ABi′ . Spins in σBi′ are called �original� spins, a con�guration σ′

generated according to this rule consists of �block� spins. Hereafter we discuss
transformations on the same space Ω = Ω′.

The stochastic dynamics studied in Chapter 3 of the present thesis is a
special case of a block transformation with a single-site block. In the mean-
�eld setup of Chapter 4, where their stochastic evolution is treated, blocks
will overlap1.

2.4.1 Bad points for transformed measures

Mathematically, a block transformation is expressed by a probability (or trans-
ition) kernel K(σ, σ′) from (Ω,A) to itself. Such a map de�nes a probability
distribution µ′(σ′) of block spins from any given probability distribution µ(σ)
of original (or internal) spins, i.e.

µ′(σ′) = (µK)(σ′) =
∑
σ

µ(σ)K(σ, σ′) (2.7)

In other words, the dynamics is de�ned as a map from measures to measures.
On the other hand, such a map may be expressed in terms of Hamiltoni-
ans H and H ′ for the �nite-volume versions of µ and µ′, respectively, and a
renormalization map R, i.e.

H ′(σ′) = (RH)(σ) = − ln

(∑
σ

exp{−H(σ) + lnK(σ, σ′)}

)
(2.8)

This formula is invalid in in�nite volume, because in this case both H and
H ′ are ill-de�ned. Both K and R have advantages and disadvantages: T is
linear, but acts on a space of large dimensions, R involves logarithms, but it is

1This fact causes no problem in the sense that if a starting measure was a Gibbs measure,
the time-evolved measure is non-null, because all transformed con�gurations are reached
with a positive probability. This is not always the case for deterministic rules. For an
example of a problematic deterministic block-spin transformation, see e.g. [46]
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always single-valued (if well-de�ned), [11, see Theorem 3.4(First Fundamental
theorem), pp. 971].

To examine whether the Gibbsianness for the transformed measure is pre-
served, it is worthwhile to look at Theorem 2.3.4. This theorem points out
intrinsic properties of Gibbs measures and provides a rather simple sympto-
matology of non-Gibbsianness: lack of uniform non-nullness and/or lack of
quasilocality.

In the case when densities of a speci�cation have the form of a Boltzmann-
Gibbs weights, the absence of the non-nullness property means that in�nite
energies are allowed for �nite regions. In the sequel of this thesis we exclude
models dealing with in�nite energies, e.g. systems of unbounded spins or
hard-core-interaction systems.

Having excluded the possibility of in�nite energies for �nite regions, we
are left with one property to investigate � quasilocality. In many instances,
image measures may fail to be quasilocal and, consequently, to be Gibbsian.
The non-Gibbsianness arises from the fact that internal spins σ may undergo
a phase transition for a �xed con�guration of block spins σ′spec. Moreover,
di�erent phases of internal spins may be preselected by an appropriate choice
of block-spins. In this way, the information can be broadcast from far-away
block spins to a chosen block spin (in the presence of translation-invariance, to
the block-spins near the origin) via an intermediate region of internal spins.
Importantly, this transmission is possible even when the block spins in the
intermediate region are �xed. Hence, the transformed measure µ′ do not obey
a quasilocality condition and, therefore, fail to be Gibbs. In this case, the
renormalization map R between Hamiltonians is ill-de�ned, because there
exists no reasonable interaction for µ′.

Puzzlingly, an existence of a single σ′spec (which happens with zero probab-
ility) can cause the failure of Gibbsianess for the image measure. Indeed, this
fact alone is not su�cient, but common non-zero probability weight of those
block-spins con�gurations which agree with σ′spec in a large volume and di�er
outside easily triggers loss of Gibbsianness for the image measure µ′.

From the mathematical point of view, the transformed measure µ′ is not
quasilocal if it is consistent with no quasilocal speci�cation. To prove this
it is enough to �nd a single, non-removable, point of discontinuity (in the
product topology) for a single µ′Λ for a single (quasi)local functions f , [11, 19].
Essentially non-quasilocality means that �nite-volume realizations µ′Λ(f |·) of
in�nite-volume measure µ′ as functions of the conditionings behave as no
quasilocal functions, see (2.1). The relevant de�nitions read as follows:

De�nition 2.4.1. The measure µ′ is not quasilocal at η̄ ∈ Ω if there exists
Λ0 b V and f local (given that the single-site space is �nite it su�ces to look
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for f local, with support Λ0) such that no realization of µ′Λ0
(f |·) is quasilocal

at η̄.

In other words, any realization of µ′Λ0
(f |·) must exhibit an essential dis-

continuity at η̄; one that survives zero-measure modi�cations. (Remember
that conditional probabilities are only de�ned up to measure-zero sets)

De�nition 2.4.2. For a local function f as above, µ′Λ0
(f |·) is µ′-essentially

discontinuous at η̄, if there exists an ε > 0 such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ
|Λ′|<∞

|µ′Λ0
(f |η̄Λ\Λ0ξ

1
Λ′\Λ)− µ′Λ0

(f |η̄Λ\Λ0ξ
2
Λ′\Λ)| > ε (2.9)

If µ′Λ0
(f |·) is µ′-essentially discontinuous at η̄, informally it means that

there exists an ε > 0 such that for every Λ b V there exists Λ′ ⊃ Λ and
con�gurations ξ1, ξ2, such that∣∣µ′Λ0

(f |η̄Λ\Λ0ξ
1
Λ′\Λη)− µ′Λ0

(f |η̄Λ\Λ0ξ
2
Λ′\Λη)

∣∣ > ε (2.10)

for η ∈ A, where A ∈ A(Λ′)c is of positive µ
′-measure.

De�nition 2.4.3. µ′Λ0
(f |·) is strongly discontinuous at η̄, if and only if there

exists an ε > 0 such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ
|Λ′|<∞

inf
η1,η2

Λ′′⊃Λ′
|Λ′′|<∞

|µ′Λ0
(f |η̄Λ\Λ0ξ

1
Λ′\Λη

1
Λ′′\Λ′)− µ′Λ0

(f |η̄Λ\Λ0ξ
2
Λ′\Λη

2
Λ′′\Λ′)| > ε

(2.11)

Remark 2.4.4. Intuitively the di�erence is that whereas for µ′-essential dis-
continuity one needs to estimate a di�erence on two measurable sets of positive
measure, for a strong discontinuity one needs an estimate of a di�erence on
open sets; however, because of the impossibility of conditioning on individual
con�gurations, we get the somewhat unwieldy de�nitions above.

Such η̄ ∈ Ω are called bad con�gurations.

In practice, the lack of quasilocality has been detected by proving (2.10) for
functions of the form f(σΛ) = σΛ. Furthermore, only single-site regions need
to be checked due to the Theorem 2.3.4. If the graphG is translation invariant,
then, non-quasilocality proofs typically refer to (2.10) for Λ = {�origin�} and
f(σ{�origin�}) = σ{�origin�}. In what follows we substitute σ{�origin�} by σ0.



Generalities on Gibbs measures 15

2.4.2 Two-layered models

A useful tool to study whether Gibbsianness is preserved or lost for a model on
a graph G = (V , E) under a transformation is joint or two-layered model living
on G∪G. A joint model is obtained by coupling the initial model to a trans-
formed model through transition kernel K(σΛ, ηΛ), where Λ is a �nite volume.
Thinking of site-wise independent spin-�ips, K(σΛ, ηΛ) =

∏
i∈Λ k(σi, ηi), then

the two-layered system produced in this way is given by prescribing a formal
Hamiltonian

HΛ(σΛ, ηΛ) = HΛ(σΛσΛc)−
∑
i∈Λ

ln k(σi, ηi), (2.12)

where HΛ(σΛσΛc) is the Hamiltonian of the original model. As explained, in
Chapter 1 this prescription works only in a �nite volume. Naturally, two-
layered model results in the original model, when the η-spins are integrated
out.

If two-layered in�nite-volume measure exhibits a phase transition when
η̄Λ0�a con�guration suspected to be bad for the transformed measure�is �xed,
this suggests a possibility to vary initial con�gurations σ1 and σ2 in a such
way as to create a discontinuous behaviour for the transformed measure and
to make (2.10) with a choice ξ1 = σ1 and ξ2 = σ2 hold. Nevertheless, in
some situations the con�guration ηΛ,Λ0 ⊂ Λ created during evolution may
stop the in�uence of survived σ-spins. This discussion connects the presence
of hidden phase transitions and the possibility to select phases by choosing
correct boundary conditions via a choice σ1 and σ2 for two-layered models
together with loss of quasilocality for the transformed measure. This approach
to study the evolved measure via the marginal of a two-layers Gibbs measure
was introduced in [12], and has been applied repeatedly since. We will be
more speci�c in the following chapters identifying the properties of two-layered
models for a tree in Chapter 3 and in the mean-�eld context in Chapter 4.

2.5 Ising spins and spin-�ip evolution

In Chapter 4 and Chapter 3 we consider S to be the space {−1,+1}. These
variables are called Ising spins and correspond to physical spins in ferromag-
nets pointing downwards and upwards. This simpli�cation was introduced by
Ising and his Ph.D. advisor Lenz in [32]. The relevant de�nitions involving the
single-site space formally stay the same, but have to be thought in connection
with the present S.

We will consider single-site spin-�ip or, equivalently, Glauber time evolu-
tion. We attach a Poissonian clock to each site i of V with mean-time 1

c(i,σ)

for site i of staying in the �+�- or �−�-state, when the current con�guration
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is σ, for every σ ∈ Ω. The dynamics of the whole system is governed by a
collection of spin-�ip rates {c(i, σ)}, i ∈ V , σ ∈ Ω satisfying the following
conditions:

(i) ci : σ 7→ c(i, σ) is a local function of σ. In our setup ci alters just the
spin at site i;

(ii) ci's are translation-invariant for all i;

(iii) c(i, σ) > 0 for all i ∈ V and σ ∈ Ω.

Condition (i) allows to treat only rates of �ipping from �+� to �-� and vice
versa � {c(±, σ)}, which are dependent of other sites for each σ ∈ Ω. This
means that we have a �nite-temperature dynamics, an in�nite-temperature
dynamics lacks such a dependence.

Di�erently to usual notation we shall refer to s as time variable, when t
will mean a �xed moment of time.

We consider a site-wise independent spin-�ip dynamics. Hence, the spin-
�ip process of σL is nothing but a product of |Λ| independent Markov chains.
Consequently, given the rates {c(i, σ)} the single site linear generator acting
on local functions f mapping {−1,+1} to itself reads

(Lif)(σi) = c(i, σ)(f(−σi)− f(σi)), (2.13)

then the linear generator L for spins in Ω is de�ned for local functions F̄ :
Ω 7→ R by

(LF̄ )(σ) =
∑
i∈V

c(i, σ)
[
F̄ (σi)− F̄ (σ)

]
, (2.14)

where σi is a ��ipped� con�guration, obtained from σ by �ipping a spin at
site i: (

σi
)
j

=

{
− (σi)i , j = i

(σi)j , j 6= i
(2.15)

Spin-�ip evolution transforms an intial con�guration σ at s = 0 to a time-
evolved con�guration η at time s = t.

It is proved that the closure of L on C(Ω) is the generator of a unique Feller
process {σs : s ≥ 0}, [45, see Theorem 3.9]. We denote by S(s) = esL the
corresponding semigroup governing the time evolution. The semigroup de�nes
a continuous-time transformation of a probability measure κ ∈ P(Ω,A) via
the following rule:

Eκ(S(s)f)(σ) = EκS(s)f(σ) (2.16)

The former suggests that κS(t) is the distribution of the con�guration η at
time s = t if at time s = 0 the initial distribution of σ was κ.

∗ ∗ ∗
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Tree models

In this Chapter (which is based on [13]) we turn to a much more speci�c
class of graphs than the completely general G = (V , E) as in Chapter 2.
These graphs are the Cayley trees CT. Cayley trees form a special case of
a tree possessing some regularity properties which will be used to prove the
theorems of this chapter. These properties are constant number of �adjacent�
vertices for each site, and it is known that with at least three neighbours
per site, co-existence of several extreme homogeneous Gibbs measures � plus,
minus, and intermediate � holds in some parameter region of initial �eld and
temperature. The �rst property simpli�es calculations, the second one allows a
possibility of a non-Gibbsian behaviour of an initial Gibbs measure subjected
to an in�nite-temperature time evolution. We show that this possibility is
used under some conditions on the time during which the model evolves.

At high initial temperatures, or for su�ciently short times, standard meth-
ods can be used to prove Gibbsianness, also in the setup of this chapter. Thus
the interesting case is to �nd out what happens for low initial temperatures.
As usual low-temperature dynamics are beyond reach so far. For simplicity we
will consider in�nite-temperature dynamics, but high-temperature evolutions
are expected to behave qualitatively similarly.

In contrast to what happens on regular lattices such as Zd, the Gibbsian
properties of evolved Gibbs measures for models on trees turn out to depend
on which of the di�erent Gibbs measures (plus or minus, versus intermediate)
one considers. In all cases there are two transition times: for the intermediate
measure after the �rst transition time it becomes non-Gibbsian in the familiar
sense that some, but not all, con�gurations are � bad� (that is, they are
points of discontinuity), while it turns out that after a certain later time the
evolved intermediate Gibbs measure becomes �totally bad�; thereafter it has
the surprising property that all spin con�gurations are discontinuity points.

This last property is something which will not happen for plus and minus
states. For those measures, although after a �rst transition time they also
become non-Gibbsian, after the second transition time they become Gibbsian
again.

Although the proofs are provided for the Cayley tree, we will indicate why
these results should be expected to hold more generally. Results are presented
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both in zero and non-zero external �elds.
Analysis done in this chapter illustrates (again) how di�erent models on

trees are as compared to models on regular (amenable) lattices.

3.1 Preliminaries

3.1.1 Cayley tree

As before let the state-space S be {−1,+1}. We ask from the graphG = (V , E)
to satisfy the following three properties.

(i) Local �niteness. For each i ∈ V the set

∂i = {j ∈ V : a bond {i, j} ∈ E} (3.1)

of all neighbours of i is �nite.

(ii) Connectedness. For any two sites i, j ∈ V there is a sequence i =
i0, i1, . . . in = j in V such that bonds {ik1 , ik} ∈ E for all 1 ≤ k ≤ n.
Such a sequence is called a path from i to j.

(iii) Tree property. For all i, j ∈ V , there is only one path from i to j.

When moreover for an integer d ≥ 1 the cardinality of the set ∂i is d + 1 for
all i ∈ V , the graph G is called a Cayley tree or Bethe lattice of degree d and
denoted by CT(d). Such a tree on a plane could be viewed as in Figure 3.1.

Figure 3.1: Two embeddings of CT(3) into the plane

In this Chapter we shall be concerned with the Gibbs properties of a
Gibbs measure living on a Cayley tree when evolved in time according to an
independent spin-�ip dynamics.
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3.1.2 Ising model on Cayley trees

Let CT(d) be a Cayley tree for some d ≥ 1, that is the unique connected tree

with |∂i| = d+ 1 for all i ∈ CT(d). Let Ω = {−1,+1}CT(d), endowed with the
product topology. Elements in Ω are denoted by σ. A con�guration σ assigns
to each vertex i ∈ CT(d) a spin value σi = ±1. Denote by S the set of all
�nite subtrees of CT(d). For Λ ∈ S and σ ∈ Ω we denote by σΛ the restriction
of σ to Λ, while ΩΛ denotes the set of all such restrictions. Let Λ ∈ CT(d) be
any set, �nite or in�nite. We denote by EΛ its set of edges and by VΛ its set
of vertices.

Let now Λ ∈ S, hence �nite. We will consider the nearest-neighbour Ising
model on the tree. The �nite-volume Gibbs measure on any �nite subtree
Λ for an Ising model in an inhomogeneous external �eld, given by �elds hi
at sites i, boundary condition ω, at inverse temperature β, is de�ned by the
following Boltzmann-Gibbs distribution

γωΛ(σΛ) =
1

Zω
Λ(β, {hi}i∈VΛ

)
exp

β
∑
{i,j}∈EΛ

σiσj +
∑
i∈VΛ

hiσi +
∑
{i,j}

i∈VΛ,j∈VΛc

σiωi


(3.2)

In�nite-volume Gibbs measures are de�ned by having their conditional prob-
abilities of �nite-volume con�gurations, conditioned on the con�gurations out-
side the volume, of this Gibbsian form, see e.g. [11, 26]. In equation form we
require that for all volumes Λ and con�gurations σΛ µ satis�es

µ(σΛ) =

∫
γωΛ(σΛ)µ(dω) (3.3)

This equation is the DLR-equation as explained in (2.6).
The in�nite-volume Gibbs measures are parametrized by the external mag-

netic �elds (in most of what follows we will consider a homogeneous �eld h0),
and by the inverse temperature β ≥ 0. This will lead us to consider �nite-
volume Gibbs measures with this same homogeneous �eld plus a possibly
di�erent boundary �eld. We put β(1) =∞ and, for d > 1,

β(d) = arccoth d =
1

2
ln
d+ 1

d− 1

h(β, d) =

[
d arctanh

(
dw − 1

dw̄ − 1

) 1
2

− arctanh

(
d− w̄
d− w

) 1
2

]
Iβ>β(d),

(3.4)

where w = tanh β = w̄−1.
It is known [26, see Chapter 12], that if β > β(d) and |h0| ≤ h(β, d),

then the system exhibits a phase transition. Throughout this chapter we will
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assume |h0| < h(β, d), β > β(d), and d > 1, whenever the opposite is not
indicated. This condition ensures the existence of three homogeneous phases
µ−, µ], µ+ (−,+, and ] upper-scripts correspond to minus, plus, and free
boundary conditions) of the model at time t = 0.

These phases are extremal in the set of invariant in�nite-volume Gibbs
measures; µ+ and µ− are also extremal in the set of all in�nite-volume Gibbs
measures, whereas µ] becomes non-extremal in this set below a certain temper-
ature strictly smaller than the phase transition temperature [5, 31]; however,
this second transition will not concern us here.

Let Λn be the Cayley tree with n generations and Λn−1 = Λn \ ∂Λn the
(sub-) Cayley tree with n − 1 generations, where ∂Λn stands for the inner
boundary of Λn. It is a known result for the Ising model on trees that the
marginal on Λn−1 of the �nite-volume Gibbs measure on Λn is a �nite-volume
Gibbs measure on Λn−1, with a possibly di�erent external magnetic �eld at the
boundary. See Appendix A for how this works out in marginalizing in�nite-
volume Gibbs measures by using boundary laws.

Marginalizing on Λn−1, that is to a tree of one generation less, leaves us
with a �nite-volume Gibbs measure on Λn−1, parametrized by the following
external �elds

i ∈ ∂Λn−1, hi = h0 + dϕ(hn),

i ∈ Λn−2, hi = h0

(3.5)

where ϕ(x) = atanh(tanh β tanhx).
Thus, summarising, taking the marginal of an Ising model Gibbs measure

on a tree with n generations with homogeneous boundary �eld hn results in
an Ising model on an (n − 1)-generation tree with a homogeneous boundary
�eld hn−1. The map from hn to hn−1, (3.5), has three �xed points h+, h]

and h−. (Equivalently, one could consider the map from the magnetisation at
generation n to the magnetisation at generation n − 1, which again has the
corresponding three �xed points m+,m] and m−.) Whereas h+ and h− are
stable, h] is an unstable �xed point which implies that weak positive boundary
conditions will result in a plus state, once one is far enough from the boundary.
In other words, the phase transition is robust [50].

These three �xed points determine the three homogeneous extremal in-
variant in�nite-tree Gibbs measures mentioned above.

3.2 Main questions

With slight abuse of notation we de�ne a set G(β, h0) as a set of all Gibbs
measures of the Ising model with an inverse temperature β and external �eld
h0. Let PI(Ω,A) denote the set of all µ ∈ P(Ω,A) which are invariant under
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all the graph automorphisms (translations, rotations, re�ections etc). Let
µ ∈ GI(β, h0), where GI(β, h0) = G(β, h0)

⋂
PI(Ω,A).

We aim to study here the time-dependence of the Gibbsian property of
the tree Gibbs measure µ?, for ? ∈ {+,−, ]}, under an in�nite-temperature
Glauber dynamics (or, equivalently, under independent spin-�ip dynamics).
As de�ned in Section 2.5 of Chapter 2, this dynamics is the stochastic evol-
ution S(t) which is obtained by having independent spin �ips at each vertex
at a certain given rate. In other words, we want to investigate whether or not
µ?S(t) =: µ′t is a Gibbs measure at a given time t > 0.

By assumption the initial measure µ is a Gibbs measure. This immediately
guarantees the non-nullness of the measure µ?S(t) for all t (including t = 0).
It will thus su�ce to study the question whether the transformed measure is
quasilocal or not. This study will generally refer to a check-up of correctness
of (2.10) when an appropriate choice of ξ1 and ξ2 is done. We will slightly
modify that inequality to match our needs and the graph structure.

To study the question whether the transformed measure µ′t stays Gibbs we
consider the joint two-layered distribution ν on (σ, η), where the initial spins
σ are distributed according to µ, and the evolved spins η according to µ′t. It
can be viewed as a Gibbs measure on SÆ with Æ = CT(d)∪CT(d) consisting
of two �layers� of CT(d). Formally, the Hamiltonian of νt is

Hνt(σ, η) = Hµ(σ)− lnKt(σ, η), (3.6)

where Kt(σ, η) is the transition kernel of the dynamics. We consider inde-
pendent spin-�ip dynamics, so

lnKt(σ, η) =
∑

i∈CT(d)

1

2
ln

1 + e−t

1− e−t
σiηi (3.7)

Let us denote

ht =
1

2
ln

1 + e−t

1− e−t
(3.8)

Remark 3.2.1. Here we will �nd for µ]S(t), by making the choices ξ1 = +1,
ξ2 = −1, that in any open neighborhood of η̄ two positive-measure sets exist,
on which the limits di�er, however, in contrast to amenable graphs, these sets
are not open (which allows di�erent behaviour between di�erent evolved Gibbs
measures µ] and µ+ as regards their Gibbsianness, something which is excluded
on amenable graphs such as Zd). In other words we will show a µ′-essential,
although non-strong, discontinuity.

As explained in the Appendix A we have the representation of the condi-
tional probabilities of the time-evolved measure µ′t of the form

µ′t(η0|η∆\0) =

∫
µ[η∆\0](dσ0)Kt(σ0, η0) (3.9)
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with the perturbed η-dependent measure on spin con�gurations µ[ηΛ\0](dσ) ≡
µ[ηΛ\0, η0 = 0](dσ) whose �nite-volume marginals look like

µ[η∆′ ](σ∆′) = C exp

β ∑
(i,j)∈Λ′

σiσj +
∑

i∈∆′\∂∆′

hiσi +
∑
i∈∂∆′

h̃iσi

 , (3.10)

where

hi = h0 + ηih
t,

h̃i = h0 + ηih
t + h?

(3.11)

where the external �elds at the boundaries are given in terms of h?. This
value represents the �xed point of the recursion relation with homogeneous
�eld h0, (3.5), and is bijectively related with the starting measure µ?. More
generally, such a representation is always valid if the initial measure is a
Markov chain on the tree. Markov chains can be described by boundary laws,
and conditional probabilities of in�nite-temperature time evolutions, are, for
�nite-volume conditionings, described by boundary laws obeying recursions
which are local perturbations of those of the initial measure, see Appendix A
and [26].

In what follows we choose ξ1 = (+) and ξ2 = (−). With this notation, for
non-Gibbsianness it is enough to prove that, at η̄, there exists an ε > 0 such
that, for all ∆ there exists ∆′ ⊃ ∆ such that∣∣µ[η̄∆\0, ξ

1
∆′\∆](σ0)− µ[η̄∆\0, ξ

2
∆′\∆](σ0)

∣∣ > ε (3.12)

3.3 Model in zero �eld

3.3.1 Finite-volume marginals and η-dependent �elds

To prove the non-Gibbsianness of µ′t, we will have to consider the phase trans-
ition behaviour of the Gibbs measures on the �rst layer in various external
�elds. These external �elds are determined by the various conditionings, as
well as by the choice of the initial Gibbs measure.

Let k,m be integers with k < m, let us denote ∆′ = Λm and ∆ = Λk. Con-
sider �rst the case h0 = 0. Marginalizing on Λm leaves us with a �nite-volume
Gibbs measure on Λm denoted by νh

?

Λm
and parametrized by the following

external �elds

i ∈ ∂Λm, hi = ηih
t + dϕ(h?),

i ∈ Λm−1, hi = ηih
t (3.13)
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In order to apply the (marginalisation) procedure to the η-dependent �nite-
volume Gibbs measure νh

?

Λm
on Λm we need to identify the role played by η.

It can be shown that taking the marginal on Λm−1 of the �nite-volume Gibbs
measure on Λm (summing out the spin σ ∈ ∂Λm) gives us a �nite-volume
Gibbs measure on Λm−1 with an external �eld at the boundary equal to

hi = ηih
t +
∑
l∼i

ϕ(ηlh
t) (3.14)

Here the sum is over the nearest neighbours l ∈ Λm.
The equation (3.14) tells us how the con�gurations η∂Λm will a�ect the

�eld acting on i ∈ ∂Λm−1 after having taken a one-generation marginal.
The con�guration ηΛm\Λk will govern the value of the �elds at ∂Λk, when

the marginal on Λk is taken. Let us see how:

� ηΛm\Λk = +

i ∈ ∂Λm, h
(0)
i = ht + dϕ(h?),

after summing out the m-th generation we have

i ∈ ∂Λm−1, h
(1)
i = ht + dϕ(h

(0)
i ),

i ∈ ∂Λj, k < j < m− 1, h
(j)
i = ht + dϕ(h

(j−1)
i )

(3.15)

� ηΛm\Λk = −

i ∈ ∂Λm, h
(0)
i = −ht + dϕ(h?),

after summing out the m-th generation we have

i ∈ ∂Λm−1, h
(1)
i = −ht + dϕ(h

(0)
i ),

i ∈ ∂Λj, k < j < m− 1, h
(j)
i = −ht + dϕ(h

(j−1)
i )

(3.16)

Note that the above-chosen η-conditioning on the annulus makes the recur-
sion homogeneous. Choosing m big enough guarantees that the recursions
(3.15), (3.16) approach their time-dependent �xed points; we denote them
respectively by H±t , H

]
t and h

±
t , h

]
t, see Figure(3.2).

Assume that we start at time t = 0 with the measure µ], then h? = h] = 0.
It ensures that the recursions (3.15), (3.16) will approach, respectively, H+

t >
0 and h−t = −H+

t < 0. H+
t represents the biggest stable �xed point for the

η = + recursion (3.15), and h−t the smallest stable �xed point for the η = −
recursion (3.16). The fact that both recursions have as a starting point the
unstable �xed point h] = 0 guarantees that the plus conditioning will drag
the �eld towards H+

t and the minus one towards h−t . This will not be the case
for µ+ and µ− as we will see later.
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Figure 3.2: Fixed points1

The (ηΛm\Λk = ±)-dependent marginals on Λk, of the measure on Λm, are
�nite-volume Gibbs measures parametrized by the following �elds: for the
case (ηΛm\Λk = +)

i ∈ ∂Λk, h
+,(0)
i = ηih

t + dϕ(H+
t ),

i ∈ Λk−1, h
(0)
i = ηih

t
(3.17)

and in the case (ηΛm\Λk = −)

i ∈ ∂Λk, h
−,(0)
i = ηih

t + dϕ(h−t ),

i ∈ Λk−1, h
(0)
i = ηih

t
(3.18)

Remark 3.3.1. Notice that only the �elds at ∂Λk depend on ηΛm\Λk and not
the ones acting on the interior. We emphasize that the broadcasting is absorbed
by the boundary and has no direct in�uence on the interior.

Now we investigate how the recursion relation h
(j)
i = ηih

t+
∑

l∼i ϕ(h
(j−1)
l ),

obtaining by summing out generations in Λk, will depend on the �xed con�g-
urations ηΛm\Λk = ±, namely on the �elds H+

t , h
−
t acting on the generation

∂Λk+1. We emphasize that the annulus con�gurations determine the starting
point of the recursion. We will also show how the aforementioned recursion
relation can be bounded from below if we are coming from ηΛm\Λk = +, and
from above for ηΛm\Λk = −. Furthermore these bounds will turn out to be
uniform with respect to ηΛk and with respect to the number of iterations j.

1�Longum est iter per praecepta, breve et e�cax per exempla�, Seneca.



Tree models 25

Lemma 3.3.2. Given the recursion relation h
(j)
i = ηih

t +
∑

l∼i ϕ(h
(j−1)
l ) we

have : h
(j)
i ≥ h+

t > 0, for all i and j, if h
(0)
i = H+

t ; and h
(j)
i ≤ H−t = −h+

t ,

for all i and j, if h
(0)
i = h−t . Here h+

t is the �xed point for the homogeneous
recursion h(j) = −ht + dϕ(h(j−1)) with h(0) = H+

t .

Proof : Fixed points of the discussed recursion relation are given in the
picture (3.2). The proof follows by induction. Take �rst the case h

(0)
i = H+

t .

Naturally H+
t > h+

t , so h
(0)
i > h+

t for all i. If we now assume h
(j)
i > h+

t for all

i, then h
(j+1)
i = ηih

t +
∑

l∼i ϕ(h
(j)
l ) > −ht + dϕ(h+

t ) = h+
t . The case h

(0)
i = h−t

follows by symmetry; the corresponding recursion relation will be bounded
from above by H−t .

�

3.3.2 Results: total badness of the evolved µ]

Let t2 be de�ned by

ht2 = h(β, d) (3.19)

Theorem 3.3.3. If σ is distributed according to µ], then after time t2 all
con�gurations η are bad con�gurations (points of essential discontinuity) for
the transformed measure µ]S(t).

Remark 3.3.4. The main idea is as follows: If the plus con�guration is bad
(and by symmetry the same is true for the minus con�guration), then all con-
�gurations η̄ will be bad. This is because if minus boundary conditions give a
minus magnetisation for the conditioned σ-spin at the origin, and plus bound-
ary conditions a positive one, the same holds for all η̄ (due to FKG e.g.). So
take η̄ to be plus. Choosing ξ to be plus in a large enough annulus Λ′ \ Λ and
integrating the outside with µ] will lead to an e�ective plus boundary condition
at Λ. The reason is that the positive magnetisation m+is an attractive �xed
point for the recursive relation, and any positively magnetised �eld in Λ′ will
lead into its domain of attraction. The same is true for the negative magnet-
isation. As there are di�erent magnetisations with plus and minus boundary
conditions, even in the presence of a weak plus �eld (the �eld is plus due the η̄
being plus), the choice of plus or minus in the annulus in�uences the expected
magnetisation at the origin, however big Λ is.

Proof. The de�nition of t2, (3.19), will assure that we are in the phase-
transition regime for the transformed system (for t ≥ t2). Making use of
Lemma 3.3.2, the value of ε we are after, in order to prove the essential
discontinuity, is given by ε = 2 tanh(h+

t ). This value corresponds to taking,
for the measure coming from ηΛm\Λk = +, the smallest positive �eld along all
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the k − 1 iterations, namely h+
t . The �eld at the origin is given by h(k) =

η0h
t + (d+ 1)φ(h(k−1)) and could be roughly bounded from below

h(k) = η0h
t + (d+ 1)φ(h(k−1)) ≥ −ht + dφ(h+

t ) = h+
t

Thus the corresponding single-site measure is given by ν+(σ0) = eh
+
t σ0

eh
+
t +e−h

+
t
, so

µ[η̄Λk(+)Λm\Λk ](σ0) ≥ tanh(h+
t )

Analogously for the measure coming from ηΛm\Λk = −, we take the biggest
negative value along all the k − 1 iterations, that is H−t = −h+

t , therefore

ν−(σ0) = e−h
+
t σ0

eh
+
t +e−h

+
t
and

µ[η̄Λk(−)Λm\Λk ](σ0) ≤ tanh(−h+
t )

For ε = 2 tanh(h+
t ) the inequality (3.12) holds. Let us notice that ε is

chosen uniformly with respect to η, thanks to the uniform bounds appearing
in Lemma 3.3.2. This ensures the µ′-essential discontinuity in any point.

�

3.3.3 Results: di�erence between di�erent phases

As mentioned before, the previous argument does not hold for µ+ and µ−. We
treat here only the µ+ case, the µ− case is completely symmetrical. So, in case
we start with the plus measure, even conditioning on a minus con�guration
in the annulus, due to the plus in�uence from the boundary will lead to a
measure on Λk that looks like the plus measure in a negative �eld.

Lemma 3.3.5. Given the starting measure µ+, the �elds acting on ∂Λm for
the marginal measure on Λm, which are given by h

(0)
i = ηih

t+dφ(h+), i ∈ ∂Λm,
satisfy the following inequality

ηih
t + dφβ(h+) > h]t(d, β) (3.20)

for all d > 1, β > β(d) and for all t ∈ [t2,∞).

Proof : Let t2 be as in (3.19). It su�ces to show that dϕβ(h+(d, β)) >

h]t(d, β) + ht in the aforementioned region of parameters. First of all we note
that the expression on the right-hand side is zero in the limit t ↑ ∞, and it
is a decreasing function of t. So in order to prove the lemma it is enough to
show

dϕβ(h+(d, β)) > h]t2(d, β) + ht2 (3.21)
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Using that h]t2(d, β) is a �xed point for the (−) recursion at t = t2, we arrive
at

dϕβ(h+(d, β)) > dφβ(h]t2(d, β)), (3.22)

Note that h]t2(d, β) = hc(d, β) > 0, where hc(d, β) is a tangent point to dϕ(x)
such that dϕ′(hc(d, β)) = 1. We show that h+ > hc(d, β). In fact we know
that dϕ(h+)− h+ = 0. Using the mean-value theorem together with the fact
that dϕ(0) = 0, we write dϕ′(ζ)h+ − h+ = 0. It implies that ζ is such that
dφ′(ζ) = 1. Using then the fact that dϕ′ is a decreasing function it follows
that the domain of ζ, namely (0, h+) has to contain hc(d, β); so h+ > hc(d, β).
Using then the monotonicity of the functions ϕβ the claim is proved.

�

Theorem 3.3.6. If σ is distributed according to µ+, then after time t2 all
con�gurations η are good con�gurations for the transformed measure µ+S(t).

Proof. Based on Lemma 3.3.5, choosing Λm big enough we make sure that
the recursion relation coming from the �xed �+�-annulus Λm\Λk will approach
its �xed value H+

t , so do we for the �xed �−�-annulus to approach its �xed
value h+

t . Then the magnetic �elds for the �nite-volume Gibbs measure on
Λk are respectively given by

i ∈ ∂Λk, h
+,(0)
i = ηih

t + dϕ(H+
t ),

i ∈ Λk−1, h
(0)
i = ηih

t
(3.23)

and

i ∈ ∂Λk, h
−,(0)
i = ηih

t + dϕ(h+
t ),

i ∈ Λk−1, h
(0)
i = ηih

t
(3.24)

De�ne T j = maxi(h
+,j
i − h−,ji ). This maximum is always positive, as an

inductive argument shows. We are about to prove that ∃δ ∈ (0, 1) such that
T j ≥ (1− δ)T j+1; this is equivalent to say that limj↑∞ T

j = 0.

T j+1 = max
i

(h
+,(j+1)
i − h−,(j+1)

i ) = max
i

[
1

d

∑
l∼i

(
dϕ(h

+,(j)
l )− dϕ(h

−,(j)
l )

)]

= max
i

[∑
l∼i

dϕ′(cl)

d

(
h

+,(j)
l − h−,(j)l

)]
≤ (1− δ) max

i

[
1

d

∑
l∼i

(
h

+,(j)
l − h−,(j)l

)]

≤ (1− δ) max
i

max
l∼i

(
(h

+,(j)
l − h−,(j)l )

∑
l∼i

1

d

)
= (1− δ) max

i
max
l∼i

(
h

+,(j)
l − h−,(j)l

)
= (1− δ)T j
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We used the mean-value theorem together with the fact that dϕ′(x) < 1 for
x > hc(d, β).

�
For σ distributed according to µ], we will show the existence of an inter-

mediate time interval, where some, but not all, con�gurations are bad for µ′.
Theorem 3.3.11 will express this. We will show that the all plus and all minus
con�gurations are good for µ]S(t) at all times in (0, t2). Moreover we will im-
pose a condition on the �eld ht (therefore on t itself), such that it guarantees
the existence of at least one bad con�guration for µ]S(t).

We will �nd a t1, which is larger than the minimal value of time for which
this condition is satis�ed. This value t1 will turn out to be strictly less than t2.
This will guarantee that t1 is small enough so that the transformed measure,
conditioned on an all plus or all minus η will not exibit a phase transition.

Remark 3.3.7. Note that this implies that at the same time t2 the interme-
diate state has a transition to a totally non-Gibbsian regime, where all spin
con�gurations are discontinuity points, whereas the plus and minus state have
a transition to a Gibbsian regime, without discontinuity points.

Lemma 3.3.8. If σ is distributed according to µ] then for all t ∈ (0, t2) the
η = + and η = − con�gurations are good con�gurations for the transformed
measure µ]S(t).

Proof. As was shown before, the recursions (3.15), (3.16) (related to the
annuli) give us respectively H+

t and h−t . Let �rst η be the plus con�guration.

In this case h
+,(j)
i = H+

t for all i and j. In other words the �eld will stick to the
�xed point value along the iterations. Using an inductive argument we show
that h

−,(j)
i = h−,(j); that's to say that it does not depend on i. Based on that,

it is straightforward to get a monotonicity property for h−,(j), namely that
h−,(j+1) > h−,(j) for all j. Indeed h−,(j+1) = ht + dφ(h−,(j)) > h−,(j). The last
inequality follows from the fact that dφ(x) > x− ht for all x ∈ [h−t , H

+
t ), due

to the chosen range of t. Recalling that for t ∈ (0, t2) the recursion relation
h−,(j+1) = ht + dφ(h−,(j)) has only one �xed point, namely H+

t , the lemma is
proven for η = +. The η = − case follows by symmetry.

�

Remark 3.3.9. The chosen range of times enables the existence of a unique
�xed point for each of the recursions (3.15), (3.16), independently of h?. This
means that the �elds we obtain at ∂Λk depend on the annuli, but they do
not depend on the exterior Λc

m. For this reason Lemma 3.3.8 applies to σ's
distributed according to µ+ and µ− too.

For the sake of clarity, let us recall that h+ indicates the positive stable
�xed point for the recursion (3.5) with h0 = 0.
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Lemma 3.3.10. Let t1 be given by

ht1 = h+ (3.25)

then t1 ∈ (0, t2)

Proof. Recalling equation (3.8), the fact that t1 lies in the interval (0, t2)
is guaranteed by the truth of the inequality h(d, β) < dϕ(h+), for β > β(d)
and d > 1. Indeed

h(d, β) < datanh

(
w

(
d− w̄
d− w

) 1
2

)
= datanh (w tanh(hc)) = dϕ(hc)

(3.26)

Knowing that hc < h+, the monotonicity of the function ϕ concludes the
proof.

�
De�ne the �alternating� con�guration ηA to be ηAi = (−1)n for i ∈ ∂Λn and

n ∈ N, i.e. all vertices at each generation have the same sign di�erent from
the sign of the previous and the next generations. Naturally the con�guration
for which −ηAi = (−1)n is also an �alternating� one. Let us call h

±,(j)
i the �eld

at the vertex i ∈ ∂Λk−j after (j + 1) applications of the recursion formula
(3.14), starting respectively at H+

t or h−t . The particular structure of the
�alternating� con�guration makes the �elds homogeneous at each generation;
i.e., h

±,(j)
i = h±,(j), for all i ∈ ∂Λk−j.

Theorem 3.3.11. If σ is distributed according to µ], and t1 is given by (3.25),
then for all t ∈ [t1, t2) some, but not all, con�gurations η are bad for the
transformed measure µ]S(t).

Proof. Making use of Lemma 3.3.8, Lemma 3.3.10, to prove the theorem it
is enough to �nd a particular con�guration η that will be bad for all t ∈ [t1, t2).
The �alternating� con�gurations will be shown to be bad for all t ≥ t1, in other
words they transmit the in�uence of the annulus to the origin, no matter how
�distant� the annulus and the origin are. As remarked before, h

±,(j)
i associated

to the ηA con�gurations depend only on j, and we call the corresponding values
h±,(j). Without loss of generality let us assume ηAi = +, for i ∈ ∂Λk. By an
inductive argument, based on the hypothesis t ∈ [t1, t2) (which in terms of
�elds means ht ≤ h+), and on the particular structure of the con�guration
ηA, we show that h+,(j) ≥ h+ and h−,(j) ≤ 0, for all j even, namely for those j
which relate to generations at which ηA is set to be +, and that h−,(j) ≤ −h+

and h+,(j) ≥ 0 for j odd. This will imply h+,(j)−h−,(j) ≥ h+ for all j. Consider
the case j even.
For j = 0 we have:
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h+,(0) = H+
t ≥ h+, h−,(0) = ht + dϕ(h−t ) ≤ 0

Both inequalities hold, because H+
t is a decreasing function of t whose lower

bound is given by h+.
Assuming the statement is true for j, let us see that it holds for j+ 2. We

focus �rst on h+,(j+2).

h+,(j+2) = ht + dϕ(h+,(j+1)) = ht + dϕ(−ht + dϕ(h+,(j))), (3.27)

where the second equality is justi�ed by the particular structure of the altern-
ating con�guration. Using the assumption h+,(j) ≥ h+ and the monotonicity
of φ we arrive at

h+,(j+2) ≥ ht + dϕ(−ht + dϕ(h+)) (3.28)

The fact that 0 ≤ −ht + h+ ≤ h+ ensures that dϕ(−ht + h+) ≥ −ht + h+.
This concludes the proof for h+,(j).
For h−,(j+2) we have:

h−,(j+2) = ht + dϕ(h−,(j+1)) = ht + dϕ(−ht + dφ(h−,(j))) (3.29)

Using always the assumption h−,(j) ≤ 0, the monotonicity of ϕ, and the as-
sumption ht ≤ h+, which guarantees ht ≤ dφ(ht), we obtain

h−,(j+2) ≤ ht + dϕ(−ht) ≤ 0 (3.30)

The case j odd is analogous.
�

Remark 3.3.12. The above result also applies to the evolved plus and minus
measures. Indeed the alternating con�guration displays a strong discontinuity
here, whereas the above analysis shows that for large times all con�gurations
display a µ]S(t)-essential but non-strong discontinuity. Whether the t1 used
above is optimal in any sense is not known. We conjecture that it may be for
the intermediate state, but not for the plus or minus states.

3.4 Non-zero initial �eld: shifted view

Recall that |h0| < h(d, β), β > β(d) and d > 1; these conditions guarantee
existence of three homogeneous phases for the original measure; we denote
them, though not fully consistent with the notation we have been using so
far, µ+

h0
, µ−h0

, and µ]h0
, to emphasize their dependence on h0. We show that

the previous results found for h0 = 0 will also apply to the case h0 6= 0 but for
di�erent time values. Let t+(h0), t−(h0) be given by the following equations:

h0 + ht+ = h(d, β),

h0 − ht− = −h(d, β)
(3.31)
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Call

t2(h0) = min {t+(h0), t−(h0)} ,
t3(h0) = max {t+(h0), t−(h0)}

(3.32)

Depending on the sign of the initial �eld, t+(h0) might be either bigger or
smaller then t−(h0), as follows from (3.8). Nevertheless the de�nitions of
t2(h0), and t3(h0) will always assure t2(h0) < t3(h0) (e.g. for h0 < 0 the order
is t2(h0) = t+ < t− = t3(h0)).

The time t2(h0) indicates the time value for which the dynamic �eld ht,
taken in the opposite direction to h0, will �rst reach a value which guarantees
phase transition for the conditioned transformed measure. The time t3(h0)
refers to the analogous value, but for ht taken with the same sign to h0.

Suppose w.l.o.g. that h0 < 0. Note that for h0 negative the magnetization
corresponding to µ]h0

is positive, [26, see Chapter 12]. For t > t3(h0) there

exist three �xed points for the (−)-recursion h(k+1) = h0 − ht + dφ(h(k)),
namely two stable ones h−t (h0), h+

t (h0), and an unstable h]t(h0). The existence
of several �xed points makes the convergence to them be dependent on the
starting point. In particular the recursion will take us to h+

t (h0) if and only
if the starting point, h(k=0), lies to the right of the unstable one, that is when
h(k=0) > h]t(h0); it will take us to h−t (h0) if and only if h(k=0) < h]t(h0), and
will stick to h]t(h0) if and only if h(k=0) = h]t(h0).

Given that t3(h0) > t2(h0), the assumption t > t3(h0) ensures the existence
of three �xed points also for the (+)-recursion h(k+1) = h0 + ht + dφ(h(k));
they are denoted by H±t (h0), and H]

t (h0).
Assume that we start at time t = 0 with the measure µ]h0

, then the starting
point for the (±)-recursions is h? = h](h0) > 0. However, for the chosen range
of time, t > t3(h0), it can be shown that h](h0) will always lie to the right of
H]
t (h0) and always to the left of h]t(h0). So the theorem reads:

Theorem 3.4.1. If σ is distributed according to µ]h0
, then after time t3(h0) all

con�gurations η are bad con�gurations for the transformed measure µ]h0
S(t).

�
Analogously to the analysis for h0 = 0, the former result will not hold for

σ distributed according to µ±h0
.

Two other results, obtained in the previous section, have equivalents for
non-zero external �eld.

Lemma 3.4.2. If σ is distributed according to µ]h0
, then for all t ∈ (0, t2(h0))

the η = + and η = − con�gurations are good con�gurations for the trans-
formed measure µ]h0

S(t).

�
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Theorem 3.4.3. If σ is distributed according to µ±h0
, then after time t3(h0) all

con�gurations η are good con�gurations for the transformed measure µ±h0
S(t).

�

Remark 3.4.4. It is worth remarking that the strict inequality t2(h0) < t3(h0),
always holding for h0 6= 0, implies the non-emptiness of the interval of times
[t2(h0), t3(h0)). A similar result to the one given in Theorem 3.3.11 holds in
the case h0 6= 0, namely that for t ∈ [t2(h0), t3(h0)) some, but not all, con�g-
urations are bad. In fact, it can be shown, for example in case h0 < 0, that the
time t2(h0) corresponds to the time for which the plus con�guration becomes
bad, while for all times t < t3(h0) the minus con�guration will remain good.
In case h0 > 0, as symmetry may suggest, the time t2(h0) will be the threshold
for the minus con�guration to become bad, while the plus con�guration will be
good till t = t3(h0).

Encouraged by the many analogies between the h0 = 0 case and the h0 6= 0
case, one might ask what one can say about the (h0 6= 0)-equivalent of the
time t1, (3.25). Pursuing the former, let us de�ne the values of times t̂+, t̂−
by the following equalities

ht̂+ = h0 + dφ(h+(h0))− h](h0),

−ht̂− = h0 + dφ(h−(h0))− h](h0)
(3.33)

and de�ne further
t1(h0) = max

{
t̂+, t̂−

}
(3.34)

The Figure 3.3 helps to understand the role played by the di�erent times
so far de�ned.

It can be shown that t1(h0) < t3(h0) for |h0| < h(d, β). Nonetheless the
relation between time t1(h0) and t2(h0) is not trivial as we will show. The next
lemma formalizes that for all time t ≥ t1(h0) the �alternating� con�gurations
are bad for σ distributed according to µ]h0

.

Lemma 3.4.5. If σ is distributed according to µ]h0
, and t1(h0) is given by

(3.34), then for all t > t1(h0) �alternating� con�gurations are bad for the
transformed measure µ]h0

S(t).

Proof. The proof follows the same route taken in the proof of The-
orem(3.3.11) with some modi�cations on the bounds. Nontheless we reckon
it is instructive to sketch the main points at least for h0 < 0. For t > t1(h0)
an inductive argument leads to the following bounds:

for even j, h+,(j) ≥ h+(h0) and h−,(j) ≤ h](h0),
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Figure 3.3: Times t1, t2, and t3

for odd j, h+,(j) ≥ −h](h0) and h−,(j) ≤ −h+(h0),

therefore h+,j − h−,j ≥ h+(h0)− h](h0) for all j.
�

The previous lemma together with Remark 3.4.4 shows that if σ is dis-
tributed according to µ]h0

, then for all t ∈ [t1(h0), t3(h0)) some, but not all,
con�gurations are bad. There are then two di�erent time intervals where
some, but not all, con�gurations are bad. We will not leave the reader won-
dering how these two intervals relate. We will show the existence of a critical
value hc0 such that for |h0| > hc0 we have [t1(h0), t3(h0)) ⊂ [t2(h0), t3(h0)), for
|h0| < hc0 the inclusion is reversed, namely [t1(h0), t3(h0)) ⊃ [t2(h0), t3(h0)),
and for |h0| = hc0 the two intervals coincide.

Remark 3.4.6. In the small-�eld regime |h0| < hc0 we have that the �altern-
ating� con�guration becomes bad before the all plus and the all minus con�g-
urations. In that case, the dominant e�ect is that the alternating character of
the conditioning provides some cancellations, just as in the zero-�eld case.

In the other regimes we can just say what follows from t1(h0) < t3(h0),
i.e. that the �alternating� con�gurations become bad before the homogeneous
con�guration with all η's aligned with h0, that is η = sign(h0). The impossib-
ility to state something more in the other regimes is due to the fact that t1(h0)
is not a �sharp� threshold for the �alternating� con�gurations to become bad.
However, in this case having a �bad� con�guration, one may need to counteract
the e�ect of the �eld, thus in a positive external �eld, the minus con�guration
becomes bad at an earlier time than the alternating one.
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To explore the latter inclusions we need to compare the values t1(h0) and
t2(h0), or equivalently ht1(h0) and ht2(h0). Consider the di�erence between the
�elds

f(h0) := ht1(h0) − ht2(h0) (3.35)

Based on the de�nitions of the times, (3.34), (3.32) it turns out that the
function f is even. So we might focus on its behaviour only for negative
values of the initial �eld h0. For such values of the �eld the function has the
following form

f(h0) = h+(h0)− h](h0) + h0 − h(d, β) (3.36)

First of all the limit values of f in the interval (−h(d, β), 0) are given by

lim
h0↓−h(d,β)

f(h0) = −2h(d, β),

lim
h0↑0

f(h0) = h+ − h(d, β)

Note that the second limit value is positive, as has been explained in the proof
of Lemma 3.3.5, while the �rst one is negative by the de�nition of h(d, β), and
by (3.4). Taking now the derivative of f with respect to h0 we obtain

f ′(h0) = (h+(h0))′ − (h](h0))′ + 1 (3.37)

Using the only thing we know about h+(h0), h](h0), namely that they are
�xed points for the recursion hk+1 = h0 +dφ(hk), the following equalities turn
out to hold

(h+(h0))′ =
1

1− dφ′(h+(h0))
,

(h](h0))′ =
1

1− dφ′(h](h0))

Because h](h0) < hc(d, β) and h+(h0) > hc(d, β), the monotonicity of dφ′

assures that f ′(h0) > 0 for all h0 ∈ (−h(d, β), 0). Therefore the existence
and uniqueness of hc0 is guaranteed by an application of the intermediate-
value theorem. We point out that the function f is not di�erentiable in
h0 = 0. Indeed, being f an even function and limh0↑0 f

′(h0) > 0 clarify the
discontinuity.

We would like to remark that the case h0 = 0 might be obtained from
the previous analysis by taking the limit h0 ↑ 0. Indeed limh0↑0 t1(h0) = t1,
limh0↑0 t2(h0) = limh0↑0 t3(h0) = t2.
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3.5 Conclusions and probable extensions

This chapter shows that the Gibbs-non-Gibbs transition on trees has a num-
ber of di�erent aspects, as compared to that on regular lattices. In particular,
that di�erent evolved Gibbs measures can have di�erent Gibbsian properties.
For the evolved intermediate state there are two transitions, one from being
Gibbsian to being �standard non-Gibbsian� (having some, but not all con-
�gurations bad) and a second transition to a �totally non-Gibbsian� regime
where all con�gurations are bad. Both these properties do not occur in the
more familiar lattice and mean-�eld situations.

For the plus and minus measure there are also two transitions, namely one
after which the evolved measure becomes non-Gibbsian, and some, but not all,
con�gurations become discontinuity points and a second one after which the
measure becomes Gibbsian again; this is the behaviour which on the lattice
occurs for an initial Gibbs measure in an external �eld.

High-temperature dynamics should behave in a similar way as in�nite-tem-
perature dynamics, but although the proofs probably will be messier, qualit-
atively nothing new is expected.

As mentioned in the beginning of the chapter, a Cayley tree is a special
case of trees. Although the regularity property of Cayley trees was intensively
used in our proofs, we reckon these results to be true for general trees. The
instability of the �xed point h] for example corresponds to the phase transition
being robust, which is true in general for Ising models on trees [50]. Also,
the property of plus boundary conditions in a not too strong minus �eld
inducing a positively magnetised state, which was used in the proof that the
plus con�guration was good for the plus state holds quite generally. The
choice of bad con�guration in the intermediate regime may be somewhat tree-
dependent. Moreover, it seems problematical to identify a unique measure µ]

in a �eld (on random Galton-Watson trees for example).
∗ ∗ ∗
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Mean-field models

As has been seen in Chapter 3, even the physically simple transformation of
heating produces non-Gibbsian behaviour. It would even be more interesting
to say something about cooling dynamics. More generally one would like to
study a Gibbs measure µ0 for an initial Hamiltonian H which is subjected to a
Glauber dynamics for another Hamiltonian H̄, which gives rise to a trajectory
µt where t denotes time. Glauber dynamics at low temperatures describes fast
cooling or �quenching�. The question is to understand the behaviour of µt,
and in particular for which times it will be Gibbs. Since this is as yet too
di�cult on the lattice, we present our results for mean-�eld models.

While we give a formal de�nition of a mean-�eld model in the latter part,
informally mean-�eld models can be viewed as the "zeroth-order" approxima-
tion to lattice systems. Physically, the idea of mean-�eld theory has a source
in the idea that one replaces all interactions with a "mean �eld". Quite often,
mean-�eld theory provides a convenient launching point to studying higher-
order approximations (model on trees, e.g.) In general, dimensionality plays
a strong role in determining whether a mean-�eld approach will work for any
particular problem. In mean-�eld theory, many interactions are replaced by
one e�ective interaction. Then it naturally follows that if the �eld or particle
participates in many interactions in the original system, a mean-�eld model
will be more accurate for such a system. This is true in cases of high dimen-
sionality, or when the Hamiltonian includes long-range forces. The Ginzburg
criterion is the formal expression of how �uctuations render mean-�eld theory
a poor approximation, depending upon the number of spatial dimensions in
the system of interest [1]. Investigations for mean-�eld models tend to repro-
duce the lattice results in many situations [37, 52] but often lead to an explicit
knowledge of the parameter regions where Gibbsianness and non-Gibbsianness
occur.

As we discussed in Section 2.4, the Gibbsian property strongly depends
on continuity properties of single-site conditional probabilities. To under-
stand discontinuous behaviour of conditional probabilities for the time-evolved
model at �xed time t one needs to look at the model resulting from the initial
measure at time s = 0 under application of the dynamics in the space-time
region for times s between 0 and t. The hidden phase transitions responsible
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for the non-Gibbsian behaviour occur if there is a sensitive dependence of
the model at time s = 0 obtained from constraining the space-time measure
to certain con�gurations at time s = t. If a small variation of such a con-
straining con�guration leads to a jump in the constrained initial measure it
will (generically) be a bad con�guration for the conditional probabilities of
the system at time t. Small variation means in the lattice case a perturba-
tion in an annulus far away from the origin. Small variation means in the
mean-�eld case a small variation of the magnetization as a real number. In
the independent spin-�ip lattice example of [11] the chessboard con�guration
was a bad one, correspondingly in the independent spin-�ip mean-�eld case
of [36] the con�gurations with neutral magnetization equal to zero were bad
ones for large enough times. Moreover, con�gurations with non-zero magnet-
ization also appeared as points of discontinuity for the limiting conditional
probabilities, in a particular bounded region of the parameter space of initial
temperature and time. This phenomenon was called biased non-Gibbsianness
in [36]. The complete analysis for the mean-�eld independent spin-�ip situ-
ation was possible since the constrained system on the �rst layer could be
understood on the level of the magnetization. The relevant quantities could
be computed in terms of the rate-function for a standard quenched disordered
model, namely the Curie-Weiss random-�eld Ising model with possibly non-
symmetric random-�eld distribution of the quenched disorder.

To deal with the dependent-dynamics case a di�erent route has to be taken
since the dependence of the initial system on the conditioning is more intric-
ate. As we will see, we will need to invoke the path large deviation principle
for the dynamics with temperature β′−1 on the level of magnetizations. We
will then have to minimize a cost functional of paths of magnetizations which
is composed of the rate function along the path and an initial �punishment�
term, which depends both on the initial Hamiltonian H and the dynamical
Hamiltonian H̄, evaluated at the unknown initial point of the trajectory. The
solution of the problem gives a surprising connection between path properties
of the corresponding (integrable) dynamical system and Gibbs properties of
a model of statistical mechanics. Solutions of the corresponding dynamical
system will correspond to most probable ways for the system to evolve from an
(unknown) initial state to a present. A phase transition in the �constrained�
model will be shown to be connected with existence of several most probable
histories of a current state of the system. We represent the aforementioned
phase transition graphically in the form of the most probable histories for
magnetization of the system in a space-time diagram. Such a diagram allows
us to visualize all most probable curves for all types of conditioning. Moreover
forbidden regions pop up, the history-curves do not enter these regions. These
regions grow with time. In the case of independent spin-�ip dynamics β′ = 0
starting con�gurations (positively magnetized) with magnetizations located
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within an ε-neighbourhood of a certain positive value are only allowed. This
e�ect corresponds to a memory-losing. As a result we will provide a full de-
scription of the regions of Gibbsian and non-Gibbsian behaviour as a function
of time, initial temperature, and dynamical temperature. As a special case the
previous results for in�nite-temperature dynamics are reproduced. Further-
more we observe a new mechanism for the appearance of bad con�gurations
in the region of cooling from low temperatures with even lower temperatures.
These are related to periodic motion in the dynamical system. The corres-
ponding periodic curves are found numerically from the di�erential equations
governing both independent and dependent spin-�ip dynamics.

4.1 Probabilistic analysis

4.1.1 Preliminaries

This section is devoted to a Gibbsian description of mean-�eld models and
one type of dynamics de�ned for them. We transfer the relevant de�nitions of
Gibbsianness and non-Gibbsianness from the lattice setup to the mean-�eld
setup. A very broad and a review type description of the connection between
these systems could be found in Le Ny [42].

Curie-Weiss Ising model

We �rst set the graph G = (V , E) of Chapter 2 to be a complete graph. Let
spin-variables sitting at vertices in V take values in S = {−1,+1}, as before.
Let Λ be a sub-volume of V . The graph structure suggests the isomorphism
Λ ' [1, |Λ|], where | · | is the cardinality of the set, and the interval [1, |Λ|]
contains only natural numbers. Hereafter we consider that the cardinality of
Λ is N and identify it with the interval [1, N ]. We shall write σ[1,N ] for σΛ,
the spin con�guration σ[1,N ] takes values in S

N . The a priori measure α(dσ1)
is chosen to be equidistribution. The �nite-volume Gibbs measure at inverse
temperature β and zero external �eld on σ[1,N ] is given by

µβ,N(dσ[1,N ]) =
exp

{
β

2N

∑
{i,j}∈E σiσj

}
Zβ,N

α⊗(dσ[1,N ]),

where the normalization factor Zβ,N is the standard partition function. The
completeness of the graph allows a replacement of many-spin interactions by
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an e�ective interaction in the following way.

µβ,N(dσ[1,N ]) =
exp

{
β

2N

(∑
i∈V σi

)2
}

Zβ,N
α⊗(dσ[1,N ])

=
exp

{
−NΦ

(
1
N

∑
i∈V σi

)}
Zβ,N

α⊗(dσ[1,N ]),

(4.1)

where the function Φ(x) = −βx2

2
is called a mean-�eld interaction, while the

Hamiltonian of the system is H = NΦ( 1
N

∑
i∈V σi). We shall refer to this

form of the �nite-volume prescription as the mean-�eld �nite-volume Gibbs
measure in the sequel.

An in�nite-volume Gibbs measure µ is obtained by taking limits when
N → ∞ in (4.1). A sequence {µβ,N} has a weak limit µ according to the
results of [16].

Generally, a mean-�eld model is de�ned as a sequence {µN}N∈N of probab-
ility measures, such that each element µN of this sequence is invariant under
permutations of σ[1,N ]. Moreover, this sequence is required to have a weak
limit as N → ∞. As clear from the previous discussion, all these require-
ments are satis�ed for µN of form (4.1). Such a model is called Curie-Weiss
Ising model in a vanishing external �eld. Having in mind that we will always
work with this model, we shall refer to it also as a mean-�eld model.

Gibbsianness for mean-�eld models

We aim to transfer the notion of non-Gibbsianness to mean-�eld models. We
will make use (again) of the underlying graph structure. Let us remind the
reader what the tokens intrinsically identifying a Gibbs nature of a measure
are. An in�nite-volume measure µ is Gibbs if and only if its �nite-volume
restrictions are uniformly non-null w.r.t. conditioning on exterior and quasi-
local as functions of the conditioning. This de�nition does not exploit the
graph's structure and refers to a general graph. We note that this de�nition
cannot be modi�ed anyhow in the case when spins of a statistical mechanics
model interact in a local fashion. This was the case of trees (see Chapter 3)
and the case for general lattices Zd.

There are two crucial di�erences between the lattice and the mean-�eld
case:

(i) each site is a neighbour of any other. This fact implies that there are
no �far-away� regions and an e�ect of conditioning on �outside� of any
�nite region is immediately transmitted to the concerned region;

(ii) in the lattice setup the continuity properties of a family of �nite-volume
conditioned restrictions are studied. The exact state where this family
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comes from was identi�ed by a boundary law. In the mean-�eld situ-
ation there is necessity of actual taking limits as volumes grow, not only
considering the in�nite-volume measure.

This requires to adjust the idea of conditioning. We start from noticing
that the random variables σi, i ∈ [1, N ] are exchangeable. This means that
their joint distribution is independent of the order in which σi's are observed,
for instance for σ1 and σ2 vectors (σ1, σ2) and (σ2, σ1) have the same distri-
bution. Exchangeability comes from the fact that all spin-variables are i.i.d.
Thus the number of pluses and minuses plays a role. The product of a pri-
ori measures α⊗(·) for large N behaves as follows [22](or, in English and in
greater generality, [30])

α⊗(dσ[1,N ]) =

∫ 1

−1

θtN (1− θ)N−tNdG(θ),

where tN is the number of pluses. It further holds that G is the distribution
function of the limiting frequency m(σ) = limN↑∞m

N
1 = limN↑∞

1
N

∑N
i=1 σi.

The empirical measure m in the language of statistics is su�cient for the
unknown parameter θ. Some estimates on the speed of the convergence of
mN

1 to m could be found in [8].
The exchangeability of σ[1,N ] implies that the conditionings which are per-

mutations of one another will give rise to the same result, e�ectively the
empirical measure only matters. Generally, the empirical measure L of a con-
�guration σ[1,N ] is de�ned as L(σ[1,N ])(·) = 1

N

∑N
i=1 δσi(·), as in e.g. [48, see

Chapter 4]. For binary single-site state space S, a magnetization or empirical
mean m is treated.

We stress that the non-nullness is always granted for mean-�eld models as
follows from the �nite-volume representation of µ.

When a system's size is �nite and equal to N , the �rest of the world� for
a single spin is a con�guration of size N − 1. By convention we will refer to
a single spin as σ1 and to the �rest of the world� as σ[2,N ]. A magnetization
value mN

2 for a system of a con�guration of size N − 1 belongs to {−1,−1 +
2

N−1
, . . . , 1− 2

N−1
, 1}.

De�nition 4.1.1. A single-site �nite-volume conditional probability
γβ,1,N(dσ1|mN

2 ) is de�ned as follows:

γβ,1,N(dσ1|mN
2 ) := µβ,N(dσ1|σ[2,N ]), (4.2)

where σ[2,N ] is any spin-con�guration such that mN
2 = 1

N−1

∑N
j=2 σj.

The in�nite-volume conditioning is obtained by taking a formal limit when
the N grows. A discrete-valued magnetization mN

2 ∈ {−1,−1 + 2
N−1

, . . . , 1−
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2
N−1

, 1} converges to a real-valued magnetization m ∈ [−1, 1] under such a
limiting procedure.

lim
N↑∞

γβ,1,N(dσ1|mN
2 ) =: γβ,1(dσ1|m) (4.3)

The former de�nition re�ects the main idea of mean-�eld theory of repla-
cing many-bodies interaction with an average interaction. Equivalently, the
whole mean-�eld system could be seen as a system containing only two spins
� σ1 and σaver, where σ1 ∈ S and σaver lives in a continuous space [−1, 1].

For a lattice or a tree a con�guration is said to be bad if it broadcasts the
information of �far-away� regions. Oppositely, a con�guration is said to be
good if it stops the in�uence of far regions. In the mean-�eld setup this reads:

De�nition 4.1.2. A point m̂ ∈ [−1, 1] is said to be good for a mean-�eld
model if and only if:

1. There exists a neighborhood of mN
2 such that, for all α in this neighbor-

hood the following holds. For all sequences αN ∈ {−1,−1+ 2
N−1

, . . . , 1−
2

N−1
, 1} with the property limN↑∞ αN = α the limit

γβ,1(σ1|α) = lim
N↑∞

γβ,1,N(σ1|αN) (4.4)

exists and is independent of the choice of the sequence αN .

2. The function α 7→ γβ,1(σ1|α) is continuous at α = m̂.

A point m̂ is bad, if it is not good. Here we are in the position to give a
rigorous de�nition of Gibbsianness for a mean-�eld model.

De�nition 4.1.3. A mean-�eld model at inverse temperature β is called
Gibbs if and only if it has no bad points.

The De�nition 4.1.1 could be extended to any �nite volume and, moreover,
�nite-volume conditional probabilities may be expressed in therms of single-
site conditional probabilities. This representation is proven in [48, see Chapter
4, Proposition 4.2.2] for a general mean-�eld interaction. From the present
standpoint the most important statement of the aforementioned proposition
is

γβ,n(dσn|m) := lim
N→∞

µβ,N(dσn|σ[n+1,N ]) =
n∏
i=1

γβ,1(dσi|m), (4.5)

where m = limN→∞
1

N−n
∑
σi
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4.1.2 Spin-�ip transform of mean-�eld model

In the present setup the �nite-volume measure (4.1) may be rewritten in such
a way that it will explicitly contain the e�ective parameter mN

1 , namely

µβ,N(dσ[1,N ]) =
exp

{
N

β(mN1 )2

2

}
Zβ,N

α⊗(dσ[1,N ]), (4.6)

wheremN
1 is an empirical mean of the con�guration σ[1,N ]. This representation

is equivalent to (4.1) and both will be treated as a de�nition of the �nite-
volume Gibbs measure for Curie-Weiss Ising model in a vanishing external
�eld.

Given an initial Gibbs mean-�eld model with measures µβ,N (4.6), our aim
is to investigate the Gibbs properties of the transformed model under site-wise
independent spin-�ip evolution. Hence, rewriting (2.7), we get

µ′β,β′,t,N(dη[1,N ]) =
∑
σ[1,N ]

µ̃β,β′,t,N(dσ[1,N ]) =
∑
σ[1,N ]

µβ,N(dσ[1,N ])
N∏
i=1

k(σi, ηi)

(4.7)
The corresponding joint model is given by µ̃β,β′,t,N(dσ[1,N ]).

The study of the Gibbs properties is based on the investigation of con-
tinuity properties of the single-site conditional distributions γ′β,β′,t,1 of the
corresponding transformed model. As before,

γ′β,β′,t,1(dη1|m′) := lim
N→∞

µ′β,β′,t,N

(
dη1

1

N − 1

N∑
i=2

ηi

)
Fix a transformed con�guration η, equivalently, �x the corresponding mag-
netization m′. The completeness of the graph relaxes requirements for non-
Gibbsian behaviour of the transformed measure. An existence of a phase
transition for the two-layered model with �xed second layer becomes a suf-
�cient condition for non-Gibbsianness. Suppose that a �nite-volume joint
model with the �xed particular m′ admits several in�nite-volume measures
corresponding to di�erent magnetizations (say) m∗1(m′) and m∗2(m′). The
distributions γ′β,β′,t,1(·|m′) turn out to be functions of the magnetization m∗.
Therefore varying the conditioning in a neighbourhood of m′, the single-site
conditional distributions will obtain discontinuities of a jump type. We are
left with a problem of identifying such a magnetization(s) m∗ of the initial
spins σ, so the model started at σ and evolved ends up in con�guration η,
equivalently, with magnetization m′. The study of evolution of the system
from the state m∗ to the state m′ involves large deviations theory for tra-
jectories of stochastic processes. Such an approach allows to keep track, in
addition, of a most probable evolution of the system.
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4.1.3 Another view on spin-�ip evolution

The spin-�ip evolution on the level of individual spins was explained in Sec-
tion 2.5. To be more speci�c, let c(+,mN

2 ) be a single-site rate for σ1 to �ip
from plus- to minus-state, when the magnetization of the rest of the system
(consisting N − 1 components) is mN

2 . Analogously, c(−,mN
2 ) is de�ned. We

are going to apply a temperature-dependent spin-�ip dynamics. This is re-
�ected in the fact that the spin-�ip rates depend implicitly (for now) on the
temperature β′ of the dynamics. Moreover, their values depend on the initial
inverse temperature β and time. The time-dependence of the rates occurs via
the time-dependence of the magnetization m. The explicit formula for the
rates will be given later. The dynamics is called constrained or interacting if
the inverse temperature β′ of the dynamics is non-zero. Unless the opposite
is stated a dynamics is considered with both β and β′ not equal to zero.

We require the dynamical measure µβ′ to be time-reversible. Equivalently,
this requirement for the single-site spin-�ip rates may be re-expressed as fol-
lows:

c(−,m)

c(+,m)
= exp {2β′m} , (4.8)

where c(±,m) are the rates depending on the magnetization of in�nite-volume.
See Appendix B.1 for an explanation.
In other words,

c(σ1,m) = R(m) exp {−σ1β
′m} , (4.9)

with a function R(m) giving a time-rescaling.

Adjusting the form of the linear generator L of the con�gurations spin-�ip
dynamics from the Section 2.5, we de�ne a generator Lβ′,N for local functions
F̄ : Ω[1,N ] 7→ R

Lβ′,N F̄ (σ[1,N ]) =
N∑
i=1

c

(
σi,

1

N − 1

∑
j:j 6=i

σj

)(
F̄ (σi[1,N ])− F̄ (σ[1,N ])

)
, (4.10)

where σi[1,N ] is the con�guration that is �ipped at the site i.

In the light of (4.6) it is wise to trace how spin-�ip dynamics acts on the
magnetization. We remark that by permutation invariance the continuous
time process, induced on the empirical average, is a Markov chain. Namely,
suppose that F :

{
−1,−1 + 2

N
, . . . , 1− 2

N
, 1
}
→ R is a function on the pos-

sible magnetization values at size N , then the linear generator L̂β′,N acting
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on such functions F de�ned as (L̂β′,NF ) ◦mN
1 = Lβ′,N(F̄ ◦ σ[1,N ]) with

L̂β′,NF (mN
1 ) =

N
1 +mN

1

2
c

(
+, l(N)

(
mN

1 −
1

N

))(
F

(
mN

1 −
2

N

)
− F

(
mN

1

))
+N

1−mN
1

2
c

(
−, l(N)

(
mN

1 +
1

N

))(
F

(
mN

1 +
2

N

)
− F

(
mN

1

))
(4.11)

where l(N) = N
N−1

. Clearly, l(N) may be omitted when N is su�ciently large.
The asymptotic rates in (4.11) with N →∞, for the magnetization are

c±(m) =
1±m

2
c(±,m) = R(m)

1±m
2

exp {∓β′m} (4.12)

We treat the prefactor N in (4.11) as of a scaling for test functions F .
Summarizingly, we would like to study a stochastic spin-�ip evolution of

in�nite spin-con�gurations σ. The dynamics of the process {σs, s ≥ 0} is
described by a semi-group S(s) = esLβ′,N on the level of spins. The exchange-
ability allows to study equivalent real-valued process {ms := m(σs), s ≥ 0}.
The corresponding semi-group of the dynamics is Sm(s) = esL̂β′,N .

4.1.4 Deterministic behaviour

As a warm-up we ask ourselves how the typical paths for the in�nite-tem-
perature starting measure look like for large N , when the former measure is
subjected to the unconstrained dynamics. To answer this question we look how
a magnetization of the system behaves as a function of time. Mathematically,
we consider a process {ms, s ≥ 0} taking values in [−1, 1] and depending on
time s started at the initial value m0. For �xed N we write

d

ds
Em0
N ms = Em0

N

d

ds
ms = Em0

N

d

ds
(Sm(s)m0) = Em0

N L̂β′,Nms (4.13)

Interchanging expectation and derivative causes no problem because N is
�nite. Choosing as a test function in (4.11) a simple identity, we get

d

ds
Em0
N ms = Em0

N L̂β′,Nms =

Em0
N

[
(1−ms)c

(
−, l(N)(ms +

1

N
)

)
− (1 +ms)c

(
−, l(N)(ms −

1

N
)

)]
(4.14)

Taking the limit N → ∞ at both sides, the stochastic process for the mag-
netization ms concentrates on a certain deterministic path m(s), see e.g. [23,
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Chapter 2]. The expectations on both sides may be omitted, because m(s) is
not random anymore. As a shortcut we write m every time the function m(s)
is meant. Its time derivative is denoted by a dot, i.e. ṁ. Choosing F to be
an identity function, we get a deterministic di�erential equation.

d

ds
m = (1−m)c(−,m)− (1 +m)c(+,m)

= (1−m)R(m)eβ
′m − (1 +m)R(m)e−β

′m

= 2R(m) (sinh(β′m)−m cosh(β′m))

(4.15)

The total rate is
c(m) := c+(m) + c−(m)

Employing the expressions for the asymptotic rates (4.12), the total rate is
given by

c(m) = R(m) (cosh(β′m)−m sinh(β′m))

= R(m) cosh(β′m) (1−m tanh(β′m))
(4.16)

To simplify the problem, we choose the time rescaling to be

R(m) =
1

cosh(β′m)−m sinh(β′m)
, (4.17)

making the total rate constant. Taking into account the chosen time rescaling
(4.17), the deterministic time evolution results in the ODE

ṁ = 2
sinh(β′m)−m cosh(β′m)

cosh(β′m)−m sinh(β′m)
(4.18)

In the case β′ = 0 the equation reduces to the linear equation ṁ = −2mds
which describes the relaxation of the magnetization to zero under the uncon-
strained in�nite-temperature dynamics.

4.1.5 Large deviations for stochastic processes

Consider a �nite-volume con�guration σN . Let, as usual, s be a time vari-
able. The induced Markov process {ms, s ≥ 0} on a �nite volume with N
spins performs jumps upwards or downwards of size 2

N
. We remind that ms

concentrates on a deterministic path m(s) when N is large. Let pβ′(m) =
c−(m(s))

c−(m(s))+c+(m(s))
be the temperature- and m(s)-dependent probability for a

magnetization to go down for large N . Clearly, the asymptotic probability to
go up is then given by 1− pβ′(m). Whenever it is clear from the context, we,
as before, write m instead of m(s) and, additionally, pβ′ for pβ′(m).
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Let zσ[1,N ]
(s) ∈

{
−1,−1 + 2

N
, . . . , 1− 2

N
, 1
}
be the path of the magnet-

ization for the Markov chain (with the generator as in (4.11)) evolved at
inverse temperature β′ with the initial condition to be distributed according
to the Curie-Weiss measure µβ,N . Denote by Pβ,β′,N the law of the paths{
zσ[1,N ]

(s)
}
s∈[0;t]

.

Theorem 4.1.4. Suppose
{
zσ[1,N ]

(0)
}

satis�es a large deviation principle

(LDP) with rate function I0 and rate N , then the measure Pβ,β′,N satis�es
a large deviation principle in L2[−1, 1] with rate N and rate function

I(m) = I0(m(0)) +

∫ t

0

Lβ′(m(s), ṁ(s))ds (4.19)

with Lagrange density Lβ′(m(s), ṁ(s)) given by

Lβ′(m, ṁ) =

ṁ

2
ln

(
ṁ+

√
16pβ′(1− pβ′) + ṁ2

4pβ′

)
− 1

2

√
16pβ′(1− pβ′) + ṁ2 + 1,

(4.20)

where pβ′ = pβ′(m).

Proof of Theorem. There are two ingredients needed to prove the state-
ment of the theorem. The �rst ingredient we need is the static large deviation
principle for the magnetization in the initial measure, the Curie-Weiss meas-
ure with inverse temperature β. Secondly, the formalism of Feng and Kurtz
[17] allows us to obtain the form of Lagrangian density, then the correctness
of the present statement is a mere application of [17, Theorem 13.7].

We start with the proposition about static LDP. It reads as follows.

Proposition 4.1.5. The distribution of magnetization mN
1 = 1

N

∑N
i=1 σi w.r.t.

the Curie-Weiss measure at inverse temperature β obeys a large deviation
principle with rate N and rate function I0:

I0(m) = Φ(mN
1 ) + I(mN

1 ), (4.21)

where

I(mN
1 ) =

1 +mN
1

2
log(1 +mN

1 ) +
1−mN

1

2
log(1−mN

1 ) (4.22)

is the rate function for the symmetric Bernoulli distribution and Φ(mN
1 ) =

−β(mN1 )2

2
is a mean-�eld interaction.
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Proof of Proposition. Proposition 4.1.5 follows from Varadhan's Lemma.
Suppose a probability distribution satis�es an LDP principle with a known
rate function and rate N and suppose we consider the probability distribution
with density Ce−NΦ(x) relative to the �rst density. Under suitable conditions
of the function Φ(x) (boundedness and continuity will su�ce) this probabil-
ity distribution will satisfy an LDP with the same rate N and rate function
obtained by adding Φ(x) to the �rst rate function and subtracting a constant.
Let k be the number of pluses in a con�guration σ[1,N ] with mean mN

1 . The

number of pluses may be expressed as
1+mN1

2
N Applying the apparatus of

[55] to our framework, the heuristics described before, slightly more formally,
reads:

− 1

N
lnα⊗(dσ[1,N ]) = − 1

N
ln

(
N

1+mN1
2

N

)
2−N → I(mN

1 ),

where σ[1,N ] is any con�guration such that
∑N

i=1 σi = mN
1 and

− 1

N
ln

∫
Ce−NΦ(mN1 )α⊗(dσ[1,N ])→

inf
(
−Φ(mN

1 )− I(mN
1 )
)

= sup
(
Φ(mN

1 ) + I(mN
1 )
)

�
When a magnetization path is considered, it is clear that mN

1 is nothing
but zσ[1,N ]

(0) and for large N the value mN
1 concentrates on m(0).

The Lagrangian density is computed employing the notion of non-linear
generator introduced in [17]. The non-linear generator Ĥβ′,N acts on test
functions F :

{
−1,−1 + 2

N
, . . . , 1− 2

N
, 1
}
→ R and is de�ned as(

Ĥβ′,NF
)

(x) = lim
N→∞

1

N
e−NF (x)

(
L̂β′,Ne

NF
)

(x) (4.23)

The integrand in (4.19) is given by the Legendre transform of
(
Ĥβ′,NF

)
(m)

with F being an identity function.
As explained in Appendix B.2, computing the right-hand side for a �nite

N and taking limits with respect to the volume size yields

H(m,F ′(m)) :=
(
Ĥβ′,NF

)
(m) = c−(m)(e2F ′(m) − 1) + c+(m)(e−2F ′(m) − 1)

(4.24)
Due to the chosen rescaling R(m) (4.17) involved into the de�nition of the
rates we deduce that c− = pβ′(m) and c+ = 1−pβ′(m). Thence our non-linear
generator reads

H(m,F ′(m)) = pβ′(m)(e2F ′(m) − 1) + (1− pβ′(m))(e−2F ′(m) − 1) (4.25)
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Performing a Legendre transform with F (m) = m

Lβ′(m, ṁ) = sup
λ

(λṁ−H(m,λ)) ,

we arrive at the Lagrangian density which governs the path large deviations
as stated in [17, Theorem 13.7 or, in particular situations, Examples 1.5 or
1.12]. This concludes our treatment of the proof.

�

4.1.6 Minimal cost problem

The joint model connects a layer of initial spins σ and a layer of the evolved
(during time s = t) spins η. We would like to identify whether the two-layer
model exhibits a phase transition for initial spins when the con�guration of the
second layer is �xed. Analogously, we say that the second layer has a certain
magnetization m′. Conditioning on the second layer induces a conditional
distribution on the magnetization values m0 at time s = 0. This is re�ected
in the following corollary.

Corollary 4.1.6. The conditional distribution of the initial magnetization m0

taken according to the law of the paths Pβ′,β,N , conditioned to end in the �nal
condition m′ at time s = t, satis�es a large deviation principle with rate N
and rate function given by

Em′(m0, β, β
′) = Φ(m0) + I(m0) + inf

m(s):(0)=m0,

ϕ(t)=m′

∫ t

0

Lβ′(ϕ, ϕ̇)ds− Const(m′)

(4.26)

This rate function allows to compute the large-N asymptotics of the prob-
ability to �nd the system in a �nal magnetization m′ at time s = t by com-
puting the value of the rate function in the minimizing path to m′.

The existence of a phase transition for the joint model in our setup cor-
responds to the fact that a large deviations functional (4.20) weighs several
functions ϕi(s), i ∈ N constrained to take value m′ at time t, with an equal
minimally possible mass. Thence, we may talk of a cost of any function ϕ(s)
de�ned on [0, t] and valued in [−1, 1] such that ϕ(t) = m′.

De�nition 4.1.7. Let a function ϕ(s) be such that ϕ(t) = m′. The functional
Em′(m0, β, β

′) de�ned in Corollary 4.1.6 is called a cost of evolving from an
unknown con�guration σ, such that its magnetization is ϕ(0), to the �xed
con�guration η.
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Therefore, the existence of a phase transition of the joint-model is well
captured by the fact whether the solution of the cost-minimizing problem is
unique or not.

We denote bym(s; t,m′) any path started at unknown statem0 at the time
s = 0 and ended up at m′ at the time s = t. The magnetization m(s; t,m′)
viewed as a function of time with a constraint on the �nal point is called a
history. If the cost functional reaches its minimum at m(s; t,m′), then such a
function is denoted by m∗(s; t,m′) and called most probable history (or a most
probable curve). The value of magnetization m∗(0; t,m′) given by the value a
most probable curve at zero time is called most probable starting point.

4.1.7 Gibbsianness for transformed measures and

limiting conditional distributions

In this section we prove the form of the single-site conditional distributions for
the transformed measure. The nature of the transformed measure � Gibbsian
or non-Gibbsian� strongly depends on the behaviour of these distributions.
To see the problem in full detail we �rst transfer the relevant de�nitions of
Gibbs measure on the transformed �nite-volume measure µ′β,β′,t,N de�ned in
(4.7).

The de�nition of a good point reads the same as De�nition 4.1.2 replacing
γβ,1 with γβ,β′,t,1.

De�nition 4.1.8. Let β, β′, t be given. A point m̂ ∈ [−1, 1] is said to be good
for a mean-�eld model if and only if:

1. There exists a neighborhood of mN
2 such that, for all α in this neighbor-

hood the following holds. For all sequences αN ∈ {−1,−1+ 2
N−1

, . . . , 1−
2

N−1
, 1} with the property limN↑∞ αN = α the limit

γβ,β′,t,1(η1|α) = lim
N↑∞

γβ,β′,t,1,N(η1|αN) (4.27)

exists and is independent of the choice of the sequence αN .

2. The function α 7→ γβ,β′,t,1(η1|α) is continuous at α = mN
2 .

The functions γβ,β′,t,1(η1|·) are called limiting conditional distributions of a
spin value η1. It is conditional because the spins outside a single-site volume
are frozen to have a particular magnetization and limiting since the volume
we condition on is in�nite.

De�nition 4.1.9. The time-evolved mean-�eld model
{
µ′β,β′,t,N

}
with para-

meters β, β′, t is called Gibbs if and only if it has no bad points.
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We would like to establish the connection between the notion of a solu-
tion for the minimization problem (4.26) and the form of limiting conditional
distribution. This requires more knowledge for the single-site evolution. We
rewrite the form of the single-site linear generator (2.13) according to our
needs for �xed β, β′, t, and m′, that is

(Li(s; t,m
′)f)(σi) = c(σi,m

∗(s; t,m′))(f(−σi)− f(σi)), (4.28)

with rates which are obtained by substitution of the optimal path for the
constrained problem for the empirical magnetization (4.26) into the single-
site �ip rates. For shortcut we write

rate of �ipping from � + � cs(+) := c(+,m(s; t,m′)),

rate of �ipping from � − � cs(−) := c(−,m(s; t,m′)),
(4.29)

We �rst provide the following theorem.

Theorem 4.1.10. Single-site transition probability. Fix β, β′, t,m′. Con-
sider a Markov jump process on {−1, 1} which is de�ned by the time-dependent
generator (4.28) for these values. Then a probability ks(σi, ηi; t,m

′) for a single
spin to evolve from an initial value σi ∈ {−1, 1} at time s = 0 to ηi ∈ {−1, 1}
at time s ≤ t is given by the expression

ks(+,+; t,m′) = 1− ks(+,−; t,m′) = ks(−,−; t,m′) = 1− ks(−,+; t,m′)

= e−
∫ s
0 (cu(−)+cu(+))du ×

[∫ s

0

cu(−)e−
∫ u
0 (cv(−)+cv(+))dvdu+ 1

]
(4.30)

Proof. We omit the proof of this fact here and refer to Appendix B.4.
�

In the second place we de�ne a con�guration compatible with a minimizing
solution m∗(s; t,m′)

De�nition 4.1.11. A con�guration η[1,N ] is called consistent with minimizer
m∗(s; t,m′) at time s = s0, if

lim
N→∞

1

N

N∑
i=1

ηi = m∗(s0; t,m′)

We are now ready to give our formula for the limiting conditional distri-
butions of the model started at the inverse temperature β and evolved with
β′ during the time t .



Mean-�eld models 51

Theorem 4.1.12. Fix β, β′, t,m′. Suppose the constrained variational prob-
lem (4.26) for paths ϕ, taken over the paths with �xed right endpoint ϕ(t) =
m′, has a unique minimizing path s 7→ m∗(s; t,m′).

Then the limiting probability kernels of the time-evolved measure µβ,β′,t;N
have a well-de�ned in�nite-volume limit γβ,β′,t(·|m′) in the sense of De�ni-
tion 4.1.8 of the following form

γβ,β′,t(η1|m′) =

∑
σ1=±1 e

σ1βm∗(0;t,m′)kt(σ1, η1; t,m′)∑
σ1,η̃1=±1 e

σ1βm∗(0;t,m′)kt(σ1, η̃1; t,m′)
, (4.31)

Here kt(σ1, η1; t,m′) as in Theorem 4.1.10.

Proof. We start with initial �nite-volume con�guration σ[1,N ]. With a
little abuse of notation we denote by σi(s) the value of a spin at site i at
time s. Spins ηi of the transformed con�guration could be viewed as values of
functions σi(s) started at the value σi(0) =: σi for corresponding sites.

Take a sequence αN ∈ {−1,−1 + 2
N−1

, . . . , 1 − 2
N−1

, 1} with the property

limN↑∞ αN = α. We denote by mN
2 (s) = 1

N−1

∑N
i=2 σ1(s) the empirical mag-

netization of the spins of site 2 to N at time s of the evolution. To prove that
the promised form for the limiting conditional probabilities is correct we must
show that

lim
N↑∞

µ′β,β′,N(σ1(t) = +|mN
2 (t) = αN)

µ′β,β′,N(σ1(t) = −|mN
2 (t) = αN)

=
γβ,β′,t,1(η1 = +|α)

γβ,β′,t,1(η1 = −|α)
, (4.32)

where the terms of the right-hand side are given by (4.31).
We drop the subscripts of temperatures and time for the conditional prob-

abilities and the transformed measure during the proof of the theorem. The
subscript explicitly identifying �niteness of both objects is kept.

γ1,N(η1 = +|αN)

γ1,N(η1 = −|αN)
=
µ′N(η1 = +|mN

2 (t) = αN)

µ′N(η1 = −|mN
2 (t) = αN)

= (4.33)∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)µ′N(η1 = +|zσ[1,N ]

)∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)µ′N(η1 = −|zσ[1,N ]

)
=

∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)

∑
σ̃=±1

µ̃N(η1 = +|σ1 = σ̃1, zσ[1,N ]
)µN(σ1 = σ̃1|zσ[1,N ]

)∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)

∑
σ̃=±1

µ̃N(η1 = +|σ1 = σ̃1, zσ[1,N ]
)µN(σ1 = σ̃1|zσ[1,N ]

)
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Let's compute µN(σ1 = σ̃1|zσ[1,N ]
).

µN(σ1 = +|zσ[1,N ]
) =

∑
σ[2,N ]

e
β

2N
(
∑n
i=2 σi+1)2

e
β

2N
(
∑n
i=2 σi+1)2

+ e
β

2N
(
∑n
i=2 σi−1)2

∣∣∣∣∣
zσ[1,N ]

=

∑
σ[2,N ]

1

1 + exp
{

β
2N

((
∑n

i=2 σi − 1)2 − (
∑n

i=2 σi + 1)2)
}∣∣∣∣∣

zσ[1,N ]

=

∑
σ[2,N ]

1

1 + exp
{
−2β 1

N

∑n
i=2 σi

}∣∣∣∣∣
zσ[1,N ]

=
∑
σ[2,N ]

exp
{
β
(
zσ[1,N ]

(0)− 1
N

)}
Z

(4.34)

Generalizing the last statement to any value of σ1, we write:

µN(σ1 = σ̃1|zσ[1,N ]
) =

∑
σ[2,N ]

exp
{
σ̃1β

(
zσ[1,N ]

(0)− σ̃1

N

)}
Z

(4.35)

While taking an in�nite-volume limit, we make use of the assumption on
the uniqueness of the solution of the constrained path large deviation principle
made in the statement of the theorem. Under our assumption the distribu-
tion Pβ,β′,N(zσN (s)|mN

2 (t) = αN) concentrates exponentially fast on the unique
deterministic trajectory m∗ : s 7→ m∗(s; t,m′) as N tends to in�nity. This col-
lapses the outer expected value and simpli�es the formula a lot. Next we have
that whenever zσ[1,N ]

→ m∗(s; t,m′), we are guaranteed that at each moment
of time s ∈ [0, t] there exists a unique (up to permutations) con�guration
η[1,N ], that is consistent with m

∗(s;m′, t), meaning that summation over σ[2,N ]

in (4.35) counts just the number of permutations of the con�gurations con-
sistent with m∗(0; t,m′) at time s = 0. Finally, we have that the single-site
Markov chain describing the time-evolution of the spin at site 1, conditional
on the path of the empirical mean of the other N − 1 spins and its initial
value at time s = 0, converges to the Markov chain with deterministic but
time-dependent generator (4.28). The corresponding transition probabilities
converge to the limiting expression from the theorem and we have

lim
N↑∞

µ̃N(η1|σ1 = σ̃1, zσ[1,N ]
) = kt(σ̃1, η1; t,m′) (4.36)

Therefore combining these three ingredients ensued from the assumption we
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made we get∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)

∑
σ̃=±1

µ̃N(η1 = +|σ1 = σ̃1, zσ[1,N ]
)µN(σ1 = σ̃1|zσ[1,N ]

)∫
PN(dzσ[1,N ]

|mN
2 (t) = αN)

∑
σ̃=±1

µ̃N(η1 = −|σ1 = σ̃1, zσ[1,N ]
)µN(σ1 = σ̃1|zσ[1,N ]

)

(4.37)

N→∞−→

] {σ[2,N ]:limN→∞
1
N

∑N
i=2 σi=m

∗(0;m′,t)}
∑
σ̃=±1

kt(σ̃1,+; t,m′)eσ̃1βm∗(0;t,m′)

] {σ[2,N ]:limN→∞
1
N

∑N
i=2 σi=m

∗(0;m′,t)}
∑
σ̃=±1

kt(σ̃1,−; t,m′)eσ̃1βm∗(0;t,m′)

(4.38)

Canceling counting constants and adding normalizing constants to numer-
ator and denominator completes the proof.

�

4.2 Main result

Hitherto, we gave the notion of Gibbsianness for the transformed model and
established the link between the single-site conditional probabilities and a
solution of the variational problem (4.26). The latter singles out the set of
relevant parameters determining the regime of the system. These parameters
are an initial temperature β−1, a temperature of the dynamics β′−1, a value
m̂ tested to be a continuity point, and a time of evolution t. The importance
of their combinations is re�ected in our main result of this chapter.

Theorem 4.2.1. Consider the time-evolved Curie-Weiss model with initial
and dynamical temperatures β−1, β′−1. Then the following holds.

1. Initial high temperature, any temperature of the dynamics.
If β−1 ≥ 1 then the time-evolved model is Gibbs for all t ≥ 0.

2. Heating from an initial low-temperature, with a either high-temperature
or a low-temperature dynamics.
For any β′ there exists a value β−1

SB(β′) < β′−1 (which is explicitly
computable, see below) such that the following is true. Assume that
0 < β−1 < min{β′−1, 1}.

a) If β−1
SB(β′) ≤ β−1 then

� for all 0 ≤ t ≤ tnGS(β, β′) :=
ln β′−β

1−β
4(1−β′) the time-evolved model is

Gibbs.
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� for all t > tnGS(β, β′) the model is not Gibbs and the time-
evolved conditional probabilities are discontinuous at m̂ = 0
and continuous at any m̂ 6= 0.

b) If 0 < β−1 < β−1
SB(β′) there exist sharp values 0 < t0(β, β′) <

t1(β, β′) <∞ such that

� for all 0 ≤ t ≤ t0(β, β′) the time-evolved model is Gibbs,

� for all t0(β, β′) < t < t1(β, β′) there exists m̂c = m̂c(β, β
′; t) ∈

(0, 1) such that the limiting conditional probabilities are discon-
tinuous at the points ±m̂c, and continuous otherwise,

� for all t > t1(β, β′) the limiting conditional probabilities are
discontinuous at m̂ = 0 and continuous at any m̂ 6= 0.

3. Cooling from initial low temperature.
For β′−1 < β−1 < 1 there exists a time-threshold tper(β, β

′) such that,

� for all 0 ≤ t ≤ tper(β, β
′) the time-evolved model is Gibbs.

� for all t > tper(β, β
′) the model is not Gibbs and the time-evolved

conditional probabilities are discontinuous at non-zero con�gura-
tions m̂c (and continuous at m̂ = 0).

Figure 4.1: Division between Gibbs and non-Gibbs area for low-temperature
dynamics, the thick curve is obtained by computation, the dots are given by
numerics

Note that for high-temperature dynamics β′−1 > 1 the Region 3 of ini-
tial temperatures in Figure 4.1 is empty. Part 2 of the theorem generalizes
the structure which we already know from the independent spin-�ip dynamics
β′ = 0 (see [36]) which is contained as a special case. This means that a
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symmetric (w.r.t. starting measure) bad point m0 = 0 will appear after a
sharp transition time if the initial temperature is not too low (see Subregion
2a). For lower temperatures (in Subregion 2b) symmetry-breaking in the set
of bad con�gurations for the time-evolved measure appears in an intermedi-
ate time-interval: at the beginning of this interval a symmetric pair of bad
con�guration appears which merges at the end of the time interval.

It is remarkable that the picture we observe in Region 2 is similar to the
independent spin-�ip case. This is even true for low temperatures β′−1 < 1
of the dynamics. As we will see, we can moreover compute the symmetry-
breaking inverse temperature βSB in terms of β′ as the largest solution of the
following cubic equation

4β3
SB + 12βSBβ

′ − 6β2
SB(1 + β′)− β′(3 + 3β′ − β′2) = 0 (4.39)

In the independent spin-�ip case β′ = 0 we get exactly β−1 = 2
3
, which was

already found in [36]. We will also give an explicit expression of the critical
time in Subregion 2a, for all β′.

In Region 3 of cooling from an already low initial temperature we observe
an entirely new mechanism for the production of non-Gibbsian points. These
are related to periodic orbits of the �ow of the β′-dependent vector �eld which
is created by the Euler-Lagrange equations for the variational problem (4.26).

4.3 Deterministic analysis

The key feature that allows to treat our problem of initially stochastic nature
from the deterministic point of view is the concentration property of possible
evolution ways on an optimal path for large N . The optimality of a path
means that it delivers a minimum to the functional (4.26). The connection
established by the Theorem 4.1.12 shows that the knowledge of the optimal
path is su�cient to judge whether the transformed model retains its Gibbs
nature or not. This distinction depends on whether the prescribed end-state
there was only one possibility for the system to start from or several. Many
options in this case we consider as rather a defect, because they imply the
lack of quasilocality for the transformed system. While looking for the most
probable starting state of the system which is conditioned to be in a certain
state, we have to look for the whole evolution path. This approach does not
only answer the question of the most probable starting state, but develops a
strong insight into hidden mechanisms of the evolution of the system.
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4.3.1 Variational problem

Fix β, β′, t,m′. We look at the constrained variational problem (4.26) taken
over the paths ϕ with ϕ(t) = m′ with the aim to �nd (the) minimizing path(s)
s 7→ m∗(s;m′, t). With a little abuse of notation we shall further write this
problem in the form:

Em′(m0, β, β
′) = Φ(m0) + I(m0) + inf

ϕ:ϕ(0)=m0
ϕ(t)=m′

∫ t

0

Lβ′(ϕ, ϕ̇)ds− Const(m′),

where the function ϕ(s) may viewed as the in�nite-volume magnetization
functionally dependent on time, when the system is observed. As a remainder,
we say that Φ is the original mean-�eld interaction and I is a large deviations
function of the initial measure.

To bring the functional into a more usual form for calculus of variations, we
drop the irrelevant constant, embed the constants depending on the starting
value into in�mum and further under the integral sign. Let us abbreviate
U(ϕ(s)) = Φ(ϕ(s)) + I(ϕ(s)), whenever it is clear from the context we shall
write U(ϕ) and for U(ϕ) computed at time s = r we shall write U(ϕ(r)), then
the updated form of the functional reads:

Em′(m0, β, β
′) = inf

m:m(0)=m0
m(t)=m′

∫ t

0

{
Lβ′(ϕ, ϕ̇)− dU(ϕ)

dϕ
ϕ̇+

U(ϕ(t))

t

}
ds (4.40)

We may formulate the deterministic problem in the following way: �nd an
extremal ϕ(s) �xed at time s = t to take value m′ and free at time s = 0
delivering minimum to the cost functional (4.40).

We shall equivalently refer to a time s = 0 as the left end and to a time
s = t as the right end. The end is �xed if an extremal ϕ(s) has to attain a
prescribed value on it and open in the opposite case. Thus, the problem of
�nding extrema of (4.40) is the problem of calculus of variations with an open
left end.

It is known in the calculus of variations [25, see Chapter 3, Section 14] that
a necessary condition for an extremum is given by the corresponding Euler-
Lagrange equation and an additional transversality condition for the free left
end of the form

d
ds
Lϕ̇(φ(s), ϕ̇(s))− Lϕ(ϕ(s), ϕ̇(s)) = 0 for all s ∈ [0, t]
Lϕ̇(ϕ(s), ϕ̇(s))− Φϕ(ϕ(s))− Iϕ(ϕ(s))|s=0 = 0
ϕ(t) = m′

(4.41)

Here we have dropped the subscript β′ for the function L(φ, φ̇) and written
subscripts to denote partial derivatives.
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To stress that these equations describe the behaviour of histories m(s)
which were de�ned previously, we shall explicitly write m(s) in the place of
ϕ(s).

For a general probability distribution pβ′(m) the �rst equation of (4.41)
reads:

m̈ = 8(2pβ′(m)− 1)
dpβ′(m)

dm
(4.42)

The above equation does not contain explicitly the time variable s, thus it
possesses a �rst integral. This integral is the preserved total energy of the
system whose existence is a consequence of non-dissipativity of the system.

ṁ2 + 16pβ′(m)(1− pβ′(m)) = E (4.43)

This equation is integrable in quadratures.

t = m0 ±
∫ m

0

(s)
dζ√

E − 16pβ′(ζ)(1− pβ′(ζ))

E = ṁ0 + 16pβ′(m0)(1− pβ′(m0)),

(4.44)

where m0 and ṁ0 are the unknown initial conditions.
In the situation of the present chapter, we are led to choose the distribution

pβ′(m) in the following to match the rates in the generator L̂β′,N :

pβ′(m) =
c−(m)

c−(m) + c+(m)
=

e2β′m(1−m)

e2β′m(1−m) + (1 +m)
, (4.45)

where m = m(s).
Substituting the form of pβ′(m) and L(m, ṁ) in the equations (4.41) after

computations we get:

m̈ = 16e2β′m

(
(1+m)−e2β′m(1−m)

)
(1+(m2−1)β′)

((1+m)+e2β′m(1−m))
3

ṁ
∣∣∣
s=0

= g(m)
∣∣∣
s=0

m(t) = m′

(4.46)

with the function

g(m) = 2
(1 +m)e−2βm − (1−m)e2m(β−β′)

(1 +m)e−2β′m + (1−m)
(4.47)

We call the function g(m) which gives the relationship between initial point
and initial slope of the solution curve the curve of the �allowed� initial con�g-
urations (ACC). We note that it is independent from the �nal value m′.
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4.3.2 Typical paths for non-interacting time-evolution

Let us start with a discussion of the independent time-evolution � when
β′ = 0.
(i) For β′ = 0, β = 0, the system becomes

m̈(s) = 4m(s)

ṁ(s)
∣∣∣
s=0

= 2m(s)
∣∣∣
s=0

m(t) = m′
(4.48)

and the solution becomes m(s) = m′e2(s−t). This describes how a curve which
is conditioned to end inm′ away from zero is built up from the initial condition
m′e−2t close to zero.
(ii) For independent dynamics β′ = 0 and initial inverse temperature β 6= 0
the simpli�ed system is

m̈(s) = 4m(s)

ṁ(s)
∣∣∣
s=0

= e−2βm(s)(1 +m(s))− e2βm(s)(1−m(s))
∣∣∣
s=0

m(t) = m′
(4.49)

In this case the general solution is a linear combination of the e±2s. Looking
at the right-end condition one gets

m(s) = (m′ − C2e
2t)e2(t−s) + C2e

2s, (4.50)

where C2 is a constant and must be determined by the left-end condition.
This can be done numerically.

It is possible to match the current approach with the one of [36] by plugging
the solution curves with an initial condition m(0) = m0 which are given by

m(s) =
m0e

2t −m′

e2t − e−2t
e−2s +

m′ −m0e
−2t

e2t − e−2t
e2s, s ∈ [0, t] (4.51)

into the rate function and carrying out the time integral explicitly. This gives

Em′(m0, β, 0) = H(m0) + I(m0)

+
1

4

(
4t+ ln

[
1−m′2

1−m2
0

]
+ 2m′ ln

[
R− C1e

−2t + C2e
2t

1−m′

]

− 2m0 ln

[
R− C1 + C2

1−m0

]
+ ln

[
1−R− 2C1m

′e−2t

1 +R− 2C1m′e−2t
· 1 +R− 2C1m0

1−R− 2C1m0

])
,

where R =
√

1− 4C1C2, C1 =
m0e

2t −m′

e2t − e−2t
, C2 =

m′ −m0e
−2t

e2t − e−2t

(4.52)
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Figure 4.2: Cost functional Em′(m0, β, 0) and known function Ψβ,t,m′(m0) for
β′ = 0, and β−1 ≈ 1.744, t ≈ 0.251

In the approach of [36] a related function called Ψβ,t,m′(m0) was obtained
by Hubbard-Stratonovitch transformation, whose minimizers with a given con-
ditioning (t,m′) correspond to the most probable initial conditions. This
provides an opportunity to check if the results of the present analysis done
via path large deviations coincide with the approach employing the function
Ψβ,t,m′(m0).

It is known that the functions Ψβ,t,m′(m0) (4.3.2) and Em′(m0, β, 0) have
the same set of extrema (see [48] in a more general context). In Figure 4.2 is
the plot of these functions (after normalization to have zero as a minimum)
for the same set of parameters (β, β′ = 0,m′, t) which shows that the minima
appear in fact at the same value.

The form (4.51) of the curves delivering minimum to the cost functional
induces fast relaxation and fast concentration properties for the magnetization
of the system being transformed1. In other words, the evolution time could
be split into three stages: the magnetization 1) relaxes in a short time to a
value close to zero, 2) stays close to zero for a long time, and 3) at time s = t
quickly � just before time s = t � approaches the prescribed value m′. A
simple proof of this fact is given in Appendix B.3.

Further we turn to the case of interacting dynamics β′ 6= 0. In this case
trajectories can only be obtained numerically. Before we go on, let us discuss

1Proposed by R.Fernandez at Nature-Nurture workshop, 12-13.01.2009, University of
Groningen
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in more detail the geometrical properties of the vector �eld and the allowed-
con�gurations curve.

4.3.3 Geometric interpretation of Euler-Lagrange

vector-�eld and curve of allowed initial

con�gurations.

Since the Euler-Lagrange density L(m(s), ṁ(s)) (4.20) does not contain an ex-
plicit dependence on the time s, the generalized energy given by the Legendre
transformation of (4.20) is the system �rst integral of motion

L(m(s), ṁ(s))− ṁ(s)Lṁ(m(s), ṁ(s)) = E (4.53)

This can be rewritten as

e4β′m(1−m)2ṁ2 + (1 +m)2ṁ2 + 2e2β′m (1−m2) (8 + ṁ2)

(1 + e2β′m(1−m) +m)2 = E (4.54)

and explicitly solved for the velocity

ṁ = ±

√
E +

16e2β′m(m2 − 1)

(1− e2β′m(m− 1) +m)2
(4.55)

Looking at the integral curves in phase space we get some geometric intuition.
First let us understand what it means to have several equiprobable initial

states (for the system) which could be led by the evolution to the same �nal
state in therms of our di�erential equations. Phase diagrams for di�erent
values of β′ help us.
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Figure 4.3: Phase portrait for several values of β′

Two initial states m0,1, m0,2 (necessarily lying on the ACC) are equiprobable
for the �nal prescribed state m′ if the corresponding points (m0,1, g(m0,1)),
(m0,2, g(m0,2)) in the phase space are transferred by the phase �ows at time
s = t to points having equal projections on the m-axis (see Figure 4.3). This
corresponds to the fact that the solution-functions started at di�erent mag-
netizations collapse in m′ after time t with di�erent speeds (slopes).
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We would like to identify areas on the phase portrait where a possibility
to start with two di�erent points and after some time to end up with the
transferred points having equal projections on m-axis is excluded. The only
requirement we have for the initial points is that they have to lay on the graph
of a function. Nonetheless, this requirement su�ces to �nd �safe� areas (see
Figure 4.4). Plot a graph of a function f crossing only �safe� regions, take any
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Figure 4.4: �Safe� (�lled) vs. not �safe� regions

two magnetization values (w.l.g) m0,1 < m0,2, then the corresponding points
lying on the graph of f will be (m0,1, f(m0,1)), (m0,2, f(m0,2)). Safety of the
�lled regions is a combination of three facts: 1) a driving force is alway bigger
for a point with a greater m-coordinate in absolute value, 2) the driving force
is a smooth function of m, and 3) for (w.l.g) m > 0 the phase �ow keeps the
same direction of a drift for both of the starting points. Thus, the phase �ow
leaves no possibility for the point with the projection m0,1 to m-axis to speed
up and catch up with the another one and for the point with the projection
m0,2 to slow down and let the �rst one to reach it. On the other hand, the
empty areas in Figure 4.4 suggest the very possibility excluded in the �safe�
areas. Areas with a periodic motion are not �safe� because of the nature of
the motion itself.

Let us go back to the notion of the ACC (4.47) on which all possible
�allowed� starting conditions lie. The curve of allowed initial con�gurations
for di�erent combinations of initial and dynamical temperatures crosses both
�safe� and not �safe� regions. In �gure Figure 4.5 there are several ACC 's
drawn which correspond to di�erent values of β, but the same value of the
dynamical inverse temperature β′ = 3

2
, which is relatively low. The production

of discontinuities of the limiting conditional probabilities will be related to the
time-evolution of the curve of allowed initial con�gurations under the Euler-
Lagrange vector �eld, as we will describe now.

Let us �rst give a de�nition of a bad quadruple of initial temperature,
dynamical temperature, time, and �nal magnetization in terms of dynamical-
systems quantities. We start by de�ning candidate quadruples making use of
the Euler-Lagrange �ow in the following way.

De�nition 4.3.1. The quadruple (β, β′, t,mpb) is called pre-bad i� there ex-
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Figure 4.5: Phase portrait with level curves and ACC, β′ = 3
2

ists a pair m0,1 6= m0,2 of initial magnetizations s.t. the solution of the initial
value problem of the Euler-Lagrange equations started in the corresponding
points (m0,1, g(m0,1)) and (m0,2, g(m0,2)) on the allowed-con�gurations curve
for β, β′ has the same magnetization value mpb at time t, that is

m(t;m0,1, g(m0,1)) = m(t;m0,2, g(m0,2)) = mpb

While this �rst de�nition refers only to the existence of overhangs of the
time-evolved allowed-con�gurations curve, the next de�nition involves also the
value of the cost (4.40), which makes it much more restrictive.

De�nition 4.3.2. The pre-bad quadruple (β, β′, t,mbad) is called bad if and
only if the two di�erent paths started at the corresponding m0,1 6= m0,2 are
both minimizers for the cost, i.e.

Embad
(m0,1, β, β

′) = Embad
(m0,2, β, β

′) = inf
m
Embad

(m,β, β′) (4.56)

We will exploit both de�nitions both to gain geometric insight as well as
numerical results. The important connection to non-Gibbsian behaviour of
the time-evolved measure lies in the fact that mbad of a bad quadruple will
(generically) be a bad con�guration for γβ,β′,t(·|m). Indeed, to see this, let
us go back to the explicit expression of the limiting conditional probabilities,
given by

γβ,β′,t(η1|m′) =

∑
σ1=±1 e

σ1βm∗(0;m′,t)kt(σ1, η1;m′, t)∑
σ1,η̃1=±1 e

σ1βm∗(0;m′,t)kt(σ1, η̃1;m′, t)
(4.57)

Note that the function m∗(0;m′, t) is not well de�ned for m′ = mbad itself
since at time t there are two minimizing paths available, one from m0,1 to
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mbad and one from m0,2 to mbad. Varying however around mbad the paths will
become unique and we might select the minimizing paths (and hence their
initial points) by approaching the bad con�guration from the right or left,
obtaining (say) limm′↓mbad

m∗(0;m′, t) = m0,1 and limm′↑mbad
m∗(0;m′, t) =

m0,2. Note that we also expect that (generically) limm′↓mbad
kt(σ1, η̃1;m′, t) 6=

limm′↑mbad
kt(σ1, η̃1;m′, t). This follows since the kt are probabilities for two

di�erent single-particle Markov chains, one depending on the path starting
from (m0,1, g(m0,1)), the other one on the path starting from (m0,2, g(m0,2)).
We note that, knowing the paths entering the kt's, an explicit formula for kt
in terms of time-integrals can be written, and so, given (numerical) knowledge
of the minimizing path, the γβ,β′,t(η1|m′) can be obtained by simple integra-
tions. Unless these two discontinuities compensate each other (which is gen-
erically not happening and which can be quickly checked by numerics) we will
have that limm′↓mbad

γβ,β′,t(η1|m′) 6= limm′↑mbad
γβ,β′,t(η1|m′). Consequently the

model will be non-Gibbs at the time t.

Conversely, if (β, β′, t,mpb) is not bad, then m′ 7→ γβ,β′,t(η1|m′) is a con-
tinuity point. This follows since in that case all m′-dependent terms in (4.31)
deform in a continuous way. So the absence of bad points (and a fortiori the
absence of pre-bad points) implies Gibbsianness at (β, β′, t).

4.3.4 Time-evolved allowed initial con�gurations

We just saw that non-Gibbsianness is produced by multiple histories which
means in other words the production of overhangs in the time-evolved curve
of allowed initial con�gurations. To get an intuition for this let us discuss
the Regions 2) and 3) of the Theorem 4.2.1 in more detail. Let us begin
with the phase-space picture for the non-interacting dynamics β′ = 0. We are
starting with the Region 2a) of non-symmetry-breaking non-Gibbsianness i.e.
2
3

= β−1
SB(β′ = 0) ≤ β−1 < min{β′−1, 1} = 1.
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Figure 4.6: Non-symmetry-breaking mechanism, β′ = 0, β−1 = 0.8
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The time-evolved allowed-con�gurations curve for t = tnGS(β, β′ = 0)
is shown at the left plot of Figure 4.6 where it acquires a vertical slope at
zero. The right plot shows the time-evolved allowed-con�gurations curve for
t > tnGS(β, β′ = 0) where it has two symmetric overhangs. In particular
(β, β′ = 0, t,m′ = 0) is pre-bad. It is also bad, since the preimages of the up-
per and lower time-evolved allowed-con�gurations curve which intersect the
vertical axis have paths with the same cost, by the symmetry of the model.
Note that (β, β′ = 0, t,m′) is pre-bad for a whole interval of values of m′, but
(as the study of the cost shows and as it was proved in [36]) there are no other
bad points. We note that m′ = 0 is easily checked to be indeed a bad con�g-
uration (discontinuity point) of γβ,β′=0,t(·|m′) since there are no cancellations
of discontinuities in this case, as we will explain now. Indeed, kt(σ1, η̃1;m′, t)
does not depend on the trajectory of the empirical magnetization and is given
by the independent spin-�ip at the site 1 between plus and minus with rate 1,

γβ,β′=0,t(η1|m′) =

∑
σ1=±1 e

σ1βm∗(0;m′,t)kt(σ1, η1)∑
σ1,η̃1=±1 e

σ1βm∗(0;m′,t)kt(σ1, η̃1)
(4.58)

where kt(+,+) = 1
2
(1 + e−2t), and kt(+,+) = kt(−,−) = 1 − kt(+,−) =

1− kt(−,+). So, a discontinuity under variation of m′ is entering the formula
only through m∗(0;m′, t), and hence m′ 7→ γβ,β′=0,t(η1|m′) is discontinuous if
and only if m 7→ m∗(0;m′, t) is discontinuous.
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Figure 4.7: Symmetry-breaking mechanism, β′ = 0, β−1 = 0.4

Let us now look at region 2b) of symmetry-breaking non-Gibbsianness i.e.
β−1 < β−1

SB(β′ = 0)
The left plot of Figure 4.7 shows the time-evolved allowed-con�gurations

curve at t = t0(β, β′ = 0) where it acquires a vertical slope away from
zero. The right plot shows the time-evolved allowed-con�gurations curve for
t0(β, β′) < t < t1(β, β′) where it has two symmetric overhangs away from
zero. This means that (β, β′ = 0, t,m′) is pre-bad for a whole range of values
of �nal magnetizations m′. Due to the lack of symmetry it is not clear to
identify in the picture which of the (β, β′ = 0, t,m′)'s will be bad. It turns
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out that it is precisely one such value (β, β′ = 0, t,mc), and this can be found
looking numerically at the cost.

Perturbations of these pictures stay true for β′−1 > 1, where they describe
the only mechanism of non-Gibbsianness. Perturbations of these pictures
also stay true for β′−1 < 1, but then there is also the Region 3 of the main
theorem which describes the cooling from an initial low temperature. We
choose 2

3
= β′−1 < β−1 = 0.85 < 1. Then the vector �eld has periodic

orbits which are intersected by the allowed-con�gurations curve, and the time-
evolution will create overhangs and smear out the allowed-con�gurations curve
over time.
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Figure 4.8: Non-Gibbsianness by periodicity, β′−1 = 2
3
, β−1 = 0.85

The left plot of Figure 4.8 shows the time-evolved allowed-con�gurations
curve at t = tper(β, β

′) where it acquires a vertical slope away from zero inside
the area of periodic motion.

The right plot shows the time-evolved allowed-con�gurations curve for a
time t > t0(β, β′) where it has overhangs. Again, from the interval of pre-
bad points, the bad point has to be selected by looking at the cost. When
time gets larger more overhangs are created and the trajectory is smeared
out. The corresponding potential function m 7→ Em′(m,β, β

′) will acquire
more and more local extrema as t increases. Then, by �ne-tuning of the
m′ while keeping the β, β′, t �xed, equality of the depths of the two lowest
minima can be achieved. Since the number of available minima is increasing
with t we conjecture that there will be also an increasing number of bad m′s
which becomes dense as t increases. To prove this conjecture however, more
investigation is needed.

4.3.5 Emergence of bad points as a function of time

The notion of a bad point can be viewed from two di�erent standpoints.
A pre-bad point in the time-space diagram is a point where two (or more)
histories collide. If the costs computed along these paths are equal, then a
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pre-bad point is a bad point. In the phase space this means that the phase
�ow transported two (or more) points originally lying on the curve of allowed
initial con�gurations to the same space-position within equal time but with
di�erent speeds. Two (or more) points have the same space-position if their
projections to the m-axis are equal, as seen in Figures (4.6), (4.7), and (4.8).
How can we identify analytically the �rst time t where time-evolved initial
points from the curve of allowed initial con�gurations will obtain the same
projection to the m-axis? As intuition suggests one has to look when the
transported curve of allowed con�gurations acquires a vertical slope for the
�rst time. This discussion brings us to the following computation.

Writing v = ṁ for the velocity, let us consider the �ow m(t;m0, v0),
v(t;m0, v0) of our system under the Euler-Lagrange equations,

ṁ = v
v̇ = fβ′(m)

(4.59)

We take the curve of allowed initial con�gurations to be transported by the
�ow v0 = gβ,β′(m0) where we write in short f = fβ′ and g = gβ,β′ . We are
then interested in the projections to the m-axis of the time-evolved curves in
phase space, that is the curves m0 7→ m(t;m0, g(m0)), as they evolve with t.
Restricted to suitable neighbourhoods this curve becomes a function, and we
view it as a potential function with state variablem0 and parameter t (keeping
also β, β′ as �xed parameters.)

Doing so we see that the derivatives of the �ow with respect to the initial
conditions obey at the threshold time t that

0 = Fβ′,β(t,m0) :=
dm(t;m0, g(m0))

dm0

=
∂m(t;m0, v0)

∂m0

+
∂m(t;m0, v0)

∂v0

g′(m0)

0 =
d2m(t;m0, g(m0))

(dm0)2

(4.60)

The �rst equation means that in the (m, v) plane the time-evolved curve will
obtain a vertical slope which is clear by the interpretation of the variable m0

as a parametrization of the curve of allowed initial con�gurations.
Moreover we have that the second derivative will also vanish, since a min-

imum and a maximum of m0 7→ m(s;m0, g(m0)) collide for s ↓ t, in a fold
bifurcation.

4.3.6 The threshold time for non-symmetry-breaking

non-Gibbsianness for dependent dynamics

We can use these equations to obtain quantitative information about the
threshold time for non-symmetry-breaking non-Gibbsianness also for depend-
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ent dynamics. For this it su�ces to look at the dynamics locally around
the origin (m, ṁ) = (0, 0) in phase space which is a stationary point for the
dynamics independently of β′.

Linearizing fβ′ we get(
ṁ
v̇

)
=

(
0 1

4(1− β′)2 0

)(
m
v

)
(4.61)

Nonetheless the linearizing procedure provides corrections of third order. The
eigenvalues of the matrix are λ1,2 = ±2(1−β′), these eigenvalues are real and
have di�erent signs, so (m, ṁ) = (0, fβ′(0)) = (0, 0) is a saddle point. This
ensures that the nature of solutions close to (0; 0) stays the same whatever β′

is taken.

Let us now discuss the phase �ow around the origin (0, 0). At this point
non-Gibbsianness without symmetry-breaking occurs, by the following ar-
gument. Suppose a symmetric pair of initial conditions (m0, v(m0)) and
(−m0, v(−m0)) = (−m0,−v(m0)) is given which has the same time-evolved
magnetization 0 at time t. This corresponds to the fact that the transpor-
ted curve will have overhangs at the points (0, v1(m)) and (0,−v1(m)). If
we look at the phase portraits of the dynamics as a function of time we see
that for times larger than but very close to the �rst time where this occurs
the speed v1(m) will be very close to 0. It converges to 0 when t approaches
the transition time for Gibbsianness. Indeed, the whole path was evolving in
an arbitrarily small neighborhood of the origin and hence it su�ces to look
at the linearized dynamics. We also note that there is no need to look at
the cost functional in this case, due to the symmetry of the paths. As time
becomes larger than the transition-time (as in the right picture of Figure 4.6)
the intersection points of the time-evolved curve with the vertical axis will
move away from zero and so it would not be su�cient to use the linearization
of the dynamics to compute the relation between bad magnetization values
and time.

Clearly the general solution of the linearized system is

m(s) = C1e
−2(1−β′)s + C2e

2(1−β′)s (4.62)

Putting the initial condition to be (m0, v0) the phase �ow becomes

m(s;m0, v0) =
2(1− β′)m0 − v0

4(1− β′)
e−2(1−β′)s +

2(1− β′)m0 + v0

4(1− β′)
e2(1−β′)s

v(s;m0, v0) =
v0 − 2(1− β′)m0

2
e−2(1−β′)s +

v0 + 2(1− β′)m0

2
e2(1−β′)s

(4.63)
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Computing the function Fβ′,β(t,m0) (4.60) for this phase �ow and setting it
to zero having in mind that v0 = g(m0), we solve it w.r.t. time t and get

t =
1

4(1− β′)
ln
g′(m0)− 2(1− β′)
g′(m0) + 2(1− β′) (4.64)

Putting m0 = 0 we obtain from this for the transition time

t =
1

4(1− β′)
ln
β′ − β
1− β (4.65)

By setting β′ = 0 for the independent evolution in the last expression, the
result t = 1

4
ln(1−β−1) given in [36] is reproduced. We note that the transition

time given by formula (4.65) is positive only in the case when β > 1. This
con�rms the intuition obtained via �safe" regions. For β ≤ 1 the curve of
allowed con�gurations (w.l.g. m > 0) lies either higher than any branch of
separatrix in a �safe� area or coincides with it providing the invariance of ACC
under the phase �ow.
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Figure 4.9: The symmetry-breaking inverse temperature βSB as a function of
β′

To identify for which temperature-values the phenomenon of non-Gibbsian-
ness without symmetry-breaking ends, let us look when the function (4.64)
starts having several minima. In order to do this we compute the second



Mean-�eld models 69

derivative of (4.64) with respect to m0 in m0 = 0 and put it equal to zero.
The computations are made easier due to the second equation in (4.60). This
results in the equation

4β3 + 12ββ′ − 6β2(1 + β′)− β′(3 + 3β′ − β′2) = 0 (4.66)

In the independent-dynamics case β′ = 0 we get exactly β = 3
2
, which was

already found in the paper [36]. The algebraic curve (4.66) is plotted in
Figure 4.9.

4.3.7 Cooling and non-Gibbsianness by periodic orbits

Let us specialize to the case of a low-temperature dynamics β′ > 1. In that
case the phase space decomposes into the areas of periodic and non-periodic
dynamics. The separatrix is given by (4.55) with C = 4.

f±(m) = ±2
(1 +m)− e2β′m(1−m)

(1 +m) + e2β′m(1−m)
(4.67)

Note that the curve f+(m) coincides with the curve of the �allowed� con�g-
urations (4.47) when β′ = β. This means that it will be stable under the
phase �ow in that case. In particular the time-evolved curve will not acquire
overhangs which corresponds to the fact that the time-evolved measure will
be invariant under the dynamics and the model Gibbs.

Note also that the negative branch of the separatrix coincides with the
right-hand side of the ODE describing the unconstrained typical evolution
(4.18) and so the intersection point with the m-axis is given given by the
biggest solution of the ordinary mean-�eld equation m = tanh(β′m). Let us
�rst concentrate of the existence of pre-bad points, that is di�erent initial
points of the allowed-con�gurations curve leading to the same projection to
the m-axis after time t.

Now multiple overhangs are created if the allowed curve of initial con�g-
urations intersects the periodic motion area, as seen in Figure 4.8. Indeed,
this part of the curve will perform periodic motion and while doing so it will
acquire more and more overhangs, �lling out the part of the periodic motion
area which is bounded by its extremal value of the integral of motion over
time. It is now interesting to note for which temperatures this phenomenon
can happen and this is the content of the following theorem.

Theorem 4.3.3 (Non-Gibbsianness by periodicity). Suppose β′ > 1 and let
m∗1 and m∗2 be the biggest solutions of the mean-�eld equations for β′ and
β.Then the following is true.

1. if 1 < β < β′(or equivalently 0 < m∗2 < m∗1) holds then
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� The curve of allowed initial con�gurations for β, β′ has non-zero
intersection with the (open) periodic motion area in phase phase
for β′.

� Consequently there exists a threshold time tper(β, β
′) such that for

all t > tper(β, β
′) there exists pre-bad (β, β′, t,m′)s.

2. if 1 < β < β′ fails, there is either no periodic motion areas, or the curve
of allowed-con�gurations has no intersection with them.

Proof. Denote f = f− (here we take the branch which bounds the peri-
odic motion area from above), and the curve of the �allowed� con�gurations
by g(m) so that we have

f(m) = −2
(1 +m)− e2mβ′(1−m)

(1 +m) + e2mβ′(1− x)
,

g(m) = 2e2β′m (1 +m)− e2m(β−β′)(1−m)

(1 +m) + e2mβ′(1−m)

(4.68)

Previously it was mentioned that periodic motion arises only in the case β′ >
1, and so we will consider this along the proof, also w.l.g. we say that m > 0.
Let us show what the condition 1 < β < β′ means and its equivalence to
0 < m∗2 < m∗1. First, we put f(m) = 0 to determine the right border of the
periodic motion area, and we get that it's given by the equation

(1 +m)− e2β′m(1−m) = 0,

which is equivalent to the mean-�eld equation for β′. Let its biggest solution
be given bym∗1. Second, consider f(m) = g(m) to determine their intersection
point. This is simply

(1 +m)− e2βm(1−m) = 0,

which is again the same mean-�eld equation, but for β, where m∗2 has the
same meaning as before.

The allowed-con�gurations curve comes into the region of periodic motion
and stays there when the following condition is satis�ed

−f ′(x)
∣∣∣
m=0

< g′(m)
∣∣∣
m=0

< f ′(m)
∣∣∣
m=0

,

which turns out to be just equivalent to

−(2β′ − 2) <2− 4β + 2β′ < 2β′ − 2 (4.69)

or 1 < β < β′. One can get an intuitive understanding of this mechanism
from Figure 4.10. �
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Figure 4.10: Allowed-con�gurations curve for di�erent β keeping β′ constant

4.4 Numerical results

Since the variational problem with �xed endpoint (4.46) cannot be solved in
closed form unless the dynamics is independent, let us now describe some of
the key features which are seen in a numerical study.

4.4.1 General approach

We start with the describing the numerical procedure we used to discover pre-
bad points. These pre-bad points later are examined as to whether they are
bad by computing corresponding costs. We look at the variational problem of
�nding an extremal constrained to take value m′ at time s = t from another
standpoint. We apply a modi�cation of the shooting method [53, see Section
7.3], when the variational problem is solved for a couple of initial conditions
which later on are examined for the collision with each other at any point.
The di�erence with the shooting method is that originally a �nal value of a
solution of the variational problem has to be prescribed.

Fix the initial and dynamical inverse temperatures β and β′. We want
to identify all initial magnetizations leading to the same (unknown) pre-bad
value of magnetization at (unknown) time t̂. Since the model is symmetric,
we may consider only positive initial conditions. As before, denote as m(s) a
solution of the Euler-Lagrange (EL, shortly) equation.

1. Select M , a �ne enough discretization of (0, 1). Also choose a partition
T of time interval [0, t], Ti = (ti, ti+1)
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2. For each element m0 ∈ M the corresponding ṁ0 could be computed
from ACC. This de�nes two initial conditions for the Euler-Lagrange
di�erential equation.

m(0) = m0

d

ds

∣∣∣∣∣
s=0

m(s) = ṁ0

(4.70)

3. Solve the EL-equation for each couple (m0, ṁ0) on the time interval
[0, t].

4. Set i = 0, and T to be the corresponding time-interval, T = Ti

5. For each couple of any two intersecting solutions m1(s) and m2(s) on T
at (t̃, m̃) look around for intersection points in ε-neighbourhood. Find
all curves intersecting at least one ofm1(s),m2(s) within this neighbour-
hood. Call the union of these curves Cε.

6. For each curve m≈(s) ∈ Cε (w.l.g. let m≈(s) and m1(s) intersect at
(t̃≈, m̃≈)) perturb the initial condition corresponding to m≈(s) until the
distance between (t̃≈, m̃≈) and (t̃, m̃) is su�ciently small. In the degen-
erate case m≈(s) will converge to one of m1(s),m2(s). In other case we
have found that if started at any of m1(0),m2(0),m≈(0) with β′, β−1

�xed paths will go trough (t̃, m̃) which is, therefore, a pre-bad point.

7. If Ti+1 does not exceed [0, t], increase i by a unit and go to (5) with the
new T = Ti , otherwise algorithm stops here.

4.5 Typical paths, bad con�gurations, multiple

histories, forbidden regions

We remind the reader that for given conditioning (β′, β, t,m′) a solution of
(4.46) with this set of parameters is called a history curve. Let us �rst discuss
such curves for the example of independent dynamics. Figure 4.11 shows on
the right such history curves conditioned to end at time t at m′, for di�erent
values of m′. There is a jump in the optimal trajectory when we change
m′ = 0+ to m′ = 0−. The associated cost functional at m′ = 0, depicted on
the left, has two symmetric minima, and their minimizers are the two possible
initial magnetization values. This is an example of a multiple history scenario.
We call the regions showing on the right plot which cannot be visited by any
integral curve forbidden regions.
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Figure 4.11: Symmetric forbidden regions
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Figure 4.12: Non-symmetric forbidden region

Figure 4.12 shows on the right history curves for the independent dynamics
with a low initial temperature smaller than 2

3
where symmetry-breaking in the

set of bad con�gurations takes place. We see on the right two discontinuity
points m′ and correspondingly two components of forbidden regions for the
trajectory. The cost functional corresponding to the positive one of them is
depicted on the right. Deformations of these pictures describe the phenomena
for all temperatures of the dynamics, as long as the initial temperature is
lower.

Finally, Figure 4.13 displays history curves and cost functional at the crit-
ical conditioning for an example of cooling dynamics.

Next, let us �x β, β′ and describe the possible change of the set of bad
con�gurations as a function of the time. Again we look at the independent
dynamics �rst.

The top line of Figure 4.14 has an initial temperature in which non-
Gibbsian behaviour without symmetry-breaking takes place. In the Fig-
ure 4.14(b) we see the bad con�gurations m′ as a function of the time s which
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Figure 4.13: Forbidden region for β′ = 3
2

were found numerically depicted by dots. Since m′ = 0 appears at a threshold
time and stays to be the only bad con�guration from that on, the graph of
bad con�gurations is just a straight line starting at the threshold time. In the
Figure 4.14(a) we see the corresponding initial points of the history curves
which are conditioned to end at m′.

The lower line of Figure 4.14 has an initial temperature for which non-
Gibbsian behaviour with symmetry-breaking takes place, in an intermediate
time-interval. The right plot shows the corresponding non-negative branch of
bad con�gurations m′. (By the symmetry of the model, taking the negative
of these one obtains the full set of bad con�gurations.) The left plot shows
the corresponding initial points of the history curves which are conditioned to
end at the non-negative bad con�gurations m′ on the right.

Finally, the Figure 4.15 displays the time-evolution of bad con�gurations
and their initial points for a low-temperature dynamics. The lowest line
corresponds to heating from very low initial temperature and shows non-
Gibbsianness with symmetry-breaking at an intermediate time-interval. The
middle line corresponds to heating from an intermediate lower temperature
and shows non-Gibbsianness without symmetry-breaking. These two mechan-
isms are known from high-temperature dynamics. Figures 4.15(a) and 4.15(b)
correspond to cooling and shows data from the region of periodic orbits.

Applying numerical integration of the Euler-Lagrange equations from ini-
tial conditions chosen on the allowed-con�gurations curve, check for inter-
secting trajectories and numerical computation of the cost function we can
get (numerical approximations to) the array of bad quadruples (β, β′, t,mpb),
augmented by the possible initial points. With this procedure we re-derived
the Gibbs-non-Gibbs phase diagram for β′ = 0 (which was obtained earlier
in[36]). Based on it we can draw the Gibbs-non-Gibbs phase-diagram at any
dynamical temperature β′. An example for this was presented in the section
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where the main result of the present chapter was stated in the Figure 4.1 for
a �xed relatively low dynamical temperature.

4.6 Final remarks

The paper [15] which this chapter is based on is to our knowledge the �rst one
where Gibbs properties of a model subjected to a low-temperature dynamics
are investigated. Shortly after, the paper of van Enter, A.C.D. et al. [14]
appeared where the lattice case was treated. In that paper a large-deviation
approach was proposed to understand dynamical transitions in the Gibbs
properties for lattice systems, too. While there is a beautiful formalism avail-
able for path large deviations of empirical measures of lattice systems on an
abstract level, explicit results are very hard and given only for an in�nite-
temperature dynamics, which underlines also the use of our work, and the
necessity of future research.

There are several possible ways for extension of our work. We �rst mention
theoretical issues. As previously conjectured, the set of bad con�gurations
expands, this requires more numerical experiments to be done. Moreover,
a similar e�ect has been seen in Chapter 3. The investigated model was
considered in a vanishing �eld, while it is not always the case and it will be
interesting to see which e�ects persist (if at all) for the model in a �eld. We
expect a shift in the phase diagram leaving less possibilities for non-Gibbsian
behaviour. A more challenging generalization and �rst to think of is to run
the same analysis for mean-�eld Potts model.

Viewing the problem from the standpoint of applications, the questions
and methods used should have interest also in models of population dynam-
ics. In such models a population of N individuals, each individual carrying
genes from a �nite alphabet of possible types, performs a stochastic dynamics
which can be described on the level of empirical distributions. Starting the
dynamics from a known initial measure corresponds to an a-priori belief (prior
distribution) over the distribution of types. Conditioning to a �nal con�gura-
tion m′ at time s = t corresponds to measuring the distribution of types. The
occurrence of multiple histories leading to the same m′ (which is responsible
for non-Gibbsianness in the spin-model) has the interesting interpretation of
a non-unique best estimator for the path explaining the present mix of genes.

∗ ∗ ∗
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Figure 4.14: Initial points of trajectories (left) and bad con�gurations as func-
tion of time (right), β′ = 0
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Figure 4.15: Initial points of trajectories (left) and bad con�gurations as func-
tion of time (right),low-temperature dynamics � β′ = 3
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5

Some applications of the

Gibbsian formalism

This chapter is devoted to an application of the Gibbsian formalism to some
problems of Information Theory. We address a speci�c type of problems
and overview approaches of Information Theory to this kind of problems and
explain why the Gibbsian formalism might be useful there. As an illustration
we run a series of experiments where we compare the approach based on the
Gibbs approach and the more traditional one from Information theory.

5.1 Historical remarks

Markov chains of variable length memory �rst appeared in information the-
ory in Rissannen's paper in 1983 [51]. That article addressed a problem of
compressing a string of symbols. His idea was to model such a string as a
realization of a stochastic chain with variable-length memory, that is when
the length of the memory needed to predict the next symbol is not �xed,
but is a deterministic function of the past symbols. Allowing a memory
to be of variable length captures long-range dependence, but also to track
�pasts� only to relevant depth. Consider a simple example, let {Xt} be a
stochastic chain de�ned on a binary alphabet {0, 1} obeying the following
rules: P(X0 = 0|X−1 = 0) = 1

2
and P(X0 = 0|X−1 = 1, X−2 = 0) = 1. Clearly,

it is not a Markov chain, though it may be viewed as a Markov chain with
memory 2. With a bigger dependence range such an analogy is ine�cient
for practical purposes. The algorithm �Context� developed in [51] is able to
reconstruct conditional distributions of the same nature as in our example
from a random sample. As an output the algorithm provides a tree, encoding
all information on the estimated conditional distributions. Each leaf (a node
without children) is uniquely associated with a shortest memory one has to
look at in order to have a �correct� conditional distribution for a given past
and with a corresponding conditional distribution.

This discussion gives the basic description of, as we will abbreviate them,
VLMC (also known as g-measures, random Markov chains) and describes an
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e�cient way to store such an object. VLMC's extensively employ the idea
that conditional distributions of a stochastic chain are functions of the past
values of that chain. Moreover, the length into the past which in�uences the
conditional distribution of the variable at present itself depends on the past
con�guration. In 1990 Kalikow showed that a chain with complete connec-
tions (or, equivalently, in�nite memory) under certain continuity assumptions
on transition kernels can be decomposed as a countable mixture of Markov
transition laws [34], more on this equivalence could be found in Fern�andez
et al. [21, Chap. 7]

Rissannen's paper drew a lot of attention and became a foundation for
later work both in theoretical science, e.g. [6, 20], and in applied research. A
good example of applied research is the study of protein families in [4]. The
idea of VLMC was applied to identify signi�cant patterns in a set of related
protein sequences. The developed method based on the �Context� singles out
signi�cant patterns of variable length surprisingly well without assuming any
preliminary biological information. That implementation is publicly available
[3]. We will be using it during our comparison analysis. Another interest-
ing example occurs in linguistic studies. In [24] the application of VLMC was
motivated by the linguistic challenge of retrieving rhythmic features from writ-
ten texts (a set of daily newspapers). As a result an illustration compatible
with the long standing conjecture that Brazilian Portuguese and European
Portuguese belong to di�erent rhythmic classes was provided.

More recently, a strong interest in two-sided models appeared. The source
of this interest lies in Information Theory, more precisely in problems related
to universal denoising. That is rather than considering distributions condi-
tioned on the past, conditional distributions with two-sided conditioning �
on past and future � are considered. In practice, a one-sided approach can
relatively easily be extended to a two-sided point of view in two ways � either
utilizing the knowledge of conditional distributions estimated with the one-
sided approach or via a direct generalization, although mathematically both
approaches are equivalent [20]. Practical di�erences come from the �niteness
of any sample. We will review both of the approaches.

It is important to stress that dealing with two-(one-)sided conditional prob-
abilities is rather common for the theory of Gibbs measures. Traditionally, in
the Gibbsian formalism information about conditional distributions is encoded
with a potential � a family of functions describing the interactions between
random variables. Therefore, the information about a stochastic chain en-
coded in the aforementioned tree could be written in terms of a potential.
A maximal memory needed to �correctly� describe a conditional distribution
may be associated to a range of a potential. The idea of Rissanen and its
further developments so successfully used in Information Theory are Gibbs in
nature. The question we address in this chapter is whether a direct applica-
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tion of Gibbsian formalism might improve the solution of some Information
Theory problems. In other words, we aim to reconstruct a potential from
a sample of random process and see whether it shows any superiority w.r.t.
the one-sided approach while both are applied some problems of Information
Theory (not yet denoising, however).

5.2 Theory

5.2.1 General set-up

We add to the general notation of Chapter 2 some new de�nitions. Denote
by G = {Λ : |Λ| <∞} the set of all �nite subsets of G. We shall refer to the
single-site space S also as an alphabet. Realizations of con�gurations σ ∈ Ω
will be denoted by lower-case Latin letters b, s, i.e. the realization of σΛ is sΛ.
We denote by 〈SΛ〉 the set of all possible realizations of a con�guration σΛ

and de�ne

S∗ =
⋃
|Λ|≥1
Λ⊂V

〈SΛ〉

De�nition 5.2.1. Let µ be a probability measure on (Ω,A), then µ is called
a variable neighbourhood random �eld if for any Λ ∈ G and for µ-almost all
ωΛc there exists a function l : S∗ 7→ 〈SΛ〉, Λ ∈ G, such that

µ(σΛ|ωΛc = bΛc) = µ(σΛ|ωl(bΛc ) = bl(bΛc )) (5.1)

We will be concerned with reconstructing the original distribution µ when
a realization b ∈ S∗ is known.

As a special case we treat G being a one-dimensional lattice, i.e. integer
sites of the real line, G = Z. The general notation keeps its meaning, but has
to be thought in connection with the chosen graph.

Adopting the general notation for the one-dimensional case we write σnm =
σΛ for con�gurations and bnm = bΛ for their realizations, where Λ = (m,m +
1, . . . , n − 1, n). The state-space of σ+∞

−∞ is Ω = SZ. Realizations of length j
belong to the set 〈Sj〉, the set of all realizations on Z is S∗ =

⋃∞
j=1〈Sj〉. Let

| · | be the length function of a string, i.e. |b| = j for b ∈ 〈Sj〉. We shall refer
to one-dimensional realizations also as strings.

We say that a sequence s−1
−j ∈ 〈Sj〉 is a su�x of a sequence b−1

−k ∈ 〈Sj〉 if
j ≤ k and s−i = b−i for all i = 1, . . . , j. We denote it as s−1

−j � b−1
−k. If j < k,

then it is said that s is a proper su�x of b and written as s ≺ b.
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5.2.2 Overview: One-sided modelling

Due to the one-dimensionality of the set-up, we shall call a string b−1
−j ∈ 〈Sj〉

for any j a past for a random variable σ0. Moreover, the same term �past�
will refer to a family of random variables σ−1

−j ∈ Sj.
The relevant de�nition of variable-neighbourhood random �eld (5.2.1) in

the case of one-sided models transforms into the following.

De�nition 5.2.2. Let µ be a probability measure on (Ω,A), then µ is called
a variable length Markov chain if there exists a function l : S∗ 7→ 〈Sj〉, j is
�nite, such that

µ(σ0|σ−1
−∞ = b−1

−∞) = µ(σ0|σ−1

−l(b−1
−∞)

= b−1

−l(b−1
−∞)

) (5.2)

De�nition 5.2.3. A �nite subset T of S∗ is called a tree if it satis�es a su�x
property, that is for no b−1

−k ∈ T we have that b−1
−k+j ∈ T for j = 1, . . . , k − 1.

Here we explain the reference to T as a tree. The relation �≺� induces
a natural order for any sequence b−1

−k in the following manner: b−1 ≺ b−1
−2 ≺

b−1
−3 · · · ≺ b−1

−k. Therefore, given a set T , satisfying the su�x property, all its
elements might be represented as leaves of a certain tree rooted at the empty
string e. Nodes of such a tree in generation l are marked with su�xes s−1

−l of
b−1
−k ∈ T , l < k. Each node has possibly as many o�spring as the cardinality
of the set S which di�er from the ancestor only by one symbol from S.

De�nition 5.2.4. A probabilistic context tree over S is an ordered pair (T ,p)
such that

(i) Irreducibility. No string in T may be replaced by its su�x without viol-
ating the su�x property.

(i) p = {p(·|b) : b ∈ T } is a family of transition probabilities over S.

De�nition 5.2.5. A realization bi−1
−j ∈ 〈Si+j〉 is a one-sided context for σi, i ∈

Z if µ(σi−1
−j = bi−1

−j ) > 0 and if bi−1
−j is a su�x for a semi-in�nite string si−1

−∞
such that

µ(σi = a|σi−1
−∞ = bi−1

−∞) = p(a|bi−1
−j ), for all a ∈ S, (5.3)

and no su�x of bi−1
−j satis�es this equality.

De�nition 5.2.6. The conditional distribution µ of a single σi is compatible
with the probabilistic context tree (T ,p) if the following conditions are satis�ed

(i) b ∈ T if and only if b is a context for σi;

(ii) for any b ∈ T and any a ∈ S, p(a|b) = µ(σi = a|σi−1
i−1−|b| = b).

In the light of the last de�nition, the set T will also be referred to as a
uni-directional contexts set.
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5.2.3 Overview: Two-sided modelling

Let each of T1 and T2 be a �nite subset of S∗. Given a couple of strings
(b−1
−k, b

l
1) ∈ T1 × T2 we keep calling b−1

−k a past for a random variable σ0 and a
string bl1 a future for σ0, for any integer l and k.

The relevant de�nition of variable-neighbourhood random �eld (5.2.1) in
the case of two-sided models transforms into the following.

De�nition 5.2.7. Let µ be a probability measure on (Ω,A), then µ is called
a variable length Markov �eld if there exists a function l : S∗ 7→ 〈Sj〉, j is
�nite, such that

µ(σ0|σ−1
−∞ = b−1

−∞,σ
+∞
1 = b+∞

1 ) =

µ(σ0|σ−1

−l(b−1
−∞)

= b−1

−l(b−1
−∞)

, σ
l(b+∞1 )
1 = b

l(b+∞1 )
1 )

(5.4)

De�nition 5.2.8. A product T1×T2 satis�es a su�x property if for no couple
of strings (b−1

−k, b
l
1) we have that (b−1

−k′ , b
l′
1 ) belongs to T1 × T2 for k′ ≤ k, l′ ≤

l, k′ + l′ < k + l.

As before, given T1 × T2 satisfying the su�x property, let p(·|b, c) be a
family of transition probabilities over S with conditioning (b, c) ∈ T1 × T2.

De�nition 5.2.9. A pair of strings (b−1
−k, b

l
1) ∈ T1×T2 for some �nite integers

k, l such that k ≥ 1, l ≥ 1, such that b−1
−k is a su�x of a semi-in�nite realization

s−1
−∞ and bl1 is a su�x of a semi-in�nite realization s+∞

1 is called a bidirectional
context, if for any a ∈ S

µ(σ0 = a|σ−1
−∞ = s−1

−∞, σ
+∞
1 = s+∞

1 ) = p(a|b−1
−k, b

t
1) (5.5)

The set T1 × T2 is, therefore, called a bi-directional contexts set.

Two-sided modelling as an extension of one-sided modelling

We now concentrate on how studying of the set of bi-directional contexts
could be reduced to studying of the sets of uni-directional contexts and how
the corresponding distributions p(a|b−1

−k, b
t
1) and p(a|b−1

−k) and p(a|bt1) could be
related. In the process we repeat arguments of Yu and Verd�u [58] pointing
out the disadvantages of this approach.

1) Backward-Forward product [58]. A conditional distribution of σ0 with
given past and future is proportional to the product of two one-sided condi-
tional distributions with a given future and past, respectively. The disadvant-
age of the Backward-Forward product lies in its ability to describe a rather
small set of two-sided distributions.
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2) Generalized Markov scheme [58]. Yu and Verd�u [58] make an assump-
tion that σ is a 2m+1-Markov �eld. The Markovian nature then implies that
there exists an integer m (in case of a �nite sub-graph of Z, m < 1

2
n, where

n is the number of vertices in the sub-graph) such that for any given σj+mj−m,

the families σj−m−1
−∞ and σ+∞

j+m+1 are conditionally independent given σj+mj−m,
∀j. Under this assumption the two-sided conditional distribution is shown
to be proportional to an expression involving only uni-directional conditional
probabilities as follows

µ(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b∞j+1) ∝

µ(σj+mj−m = bj−1
j−mab

j+m
j+1 |σ

j−m−1
−∞ = bj−m−1

−∞ )

µ(σj+mj−m = bj−1
j−mab

j+m
j+1 )

×

µ(σj+mj−m = bj−1
j−mab

j+m
j+1 |σ+∞

j+m+1 = b+∞
j+m+1)

(5.6)

The distributions conditioned either on a past or a future involved in (5.6)
at the right-hand side are well described by uni-directional probabilistic con-
text trees. The unconditioned distribution at the right-hand side is a measure
of a cylinder and can also be computed using uni-directional conditional dis-
tributions.

This approach is inaccurate if variables in the con�gurations σ have a
relatively short-range dependence, therefore either, for big m � σj+mj−m starts

being independent of σj−m−1
−∞ and σ+∞

j+m+1, � or, for small m � long memory
is not captured,� the aforementioned approach fails.

3) Forward and Backward One-sided Generalized Markov schemes [58].
The family σ+∞

−∞ is assumed to be Markovian of k-th order. The reversed
family σ−∞+∞ also possesses the k-th order Markovian nature. This knowledge
allows one to observe that

µ(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b+∞

j+1) =

µ(σj = a|σj−1
j−k = bj−1

j−k, σ
j+k
j+1 = bj+kj+1)

(5.7)

The equation (5.7) allows us to write the following expressions for the
two-sided model:

µ(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b+∞

j+1) ∝
µ(σj = a|σj−1

j−k = bj−1
j−k)× µ(σj+1 = bj+1|σjj−k+1 = bjj−k+1)×

j+k∏
t=j+2

µ(σt = bt|σt−1
t−k = bj−1

t−kab
t−1
j+1)

(5.8)
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µ(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b+∞

j+1) ∝
µ(σj = a|σj+kj+1 = bj+kj+1)× µ(σj−1 = bj−1|σj+k−1

j = bj−k+1
j )×

j−2∏
t=j−k

µ(σt = bt|σt+kt+1 = bj−1
t+1ab

t+k
j+1)

(5.9)

The equation (5.8) is referred as forward one-sided generalized Markov
scheme (or f-OGM) and the equation (5.9) � as b-OGM, in [58]. The pre-
viously discussed GM scheme is related with the f(b)-OGM scheme and with
the correct choice of the order k they coincide up to normalizing constant.
However, the GM-scheme combines the uni-directional probabilities from the
two sides, whereas the f(b)-OGM scheme utilizes only one-sided conditional
probabilities. Computationally the f(b)-OGM scheme is less complex.

4) The adaptive bi-directional model based on CTW [58]. The idea behind
the CTW (context-tree weighting) method is slightly di�erent than the idea of
one-sided probability su�x trees. Instead of dealing with conditional probab-
ilities µ(σj = a|·), CTW employs distributions of block probabilities (i.e. joint
probabilities) µ(σnm),m < n. The CTW method is well studied in [56, 57].
The de�nition of conditional probability together with the total probability
law help to �nd a link between ideas of the CTW method and bi-directional
conditional distributions.

µ(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b+∞

j+1) =
µ(σ+∞

−∞ = bj−1
−∞ab

+∞
j+1)∑

c∈A µ(σ+∞
−∞ = bj−1

−∞cb
+∞
j+1)

(5.10)

In reality dealing with distributions of in�nite blocks is an unreasonable
aim, therefore a condition on the length of a block is put. This condition poses
no problem in the case of an in�nite string s ∈ S∗ where µ is reconstructed
from, on the other hand , if s ∈ Sk with k �nite, a block bj−1

1 abnj+1 might not
exist for all a ∈ A in s ∈ Sk. Let 2d+1 be the maximum length of each block,
then µ(σj = a|σj−1

j−d = bj−1
j−d, σ

j+d
j+1 = bj+dj+1) is given as a sum of probabilities of all

blocks of form σj+dj−d, where the j-th symbol is perturbed. The corresponding
probabilities could be found in CTW built from a given realization.

Often the realization is �nite, therefore this method might lack some of
the blocks, making the estimation imprecise.

Direct two-sided modelling

Another approach is to directly construct a bi-directional conditional distri-
bution instead of estimating it from uni-directional distributions. Doing this
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poses additional representation problems. The lack of natural order in the set
of T1 × T2 implies non-uniqueness of a bi-directional context for conditional
distributions of µ. Moreover, representation of such contexts as leaves of a
tree is only possible under additional requirements on a way a tree grows.

1) Bi-directional contexts trees of Yu and Verd�u [58]. To preserve the
desired tree structure for representation of context set, a simple rule was
suggested in [58]. Recall that |bmn | is the length function for a string, e is the
empty string, |e| = 0. Consider a bi-directional context (v, w) with past v and
future w. Each of (aw, ve), (ew, vb), and (aw, vb) for some a, b ∈ A will be
called a (left-, right-, left-right-) child-node (or extension) of (w, v). For each
node (v, w) in the bi-directional tree rooted at (e, e) the following growing
rule is applied:

� |w| = |v|, add three possible kinds of child-nodes with the forms (aw, ve),
(ew, vb), and (aw, vb) for some a, b ∈ A,

� |w| < |v|, add one possible kind of child-node with the form (ew, vb) for
some b ∈ A,

� |w| > |v|, add one possible kind of child-node with the form (aw, ve) for
some a ∈ A.

This rule ensures that the constructed graph is connected and no o�spring-
node has several ancestor-nodes, therefore the tree structure is preserved and
bi-directional contexts may be represented as leaves of such a tree.

An optimal choice of the context for (bj−1
−∞, b

+∞
j+1) is a harder problem. Let

H(bj−1
−∞, b

+∞
j+1) be the set of all contexts for the given bi-directional condition-

ing (bj−1
−∞, b

+∞
j+1) (clearly, the cardinality of this set in the uni-directional case,

b+∞
j+1 = e, is 1). To resolve the ambiguity in �nding a bi-directional context

for (bj−1
−∞, b

+∞
j+1), an exponential weighting scheme is used. This is motivated

by noticing the similarity of the problem under discussion with that of estim-
ating an unknown distribution P from a collection of distributions (Pi)

k
i=1 on

a �nite alphabet A. A natural method is to minimize the divergence between
the mixture of (Pi)

k
i=1 and P . An optimization problem can be formulated as

minimize D(
k∑
i=1

αiPi‖P )

with constraint
k∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , k

(5.11)
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Solving (5.11) (for the details we refer to [58]) allows to write the following
estimator for the conditional distribution µ:

µ̂(σj = a|σj−1
−∞ = bj−1

−∞, σ
+∞
j+1 = b+∞

j+1) =∑
(w,v)∈H(bj−1

−∞,b
+∞
j+1)

αw,v(b
j−1
−∞, b

+∞
j+1)µ(σj = a|bj−1

j−|w|, b
j+|v|
j+1 ),

where

αw,v(b
j−1
−∞, b

+∞
j+1) =

eβl(w,v)∑
(x,y)∈H(bj−1

−∞,b
+∞
j+1)

eβl(x,y)
,

(5.12)

where β is some positive pre-speci�ed constant.
2) Bi-directional contexts trees of Ordentlich et al.[49] In general, the rule

(5.2.3) is not satis�ed, so the representation of the contexts sets is not a tree
anymore, but a graph. This is due to the fact that two di�erent bi-directional
context might have the same extension. It is suggested in Ordentlich et al. [49]
to �rst construct a directed graph where nodes having no outgoing edges are
associated with bi-directional contexts. Nodes having both incoming and out-
going edges are marked with su�xes of bi-directional contexts. An algorithm
of pruning such a graph in order to delete all �doubling� nodes and get as an
output a tree was proposed in Ordentlich et al. [49]. Having a tree with each
node having necessarily exactly one ancestor automatically solves the problem
of non-uniqueness of bi-directional context for a given conditioning.

3) Bi-directional contexts trees of Fern�andez et al.[18] The authors of [18]
also pursue the idea of constructing a bi-directional contexts tree without a
special rule obeyed during construction. In the set of two-sided contexts of
(b−1
−∞, b

+∞
1 ) �representative� contexts (satisfying a certain property [18]) are

proven to be doubly-branching, that is past- and future- conditionings have
equal length. A corresponding bi-directional tree is constructed as a product
of two uni-directional context trees.

5.2.4 Gibbs potentials: Vacuum and telescoping

formulas

As De�nition 2.2.1 suggests the form of a potential is far from being unique.
Non-uniqueness can be shown by a simple rearrangement of terms in Hamilto-
nian, nevertheless such potentials are physically equivalent. Potentials are
equivalent if they assign the same amount of energy up to constants and
boundary terms [11] to corresponding regions. Among physically equivalent
interactions there are interactions satisfying the vacuum property. The relev-
ant de�nition is as follows [19].
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De�nition 5.2.10. An interaction Φ in Ω has vacuum θ if

φA(ω) = 0, if ωi = θi for some i ∈ A (5.13)

for all A b V

The vacuum property was used to reconstruct the form of the potential in
the course of proving the Kozlov theorem [35], from the speci�cation Γ.

Theorem 5.2.11. Let Γ = {γΛ,Λ b V} be a speci�cation with a certain po-
tential such that γΛ(σΛ|ω∆\Λθ∆c) > 0,Λ ⊂ ∆, then the θ-vacuum potential for
Γ veri�es

HΛ(σΛ|θΛc) = − ln
γΛ(σΛ|θΛc)

γΛ(θΛ|θΛc)
(5.14)

for each Λ b V and each σ ∈ Ω.

For the Hamiltonian write

HΛ(σΛ|θΛc) =
∑
A⊂Λ

vA(σΛθΛc) (5.15)

The last formula can be inverted with the M�obius transform and we get

vA(σθΛc) = −
∑
Λ⊂A
Λ6=∅

(−1)|A\Λ|HΛ(σΛ|θΛc) (5.16)

Such a potential satis�es the vacuum property. A possible problem with the
vacuum potential is that it may not be absolutely convergent. In [35] Kozlov
introduces another type of potential. Here we present a simpli�ed deriva-
tions (in the spirit of [47]) and, for the occasion, we will call it a telescoping
potential. Recall (5.14)

exp {−HΛ(σΛ|θΛc)} =
γΛ(σΛ|θΛc)

γΛ(θΛ|θΛc)
(5.17)

The last formula yields the following decomposition

γΛ(σΛ|θΛc)

γΛ(θΛ|θΛc)
=

n∏
k=1

exp {Fk(σi1 . . . σik)} , (5.18)

where we lexicographically ordered n = |Λ| sites in Λ so that i1 < i2 < . . . < in
and

Fk(σi1 , . . . , σik) = ln
γΛ(σi1 . . . σik−1

σikθ . . . θ|θΛc)

γΛ(σi1 . . . σik−1
θ θ . . . θ|θΛc)

(5.19)
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Each of Fk(σi1 , . . . , σik) obeys a bar displacement property, i.e.

ln
γΛ(σi1 . . . σik−1

σikθ . . . θ|θΛc)

γΛ(σi1 . . . σik−1
θ θ . . . θ|θΛc)

= ln
γΛ(σi1 . . . σik−1

σik |θΛc)

γΛ(σi1 . . . σik−1
θ |θΛc)

(5.20)

Note the following property of Fk(σi1 , . . . , σik)

−Fk(σi1 , . . . , σik ) = − ln
γΛ(σi1 . . . σik−1 θ |θΛc)

γΛ(σi1 . . . σik−1σik |θΛc)

= − ln
γΛ(σi1 . . . σik−1 θ |θΛc)

γΛ(σi1 . . . σik−1σik |θΛc)

γΛ(θσi2 . . . σik−1σik |θΛc)

γΛ(θσi2 . . . σik−1 θ |θΛc)
− ln

γΛ(θσi2 . . . σik−1 θ |θΛc)

γΛ(θσi2 . . . σik−1σik |θΛc)

= − ln
γΛ(σi1 . . . σik−1 θ |θΛc)

γΛ(σi1 . . . σik−1σik |θΛc)

γΛ(θσi2 . . . σik−1σik |θΛc)

γΛ(θσi2 . . . σik−1 θ |θΛc)
− Fk−1(σi2 , . . . , σik ),

(5.21)

where the bar displacement property was used at the second equality sign.
This observation allows to telescope functions Fk into

Fk(σi1 , . . . , σik) = −
k∑

m=0

Um(σ{im,...ik}|θ{im,...ik}c), (5.22)

where

Um(σ{im,...ik}|θ{im,...ik}c) =

= ln
γ{im,...is}(θσ{im+1,...ik}|θ)γ{im,...ik}(σ{im,...ik−1}θ|θ)
γ{im,...ik}(σ{im,...ik}|θ)γ{im,...ik}(θσ{im+1,...ik−1}θ|θ)

(5.23)

As a consequence, the Hamiltonian (5.14) is telescoped to

HΛ(σΛ|θΛc) =
∑

A∩Λ6=∅

UA(σΛ|θΛc) (5.24)

As before, to match our purposes we set the graph G to be a one-dimen-
sional lattice Z and explicitly write the telescoping potential

U[i,j](σ[i,j]) = ln
γ[i,j](θσ(i,j]|θ[i,j]c)γ[i,j](σ[i,j)θ|θ[i,j]c)

γ[i,j](σ[i,j]|θ[i,j]c)γ[i,j](θσ[(i,j)θ|θ[i,j]c)
(5.25)

5.3 Applications

5.3.1 The general problem and our approach

Given two realizations sP ∈ Sl1 and sQ ∈ Sl2 with l1, l2 �nite, of random �elds
corresponding to di�erent Gibbs measures P and Q, one is asked to identify
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whether a third realization b ∈ Sl3 , l3 �nite, of unknown nature is more typical
for P or for Q or for neither of them. In general, l1 6= l2 6= l3. Moreover, we do
not exclude the situation when some pieces of the concerned realization are
more likely generated by P and some by Q. For that purpose we build two
measure-estimators P̂ and Q̂ and consider a map Υ : Sl3 7→ {tn}l3n=1, that is
for any symbol bn ∈ S part of b we treat a number

tn = ln
P̂(bn|bn−1

1 , bl3n+1)

Q̂(bn|bn−1
1 , bl3n+1)

. (5.26)

In particular, the ability to distinguish pieces of di�erent nature is expected
to become apparent via sharp transitions between consecutive sub-sequences
having mostly negative terms and consecutive sub-sequences having mostly
positive terms. For practical reasons the sequence {xn}l3n=1 should also be

viewed as a sequence of points {(n, xn)}l3n=1. If plotted, the graph of the
sequence of points is expected to perform sudden jumps at certain values of
1 < n < l3 which are meaningfully interpreted as transitions between pieces
in b ∈ Sl3 typical for di�erent measures.

5.3.2 Statistical procedure

Given a realization s ∈ S∗ of the random �eld σ ∈ Ω, let #(·) : Sj 7→ N, for
any j, be the function mapping a string of length j into the number of its
occurrences in the realization s. In the case of uni-directional modelling the
relevant estimator for p(a|b−1

−j) in (5.2.5) with a ∈ S and j integer is

p̂(a|b−1
−j) =

#(b−1
−ja)∑

a∈S #(b−1
−ja)

Analogously to uni-directional case, the estimator for p(a|b−1
−k, b

t
1) in (5.2.9),

a ∈ S, integer k and t, is

p̂(a|b−1
−k, b

t
1) =

#(b−1
−kab

t
1)∑

a∈S #(b−1
−kab

t
1)

The estimation of Gibbs distributions requires more computations that just
simply collecting occurrence-statistics. This is heavily related to estimating
the Hamiltonian associated to the measure and its corresponding terms, that
is functions U[i,j] of the form (5.25). We suppose that a true potential has
�nite range, that is functions U[i,j] are take the following form

U�n
[i,j](σ[i,j]) = ln

γ[i,j](θσ(i,j])γ[i,j](σ[i,j)θ)

γ[i,j](σ[i,j])γ[i,j](θσ(i,j)θ)
(5.27)
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Given a vacuum O ∈ S, we choose the estimator Û[i,j] for U
�n
[i,j] to be

Û[i,j](s[i,j]) = ln
(ε+ #(Os(i,j]))(ε+ #(s[i,j)O))

(ε+ #(s[i,j]))(ε+ #(Os(i,j)O))
, (5.28)

where ε is a small positive constant.

5.3.3 Algorithmic implication

We aim to build a Gibbs potential from a given sample. The algorithm estim-
ating the Gibbs potential could be roughly divided in two parts: 1) collecting
statistics and 2) approximating a weight of each sub-string of the sample via
the formula (5.28). See Appendix C for pseudo-code. A distribution of b0

given past and future bp and bf , respectively then is nothing but a normalized
exponent of a negative sum over all sub-strings of a string bp b0 bf containing
b0.

The advantage of our approach is that instead of a tree structure having
many leaves at di�erent levels, where each of them describes (generically)
di�erent distributions, we encode all the information just in potential. The
height of the tree is directly associated to the range of potential, in our case
the approximation to a potential of �nite range will weigh either with low
weight or with no weight strings longer than its range.

5.3.4 Examples

We present the output of two programs, where the �rst one utilizes a uni-
directional approach and the second one uses the above described algorithm.
The output set of points {(n, xn)}l3n=1 is drawn: gray dots are the points
themselves, solid line is a moving average taken in a �xed neighbourhood of
each of xn. For complicated examples we enlarge plots to make jumps in
{(n, xn)}l3n=1 more visible. Obviously the set of parameters for the smoothing
procedure is �xed in every example. For each of the examples we allowed the
maximal memory to be 4 in the one-sided case and 2 to the left and 2 to the
right in the two-sided one.

1-Markovian chain

Take S = {0, 1}. We generate two samples of di�erent Markov chains: 1) the
�rst one jumps between di�erent states with a small probability, 2) the second
one prefers to switch states as often as possible. The sample to classify is a
mixture of them containing several equally long pieces of each of them . The
result of classi�cation is drawn in Figure 5.1.
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Figure 5.1: One-sided (left) vs two-sided (right) approach: Markov chains

Languages with common alphabet

Take S = {a, . . . , z, � �}. Initial samples are: 1) an article from Wikipedia
about the Netherlands in English, 2) the same article but in Dutch. The
sample to classify is two articles in English and in Dutch about the city of
Antwerpen copy-pasted one after another. The result is presented in Figure 5.2
and an enlarged version in Figure 5.3.

Figure 5.2: One-sided (left) vs two-sided (right) approach: Languages

Figure 5.3: One-sided (left) vs two-sided (right): Languages, enlarged
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Example: di�erent authors

Take S = {a, . . . , z, 0, . . . , 9, � �, punctuation marks}. We extract only inform-
ation according to a chosen set S from �Alice's Adventures in Wonderland�
by Charles Lutwidge Dodgson (commonly know as Lewis Caroll) and �Mans-
�eld Park� by Jane Austen and take 4000 symbols of each of them as initial
samples. The mixture is combined as follows: 1) 4000 symbols of �Alice's
Adventures in Wonderland� used to build an estimator, 2) 4000 symbols of
�Mans�eld Park� used to build an estimator, too, 3) 4000 symbols of �Alice's
Adventures in Wonderland� previously not used, 4) 4000 symbols of �Mans�eld
Park� previously not used either, 5) 4000 symbols of �Through the Looking-
Glass, and What Alice Found There� by Lewis Caroll, and 6) 4000 symbols
of �Pride and Prejudice� by Jane Austen.

Figure 5.4: One-sided (left) vs two-sided (right): Literature

Figure 5.5: One-sided (left) vs two-sided (right): Literature, enlarged

5.3.5 Conclusions and remarks

The �gures above show that the one-sided approach and the Gibbs two-sided
approach work equally well for simple Markov chains. On the other hand
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the Gibbs bi-directional approach shows a better ability to distinguish more
realizations of di�erent random �eld having more complex dependence. In
the example with languages, the one-sided approach performed worse that the
Gibbs two-sided approach showing a jump of a smaller height when a piece
of text in Dutch switches to one in English. The third example showed most
clearly the superiority of the Gibbs approach: the uni-directional approach
was not able to distinguish between the di�erent works of the same authors,
i.e. �Pride and Prejudice' was not distinguished as a work of Jane Austen
by the conditional distributions built upon �Mans�eld Park�. The two-sided
model successfully managed to do this.

∗ ∗ ∗
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A

Boundary laws, beyond

homogeneity

The purpose of this appendix is to explain the relation between the notion of
a boundary law as it is used in the book by Georgii [26] and the one-sided
simple recursions which are used in Chapter 3 of the present thesis. The
notion of a boundary law is necessary to describe all the extremal phases (or
more generally, all Markov chains on trees).

To follow the notation used in Georgii [26], let us denote, for two connected
sites i ∼ j, by Qij(σi, σj) = eβσiσj+giσi+gjσj the transition matrix of the random
�eld Ising model on the tree with Hamiltonian −β

∑
{i,j}∈E σiσj −

∑
i hiσi,

where gi = hi/(d + 1), so the local �eld at each site has been symmetrically
distributed among the edges to its neighbors.

Every extremal Gibbs measure µ for the random �eld Ising model on the
Cayley tree is a Markov chain on the tree [26, see Theorem 12.12]. To de�ne
what it means to be a Markov chain on the tree, consider an oriented bond
ij, draw this bond horizontally such that i lies to the left of j, and draw
the tree embedded into the plane in such a way that there is no intersection
between the tree and the axis crossing the oriented bond ij in a perpendicular
way. A measure µ is a Markov chain on the tree if conditioning on the semi-
in�nite spin con�gurations extending from i to the left (the past) is the same
as conditioning on the spin con�guration at the site i alone, and this holds
for all oriented bonds ij. Not all Markov chains are extremal Gibbs measures
however, as the example of the free boundary condition Gibbs measure of the
Ising model in zero �eld at su�ciently low temperatures shows. The meaning
and importance of a boundary law lies in the following fact. A Markov chain
on the tree always has a representation in terms of a boundary law lij(a),
a = ±, that is for the �nite-volume marginals it holds

µ[h](σΛ∪∂+Λ) =
1

ZΛ(β, h)

∏
k∈∂+Λ

lkkΛ
(σk)

∏
{ij}∩Λ6=∅

Qij(σi, σj) (A.1)

where ∂+Λ denotes the outer boundary of Λ and kΛ is the unique nearest
neighbor of k in Λ. A boundary law is a function on oriented edges ij which
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depends on the possible spin values. From its appearance in the last formula
we see that, at any ij, it is de�ned only up to a multiplicative constant, not
depending on the spin con�guration a. De�ne therefore qij = 1

2
log

lij(+)

lij(−)
in

the Ising case. This quantity has the character of a local �eld at the site i and
contains the full information about the boundary law in the Ising case. More
precisely qkkΛ

has the meaning of a local �eld acting on the spin σk which has
to be added to the Hamiltonian with free boundary conditions in the volume
Λ ∪ ∂+Λ if the site k is attached at the site kΛ.

Assuming the validity of the last formula for the �nite-volume marginals
one arrives at a Q-dependent consistency (or recursion) relation that a bound-
ary law has to satisfy. This recursion is formulated as (12.10) in Georgii; in
the case of the Ising model with site-dependent �elds it translates equivalently
into the recursion

qij =
∑

k∈∂+i\j

1

2
log

e2qki+β+gk+gi + e−β−gk+gi

e2qki−β+gk−gi + eβ−gk−gi
(A.2)

Conversely, a function qij on all oriented bonds which is consistent in the
sense of (A.2) de�nes a Markov chain by formula (A.1) with the corresponding
boundary law lij.

Note that (A.2) is a one-sided recursion which has no beginning and no end.
It is interesting in the �rst step to look at homogeneous solutions, i.e. solutions
not depending on the bond ij, but there may be also many other solutions,
even in the case when the local magnetic �eld in the initial Hamiltonian is
site-independent. In that case there can be non-homogeneous solutions when
there are more than one �xed points for the homogeneous recursion. Indeed,
to construct a non-homogeneous solution one picks a site j and looks to all
oriented bonds ij pointing to it, and picks values of qij not at the �xed point.
Then one de�nes a boundary law by preimages for qb's for the oriented bonds
b going up to ij. In order to make sure that there are such preimages under
all orders of iterations, the value has to be chosen such that it lies between a
stable and an unstable �xed point.

To see the meaning of the boundary law in a more intuitive or physical
way let us make explicit the di�erence to the �eld which is already present
in the original Hamiltonian. We look at the asymmetric quantity which is
centered at the local �eld for the �rst spin, namely fij = qij − gid and note
that it satis�es the equation

fij =
∑

k∈∂+i\j

φβ(fki + hk) (A.3)
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with φβ(t) = 1
2

log cosh(t+β)
cosh(t−β)

. With this variable we have

µ[h](σΛ∪∂+Λ) =
1

ZΛ(β, h)
e
∑
{ij}∩Λ6=∅ βσiσj+

∑
i∈Λ∪∂+Λ hiσi+

∑
k∈∂+Λ fkkΛ

σk (A.4)

So the fij has the meaning of an additional boundary �eld at the site i acting
on top of the local �elds which are present already in the Hamiltonian, when
one computes the �nite-volume marginals in a volume with a boundary site i
when i is attached via the site j to the inside of the volume.

Now, let us enter in more detail the discussion on the dependence of bound-
ary laws on a variation of local �elds entering in the Hamiltonian. Suppose
that a boundary law l[h], not necessarily homogeneous, is given for the (not
necessarily but possibly homogeneous) Hamiltonian with a �eld h. Recall
that, as we just explained, homogeneous �elds h may have very well inhomo-
geneous boundary laws. Let us consider the system now in the presence of a
local perturbation of the �eld h+ ∆h, possibly site-dependent, but bounded,
i.e. supk |∆hk| < ∞. Any Gibbs measure µ[h] gives rise to a Gibbs measure
µ[h+ ∆h] which is related by the formula involving the local perturbation of
the Hamiltonian of the form

µ[h+ ∆h](φ(σ̃)) =
µ[h](φ(σ̃)e

∑
i ∆hiσ̃i)

µ[h](e
∑
i ∆hiσ̃i)

(A.5)

where it is understood that integration is over σ̃. If the original Gibbs meas-
ure is actually a Markov chain described by the boundary law lij ≡ lij[h],
the perturbed measure is described by the boundary law lij[h+ ∆h] which is
obtained by putting lij[h + ∆h] := lij[h] for oriented bonds ij in the outside
of the region of the perturbation of the �elds which are pointing towards the
perturbation region. When passing with the recursion through the perturba-
tion region of the local �elds the lij's obtain a dependence on the size of the
perturbations. Then the forward iteration is used to obtain an assignment of
l's to all oriented bonds.

Summarizing we have the following lemma.

Lemma A.0.1. Suppose that h is an arbitrary external-�eld con�guration, ∆h
is an arbitrary �nite-volume perturbation of the external �elds, and µ[h+ ∆h]
is the measure which results from a local perturbation of a Markov chain µ[h]
which is described by a boundary law l[h].

Then µ[h+ ∆h] behaves in a quasilocal way (i.e. all expected values µ[h+
∆h](φ) on local spin functions φ are quasilocal functions of ∆h) if and only if
the boundary laws ∆h 7→ lij[h + ∆h], depending on �eld perturbations ∆hk's
for k in the past of the oriented bond ij, behave in a quasilocal way, and this
holds for all oriented bonds ij.
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Here a vertex k is said to be in the past of ij if the path from k to j passes
through i. Quasilocality is meant in the same way as it has been introduced
in the context of �nite-volume variations of spins, i.e. we say that l depends
quasilocally on a variation of �elds i�

lim
Λ↑CT(d)

sup
Λ′:Λ′⊃Λ

sup
∆h|Λ=∆h′|Λ

|l[∆h|Λ′ ]− l[∆h′|Λ′ ]| = 0 (A.6)

where the supremum is taken over perturbations ∆h|Λ′ ,∆h′|Λ′ in the �nite
volume Λ′ which look the same on Λ.

Proof : The proof follows from the representation of the �nite-volume
Gibbs measures µ[h+ ∆h] in terms of the boundary laws lij[h+ ∆h].

�

We note again that there is a one-to-one correspondence between simple
directed �eld recursions with d neighbors, as used in the paper, and boundary
laws. So we obtain the following corollary, which is used extensively in the
paper.

Corollary. Suppose that h is a homogeneous external �eld, ∆h is an
arbitrary �nite-volume perturbation of external �elds, and µ[h + ∆h] is the
measure which results from a local perturbation from either one of the homo-
geneous measures µ[h], corresponding to the plus, the minus or the unstable
�xed points. Then the measures µ[h + ∆h] behave in a non-quasilocal way
on the �eld perturbations ∆h if and only if the corresponding solutions of the
one-sided simple recursions for the e�ective �elds behave in a non-quasilocal
way.

Some non-homogeneous Gibbs measures. The discussion just given
has consequences also for those Gibbs measures µ = µ(lb),Λ which are obtained
by pasting boundary laws lb for oriented bonds b of the form kkΛ for some
�xed subtree Λ, so that (A.1) is true for the particular volume Λ. Then
extend the boundary laws to have a prescription in the whole volume. Then
the parameter region for non-quasilocal behavior of the resulting measure will
be the union of the parameter regions of non-Gibbsianness of the original
measures taken over the b's.

Connection to Gibbs vs. non-Gibbs under time evolution. Since
the Gibbs properties of time-evolved Ising measures in in�nite-temperature
evolution can be expressed via quasilocality properties of ∆h 7→ µ[h+∆h], for
�nite-volume ∆h, we are left with the investigation of the locality properties
of the boundary law iteration. A local variation of the image spins amounts to
a local perturbation ∆h of the local �elds. Indeed, denoting the time-evolved
measure by µ̂t(dη), starting from the measure µ(dσ), we have for �nite Λ 3 0
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the formula

µ̂t(η0|ηΛ\0) =

∫
µ(dσ)Pt(σ0, η0)eht

∑
i∈Λ\0 ηiσi∫

µ(dσ)eht
∑
i∈Λ\0 ηiσi

=:

∫
µ[ηΛ\0](dσ0)Pt(σ0, η0)

(A.7)

with a measure µ[ηΛ\0](dσ) of the form µ[h+ ∆h] with a perturbation in the
�nite volume Λ\0. Finite-volume marginals of this measure have a representa-
tion, according to Lemma A.0.1, of the form (A.1) with an η-dependent trans-

ition matrix Qij[η](σi, σj) = e
htηi1i∈Λ\0

d+1
+
htηj1j∈Λ\0

d+1 Qij(σi, σj) where Qij(σi, σj) is
the transition matrix for the initial measure µ, and an ηΛ\0-dependent bound-
ary law lij[ηΛ\0] which obeys the locally modi�ed iterations for the boundary
law described below (A.5). Hence, non-Gibbsianness of time-evolved measures
is detected by non-quasilocality of the perturbed boundary laws lij[ηΛ\0].

A consequence of these remarks is that a time-evolved measure resulting
from an initial Gibbs measure which is constructed by pasting �nitely many
boundary laws lb as described above, will be non-Gibbsian at a parameter
regime which is the union of the non-Gibbsian parameter regimes of the time-
evolved Markov chains corresponding to lb, over b.

∗ ∗ ∗



B

Computations for the

mean-field case

In this part of Appendix we present explicitly the computations we skipped
in the body of Chapter 4 of the present thesis.

B.1 Reversibility of measures

If the mean-�eld system with magnetization mN
1 is invariant and reversible

for an evolution constructed from rates c(±,mN
1 ), we want to show that the

following is true in the in�nite-N limit:

c(+,m)

c(−,m)
= exp (−2β′m) (B.1)

Consider an initial con�guration σ[1,N ] of size N and its transformation
η[1,N ]. Recall that the measure is de�ned:

µβ′,N(dσ) ∝ exp

 β′

2N

(
N∑
i=1

σi

)2


for σi ∈ S = {−1,+1}.
A measure is called reversible if and only if

µβ′,N(σ[1,N ])K(σ, η) = µβ′,N(η)K(η, σ),

where K(θ0, θt) is a transition probability to start with an initial con�guration
θ0 and observe a con�guration θt after time t.

Let the initial con�guration and its transformation be di�erent in just
one spin for the �rst time, w.l.g. let σ1 = −η1 and the rest of con�guration
is preserved. The transition probabilities are expressed in terms of the �ip
rates, namely

K({+, σ2, . . . , σN} , {−, σ2, . . . , σN}) =
c(+,mN

2 )

c(+,mN
2 ) + c(−,mN

2 )

K({−, σ2, . . . , σN} , {+, σ2, . . . , σN}) =
c(−,mN

2 )

c(+,mN
2 ) + c(−,mN

2 )

(B.2)
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This brings us to the following expression

µβ′,N({+, σ2, . . . , σN})
c(+,mN

2 )

c(+,mN
2 ) + c(−,mN

2 )
=

= µβ′,N({−, σ2, . . . , σN})
c(−,mN

2 )

c(+,mN
2 ) + c(−,mN

2 )

Then the fraction c(+,m)
c(−,m)

with the rates depending on the in�nite-volume
magnetization m is computed as follows:

c(+,m)

c(−,m)
= lim

N→∞

c(+,mN
2 )

c(−,mN
2 )

= lim
N→∞

µβ′,N({−, σ2, . . . , σN})
µβ′,N({+, σ2, . . . , σN})

= lim
N→∞

exp

(
−2β′

N

N∑
i=2

σi

)
= exp (−2β′m)

(B.3)

B.2 The form of a mean-�eld non-linear

generator

Here we provide a simple computation of a non-linear generator for a mean-
�eld model. We recall that a non-linear generator of a process is given by the
following formula.(

Ĥβ′,NF
)

(x) = lim
N→∞

1

N
e−NF (x)

(
L̂β′,Ne

NF
)

(x) (B.4)

Recall also the linear generator of the concerned process:

L̂β′,NF (mN
1 ) =

N
1 +mN

1

2
c

(
+, l(N)

(
mN

1 −
1

N

))(
F

(
mN

1 −
2

N

)
− F

(
mN

1

))
+N

1−mN
1

2
c

(
−, l(N)

(
mN

1 +
1

N

))(
F

(
mN

1 +
2

N

)
− F

(
mN

1

))
For a shortcut we write

c+ =
1 +mN

1

2
c

(
+, l(N)

(
mN

1 −
1

N

))
c− =

1−mN
1

2
c

(
−, l(N)

(
mN

1 +
1

N

))
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The computation for the right-hand side reads:

1

N
e−NF (mN

1 )
(
L̂β′,Ne

NF
)

(mN1 ) =

1

N
e−NF (mN

1 )
(
Nc−

(
eNF (mN

1 + 2
N

) − eNF (mN
1 )
)

+Nc+
(
eNF (mN

1 −
2
N

) − eNF (mN
1 )
))

=

c−

(
exp

{
2
F (mN1 + 2

N
)− F (mN1 )

2
N

}
− 1

)
+ c+

(
exp

{
−2

F (mN1 + 2
N

)− F (mN1 )

− 2
N

}
− 1

)
−→
N→∞ c−

(
e2F
′(m) − 1

)
+ c+

(
e−2F (m) − 1

)
,

(B.5)

where we used the fact that in in�nite-N limit mN
1 concentrates on a determ-

inistic value m.

B.3 Relaxation and concentration property

In the case of non-interacting dynamics i.e. β′ = 0, the form of the trajectories
which are conditioned on ending at the value m′ at time s = t was obtained
(4.51) and given as follows

m(s) =
m0e

2t −m′

e2t − e−2t
e−2s +

m′ −m0e
−2t

e2t − e−2t
e2s (B.6)

We start with the non-zero value m0 at time s = 0, a simple computation
m(0) con�rms this.

Mathematically, the quick relaxation of the magnetization for intermediate
times reads ∀λ ∈ (0, 1) limt→∞m (λt) = 0. Letting s = λt in (B.6) yields

m(λt) =
m0e

2t −m′

e2t − e−2t
e−2λt +

m′ −m0e
−2t

e2t − e−2t
e2λt

=
m0

(
e2(1−λ)t − e−2(1−λ)t

)
+m′

(
e2λt − e−2λt

)
e2t (1− e−4t)

=e−2λt1− e−4(1−λ)t

1− e−4t
m0 + e−2(1−λ)t1− e−4λt

1− e−4t
m′

t→∞−→ 0

(B.7)

Trivially, at time s = t the value of the magnetization is m′ > 0. This can
be seen either by direct computing m(t) or by letting λ = 1 in (B.7).

B.4 The form of single-site transition

probabilities

Recall the notations for the time-dependent spin-�ip rates. For �xed values
of β, β′, t, and m′ and a corresponding optimal trajectory m∗(s; t,m′) in the
sense of (4.26) cs(+) = c(+,m∗(s; t,m′)) is the rate to �ip from �+� at time
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s = 0 to �−� at time s. Analogously, cs(+) is de�ned. Here we treat the case
of ks(+,+; t,m′).

ks+ds(+,+;t,m′)

= ks(+,+; t,m′)kds(+,+; t,m′) + ks(+,−; t,m′)kds(−,+; t,m′)

= ks(+,+; t,m′)(1− cs(+))ds+ (1− ks(+,+; t,m′))cs(−)ds

(B.8)

implying the following equation

ks+ds(+,+; t,m′)− ks(+,+; t,m′)

ds
= cs(−)− (cs(+) + cs(−)) ks(+,+; t,m′)

(B.9)
Letting ds tend to zero, we obtain a di�erential equation for an unknown
function ks(+,+; t,m′) with an initial condition k0(+,+; t,m′) = 1. Solving
this equation yields

ks(+,+;t,m′)

= e−
∫ s
0 (cu(−)+cu(+))du ×

[∫ s

0

cu(−)e−
∫ u
0 (cv(−)+cv(+))dvdu+ 1

]
(B.10)

The form (B.10) for transition probabilities in case of an independent
spin-�ip dynamics � cs(+) = c(−) = 1 � repeats the well-known formula
ks(+,+) = 1

2
(1 + e−2s) of van Enter, A.C.D. et al. [12].

∗ ∗ ∗
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Pseudo-code for computing

the potential-estimator

Given parametersM, δ, and O, whereM is maximum of the memory of estim-
ated Gibbs potential, δ is the constant identifying if the value of U computed
for a certain string b should be ignored, and O is vacuum, and a realization s,
we start.

Collect all words w into a set W;

Let N(w) = #(w occurs in s)

foreach( w ∈ W )

u(w)=U([1, length(w)], w), use N(·)
if u(w) > δ then Û(w)=u(w)

end foreach( w )

The constructed estimator Û has to be used when the Hamiltonian of a
certain string bp b0 bf is computed.

∗ ∗ ∗



Samenvatting

In de statistische mechanica bestaat het Gibbs formalisme uit het voorschrijven
van voorwaardelijke kansen op locale gebeurtenissen, gegeven de rest van het
systeem, in termen van wisselwerkingen. De toestanden met deze kansen bes-
chrijven systemen die men observeert. Die systemen worden oneindig genomen
in een dergelijke beschrijving, en bestaan uit inter-agerende componenten. Het
verschijnsel van fase-overgangen in dergelijke systemen is gerelateerd aan het
bestaan van verschillend globaal gedrag, consistent met bovengenoemde voor-
waardelijke kansen. Meestal worden dergelijke wetten gemodelleerd in termen
van voorwaardelijke verdelingen in eindige gebieden waarbij toestand het sys-
teem in de rest van de ruimte volledig vastligt.

De Boltzmann-Gibbs aanpak voor deze voorwaardelijke verdelingen schrijft
exponenti�ele gewichtsfactoren voor op con�guraties in eindige gebieden die
samenhangen met een energiefunctie (of potentiaal). De essentie van de Gibbs
eigenschap van een systeem is de continu�iteitseigenschap (in de product topo-
logie) van de voorwaardelijke verdelingen met betrekking tot conditionering.

Diverse onderzoeken hebben aangetoond dat zelfs simpele transformaties
kunnen leiden tot verlies van de Gibbs eigenschap. In het algemeen geldt dat
de niet-Gibbs eigenschap van een systeem kan worden aangetoond door het
vinden van een discontinu��teitpunt voor tenminste een voorwaardelijke kans.

Dit proefschrift beschrijft het onderzoek naar het behoud, of verlies, van
Gibbs eigenschappen onder toepassing van transformaties op een Gibbs sys-
teem. Het onderzoek is gericht op roostersystemen, op �mean-�eld� systemen
en op systemen met een boomstructuur. Er wordt uitgegaan van stochas-
tische, Bernoulli-verdeelde, variabelen, �spins�, met waarden +1 of −1 op de
knooppunten van een rooster. De onderzochte transformaties beschrijven de
spin-�ip dynamica waarbij de waarde van iedere spin met zekere kans omkeert.

In Hoofdstuk 3 worden twee typen discontinu��teiten voor de voorwaar-
delijke verdelingen besproken. De verschillen tussen deze twee soorten dis-
continu�iteiten hangen samen met het bestaan van een metastabiele fase en
een instabiele fase voor een initieel model met een boomstructuur, in een uit-
wendig magneetveld. Metastabiliteit van een fase houdt in de meeste gevallen
in dat deze fase in de loop van de tijd convergeert naar een stabiele fase. Op
een boom kan een metastabiele fase, die een hogere vrije energie heeft dan de
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stabiele fase waarin de magnetisatie het veld volgt, invariant in de tijd zijn.
In de metastabiele situatie is het mogelijk twee overgangsmechanismen van
Gibbs naar niet-Gibbs gedrag te observeren. Voor een van de fasen wordt het
volgende overgangsschema bewezen: Gibbs-systeem → �regulier� niet-Gibbs
(er zijn discontinu�iteiten in het gedrag van de voorwaardelijke kansen, maar
niet alle punten zijn discontinu�iteitspunten) → �totaal� niet-Gibbs (er zijn
geen continu��teitspunten voor voorwaardelijke kansen). Andere fasen gedra-
gen zich op een soortgelijke manier: Gibbs-systeem → �regulier� non-Gibbs
→ Gibbs systeem.

Vervolgens wordt aandacht besteed aan een �mean-�eld� model in een ver-
waarloosbaar klein magnetisch veld. In deze situatie zijn er twee bepalende
grootheden, namelijk de begintemperatuur van het systeem en de temper-
atuur van de dynamica. De relatieve eenvoud van dit probleem maakt een
opdeling mogelijk van het �tijdÖiniti�ele temperatuur� vlak bij een vaste dy-
namica temperatuur, in gebieden waarbij voorwaardelijke verdelingen wel of
geen discontinu��teit vertonen.

Tot slot wordt ingegaan op een separaat onderwerp namelijk het verband
tussen Markov ketens met variabele lengte (VLMC) en de Gibbs-grootheden.
Het Gibbs-formalisme wordt toegepast op zogenaamde classi�catie-problemen,
waarbij de superioriteit ten opzichte van de VLMC aanpak wordt aangetoond.



Summary

In statistical mechanics the Gibbsian description of in�nite systems consisting
of interacting components involves prescribing local laws which are consistent
with the observed behaviour of the system. The phenomenon of phase trans-
itions is connected with the existence of several global behaviours consistent
with these local laws. Usually such laws are modelled in terms of conditional
distributions in �nite regions when the rest is �xed. The Boltzmann-Gibbs
approach for these conditional distributions prescribes exponential weights for
con�gurations in �nite regions associated with an energy function (or poten-
tial). The quintessence of the Gibbs property of the system is the continuity
property of the conditional distributions w.r.t. conditioning. Many studies
showed that even simple transformations of the system can lead to a loss of
the Gibbs property. Generally, to show the non-Gibbs nature of a system it
is enough to �nd a single discontinuity point for the local laws.

The present thesis further investigates under which conditions the trans-
formed system preserves or loses its Gibbs property. This question is addressed
for systems living on a complete graph or a tree. The former type of system
is referred to as a mean-�eld system. In either case we consider Bernoulli
random variables � spins � at nodes of the graph taking either +1 or −1
values. The transformations of interest are simple spin-�ip dynamics altering
value of each of the spins to an opposite one.

In Chapter 3, we discuss two types of discontinuities for the conditional dis-
tributions. This di�erence originates in existing of a metastable phase for an
initial model on tree in a �eld. Metastability of a phase means that this phase
converges to the one of stable ones when the �eld is increased (decreased).
Moreover, this situation results in possibility to observe two di�erent mech-
anisms for Gibbs-non-Gibbs transition. For one of the phases we prove the
following transition scheme: Gibbsian system → �regular� non-Gibbsianness
(there are discontinuities in behaviour of the conditional probabilities) →
�total� non-Gibbsianness (there are no continuity points for conditional prob-
abilities). Other phases behave in an expected way: Gibbsian system →
�regular� non-Gibbsianness → Gibbsian system. This result underlines the
importance of the size of a boundary of a �nite region, this is to be contrasted
with similar models living on lattices.
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In Chapter 4 we draw attention to a mean-�eld model in vanishing ex-
ternal magnetic �eld. In this case there are two governing parameters: the
initial temperature of the system and the temperature of the dynamics. The
relative simplicity of the problem allows to decompose the �timeÖinitial tem-
perature� plane at �xed dynamical temperature into regions where conditional
distributions have discontinuities and where they do not, see Figure 4.1.

Finally, the last Chapter 5 standing relatively apart from the main topic
discusses connection between variable length Markov chains and Gibbs meas-
ures. We apply the Gibbs formalism for classi�cation problems (where VLMC
were of great use) and see the superiority of the Gibbsian approach.



Çàêëþ÷åíèå

Â ñòàòèñòè÷åñêîé ìåõàíèêå ñóòü ãèááñîâñêîãî îïèñàíèÿ ñèñòåì âçàèìîäåé-
ñòâóþùèõ ÷àñòèö çàêëþ÷àåòñÿ â óêàçàíèè âåðîÿòíîñòíûõ çàêîíîâ ðàñïðå-
äåëåíèÿ ÷àñòèö íà ìèêðîóðîâíå òàê, ÷òî óêàçàííîå ðàñïðåäåëåíèå ñîãëà-
ñóåòñÿ ñ íàáëþäàåìûì ìàêðîñîñòîÿíèåì. ßâëåíèå, ïðè êîòîðîì îäíîìó
ìàêðîñîñòîÿíèþ ñîîòâåòñòâóåò íåñêîëüêî òàêèõ âåðîÿòíîñòíûõ ðàñïðåäå-
ëåíèé, íàçûâàåòñÿ ôàçîâûì ïåðåõîäîì. Èñòîðè÷åñêè òàêèå ìèêðîçàêî-
íû èìåþò ôîðìó óñëîâíûõ ðàñïðåäåëåíèé ÷àñòèö âíóòðè íåêîãî îáúå-
ìà ïðè óñëîâèè, ÷òî ñîñòîÿíèå ñèñòåìû âíå ýòîãî îáúåìà çàôèêñèðîâà-
íî. Ðàñïðåäåëåíèå Áîëüöìàíà�Ãèááñà èìååò ñëåäóþùóþ ôîðìó: êàæäî-
ìó ñîñòîÿíèþ â êîíå÷íîé îáëàñòè ñòàâèòñÿ â ñîîòâåòñòâèå åãî ýêñïîíåí-
öèàëüíûé âåñ. Êâèíòýññåíöèÿ òàê íàçûâàåìîãî ãèááñîâñêîãî ñâîéñòâà �
ýòî íåïðåðûâíîñòü óñëîâíûõ ðàñïðåäåëåíèé îòíîñèòåëüíî óñëîâèé. Ñó-
ùåñòâóåò ìíîæåñòâî ïðèìåðîâ, êîãäà ïðîñòûå èçìåíåíèÿ â ðàññìàòðèâà-
åìîé ñèñòåìå âåäóò ê ïîòåðå ãèááñîâñêîãî ñâîéñòâà. Ñèñòåìà íàçûâàåòñÿ
íåãèááñîâñêîé, åñëè íàéäåòñÿ õîòÿ áû îäíî óñëîâèå, ïðè êîòîðîì íàðóøà-
åòñÿ íåïðåðûâíîñòü óñëîâíûõ ðàñïðåäåëåíèé.

Íàñòîÿùàÿ ðàáîòà ïðîäîëæàåò èññëåäîâàíèå ïî âûÿñíåíèþ òîãî, êàêèå
èç ïðåîáðàçîâàíèé âåäóò ê ïîòåðå ãèááñîâîñòè. Ðàññìàòðèâàþòñÿ ñèñòå-
ìû ñëó÷àéíûõ âåëè÷èí æèâóùèõ íà ïîëíîì ãðàôå è íà ñïåöèàëüíîì âèäå
äåðåâüåâ. Â îáîèõ ñëó÷àÿõ â âåðøèíû ãðàôîâ ïîìåùåíû áåðíóëëèåâñêèå
ñëó÷àéíûå âåëè÷èíû � ñïèíû ±1, à â êà÷åñòâå ïðåîáðàçîâàíèé ñèñòåìû
ìû ðàññìàòðèâàåì èçìåíåíèÿ çíà÷åíèé ñëó÷àéíûõ âåëè÷èí íà ïðîòèâîïî-
ëîæíûå ñ òå÷åíèåì âðåìåíè. Òàêàÿ ìîäåëü íàçûâàåòñÿ ìîäåëüþ Èçèíãà,
à ïðàâèëî, ïî êîòîðîìó èçìåíÿåòñÿ ñîñòîÿíèå ñèñòåìû � äèíàìèêîé òèïà
spin��ip.

Â ãëàâå 3 îáñóæäàþòñÿ äâà âîçìîæíûõ òèïà ðàçðûâîâ â ïîâåäåíèè
óñëîâíûõ ðàñïðåäåëåíèé äëÿ ìîäåëè Èçèíãà íà äåðåâå. Ðàçðûâû ðàçíûõ
òèïîâ âîçìîæíû áëàãîäàðÿ ñóùåñòâîâàíèþ ìåòàñòàáèëüíîãî ñîñòîÿíèÿ
â ñòàðòîâîé ìîäåëè íà äåðåâå, ïîìåùåííîé â ìàãíèòíîå ïîëå. Ìåòàñòà-
áèëüíîñòü ñîñòîÿíèÿ îçíà÷àåò, ÷òî îíî ñõîäèòñÿ ê îäíîìó èç ñòàáèëü-
íûõ ñîñòîÿíèé ïðè èçìåíåíèè ñèëû ïîëÿ. Áîëåå òîãî ïîäîáíàÿ ñèòóàöèÿ
ïðåäîñòàâëÿåò âîçìîæíîñòü íàáëþäàòü äâå ïðèíöèïèàëüíî ðàçíûå ñõåìû
ïåðåõîäà ñèñòåìû ê íåãèááñîâñêîìó ðåæèìó. Äëÿ ìåòàñòàáèëüíîé ôàçû
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ìû ïîêàçûâàåì âåðíîñòü ñëåäóþùåãî ìåõàíèçìà: ãèááñîâñêàÿ ñèñòåìà →
�îáû÷íîå� íåãèááñîâñêîå ñîñòîÿíèå (óñëîâíûå ðàñïðåäåëåíèÿ èìåþò ðàç-
ðûâû)→ �ïîëíîñòüþ� íåãèááñêîâñêîå ñîñòîÿíèå (óñëîâíûå ðàñïðåäåëåíèÿ
íå èìåþò òî÷åê íåïðåðûâíîñòè). Äðóãèå ñîñòîÿíèÿ âåäóò ñåáÿ ïðåäñêàçó-
åìî: ãèááñîâñêàÿ ñèñòåìà ïåðåõîäèò â �îáû÷íîå� íåãèááñîâñêîå ñîñòîÿíèå.
Ðåçóëüòàò ãëàâû ïîä÷åðêèâàåò íàñêîëüêî âàæíû ãðàíè÷íûå óñëîâèÿ äëÿ
óñëîâíûõ ðàñïðåäåëåíèé ÷àñòèö âíóòðè çàôèêñèðîâàííîé îáëàñòè.

Â ãëàâå 4 ðàññìàòðèâàþòñÿ ñèñòåìû íà ïîëíîì ãðàôå (èëè mean-�eld
ñèñòåìû) âíå ïîëÿ. Ïðîáëåìà îñëîæíåíà íàëè÷èåì äâóõ ïàðàìåòðîâ: íà-
÷àëüíîé è äèíàìè÷åñêîé òåìïåðàòóðàìè ñèñòåìû. Â âûøåîïèñàííîì ñëó-
÷àå òåìïåðàòóðà âî âðåìÿ ïðåîáðàçîâàíèÿ ñèñòåìû ïðåäïîëàãàëàñü áåñêî-
íå÷íîé, âñëåäñòâèå ýòîãî çíà÷åíèÿ ñïèíîâ èçìåíÿëèñü íåçàâèñèìî äðóã îò
äðóãà. Ïðîñòàÿ ñòðóêòóðà ïîëíîãî ãðàôà ïîçâîëÿåò ÿâíî óêàçàòü îáëàñòè
â ïëîñêîñòè �âðåìÿ Ö íà÷àëüíàÿ òåìïåðàòóðà� ïðè ôèêñèðîâàííîé äèíà-
ìè÷åñêîé òåìïåðàòóðå, ãäå óñëîâíûå ðàñïðåäåëåíèÿ òðàíñôîðìèðîâàííîé
ñèñòåìû ñîõðàíÿåò è ãäå òåðÿþò ãèááñîâñêîå ñâîéñòâî, ñì. 4.1

Ïîñëåäíÿÿ ãëàâà ïîñâÿùåíà âîïðîñó íåñêîëüêî îòëè÷íîìó îò îñíîâ-
íîé òåìû èññëåäîâàíèÿ è àíàëèçèðóåò ñâÿçè ìåæäó ìàðêîâñêèìè öåïÿ-
ìè ñ ïàìÿòüþ ïåðåìåííîé äëèíû è ãèááñîâêèìè ìåðàìè. Ìû ïðèìåíÿåì
àëãîðèòì íà îñíîâå ãèááñîâñêîãî ïðåäñòàâëåíèÿ óñëîâíûõ âåðîÿòíîñòåé
äëÿ ïðîáëåì êëàññèôèêàöèè (êîòîðûå òàê æå îòíîñèòåëüíî óñïåøíî ðå-
øàëèñü ñ ïðèìåíåíèåì ìàðêîâñêèõ öåïåé) è ïîêàçûâàåì ïðåâîñõîäñòâî
íàøåãî àëãîðèòìà íà ïðèìåðàõ.
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