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We constructthe supersymmetriccompletionof quartic R+ R
4-actionsin theten-dimensional

effective action of the heterotic string. Two invariants,of which the bosonic partsare known
from one-loop string amplitude calculations,are obtained. One of these invariants can be
generalizedto an R+ F2 + F4-invariant for supersymmetricYang—Mills theory coupled to
supergravity.Supersymmetryrequiresthe presenceof B A RA RA RA R-terms,(B A FA F A

F A F for Yang—Mills) which correspondto countertermsin the Green—Schwarzanomaly
cancellation.Within the context of our calculation the ~(3)R4-term from the tree-level string
effective actiondoesnot allow supersymmetrization.

1. Introduction

In recentyearsmuch work has been devotedto the study of the low-energy
effective action of string theory. In the limit of low energy,string theorycan be
approximatedby ordinary field theory, in which string effectsshould appearas
higher derivativeinteractionterms.This effective action providesa useful tool to
investigatethe impact of string theoryon particle physics.

In this context, the heteroticstring [1] is of particular interest. Its zero slope
limit (the limit in which the inverse string tension, a’, goes to zero) is given by
ten-dimensionalsupergravitycoupledto Yang—Mills [2,3]. Correctionsto this zero
slope limit, proportional to a’, are required in d = 10, N = 1 supergravityto
achievethe cancellationof anomalies[41.Thesecorrectionsinvolve the introduc-
tion of the Lorentz Chern—Simonsterm, on the samefooting as the Yang—Mills
Chern—Simonsterm required by supersymmetryin the Einstein—Yang—Millssu-
pergravity theory [31.

Onemethodof investigatingthe implicationsof stringtheoryfor particle physics
involves the compactificationof the effective field theory from ten to four dimen-
sions [5]. The inclusion of the Lorentz Chern—Simonsterm makes it possibleto
obtain in this way phenomenologicallyinterestingmodelsin four dimensions[6].

0550-3213/93/$06.OO© 1993 — ElsevierSciencePublishersB.V. All rights reserved
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Supersymmetryin four dimensions,a remnantof the space—timesupersymmetryof

the heteroticstring, is a commonfeatureof mostof thesemodels.
Much is known about the bosonic contributions to the ten-dimensionalstring

effective action,5’~.In this paperwe investigatethe supersymmetriccompletion
of ~ We may characterizethe different contributionsto ~f~JJ. by the power of
the Riemanntensorin the R’-termswhich they contain:

(1.1)
n

The main issue in this paperis the supersymmetrizationof the R4-termsin .2~.
Partial resultsaboutthiswork werepresentedin ref. [71.

Before discussingour resultsit is useful to presentschematicallywhat is known
about the bosonic part of ~ We use the resultsobtainedby string amplitude
methods.Here one calculatesstring S-matrix elementsfor scatteringof massless
particles,and then reconstructsa field theoreticalaction which reproducesthese
amplitudes.There are contributions from the tree-level(classical)string theory,

from one-loopstring effects, etc. This action is expressedin terms of the physical
fields of d = 10, N = I supergravity.The bosonicfields are the tenbein field
an antisymmetrictensor gaugefield ~ (with field strength H~A),the dilaton
field 4, andtheYang—Mills gaugefield A~(the fermionsare introducedin sect.2,
where we presentsome basic propertiesof ten-dimensionalsupergravity).The
presenceof the dilaton in this action is limited by global scaleinvariance[81.Our
fields (except the dilaton) are scale invariant, while ~ transformsas ~ —‘ ~, ~

being the parameterof scale transformations.Scale invariance implies that ~
occursonly in the combination~ or as an overallmultiplicative factor in the
lagrangian.

From the tree-levelstring calculation[9—13]oneobtains ~

+H2+ (~‘a~)2J, (1.2)

where K is the ten-dimensionalgravitational coupling constant,of dimension
[mass]4. Also from the stringtree-leveloneobtainsa quadraticaction *

~3(R2 +~ tr F2) (1.3)

* Here ~ 1/(g
1(~)

2,g
1(~the Yang—Mills coupling constant.The dimensionof a’ is [mass]

2, of f3

[massf’. The numberof string loops is countedby the dimensionlesscoupling g2, which satisfies,for
the heteroticstring, the relation g 2K(2a’)2. [3 is fixed by /3 a’/(2K2) 111.
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anda quarticaction *

a’ 2 a’3

~ trF2) +~~3~(3)X, (1.4)
where X is the term[14,11]

X=t/~8t’~1”8R R R R (15
~LIIL2~’~’2 I.L1i~~~’ /~

5Jj5~~ /~7/j5~7~ .‘.

The tensor t is discussedin sect. 3. The transcendentalcoefficient ~(3) makesit
impossibleto relate the two contributionsin -~‘R~by supersymmetry.

At the one-looplevel [15—17]~ obtainscorrectionsto the quarticaction:

a’ 2 a’
3 2

~R4~aKg[(~R+PtrF) +p2trF4I+ ~ X. (1.6)

Note the absenceof the factor 4 ~ in the one-loop contributions. In fact, each
string loop will give a factor 43g2. This can be understoodin terms of a
backgroundfield sigma-modelcalculationfrom the coupling of the dilaton to the
Euler characterof the world sheet[18—20].

Besidesthe aboveterms dueto four-point scatteringamplitudesthereare also
contributionsfrom one-loopfive-point amplitudes[21,22].Theseare of the form

~R4~E~

1~2 tr ~ (1.7)

while similar termswith F replacedby R also appear.
Other information aboutthe quarticaction comesfrom the countertermsin the

d = 10 action which are required for anomalycancellations[4]. We would expect
thesetermsto be part of the stringeffective action.Indeed,termsof the form (1.7)
areamongthe countertermsof ref. [41.It is thenof interestto see,whetheror not
they are linked by supersymmetryto someof the termsalreadypresentin (1.4) and
(1.6).

Let us now discussthe supersymmetrizationof the effective action.The action
—AR correspondsto the supersymmetricEinsteinactionof d = 10, N = I supergrav-
ity [21.The inclusionof the term f3 tr F

2 leadsto the supersymmetricactionof ref.
[3]. The field strength H then has to be extendedwith the Yang-Mills Chern—
Simons term. The introduction of the Lorentz Chern—Simonsterm requires,by
supersymmetry,the presenceof the R2-action. The supersymmetrizationof the
R2-actionhas been achievedby the Noethermethod [23—25]and by superspace
methods** [27,28]. In ref. [251an explicit supersymmetricaction for the Lorentz

* The absenceof the cubic action ~ is understoodfrom the vanishing of three-point string

scatteringamplitudes.
** For a recentreviewof superspacemethodsin connectionwith the LorentzChern—Simonsterms,see

ref. [261.
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Chern—Simonsterm, including termsquartic in R, waspresented.In the absence
of Yang—Mills couplingsit is of the schematicform:

~‘LCS -~‘R+ cb3aR2+ çb3a3R4+ .... (1.8)

Eachterm hasthe samepowerof 4), and,consistentwith string amplitude results,

the n = 3 contribution is absent.Supersymmetryholdsonly iteratively in a, so that
the supersymmetrytransformationrulesof a genericfield V are

~ a’~V. (1.9)
n=O

Here 6
0V are the transformationrules correspondingto the action ~ This can

easily be generalizedto the casewhere Yang—Mills couplingsare present.Again
schematically,one should make everywhere the replacement aR

2 —~ aR2+ /3
tr F2. On identifying the a priori independentcoupling a with a’/K2 one then

obtainsexactlytheterms in the tree-levelstringamplituderesult (1.3), (1.4), except
for the 4~(3)X-term.

In thispaperwe addressthe problemof supersymmetrizingtermsquarticin the
Riemanntensor.Theseinclude the remainingtree-levelterm ~(3)4)3X and the
one-loop contributions(1.6). Since the supersymmetrizationof the R2-termsin

~ is complete,this supersymmetricR4-actionshouldbe of the form

(1.10)

with modificationsto the supersymmetrytransformationrulesof refs. [2,3] propor-
tional to y. Here y is an additional parameter,of dimension[mass]2,a priori
independentof a and /3. Relationsbetweena, /3 and y will be requiredif quartic
contributions to 5~’and the string effective action ~ are to be identified, or if
the cancellationof anomaliesis imposed.Supersymmetryby itself will not relatea,
/3 and y.

An obvious problem is alreadyevident from the schematicform of the action

given above.There are two contributionsproportional to X, one with and one
without the dilaton-dependentfactor.One would expect that supersymmetrygives
a uniquevaluefor the powerof 4) which appearsin front of X. The sameproblem
arisesfor the terms with aR2 + ~3tr F2. In that caseone should realizehowever
that in the tree-levelquartic action this term is determinedlargely by the presence
of R2 in (1.8), so that the tree-level and one-loop contributions to (aR2+ /3
tr F2)2 do not appearon the samefooting.

A secondindication that factorsof 4) are importantcanbeseenfrom (1.7). This

term is invariantundergaugetransformationsof the B-field only if the factor 4)~
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is absent.Thereforethe presenceof the parity-violating terms (1.7) requiresthe
absenceof the factor 9Y

3.
As we shall show in this paper the supersymmetrizationof any action of the

form (1.10) requires eBR4-terms,and therefore the absenceof 4)3. Thus we
achieve the supersymmetrizationof the one-loopcontributions(1.6), but not that
of the ~(3)-term in (1.3).

Someresults aboutthe supersymmetrizationof R4-actionshavebeenobtained
in superspace[29—31].However,the supersymmetrizationof X (1.5) in refs [29,30]
dependson an off-shell formulation of d = 10, N = 1 supergravity,which has not
yet beenprovento exist. Also, it hasnot beenworked out whether the proposed
superspaceinvariant for X representsthe tree-level contribution (1.4) or the
one-loopterm in (1.6). On the basis of our work we would haveto concludethat
thiscanonly bethe one-loopterm.SinceotherR4-termsbesidesX appearin ~
we preferto searchsystematicallyfor the mostgeneralsupersymmetricinvariant
with the genericstructure(1.10).

In this paperwe use the componentfield Noethermethod.One startswith an
ansatzfor the supersymmetricaction that one wants to construct. The ansatz

shouldcontain all possibleterms,eachwith an unknown coefficient. Invariance
undersupersymmetryis then used to determinethesecoefficients. This method
has the disadvantageof being algebraicallycomplex. The ansatzcontainsmany
terms,soworking out thevariationsinvolvesa large amountof work. However,this
tedious task can and has all been done by a computerprogram for algebraic
manipulations.Then the explicit natureof this method turns into an advantage.
The resulting invariant can be compared in detail with the results from string
amplitudecalculations.Also, the explicit form of themodified transformationrules
is obtained.The transformationrules of the fermions play a crucial role in the
studyof compactificationto four dimensions[5].

The full calculationwill be done for the gravitationalsectoronly, i.e., without
the Yang—Mills coupling. We shall seethat our resultscan be generalizedto the
casewere the Yang—Mills multiplet is presentas well.

This paper is organizedas follows. In sect.2 we presentsomebasicmaterialon
d = 10, N = I supergravity.We also briefly discussresultsabout the supersymmet-
nc R2-action.in sect.3 we constructthe ansatz(given explicitly in AppendixA) for
the supersymmetricR4-action. Of course,for practical reasonswe haveto limit
ourselvesto certain sectorsof the completeaction (for instance,we neverinclude
four-fermion terms). Theselimitations are also discussedin sect.3. In sect.4 we
give a schematicoverview of the calculation, and consider in some detail a
particularsub-calculationwhich leadsus to concludethat termssuchas (1.7) must
be present in the final result. The full result, and its generalizationto the
Yang—Mills case,is then presentedin sect. 5 and Appendix B. Sect. 6 compares

our resultswith the string amplitude calculationsand discussesthe relation with
otherwork.
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2. N = 1 supergravityin d = 10 and the R2-action

The basicmultiplet of N = 1 supergravityin ten space—timedimensionsconsists
of the tenbein field e~, the dilation field 4), an antisymmetrictensorgaugefield

and the Majorana—Weyl fermions ~ (gravitino) and A (dilatino) [2]. This
multiplet transformsunderlocal supersymmetryas follows *:

(2.1)

= (a~— ~ + e(fermi)2, (2.2)

8B~= ~ ~ (2.3)

= — ~V’~F~E4) ‘D~4)+ ~F~~)CEHahc + E(fermi), (2.4)

4~1~4) —h/A. (2.5)

The derivatives ~ are Lorentz covariant, supercovariantderivativesare de-
noted by D~,.In the variation of the gravitino field we encountera torsionful
spin-connectiondefinedby

~ w~’~’(e,i/i) ±~ ~ (2.6)

Here, ~ ~‘j) is the usual spin connectionwith ~i-torsion, i.e., the solution of
= 0. The additional torsion is determinedby the supercovariantfield

strengthof the B — field, H~h,givenby

Hp~p= [3[~B~~]—
4~[~T~t/!~], (2.7)

which is invariantundergaugetransformations

= — ~ (2.8)

Underlocal supersymmetry,w~’and H transformas

~w~(e ~) = ~ + ~ + ~V~I ~i2’~, (2.9)

= — ~ ~T[at/hl,el (2.10)

* Note that 1,”” r[”1l~”2 “~. Throughoutthis paperwe usethe conventionsof ref. [25]. In our

calculationswe will neverconsidertermsquartic in fermionsin the action,and,consequently,we may
ignore termsquadraticin fermions in thetransformationrules.
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Here, ~/~ab denotesthe gravitino curvature

V2~[~(fl+)~J~]+(fermi). (2.11)

The transformations(2.9) and(2.10) canbe combinedto yield

~Q~’©= F~/,’~’. (2.12)

The gravitino curvature i/j(th itself has the following variation:

= — ~F~Rm~(Q) + �(fermi)2, (2.13)

whereR~’~’(u1)denotesthe Riemanncurvaturetensorwith spinconnectionf2.
The ten-dimensionalactionwhich is invariantunderthe transformations(2.1)—

(2.5) is given by

~R=e4)[—
2R(w(e)) — ~H~AH~A + ~(4)_1a 4))2

— ~F~(w(e))~i~ + 2~ AF~”~(w(e))~i~

+4A~r(w(e))A+ 3~/~~i~F”F~A(4)’B~4)) —

+ ~ HPaT(~FE~ ~ + 4V~~F~PUTA — 8AF~A)]

+(fermi)
4. (2.14)

The equationsof motion which follow from (2.14) will play an importantrole in

thispaper.Theseequations,for the fields 4), e~,A, ~/i~ and ~ respectively,read

= e4)3[~R(w)— 9~~(w)(4)laa4))+ ~(4)1~4))2 + ~ (2.15)

= ~ — 3~f~(w)(
4)tab4))+ ~H~ApHbAP]— ~-e’~a’P,(2.16)

A =ecb3[8~(w)A + ~ F~/i~—l2(4)~~4))A— V~T~AHabC], (2.17)

iI’,~=e4) (i~j~~+ 2V~1~(Q+)A)— ~ F~A, (2.18)

= ~a5(e4)H). (2.19)
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In this paper we frequently use identities which are implied by the fermionic
equationsof motion andthe Bianchi identity

= — ~T~aE~RvA]ab(~) (2.20)

for the gravitino curvature. First of all, we use (2.18) to solve for the single
F-contractionof the gravitino curvature

Fbi/Jab = e_’4)3(111a+ ~ FaA) — 2\/~.~aA. (2.21)

From (2.21) we obtainby contractingwith a further F-matrix

= e~4)3(2F’~1[’a+ ~ A). (2.22)

Combining(2.18) and (2.20) one derivestwo additional identities involving the
derivativeof the gravitino field equation:

~Pab = —29~[a(e~’4)3~1’b])+ ~ ~a~b](e4)A)

_~FcFefi/i~Rabef ~ FCdARabCd +FC~IJ[aRb]C, (2.23)

9~b4)ab =~(e~4)~~1’a)- ~‘i[T~(e’4)3A) ~aV’4)3ul)l

— ~ ~Rab(FbC4Jc — ~pb) + ~iRl/Ja~ (2.24)

while (2.17) and(2.22) give

f~A=_e4)3(~V~Ftu1I1~+A). (2.25)

In the identities (2.20)—(2.25)we havenot written contributionsof H and 4) ‘/34).
In the next sectionwe will discusswhy theseareneglectedin our calculations.

In d = 10, N = 1 supergravity the only matter multiplet is the Yang—Mills
multiplet, which consistsof the gaugefield A,~,and a Majorana—Weylspinor x~
both in the adjoint representationof an arbitrarygaugegroup.The transformation
rules are

= ~ (2.26)

= — ~F~F~(A)� + e (fermi)2. (2.27)

Thecouplingof the Yang—Mills multiplet (AM, x) to ten-dimensionalsupergravity
[2,3] leadsto a supersymmetricaction of the form S~+~/F2. This requiresthe



334 M. deRooet a!. / Supersymmetricaction of heteroticstring

inclusionof the Yang—Mills Chern—Simonsterm in the field strength(2.7) of the
B-field [31,and a correspondingmodificationof the B transformationrule.

The cancellationof anomaliesrequires a further modification of H by the
correspondingLorentz Chern—Simonsterm [4]. However, this mechanismbreaks
the local supersymmetry.The fact that the transformationrules(2.12) and(2.13)of

and the gravitino curvature ~ have the samestructureas those of the
Yang—Mills multiplet (AM, x) (2.26), (2.27) simplifies the restorationof supersym-
metry [24]. By replacing in the action R + /3 tr F2, and in the corresponding
transformationrules AM by ~M~” x by ~ FM,~(A)by thecorrespondingcurvature
RM~(Q), andthe coupling /3 by an a priori independentcoupling a, the tr F2
Yang—Mills actioncanbe immediatelyextendedto a supersymmetricaction of the
form R + /3 tr F2 + aR2. This requires a modification, proportionalto a, of the
supersymmetrytransformationrule of the B-field. Since~ ~ah) dependon B
(see relations (2.6) and(2.11)), the transformationrules of ~M~’ and

4(th obtain
order a terms,besidesthe order /3 terms alreadypresentdue to the Yang—Mills

coupling. This breaksthe invarianceof the R + /3 tr F
2 + aR2-actionby terms

which are of order a2 and a/3. The best one can hope for in this explicit

supersymmetrizationof the Lorentz Chern—Simonsterm is an iterativeinvariance
in the couplingsa and /3.

The iterative procedureoutlined above was worked out for the cubic a2R3,

a/3R tr F2, and for the quartic a3R4,a2J3R2 tr F2, af32(tr F2)2-contributionsto
the supersymmetriceffective action. Bosonic cubic terms in the supersymmetric
action are not required. Contributionsfrom the variation of the quadratic and

cubic action play a crucial role in the cancellationswhich leadto the final form of
the quartic action [25]. Thus the quartic action obtained in ref. [25] is directly
linked to the inclusionof the Lorentz Chern—Simonsform, and a priori unrelated

to the quartic actionswhichwe will constructin this paper,which do not include
quadraticor cubic contributions.

3. R~’-invariantsand the ansatz

The supersymmetrizationof R4-actionstartswith the constructionof an ansatz,
which shouldcontain all termsthat might be linked to the R4-termsby supersym-
metry.

In order to make the supersymmetrizationfeasible onehas to put restrictions
on the terms which are included in the ansatz, and, correspondingly,on the
contributions to its supersymmetryvariation. In this sectionwe will discussthe
structureof our ansatzandthe restrictionswe have imposed.

As we havealready mentionedin sect. 2, we will not considerterms in the
actionwhich arequarticin fermions. Hence,in the R4-actiononly purely bosonic
terms and terms quadratic in fermions will appear. Correspondingly,in the
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supersymmetrytransformationsof the bosonicfields only termslinear in fermions,
in the transformationsof the fermionic fields only the bosoniccontributionshave
to be considered:

6(boson)= ~(fermion),

ô(fermion) = (boson)E.

In the R4-actionwe do not write terms which containthe equationsof motion
of the R-action (2.15)—(2.19). Such contributionscan alwaysbe eliminated by a
suitableredefinitionof thecorrespondingfield. As wasoutlinedin refs. [11,13],the
results obtained from scattering amplitude calculationsare insensitiveto such
redefinitions of the fields. Thus, we do not have to include terms in the ansatz
containing a Ricci tensor or a curvature scalar. The same applies to terms
containinga contractedderivativeof the Riemanntensor,since

= 2~[
3(w)R~]~(w). (3.1)

Similarly, fermionic termscontainingthe left-hand-sideof (2.21)—(2.25)canbe left
out.

The presenceof the fields 4) and BMC in d = 10 supergravitycomplicatesour

calculationsconsiderably.The occurrenceof B~,,itself is of courserestrictedby
the requirementof gaugeinvariance(see(2.8)),but many contributionscontaining
the field strengthH arepossible.Onemay attempt to restrictthe contributionsof
H by requiring that H only occurs as torsion (2.6), as seemsto be indicatedby
string amplitude calculations.However, we prefer not to bias our calculationsby
introducing such input. Similarly, the appearanceof 4) can be restricted by

requiringglobal scaleinvariance,but 4) ~4)may appearanywhere.
We compromiseby including in the action only termsindependentof or linear

in H and 4~‘34). In thevariation of the action weshouldthen consideronly those
termsin which H and 4) ‘04) are absent.From (2.4) we seethat this implies for
instancethat we neverhaveto vary the field A, andthat consequentlythereis no
need to include A

2-terms in the action. Furthermore,we can restrict the terms
containing H and 4~‘34) to be purely bosonic.

In the ansatzwe usethe spin connectionwith ~i-torsion,i.e., WM(th(e, ~ as the
argumentof the Riemann tensor,and parametrizethe terms linear in H sepa-
rately. In the H-dependentterms in the ansatzwe use the supercovariantfield
strengthH, given in (2.7).

Note thatwith the aboverestrictions,it is no longerguaranteedthat our method
will yield a useful result. It may well be, for instance,that the cancellationof
variationscontainingH is required to fix the coefficientsof the termslinear in H
in the action uniquely. As the next sections will show, a large part of the
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supersymmetricaction is determined,eventhoughwe do not considerthe cancella-
tion of all possiblevariations.More fundamentally,wemustadmit that our method
does not strictly prove the existence of a supersymmetricinvariant, since the
proceduremay still fail for variationswhich we do not consider.The results,and
their relation with string amplitude calculations, give us confidencethat our
procedurecould in principle be continued to the end without essentialobstruc-

tions.
The purposeof our presentwork is the supersymmetrizationof R4-actions,with

in view the application to the effective action of heteroticstring theory. As

discussedin the introduction, the bosonic part correspondingto tree-level and
one-loop contributions to string amplitudesare known. There, the following
actionsquarticin the Riemanntensorarise:

X = ~ ahcdefghR~,ThRA~(dRefRgh (3.2)

Y = t’~’~’~RahR ahR cdR cd
M” lip a~ a~3

y = t/ii~Apuraf3R ahR heR cdR da 4
2 pe lip or a~

Z = R abR CaR efR ~‘[ah ed ef g/i]

The tensort hasthe following structurewhenactingon commuting,antisymmetric
tensors* M., i = 1,..., 4:

t ~

ahedefgh 1 2 3 4

= —2(tr M,M
2 tr M3M4 + tr M2M3 tr M4M, + tr M,M3 tr M2M4)

+ 8(tr M,M2M3M4 + tr M,M3M2M4 + tr M,M3M4M2). (3.6)

The action(3.2) wasobtainedfrom a calculationof thetwo-loop 13-functionin a
supersymmetricnonlinearsigma-model[14] andindependentlyin string amplitude
calculations[11]. This action appearsin the tree-levelstring effectiveactionwith a
characteristiccoefficient ~(3).

The action Y,, which hasthe structuret (tr R
2)2,wasalso found in tree-level

string amplitude calculations** [13]. Note that Y
2 has a different trace structure

(tr R
4). Finally, (3.5) is invariant under linearizedsupersymmetrytransforma-

tions, since by the Bianchi identity of the Riemanntensor,

.c~[M(w)R~P](w)=0, (3.7)

* In string amplitude considerations(seee.g. ref. [131)the indicesof the t-tensorindicate the eight

transversedirectionsin light-cone coordinates,and then t-containsan additional eight-dimensional
Levi—Cività symbol. Here we extendthe rangeof the indicesto all tenvalues.

** For comparisonto tree-level string amplituderesultswe will use thevery detailedresultgiven in ref.
[13].
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the variation of Z is a total derivativefor any variation of w. If Z is reducedto
eight dimensionsit becomesa total derivative. This implies that it doesnot play a
role in light-cone gaugestring amplitude calculations. Thereforeone has no a
priori knowledge from string amplitude or sigma-model calculationsabout its

effectsin a ten-dimensionalsupersymmetricinvariant. The fact that in ten dimen-
sionsoneshouldallow the inclusionof a Z-actionwas emphasizedin refs. [32—34].

In the supersymmetrizationof R4-actionswe look for invariantsof the form

(3.8)

where B is the pure d = 10, N = 1 supergravityaction (2.14).Supersymmetrymay
hold iteratively in y, so that the supergravityfields will needmodificationsof the
supersymmetrytransformationrulesof 0(y) in order to achieveinvarianceof the
action (3.8) to O(y).

Our ansatzin the searchfor the supersymmetriccompletion of R4-actionsis
written in the form

= ye4)~’~~. (3.9)

The sumis over the different structuresthat mayoccur in the action.We consider
15 different sectors,which are presentedin Appendix A, four involving purely
bosonic terms (S~f,—2~),four sectors involving the gravitino field and its
curvature~(2) (~‘~—/~‘~) andsevensectorscontainingthe dilatino field A (2’9—~,5).

We give a few commentson our ansatz.
We includean arbitrarypowerof the dilaton in front of theaction (the R-action

also hassuch a structure,with 4)3). Note that by supersymmetrythe powerof 4)
has to be independentof the index i labelling the different sectors,since the

supersymmetrytransformationrules (2.1)—(2.5) containno explicit powersof 4).
The sectorY’, (A.1) containsall possiblecontractionsof four Riemanntensors.

Therefore,the actions (3.2)—(3.5) can be written as linear combinationsof the
termsgiven in (Al). Using pair exchangeand cyclic identities for the Riemann
tensor,andneglectingterms containingthe Ricci tensoror curvaturescalar,one
finds *

X= 12(A, — 16A
2+2A3—32A~+16A6+32A7),

Y,= —2A1+16A2—4A3+8A4,

= —4A2+ 2A4 — 16A5 + 8A6 + 16A7,

1
= 7 x 5! (A, — 16A2 + 2A3 + 16A4 — 32A3 + 16A6— 32A7). (3.10)

* A capital letter denotestheterm in the ansatzwithout the correspondingparameter(alwaysgiven in

lower case)(seeAppendixA).
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Note that the actionsX, Y, and 1’2 are relatedby

X+ 6Y, — 24Y2 = 0. (3.11)

The sector~ is the only one for which the variation of 4) in front of the action
hasto be evaluated.

The ..~‘3-sectorconsistsof the following two terms:

K, = ie IrMI . . ~ (3.12)

K2 = ie — ‘ MIUBRahR acRhaR ed (3.13)

Both terms are clearly invariant undergaugetransformations(2.8) of the B-field
becauseof the Bianchi identity (3.7). Note that this gaugeinvariancerequiresthe
absenceof the dilaton field in (3.12) and(3.13), i.e. y = 0 in (3.9). One-loopstring
amplitude calculationsreveal that theseK-terms must be part of the effective
stringaction [21,22].
— The sectors ~ parametrizeterms of type ~IJ(2)F41(2)R~R,t/f(2)F~?1~/J(2)R

2,

~IJF~41(
2)R

3and ~/iF~/iR2~YRrespectively.As we noted above, in constructingthese
sectorswe do not allow termswith any contractionsof the form (2.21)—(2.24).Note
that a partial integration and the use of the Bianchi identity (2.20) may relate
terms of thesesectors.Therefore,in order to find a minimal set of independent
termsfor the ansatzonly those termsare takeninto accountwhich are not related
by any of theseoperations.

Similar argumentsapply for the A-sectors ~ Therewe do not write terms

which are relatedto the equationof motions A (2.17)or 1PM (2.18).

4. The calculation

In this section we will discusssome of the technical aspectsconcerningthe
calculationwe haveoutlined in the previoussection.

TABLE I
Theschematicform of the supersymmetrytransformationrulesconsideredin this paper.Thesymbol ~i

representsthegravitino, //(2) the gravitinocurvature.

# Transformation

(1) =

(2) = ~‘(2)’ ~IB= ri/i

(3) =

(4) tIiIJ(

2)=ER
(5)
(6)
(7) h(// — ‘04) =
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TABLE 2
The different structuresin the variation of the action. The third column indicatesidentities usedto
rewritevariouscontributions.The last column shows how thesecontributionsare cancelled.A 6i/i or a
bA-entry indicatesa modification of the transformationrulesof the correspondingfermion.

# Variation Identity Cancelledby

(A) Ei/J(
2)R~R (2.21), (2.22) 8i/~,bk

(B) �~i/1(2)R (2.20), (2.23)—(2.24) (I), (J), 8i/, IA
(C) r~Re~R)

2 - -
(D) (4.4) (1)
(E) rf+AR2~?AR (2.25) bk, bi/i

(F) r~©~+AR3 (2.25), (4.3) (J), 8A
(0) rkR(i+R)2 — —
(H) rAR2[+c?iJR (4.4) (J)
(I) - -
(J) rkR4 — —

In table 1 we presenta schematicform of the supersymmetrytransformations

relevant for our purposes.Their preciseform is given in sect. 2. Note that dueto
the restrictionswe have imposedwe may refrain from consideringvariousother
contributionssuchas ~w = ~JH.

Table 2 showsthe genericstructureof thevariationsof the action that emerge
when applying the transformations(1)—(7) to the ansatz.In calculatingthe varia-
tion of the ansatzwe alwaysintegrateaway from the supersymmetryparameterE
by performinga partial integration.The variation is thensimplified by working out
productsof F-matrices,etc., andbroughtto a standardform. The result then has
to vanish,which determinesthe unknowncoefficients.

In many cases however, contributions to a variation do not have to cancel

againsteachother. If avariation is proportionalto oneof the equationsof motion
(2.15)—(2.19) it can be cancelled by changing the transformationrule of the

correspondingfield with a contributionof O(y). Considerfor examplea variation
which is of the form

= (4.1)

where OM is a field-dependentobjectwhich may contain F-matrices.Since is
the gravitino equation of motion of the action ~‘R’ a variation of the
gravitino in -~‘R with parameter— will give

~y~’R YE0M1PM. (4.2)

This new transformationrule of the gravitino cancels(4.1) in the variation of

~~“R ~ The new transformationapplied to ~ot gives a contributionpropor-
tional to .),2 which we neednot considerin thisstageof our procedure.
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TABLE 3
All contributionsto thevariations consideredin table 2. The numbersin the table correspondto the
supersymmetrytransformationsgiven in table 1. The ..~-entriesdenote the different sectorsof the
ansatz,given in the appendix.

.2~ (A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

~, (3) — — — — — — — (5) (6)

~2 (2) - - - - - - - - -

- - - - - - - - (2) -

- - - - (7) - - - - -

J~ (4) - - - - - - - - -

~‘6 (4) (4) — — — — — — — —

.2~7 (1) (1) — — — — — — (4) —

~ (1) — (1) (1) — — — — — —

- - - - - - - - - (4)

— — — — (1) — (1) (1) — —

Sf
11 - - - - (1) (1) - - - -

~‘12 - - - — - (4) — - - -

2’13 - - - — (4) - — - - -

Sf14 - - - - — - - (4) - -

-~15 — — — — — — (4) — — —

If avariation of ~ot canbe rewritten using an identity such as (2.20) then its
contribution is shifted to anotherpart of the calculation.Besides(2.20) one also
hasthe useful relations

= _~F~~bARMvab, (4.3)

= RM*[afRb]fcd — R[cfRabfd]. (4.4)

In some cases, using identities such as (2.21)—(2.24), a contribution can be
rewrittenin termsof equationsof motionand additional termswhich contributeto
othervariations.This mechanismis indicatedin the third and fourth columns of
table2. In the fourth column we havenot indicatedexplicitly cancellationthrough
modificationsto the transformationrule of the tenbein.Ricci tensorsoccur, either
directly or through(3.1), in all the variations(A)—(J).

The basic tactic is then to shift as much as possibleof a particularvariation to

equationsof motion and/or the variations(I) and (J) of table 2, by using the
identitiesmentionedin the third column of the table.Everythingwhich cannotbe

shifted,which is true in particularfor all contributionsto thevariations(I) and (J),
has to canceland is used to fix coefficients.Table 3 indicateshow the different
sectorsof the ansatzcontribute, through the supersymmetrytransformationsof
table 1, to the variationsof table2.

As an exampleconsidervariationsof type (B), i.e. E~1~J1~21R. From table 3 we
seethat thesevariationsare generatedby the sectors~ and ..?7. From ~, the
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~IJ(2)F~j(2)R-terms,we obtain(B) by varying the first gravitino curvature,which is
the transformationnumbered(4) in table1. From ~ theNoetherterms ~JF~’J(2)R

3,
we find this variation by varying the gravitino, and taking, after the partial
integrationaway from e, the contributioncontaining ~‘(2)• This is transformation
(1). On simplifying thesevariationswe isolate thosecontributionswhich can be
written as a Bianchi identity (2.20), or which take on the form (2.23)—(2.24).This
givesvariationsof type (I) and(J) ((J) only in the case(2.23) is used)andequations
of motion.Note that in the variations(B) we will not encounterthe left-hand-side

of (2.21)—(2.22). Suchcontractionsbetween~(2) and F-matricesare absentin the
ansatz, as explained in sect. 3. Contributions containing (2.21)—(2.22) would
therefore haveto comefrom the variation of the 2~-terms,but it is easyto see
that the productsof F-matricesin thesevariationsdo not involve the indicesof the

gravitino curvature.
Of course also the bosonic equationsof motion, and the Bianchi identity (3.7)

are used in the sameway. However, the use of these does not generatea
remainder.

An importantrole in the calculationis playedby the two K-terms(A.4). If they

arepart of the action,the powerof the dilaton in front of the action (3.9) will have
to vanish. We find that indeed the presenceof the K-terms is unavoidable.
Interestingly,this result canbe seenrelativelyeasily, since only a few termsin the
ansatzinteractwith the K-terms. As an example,which also illustratesexplicitly
our procedure~, we will work out the contributionof the K,-term.

In the variationof K, we only haveto considerthe transformationof the field

B, (2.3). The �-tensorandthe F-matrix arecombinedto give

6K, = — ~ R~fl ~ cli,.• (4.5)

The only term in the ansatzwhich gives rise to a similar variation is M,
06 in (A.8).

In M,06 we haveto vary the gravitino and the gravitino curvature.After a partial
integration,andupon usingthe Bianchi identity (3.7) we find

6M = —R ahR B cd~~mnpqrst

t06 inn pqab rs t’/’cd

+ ~ (4.6)

In the first termwe extract Ft from the F-matrix, using

St = f’innpqr SFt — 6f’[mnpqr6s]t

* Except for the fact that the algebraicmanipulations in the following calculation were of course
performedby our computerprogram!
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Thus we obtain

—R ahR cd—~mnpqrs~mn pqab rs C ~~‘Pcd’

and other terms, which will never contribute to a variation with a nine-index
F-matrix. Now we use(2.23) to obtain termsproportionalto equationsof motion,

as well as

+ ~RinnRpqa6RrsRtuc~�FmnPar2FeFt~J~. (4.7)

We now work out all the productsof F-matricesin the secondterm in (4.6) and
(4.7), andfinally obtain the following contributionwith a

61W’,06 = ~R mn hRpqab ~ stuv~iJ1,. (4.8)

The contributions(4.5) and(4.8) must cancel,since noneof the other termsin the
ansatzproducessucha variation. Therefore

k,=~V~m,06. (4.9)

To find out whetheror not a term of type K, is presentwe thereforehaveto know
the value of m106. This coefficientis determinedby consideringthe following two
variations:

RmnabRpqa6~ (4.10)

B Rm!UThR R~
t~~F’~’ 411mnah stcd ~

To (4.10)we getcontributionsfrom M
106, on working out theproductof F-matrices

in (4.6) and(4.7). We also get contributionsfrom M30. By a calculationsimilar to

the one outlined abovefor M106, usingthe equationof motion (2.23),we get two
equalcontributionsfrom M30. We then find m30 = 2m,06. Finally we calculatethe
contributionsto the variation(4.11). Thesecomefrom the previouscalculationof
the variationof M30, andalso from the tenbeinvariation in A,. The resultis that
m30= ~a1.Thus we concludethat this calculationdeterminesk,:

k,=~v~a1. (4.12)

The presenceof the K1-termis thereforelinked by supersymmetryto thepresence
of A,. The possibility of having a1 = 0 will be discussedin the next section.None
of the other termsin the ansatzcontributesto (4.10) or (4.11). The featurewhich
singlesout thesevariationsis the contractionbetweenthe index of the gravitino
and the F-matrix. Such a contractioncan only arisefrom the variation of the
tenbeinin the A-terms(A.1), or from termsin 5~(A.8), which alreadyhavesuch
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a contraction.A glanceat such terms in the ansatzshowsthat indeedonly M106
and M30 havethe appropriatestructure.

The K1-termis only invariantunderthe gaugetransformationsof the B-field, if
the factor dependenton the dilaton in (3.9) is absent.We expectthen, given the
presenceof the K-term, that supersymmetrywill fix y = 0. To seethis we will

considervariations of type (J), ~AR
4. There are threevariationswhich play a

determiningrole in fixing the value of y. Theseare

RmnahRmnabRstcdRStCdf_A, (4.13)

~ (4.14)

R ab tucd—~innpqrstu~ 4 15inn pqab rscd C

To thesevariationswe will get contributionsfrom M,
06 and M30. Thesearise from

the use of (2.23) in (4.6) and in the related variation of M30. Then there are
contributions from (A.l0), in particular from P, and P2,, obtained from the
variation of the gravitinocurvature~~(2)• Finally thereis of coursea contributionto
(4.13)from the variationof 4)~in front of the A ,-term.The resultingequationsfor

the coefficientsread

(4.13) —‘ — ~yV~ a, — m30+ ~p, = 0,

(4.14) —~ +2V~m30 — 4V~m,~6 P1 + 2p2, = 0,

(4.15) — +2v~m~0~—p21 = 0.

Thesethreeequationsfix p, and p2,, andset y = 0 (unlessa, = 0, in which casey
remainsarbitraryat this stage).

The above calculation shows that any solution with a1 ±0 will require the
presenceof K,, and thereforethe absenceof an overall dilaton-dependentfactor
in front of the action.

The result of the above calculation should be comparedwith the results
presentedin ref. [25]. There the sameterms that we consideraboveappearedin
the ansatzfor the quartic action, and a similar calculationwas done. The major
difference is, however, that in ref. [25] an R

2-action, related to the supersym-
metrization of the Lorentz Chern—Simonsterms, is presentas well. Then the
cancellationof thevariationof the quarticactionalso involvescontributionswhich
arise iteratively from the quadraticand cubic action. One may check,that these

contributions(which canbe found in ref. [25]) havethe effect of settingk, = 0 and
y= —3.
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The abovecalculation is a small part of the completecalculationwhich deter-
minesall coefficientsin the ansatz.But the generalprocedureshouldnow be clear.
The contributionsto the variationsarebrought to a standardform, in sucha way
that the remainingstructuresareall independent.Of courseoneusesthe identities
mentionedin table 2 to expressthe variation in terms of independentstructures.

For eachindependentstructurein thevariationof the actiononefinds an equation
betweenthe coefficientsin the ansatz.In solving the equations,free parameters

may remain.Certainly one free parameteris associatedwith the normalizationof
the action. Freeparametersmay also indicate that the ansatzis overcompletein
the sensethat a subsetof the contributionsto the ansatzmay be dependent.This
occurs,for instance,for the seventermsin (A.2), of which only four are indepen-
dentbecauseof the identities(A.3). Otherfree parametersindicate the presence

of morethan one solution to the problemof supersymmetrization.Theseaspects
of our resultwill be discussedin the following section.

Table 3 shows that the calculation splits in a natural way in two almost
independentparts.The variations(A)—(D) and(I) (the i/i-sector) are independent
of the dilatino A, the variations(E)—(H) and(J) (the A-sector)do dependon A. All
theseA-dependentvariationscomefrom A-dependenttermsin the ansatz,except
those dueto the variationof the dilaton (see table 1). The transformation(7) in
table 2 is only applied to a single sector of the ansatz,(A.5), which does not
contributeto the i/i-sector. Thereforeit seemsthat,exceptfor the variationof the
dilaton factor in front of the total action,thereis no contactbetweenthe ~i’-sector
and the A-sector.However, the use of (2.21)—(2.24)providescontributionswhich
move from the ~i-sectorto the A-sector.Thereforeit is essentialto first work out
the variationsin the ~/i-sector.

As we shall see, the equationsresulting from the ~/i-sectorare very restrictive,
and result in two independentsolutions.The equationsin the A-sector are much
less restrictive. As we discussedabove, the cancellation of the (B)-variations
involves only the identities (2.23)—(2.24).Using these,the (B)-variation produces
~AR4, (J)-terms.We expect the identities (2.21) and (2.22) to play a role in the
variation (A). Since (2.21) contains a .~A-contribution,the use of (2.21) in the
cancellationof (A) providesa link betweenthe ~/i-sectorand avariationcontaining
SfA. In table 3 we see that there are several contributions to (A). Since no
contractionsbetweena F-matrix and the gravitino curvatureare presentin the
ansatz,only thevariationof ~ the ~Ji~iR2~R-terms,canproducesucha contrac-
tion. Therefore, all contributionscontaining ~A arising from the A-sector are
proportional to the parametersin 2’s. However, the equationsarising from the
~/i-sectorrequire, that all theseparametersvanish!

We concludethat the only link betweenthe i/i- and A-sector is through(B) and
(J), and through the variation of

4)~in front of the action,which also gives (J).
Thereforewe may choosea minimal option in the A-sector,which is to include
only those A-dependenttermsin the actionwhich contributeto (J). As we seein
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table3, this is the sector.2’~,the A~/i121R-terms.Indeed,thecalculationshowsthat

cancellationof all A-dependenttermsin thevariation canbe achievedby including
~ only.

Besidesthis minimal optionwe havealso consideredthe inclusion of the sectors

~ -~“~O15~The variationsfrom thesetermshaveto cancelagainsteachother.We
havefound that the resultingequationsare not sufficiently restrictiveto solve for
all parametersin this part of the ansatz.When discussingour results,in the next
section, we will restrict ourselvesto the minimal option mentioned above. Of
course,this doesnot meanthat we think that the coefficients in S~,,~ are
actuallyzero. It only meansthat thesecoefficientscannotbe determined,in terms
of a smallnumberof free parameters,in the presentcalculation.The sameremark
holds for other sectorsin the R

4-action which we have not consideredin the
constructionof the ansatz(see sect. 3).

5. Results

Using the procedurediscussedin the previoussection,we find that supersym-
metry requiresthat the bosonic termsmustoccur in the following combination:

.2’= a
1A, + (— 16a,+ b)A2+ 2a,A3+ (12a, — 2b)A4

— 32a,+ 4b)A5 + (16a, — 2b)A6 + (— 16a,+ 2b)A7

+b1B,+b2B2+b3B3+(—3-b2—b3+6v~b)B4

+ 2b2B5 + (b, + 3-b2 + 3-b3 + 3v~b)B6 — (b2 — 2b3 — 12V~b)B7

+3-V~a,K, + 3-%/~(—a,+ 3-b)K2, (5.1)

where b = ~gV~(b2+ 2b3 + 2b4). The coefficients b,.4 remain free parameters
after solving the equations.Three of theseare redundantbecauseof the three
identities(A.3), which imply that B,7 arenot independent.We canthereforetake
arbitraryvaluesfor b13, without changingthe action.Thus b and a, are the only
true free parametersremainingin the action,which canthereforebe written as a
linearcombinationof two independentinvariants.

Expressedin termsof X, Y,, Y2 and Z the R
4-contributionin (5.1) reads

Sf-’=cX+ 3-7!(ai — 3-b)Z

+ [6c — (3-a
1+ ~yb)JY1+ {—24c+ 3-(a1 — 3-b)]Y2. (5.2)

Here the coefficient c is arbitrary and reflectsthe dependenceof X, Y1 and Y2
discussedin sect. 3.
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In (5.1) we remarkthat for any nontrivial choiceof a, and b at leastoneof the
K-terms is present.Our conclusionfrom sect. 4, that the exponenty in the factor
4~must vanish, is therefore valid for arbitrary a, and b. Thus a~= 0 plays no

specialrole in this respect.
We will now discussthe two independentsolutionscontainedin (5.1). The first

oneis associatedwith b = 0, the secondwith b = 8a,.The mostconvenientway to
expressthesetwo solutionsin termsof X, Z, Y, and V2 is to take c = ~g(a, — 3-b)
in (5.2). The parametera, is then a normalizationfactor, which we set equal to
one.

The complete action correspondingto the choice b = 0 (with b,.3 = 0) is
displayedin AppendixB (B.1). The bosonicpart of this invariant reads

I, = e(R0h~fR~b0fRc~g/1R~dgh— l
6RaCefRhCefRadghRhdgh

+ 2RabefRCdefRabgh RCd
5A

+ l
2RabefRcdefRaCgh ~ — 32RabefRCdefRagChRbgdh

+ l6RaebfRCedfRaghhRCgd/i — l6RaebfReedfRagchRbgdh)

+~!~i,/~e~1M~B R ab~ abR cdR ed8 MIM2 M3M4 P-5Mo MiMi MOM Ii

— 3-i~ ~Mi . . . MloBRahRacRbdRcd (5.3)

The R4-termsin (5.3) correspondto the combination-3~g[X+(6 X 7!)Z].

Note that this solution hasno termslinear in H. In ref. [13] it was found that in
the string effective action the Riemann tensor should dependon the modified
spin-connectionQ.. (see (2.6)). However, when X and Z arewritten in terms of
the modified spin-connectionfl, andone thenexpandsin H, terms linear in H

cancel.Thusthe effect of torsionappearsonly in the termsat leastquadraticin H,
whichwe do not considerhere.

The completeaction correspondingto the choice b = 8a, (with b, = b
2 = 0,

b3 = — 48y~ a1) is presentedin (B.2). The bosonicpartof this invariant is givenby

12 = e[ RabefRahefRCdghRedgh —
8RacefRbCefRadghRbdgh

+ 2RabefRCdefRabghRCdg/i — 4RabefRCdefRaCghRhdgh

+ 96V~ ~ahc( — 3-RabemRghfin~eR efgh + RahemRghfm~eRCfgh)]

+ 3-iVy ~M1 . . .MIOB IM

2RMSM4RMOMoRM7MORM~MIo. (54)

The R
4-terms in (5.4) are — 3-Y,. The presenceof K, implies that there is no

factor 4~’in front of ‘2~
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Using pair exchangefor the Riemann tensor, all R4-terms in (5.4) can be
rewritten in termsof

VMCAP_RMC(w)RAP(w) (5.5)

and its contractions.Note that ~ is the Lorentz analogueof the Yang—Mills
invariant tr FMCFAP. Becausethe connectionfl transformsundersupersymmetry
as a Yang—Mills gaugefield (compare(2.12) and(2.26)), this analogyonly holdsif
the spin-connectionin V is 12_. This suggeststhat the action shouldbe rewritten
in terms of the torsionful connectionul. Indeed,the two terms linear in H in

(5.4) arepreciselywhat is neededto introduceH-torsion,with the coefficientas in
(2.6), in the R4-terms.

The fermioniccontributionsto both I, and ‘2 canbe found in Appendix B. One
surprise(for us) in this fermionic sectoris that all terms of the type I/iF i/iR25/~R
havea vanishingcoefficient.Note that implicitly suchtermsappearin the action in
(A.1) in the ~/i2-torsionin w, and in (A.2) in the supercovariantizationin H.
Anotherway of presentingour result about~f’

8 is to saythat all suchtermscanbe
absorbedinto ~/i

2-torsionin w and in supercovariantizations.
Both the actions I, and ‘2 contain termsdependenton the field A. In sect.4 we

discussedour procedurewith respectto the A-sector.Becauseof the vanishingof

~ it is possibleto includeonly .1~f’~in the A-sector,the so-calledminimal option.
All the coefficientsp, are then determined.

In the calculationsleadingto I, and ‘2 we usethe identities(2.23) and(2.24).
The terms in the variation in which we encounterthe left-hand-sideof (2.3) and
(2.24) are for I,:

(Rabcd RajefRhkg/, — 3-RahcdRabefRjkgh ) E.t~defgh~‘ftJk

+ (2RabdeR abejRfgcj + 12RaCdeRafhiRbgCj)~Fdefg~f IIi~~

+ ( ~8RaCbdRaebhRefdi + 4RabCdRabCeRdfhi + 4RhCadRefahRbedi

+ 20 Rhcae B adfh R
6~~1+

2RadefRhCah ~

— l6RabdeRCfahRbCdi + 24RahdeRafC/iRbcdj — 3-RabCdRabCdRefhi

+ 2Raiice RabdfRCdhi — Rabed RahefRCdhi + 8RaCbeRadhf ~ )~Fef~I/J/li

— 2RabdeRaCfgRbhCi~Fdefgh~~•4fij+ (8RahCeRah
1/fRedgh —

4RaCbeRadhfRCdgh
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— 8RabefRaCdg Rbedh + 8RadefRbCag B bcdh )�~Fefg ~iI/~’hE

+ (32RacheRadbfRcdeg — 2ORabcdRabefRcdeg + 20RabcdRahceRdfeg)�~Ff~JhI/Jgh.

(5.6)

Using the identities (2.23) and (2.24) this can be expressedas derivativesof the
equationsof motion 1PM and A of hIM and A, and terms proportional to I/iR and
AR, which contributeto othervariations.Theselast terms havebeentaken into
accountin the calculation.The equationsof motion alwaysoccur in the combina-

tion + 3-~I~FMA. The requiredadditional variationsof h/fM andof A, 6
5~

1’~and
6

5A, aregiven in (B.2). Of course,the combinationof the two equationsof motion
implies a relationbetween

65i/IM and &
1A. The fact that the only changesin the A

transformationrules occur in this particular combination with
6Y~’M is a conse-

quenceof the fact that we need only ~ in the A-sector.The variation of ~

never gives rise to additional A equationsof motion.
For the invariant ‘2 (5.4) the remaining fermionic equations of motion arise

from

— +RcdabR efabRghjk EFCdefgh ~I/IJ/( + (2RceabR dfab R~dh1— 3-RCdab RcdabRefhi

+ 4RcdabRCCabRdfhj)~Fef~fhIhj. (5.7)

The correspondingmodifications to the transformation rules of and A are given
in (B.6). The remainingvariationscontainingbosonic equationsof motion, which
imply additional transformationrules for the bosonicfields, will not be presented
explicitly. The newtransformationrulesof the bosonicfields arenot immediately
relevantfor the compactificationprocedure.

Let us now come back in more detail to the analogy betweentheseR4-actions
andquarticYang—Mills invariants.We alreadymentionedabovethat the Riemann
tensorsin the bosonicpartof ‘2 canbe expressedin terms of V~

5~(5.5), if weuse
the torsionful spin-connectionfl —. This requiresthe useof pair exchangefor the

Riemanntensor,which gives rise to additional IIIFI/I(2)R
3 Noether terms,since

RahCd(W) =RCda
6(W)

— 3-4)~[CFdJhIIab — h/I[CF[ah/Id]h] + 3-I/J{aFb]I/ICd + ~[aF[Ch/1bJdI. (5.8)

The additional fermionic terms due to pair exchangegive contributions to the

action which makeit possibleto write ‘2 in terms of V and

W,~~RM,fth(w)h/Jah. (5.9)

W is also the Lorentz form of a Yang—Mills invariant: tr FM,,x.
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All contributionsto (5.4) can be generalizedto the d = 10 Yang—Mills multi-
plet, if we replacein the action

~wAp —s tr FMC(A)FAp(A),

—~tr FMC(A)x, (5.10)

where AM and x are the fields of the d = 10 Yang—Mills multiplet. The resulting
quarticYang—Mills actionwill then be invariant underthe transformations(2.26),
(2.27), if the Yang—Mills analogueof the terms(5.7) allows the sametreatmentas
in the caseof the R4-action.Writing (5.7) in terms of Yang—Mills fields we obtain

— 3-tr FCdFCfEFe.defgh tr Fgh~JX+ (2tr F~.CFdf IT FcdFef)EFef tr FC~~YX

— 3-tr FCdFC.dEFef tr FCf~JX+ 4 tr FCdFce~Feftr Fdf~1X. (5.11)

Now, the relevant terms in the x equation of motion which follows from the
quadratic Yang—Mills action read *

~‘= e4)3(~(w,A)~ + 3-FCF~ul~~/JcFa
6+ 3-~/~F’~F0bA), (5.12)

so that the identity correspondingto (2.23) is

~(w, A)~= e’4)
3Sf’— 3-FCFa6I/JCFa

6 — 3-~I~FQbFabA. (5.13)

So indeedwe can express~ in termsof ~‘, and h/iR and AR-terms.Note that
theselast termstakeon exactlythe sameform asthe h/zR and AR contributionsin
(2.23). This is of course essentialfor the invarianceof the quartic Yang—Mills
action, sinceafter the use of the identity (5.13) the restof the calculationshould
proceedin the samefashionas in the R

4-case.
2’ is the fermionic equation of motion of the F2-action. Therefore, the

2’-contributionsin (5.11) can only be cancelledby changingthe x transformation
rule if we include the supersymmetricF2-action. In this way we obtain an action

~= R + /3 tr F2 + y(tr F2)2, (5.14)

and supersymmetrywill require new transformationrules of x and AM of order

y/f3. As a byproduct of our analysis of R4-actionswe therefore find also the

* We use herethe form of the Yang—Mills supergravityaction given in ref. [25].
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following Yang—Mills invariant (with W~,= tr FMCX):

~YM
2’R +~F2 + ye( — 3-LM’Ms tr FMJM

2FM3M4 tr FMSMOFM7MS

+3-ie’~/~ EM1M~BMM tr FMMFMM tr FMMFMM

+4WM~FA tr X~AFM~— 2 tr FM~.~YMFAPtr F~APX—4WMVFAP tr X~MFAP

8 tr FMAFVA tr ~FM~iJ~X — 16WM~T~tr(~X)FMA)

+ ye~[(tr FMPFM~AFliP — 8 tr FM~FMAAF~P—4 tr FMAF*PAFMV

+2 tr FM”F5~AFMV) WAP + 3- tr FM*FAFM,~arlipWAPI

+ Noetherterms. (5.15)

The completeinvariant is presentedin (B.7), the 0(y) transformationrulesof x in
(B.8). In the abovewe have not consideredthe bosonic equationsof motion nor
the new transformationrules of AM. We havecheckedthat indeedthe bosonic
counterpartof (5.7) also allows the generalizationto an arbitrary Yang—Mills
group.

In the abeliancase(5.15) reducesto the quartic contributionto the Born—Infeld
action [35] coupledto supergravity,and agreesin the flat limit with the globally
supersymmetricBorn—Infeld action presentedin ref. [361.In the Yang—Mills case
the structureof (5.15) differs in the flat limit from the result of ref. [36], since in
ref. [36] only the symmetricYang—Mills trace(i.e., t tr F

4) is considered.
Theinvariant ‘2 correspondsto oneparticularchoiceof the coefficientsa, and

b in (5.1). Onemaywonder,whetherotherchoicesalso leadto actionswhichhave
a Yang—Mills generalization.There are,for an arbitraryYang—Mills group,eight
independenttr F4 invariants.Thesearegiven by

YM, = FM*IFMC JFAPKFAP L

YM =F II~~~JFMPKI2~L2 M” A pA’

v1~,r ~ 1J~J~’ K7~ML
MC A lip p ‘

VTut = 1’ 1,7 JI7MCKI7AP L
4 p.c lip

multiplied by eithertr T,T~tr TKTL, giving YM,(1), or tr TItJTKTL, giving YM
1(2).

Here T1 are the Yang—Mills generatorsin the fundamentalrepresentation.These
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eight possibilitiesgive the following R4-actionsif we work them out for the SO(9,1)
Lorentz group *:

YM
1(1) —sA1, YM,(2) —sA2,

YM2(1) —sA2, YM2(2) —~ 3-An —A5 +A7,

YM3(1) —sA2, YM3(2) —~A6,

YM4(1) —sA3, YM4(2) —sA4. (5.16)

Note that Z (3.10) has the wrong combinationof A5 and A7 to be the Lorentz

caseof a general Yang—Mills invariant. The only way to avoid having Z in our
solution (5.1) is to choose b = 8a,, which leads to ‘2~ Thus ‘YM is the only
Yang—Mills invariantwhich we canreconstructfrom our result.This implies that a

supersymmetricaction of the type t ~ tr F
4, which would correspondto the

generalizationof Y
2, doesnot exist f or arbitraryYang—Mills groups.

The action (5.15) can be generalizedin the following way. We may choosea
semi-simplegaugegroup of of the form G X S0(9,1).Then we can identify the
gaugefield of SO(9, 1) with fl.., and the correspondingfield strengthwith the
Riemanntensor.The invariant(5.14) then takeson the form

2’=R +13 tr F
2 + y(R2+ tr F2)2. (5.17)

Note that an R2-term is not requiredfor invariance. In the absenceof quadratic
terms invariance holds up to (5.11) for G x SO(9, 1). For the contributions
containing ~ where x is the partnerof the G gaugefield, we use (5.13). This
requiresthe presenceof the standardF2-action.For the contributionscontaining

we use (2.23), which contains an equation of motion of the R-action.

Thereforeno R2-actionis neededto cancelparticularvariations.

6. Discussion

In this paper,we havefound that two supersymmetricinvariantsof the type
B + yR4 exist.As a byproduct,we havealso obtainedthe leadingtermsof a locally
supersymmetrictr F2 + y(tr F2)2-invariant.

Let us now compare our results to the effective action obtained by other
methods.The tree-level string amplitude contributionsto 5~ contain the action

-2’R’ (2.14), with the Yang—Mills contribution 2’F2. The field strength H of the
antisymmetrictensor gaugefield BM,, is modified with Yang—Mills and Lorentz

Chern—Simonsterms.As discussedin sect. 2, supersymmetryrequiresthe presence

* In this calculationwe usepair exchangeand the cyclic identity for theRiemanntensor.
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of .2’R2-terms, and quartic contributions of the form (B2 + tr F2)2. In these
quadratic and quartic actions the Riemann tensor dependson tl, and the
couplingsto the dilaton are limited to the sameoverall factor 4) ~ which is also
presentin 2’R~ As we discussedin sect.4, this action doesnot contain a term K,
(3.12), so that the overall factor 4)3 does not interferewith the BMC gauge
transformations.The result of supersymmetrizingthe Lorentz Chern—Simons
terms[25] agrees(up to field redefinitions)with the determinationof the bosonic

part by a string amplitude calculation[13].
In ref. [13] a different basis is usedfor the independentfields. The dilaton is

denotedby the field D, with the correspondence4) = exp(4V~D), 4) being our
scalar field. The tenbein in ref. [13] differs by a factor 4)3/8 from our tenbein.
With this rescaling,we find indeedthat the modified RiemanntensorR in ref.
[13], which containse’~Hand ~~D-contributions, becomesequal to RMC~(fl).

Among the tree-levelterms obtainedin ref. [13] is also the contribution ~(3)X,
with X givenin (3.10).After the rescalingmentionedabove,this term also obtains
the overall factor 4)3. Thereforewe must concludefrom our analysis,that this
term doesnot havea supersymmetriccompletion.As we haveseen,the supersym-
metrizationof X requiresthe presenceof both K, and K

2 (3.12), (3.13), which

becauseof B gaugeinvarianceconflicts with the presenceof the 4)
3-factor ~.

Therefore we still do not understandthe properties of ~(3)X in relation to
supersymmetryin ten dimensions.

At the one-looplevel stringamplitudesrevealagainthe presenceof the X-term,
aswell as further (R2 + tr F2)2-terms[16,17].However, the one-loopcontributions
to ~ haveno overall dilaton factor.Onealso finds a contributionproportional
to tr F4. For E

8 x E8 this term canbe rewrittenin the form (tr F
2)2, but this is not

possiblefor S0(32).
Comparingnow to our results in sect. 5, we seethat we can indeedsupersym-

metrizethe one-loopcontributionsto the effective action,except for tr F4, which
remainsa problem in casethe gaugegroupis S0(32).In sect.5 we showedthat the
supersymmetrizationof (R2 + tr F2)2 requiresan F2-contributionto the action,
but no R2-terms.This implies that the R2-contributionsto the effectiveactionare
completelydeterminedby the supersymmetrizationof the Lorentz Chern—Simons
terms,or, in stringamplitudeterminology, by the tree-levelcontributions.

The countertermsrequired for the cancellation of anomaliesfor the gauge
group E

8 >< E8 are,schematically,[4]

~ounter r

Ml-..M11)Bp.

1p.2 X [tr B
4 + 3-(tr R2)2 + (tr R2)(tr F2) + (tr F2)2] Mi~

* The termscb3K
1 are gaugeinvariant under modified B gaugetransformations:bB,,~=

2l81c.’l,] +

3(i/ — ~5
1~)A51].However,the conflict is now shiftedto the H-dependencein ~ The field strength

H has to be modified to be invariant under the new B gauge transformations.This breaksthe
supersymmetryof ~ Thesemodified gaugetransformationsare discussedin ref. [37].
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All thesecountertermscan be seen as part of the supersymmetricactions pre-

sentedin sect.5. Note in particular, that we also obtain the relative coefficient 3-
betweenthe two R4-terms.Thuswe find that thesecountertermsare indeedlinked
by supersymmetryto the known bosonic one-loop contributions to the quartic
effectivestring action.The other countertermspresentedin ref. [4], which contain
productsof Chern—Simonsforms, belong in our terminology to actions R’~with
n >4.

In a recentpaper by Duff and Lu [38] it was arguedthat the coupling of the
heterotic five-brane [39] o--model to background supergravityfields implies the
existenceof quartic terms in the Riemanntensorand Yang—Mills field strength.
However, theseare obtainedin the version of N = 1, d = 10 supergravitywith a
six-index antisymmetricgauge field, which is related to our BM,. by a duality
transformation.Let us thereforeconsiderthe effectof a duality transformationon
the quartic action we obtain in this paper.

For thisduality transformationwe focusagainon the B A B A R A B A R-terms.
They are related to Chern—Simonsforms. The usual Lorentz Chern—Simonsterm
w

3 appearsas a modification to the field strength H of the gauge field B,
schematically,this reads:H OB + tr(w A Ow + w A w A w), along with the Yang—
Mills Chern—Simonsterm [3]. In the dual version of d = 10 supergravitywith a
six-index gaugefield Chern—Simonsterms are absent,but are replacedby an
interactionterm of the form A(6) A B A R in the action.

By a similar duality transformation,the terms B A R A B A R A R will give rise
to the Chern—Simonsforms w~,

H(7) OA(6) + tr(co A Ow A Ow A Ow) + ...,

in the seven-index field strength of A(6) in the six-index version of d = 10
supergravity.Such terms are indeed required in the anomalycancellationsin the
six-index version[40].

In this paper we have supersymmetrizedthe one-loop, quartic terms which

appearin the bosonic string effective action. We do not find a supersymmetric
completion for the ~(3)4)—

3X-term, which is part of the tree-leveleffectiveaction.
This failure may be due to the fact that we limited ourselvesto the use of the
physical fields of d = 10, N = 1 supergravity.Failure of the Noethermethod may

of course indicate the necessityof introducing additional fields. These could
correspondto massivefields, perhaps related to auxiliary fields of the d = 10,
N = I supergravitymultiplet, which become propagatingfields in the higher
derivativeactionswe haveconsidered.

We thank Eric Bergshoefffor a numberof useful discussions.This work is
financially supportedby the Stichting voor FundamenteelOnderzoekderMaterie
(F.O.M.). One of us (A.W.) gratefully acknowledgesthe financial support of the
DeutscheForschungsGemeinschaft(DFG) undercontractnr. Wi 1033/1-1.



354 M deRooet aL / Supersymmetricactionofheteroticstring

Appendix A

This appendixis devotedto the presentationof the various sectorswe con-

structedfor the ansatz.We write the ansatzas the sum(3.9)

The first purely bosonic sectoris formed by seventerms of the form B4 and
thereforecontainsall possibleindependentcontractionsof four Riemanntensors:

= +alBabcdRabcdRefghRefgh+ a2RabCdRabCeRdfghRefgh

+ a
3RabcdR abefRcd ghR efgh + a4RabCeRabdfRCdghRefgh

+ a5RabeeRabdgRcfdhR efgh + a6RaCbdRaebgRcfdhRefgh

+ a7RaCbeRadbgRCfdhBefgh. (A.1)

The secondsectorin our ansatzconsistsof seventerms of type HR
2gJR. Its

explicit form is

= +b1HaefRadbCRghbC~JdRefgh — b2HaefRabcgRbdch~1dBefgh

+ b3HabdRabCeRghCf9JdRefgh + b
4 HabeRabcdRghCf.~dRefgh

+ b5HabeRadcgRbfch
92ldBefgh + b6HabeBabefBCdgh9uIdRefgh

+ b7HabeRadCfRbCgh2fdRefgh. (A.2)

It is importantto realizethat the seventerms in this sectorareovercomplete.This
is due to the fact that the Bianchi identity for the H-field implies the following
relationsamongthe different terms:

0 = D[aI~bCd]BabefRCdghRefg/l = B, + B
6,

0 = D[aI~bCd]R abefRceghR dfgh = 3-B, — 3-B3 + 3-B4 + B7,

0 = DtaHbCd]RahefRcgehRdgfh = 3-B2 — 3-B3 + B5. (A.3)

The latter resultsareobtainedby performinga partial integration.Note that these
identitiesarevalid modulo termsof the form I/IF I/J(2)R

3. This is relatedto thefact
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that the Bianchi identity of the H-field involves a supercovariantderivative. The
eqs.(A.3) imply that threeof the coefficientsb, canbe chosenarbitrarily.

The third purelybosonicsectorconsistsof two termsof type BR4:

= +k,ie ~

+ k
2ie— EabcdefhiktBab B cagiRefg,n R611~Bk/~fl. (A.4)

There are four termsof the structure(4~

= + 4)
1Oa4)(c,RbcdeRfgde.~aRbcfg + C2BbCdeRcfeg~aRbfdg

— C3R abcdR defg9lbRcefg — C4RabcdRdefg~cBbefg). (AS)

This completesthe list of the purely bosonicsectors.
We considered17 termsof the type I/I(

2)Fç1I(2)R~R.

-~ = + (dlRbeae~aRbCdf + d2Rbcad~aRbeef + d3Rabcd~eRabcf)hIdgFeh/Jfg

+ (d5Rcdab~eRfgah + d6RCeab�~dRfgab + d7RCfab~dRegab

+d8Racbf~JeRadbg + d9RaCbf9fdRaebg + d1oBaebf~1dRaCbg)h/JCdFeh/Jfg

+ d2lRbCaf2faRbcdehIJghFdefh/Igh

+ (d22Rdeab ~c Rfgab + d23 Rdgab~fcB efab + ~ )~ch Fdefh/Jgh

+ (~ — d26Rghaf~faBbcde— ~

—d28Refac~JbBadgh + d29BCfah~bRagde)~bCFdef h’gh~ (A.6)

Next, therearesix termswith the structure

= +f1RadbCRaebChIifgFd~eh/Jfg +f2BaCbdRaebfh/JcgFd~
2feh/ifg

+ f3RhCadRfgaeI/ibCFdfSfeh/Jfg + f4RbCafRdeag h/’b~Fd~eh/Jfg

— f5RCdafRegabh/Ibh j’cde~2ifhjgh + f
6BcdabR efghh/~ab‘~cde~fh/’gh (A.7)
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For the Noethersector, the termsof type h/IFh/r(2)R
3, we constructed92 indepen-

dent terms:

= +(m,Raf~gBac~eRbcde+m
2RafbcRagaeR bcde +m3RbfadRcgaeBbcde)I/JhFfçligh

+ (m4Refg~Ba~~dRabCd+ m5RefagBbhCdRabCd + m6BegafBbhcdR abed

+m7RghaeRbfCdRabcd + m8RghafBbecdR abed + m9RefabRghCdRabCd

+m10R egabRfhcdR abed + m,,RefabRagcdRbhcd + ml2RegabRafCdRhhCd

+m,3RfgabRaecdRbhcd + m,4RghabRaeCdRbfCd + m,SRefacRbgadRbhcd

+m,oRegacRbfadRbhcd + m,7RfgacRbeadRbhcd + m,8RghacRheadRbfCd

+ml9RaecgRbfdhRabcd + m2ORaeCgRbfadRbhCd + m2,RafCgRbeadRbhcd

+m22RaebgRafcdRbhcd + m23RafbgRaecdRbhcd)I/feFfI/Jgh

+ (m3oRefhjBabcdBabcd + m3lRefahRbiCdRabCd + m32BhiaeRbfcdRabcd

+m34BefabRhicdRabcd + m35R ehabRficdR abed + m37RefabRahedRhicd

+m38RehabRafedRbicd + m3oRhiabRaecdRbfcd + m42RefacRbhadRbiCd

+m43RehaeRbfadRbied + m44RhiaCRbeadRbfcd + m47RaechBbfdiRabed

+m4sRaechRbfadRbicd + m49RaebhRfjcdRabed)I/IgFefghllhi

+ (m33R~f~~R~gcdRabcd+ m36RefabRghcdRabcd + m4oRefabRagcdBbhcd

+ m4,RehabRafCdRbgCd + m4sRefaCRbgadBbhCd + m4oRehacRbfadBbgcd)IlIjFefgh/Jhi

+ (m5Q,Rd~~fRagbeRajbe + m5O2ReJ-hiRadhCRagbC + m5,RefadRhjheBagbc

+ms2RefadRghbcBaibc + ms3RefahRdgbcRaibc + mS4RefahB gibeR

+m5sBefahRdibCRagbC + ms6RdeahRfgbcBaibe — ms7RdeahRfibcRagbe

+ms8R ehadRfgbcR a/bc — ms9RehadBfibcRagbe + m60R hiaeR dfbeR aghe

+ m6,RhjaeRfgbcRadbc + mo2R,ljadRefhCBaghe + mo3RefbdBagehRaihe

+m64Refb,,RadegBaibe + mo5BefhhBageiRadhe + m6oRefhhRadeiBagbe
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+ m67R debh Ba/cf RaghC + rno8RehbdRaiCfRagbC + rn69RhibeRadefRaghC

rn7oRdeabRfgaeRhibe — m71B dhabR efaeR gibe — rn72RefabRhiacRbdCg

rn73RehabRfiaCRbdCg — rn74RefabRghaeRbdCi — rn7sRefabRdhaCBbgci

rn76RdeabRfhaeRbgCi + m77BefahRCdahRbgCi + m7sRehabRCdafRbgCi

+ rn79RadbeRcfahRbgej)I/IdFefgh/Ihj

+ (m9oRdeaiBfgbcB abbe — m9,RdeabBfgaeRhhcj)IIJJFdefghh/IiJ

+ (m92RdeaiRfgbcBajbc + rn93RiiadRefbCBaghC + rn94RdeaiBfjbCRagbc

+m95RdebiRafejRagbc — m9oRdeabRfjacRbgcJ)IIIhFdefghIIJjJ

+ (m97RdeeiBfga~Rhjab + m98Rcdi]’? efabR ghab + m98,Rdej]RcfabRghab

+ m99 B deaiBfgbjRchab + rn,00 B deac RijbfBghab + rn,01 R diac BefbjRghab

+rnlo2RcdaiRefbjRghab + rn,o3RdeacBfgbjRhjab

+ m104 Rdeac R fgbi B ahbj) h/’c Fdefgh ~

+ (rn,o5BcdajRefbk Bghab + rn,O6BcdJkRefabRghab)1/IjFcdefghjh/J]k. (A.8)

Finally, in the cancellationmechanismwe also included

2’g: Termsof type I/IF~’~I/1R
29~fRand I/IF~5~I/IR2921B. (A.9)

Altogetherthereare 70 termsof this type. In our solutionswe find that all these
terms haveto vanish.We will thereforenot write them explicitly.

In principle there are 19 additional sectors to be included in the ansatz.

Roughly speaking,thesehave fewer fields and more derivatives. Thesesectors
consistof the following structures:

(~)R.~53B; (~).~R~2R; (~(
2))R~2R; (~(2))(~sR)

2

(~h/i)Sf5B; (~J(
2))~4R; (~2)h/’(2)) Sf

3B; (~g~//)Sf2B;

(Sf~(

2)~f(2))SfB; (~2)Sf2h/1(2))SfR; (Sf~Sf2I/i)R; (~(2)Sf3~~2))B;

~~,iJ(2))RSfR; (~Sf2~)R2; (~Sf~2))Sf3B; (~Sf2~)Sf2R;

(~/I(2))Sf4R; 12B91
2R.
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They participatein the cancellationmechanismthrough the use of the relation
(4.4). We haveconstructedall possibletermsof this type (for a few of the above
structuresthere are actually no contributions), and found that the equations

require that the correspondingcoefficientsvanish.Thereforetheseterms haveno
effect on our solutions,andwe refrain from presentingtheir explicit parametriza-

tion.
This completesthe discussionof all sectorsof the ansatzwhich contain the

gravitino field andthe gravitino curvature.
There are six sectorswhich contain the dilatino field A. We constructed21

independenttermsof the structureAF1/I(2)R
3:

= (PlRefghRabcdRabcd +P2RefagRbhcdBabCd +P3RghaeRbfcdRabcd

+p
4 B efabR ghcdRabcd + P5RegabRfhcdR abed + P6 RefabRagcdRbhcd

+P7RegahRafcdBbhcd +p8R ghabRaecdRbfcd +P9RefacRbgadRbhcd

+PloBegacRbfadRbhcd +PllRghacRbeadRbfcd +P~2RaecgRbfdhRabcd

+Pl3RaecgRbfadRbhCd +Pl4RaebgRafcdRbhcd)AFefh/igh

+ (p15BdeahRfgbcR a/bc +Pl6RhiadRefbcRagbc + Pl7RdeahRfibcRagbc

+Pl8RdebhRafciBagbc _P~9RdeabRfhacBbgcj)AT’defgI/ihj

+ (P2URCdajRefb]Rghab +P2lBcdjjRefabRghab)AFcdefghhliij. (A.10)

Besidesthe sector.2’~thereare the following A-dependentcontributions:

Sf,0—çfiAR
2SfR, (A.1l)

2’,, ‘~ h/iSfAR3, (A.12)

2’12 4/I(

2)Sf AR, (A.13)

2’13 ‘~ h/J(2)AJARSfR, (A.14)

2’14 h//(2)ABSf B, (A.15)

Sf,5 t/J(2)ASfRSfR. (A.16)

As we explainedin sect.4, theseadditional sectorsmay be included,but are not
actually requiredto achievethe cancellationof the variationswe consider.Since
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we choosein sect. 5 for the minimal option of the including only (A.10) in the

presentationour results,we shallnot give the parametrizationof ~ explicitly.
For the same reason,we do not display A-dependentterms containing more
derivatives,which might participatethroughthe useof (4.3).

Appendix B

This appendix is devotedto the presentationof the two solutions we have
found. If we choosein (5.1) b = 0, b1 = b2 = b3 = 0 and a1 = 1 we obtain

D D D D 11D D D De ~, — +1tabcd1~abcd1Vefghi%efgh ‘-‘ abed abce dfgh efgh

+
2RabcdR abefBcdgh Befgh + l2RabceRabdfBcdgh Refgh

— 32RabceRabdgRcfdhR efgh + l6BacbdRaebgRcfdhRefgh

— l6RacbeBadbgRcfdhRefgh

+ 3-iv~e — EabcdefjjklBab Rcdgh B efgh Bijmn Bk/~fl

1/~ -, D D D D De 6abcdefhikt ab ‘cdgj”efgm1’ hi mit k/mn

+ (8RbcadSfaR beef — 8BabcdSfeRabcf)h/idgFeh/ifg

+ ( ~4RceabSfdRfgab — 8RcfabSfdBegab

+ l6RacbfSfdB aebg — l6BaebfSfdRacbg)h/icdFeh/Ifg

+ 4RdeabSfCRfgabh/ichFdefh/Jgh

+ (8RefacSfaRbdgh + 4BChafSfaRbgde — 4RefacSfbRadgh)hIJbcFdefh/Igh

+ l6BacbdRaebfh/JcgFdSfeI/Jfg + 32RbcafRdeagh/JbcFdSfeh/ifg

+ SRcdafRegabh/Jbh FcdeSffh/lgh + (~2ORafbg B aede Bhcde

+ 2OBafbCRagdeBhcde — 32RhfadRcgaeBbcde)hIihFJ~h/Jgh

+ ( ~RefghRabcdRahcd + 8RefagRbhcdR abed + 4RghaeR bfcdR abed

— 4RghafRhecdB abed — 2RefabBghcdR abed + 2RegabRfhcdBahcd
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+
4Refab BagcdRbhed — 28Begab BafedRbhcd + 2ORfgah BaeedRh/ied

+8RghahRaeedRhfcd + 24BefaeRhgadRhhed + 48BegaeR hfadR b/ted

+ l6Rfgac B bead Rb/ic
1! — l

6Bghac Rhead RhfCd — 24Baeeg B hfd/i B abed

+ 8RaeegBhfadBbhed + l6BaebgBafcdRbhcd — 4BafbgBaeedBbhed)h/1eFJ~h/Jg/l

+ (3-Ref hiBahedB abed — 4RefahBbiedRahed — 4B/iiaeB bfCdB abed

+BefabB h/CdR abed — 2RefabBahedRhied + 2ORehabRafedBhied

~2BhiahRaeedBhfed — l6BehaeB hfadR b/ed — 8BhiaeRheadRhfed

+ 8RaeehB hfd/B abed — 8BaechBhfadRhjcd)hIIgFefgI/ihj

+ (~8R ahRagedR h/led — 8RehabRafcdRbgcd

+ 8RefaeRhgadRhhed + 4BehaeRbfadRhgcd )~/ii~’efg h’h/

+ ( — 4RdhefRagbcRaihe — 2RefhiRadheBaghe — 2BefadRhiheRagbc

+2RefahBdibcBagbc — 4RehadRfgbcBaihc — 2BhiaeRfgbcRadhc

+ 8BefbdBagehR aibe — 4RefhhRadegRaihc + 8BefhhRageiRadhe

+ 4Ref bhR adeiR aghe + l6BdebhRaicfRagbe + lôBehbdRaicfBagbe

+SBhibeBadcfRaghe — 8BdeahBfgacRhihe — 8BdhahRefacRgibe

— 4RefahRhiaeR hdcg + 8RehahRfiaeRbdeg — l2RefahRghaeRhdei

+ 4BefahBdhaeRhgci — l6RdeahRfhacRbgci + 8RehahRedafBbgei

— 8RadheBefahBhgej)h/IdFefghlihj

+ 2RdeabBfgacRbhcih/ijFdefghh/fij

+ (2B deaiBfgbc Rajhe — l2Rdeab B fiacB hgej )~hFdefghh/iii

+ ( —2 RdeeiB fgab Bhjab — 3-BcdijBefah B ghah + 2Rdi.ae BijhfRghah

— 4RdiaeR CIhIR ghah + 4RdeaeBfghiR/ljah — 2RdeaeBfghiBahhj)~CFdefg/i~ij
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+ (~B edajR efhkB ghab +
3-BedjkBi.fabRg/lab)h/IiFedefg/liI/Jjk

+ ~ [(Ret ghB abcdR abed — 8BefagRh/ie/lBabed — 8Bg/iaeRbfedRahed

+ 2Refah RghcdB abed — 4RefahRa geaR h/led + 4ORegah B afed Rhhcd

— 4RghahRaeedRhfed — 32RegacBhfadRhhcd + l6RghaeRheadRhfed

+ l6BaeegRbfd/lBahed — l6RaeegB bfadB b/ted — 32BaehgRafedBbhed)ATefI/Jgh

+ (~~ Bfgbe Raibe — 24Rdeah Rf/lae Bbgei)~Fdefg hi/hi

+ (_2RedaiRefhjRghab + 3-RCdiJRefahRghab)AFCdefgh~jJ]. (B.1)

The modifications to the fermionic transformationrules follow from (5.6). The
result is

= D
6[ (20BhedeRMefgRdefg —

2ORheMdReefgB defg — 32RhdefRp.ecgBdefg)E]

+ Db [(2 B~hedRefcdR efgh + 4RMecdRhfcdRefgh — l6Rce~dBbedfRefg/~

+ 24RMcde BbedfRefgh — 24RMhCfBCdC
5 Bd~f/1— 12 B~bedReefg Bdefh

—

8RMfed Rbeeg Rdefh + 8RefdeR~hcg Rdefh — 4ORhdefRee~gRdefh

+ 24Rhfcd R cep.g Rd~f/
1— 8 RhfedR~ceg BdCfh

+
4Bhcde RCfd~Rp.fgh — l6BeedfRhedg BMcfh ) ‘~g/l�]

+ Dc[( — l6R~dhfBheegB deffi — 12Bp.hdeRhfegRdefh)Fgh�]

+ 4De(RMbedBhfedRefghFgh�) + Df(BhedeRhedeRp.fghFghE)

+ Dg [(— 28RM1.hC B hede RdCf/ + 32RMhCd BhCCfRdCf/l — 2DBheed BbfCdR p.efh ) ~h~]

+ Dh [(— 2RMedeRhcfgRdehi + 2 Rhd~eR~~fgB
11~11~

+
2RhcdeR~cfg Rde/li + l2BhedfReeMg Bdciti)Fj~giiiE]

+ D~[(— 8RM/)dfBheegBdchi + 4RMdhfBheegRde/lj)Ffg/liEj

+ Df [(— 8Rp.ChdB becg Rde/li + SBMdhe Rheeg ~
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+
4Rbcp.g Bbdeh Rcdei — 8RbeMg B CdbhRcdei )I~’J~ghi�1

+ Db[(3-RMbefRedgh ~ — 2BbeefRp.dgh RCd~J)FefghijE]

— 2De(Rp.befRbdghRedjjFefgh/j�),

6
5A= _3-V/~FM6Y~M. (B.2)

Note that 65h/i contains R
3Sfe-terms.The appearanceof new supersymmetry

transformationscontaining Sfe can easily be avoided. The contributionsof the
equation of motion ‘P in (5.6) are, schematically,R3~Sf’I’,or, after a partial
integration

—(SfR3)~1P—B3(Sf~)’P. (B.3)

The first term must be cancelled by changing the transformationrule of the
gravitino.The secondterm can also be cancelledby addingto the action:

B31/J1P. (B.4)

Of coursethe new term has to be varied.The variationof h/i gives Sfe andcancels
the secondterm in (B.3) (this time we do not perform the partial integrationaway
from C!). The variationof IP gives a combinationof bosonicequationsof motion,
and this can be cancelledby changingthe bosonic transformationrules. If this
procedureis followed, the new fermionictransformationrules areas in (B.2), but
without the Sfe-terms.

The secondsolution is obtained by taking in (5.1) a, = 1, b = 8, b, = b
2 = 0,

b3= —48~/~:

e12 = +RabedRahcdRefghRefgh —

8BabedRabceRdfghBefgh

+ 2RabedRabefRedgh Befgh — 4Rabce BabdfRcdgh Refgh

— 48v~HahdRabeeBghefSfdRefgh + 96V~Habe BabedRghcfSfdRefgh

+ 3-i~/~e Eabcdefijk/BahBcdghRefghBijmnRktmn

+ 4RedabSfe RfgabhliedFeh/Jfg — 2RheafSfa B hedeh~ghFdef 1/1gb

— 4RghafSfaR bedeI/ibcFdef h~gh

— 8Badbc Bache lJIfg FdSfeI/ifg — l6RbeadBfgaeh/Jhe FdSfeIJIfg
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+ ( ~RefghRahedRabed+ l
6BegafRbhedR abed + l2RghaeR bfedR abed

~4RghafRhecdRabed — 2RefabRghedR abed + 4RefabRagcdRbhed

+ 8RegabRafcdRbhed + 8RfgabRaeedBbhcd + 8RghabRaecdRbfcd)h/IeFJ~hIigh

+ (3-RefhiRabedBabcd — 4RhiaeRbfcdRabed

+RefahR hicdB abed — 2RhiabRaecdRbfed)h/igFefglllhi

+ ( ~4RefhjRadbcRagbe — 4BhiaeBfgbeRadbc

— 4BhiadRefbcRagbc)hlidFefghlihi

+ (— 3-R~~~iRefabR ghab — RdeijRefabBghab)I/JeFdefghlllij

+ 3-RcdjkRefabBghabh/iiFcdefghihlljk

+ \/~[(RefghRabedRabcd — 8RghaeRbfcdB abed

+ 2RefabR ghcdBabed — 4RghabRaeedRbfcd)ltFegl/igh

+ 3-B cdijRefahBghab~~FedefghI/iuj]~ (B .5)

The modifications to the transformationrules can be calculatedfrom (5.7). We

find

= Db [(2Rp.hcdBcdefRefghFgh — 4RMbcfBdeegBdefh)Fgh�]

— 8De(RbedfRbcdgR~efhFghE) + Df(RbedeRhedeB~fghFghE)

+ 3-D6(R~befBedghRcdijFefghijE),

6
5A = —3-v~F

TM&~i/i~.. (B.6)

The solution ‘2 has a Yang—Mills analogon.The proper way to derive this
Yang—Mills solution from ‘2 consistsin two steps.First, by usingpair exchange

(5.8), the R4-termsmustbe written in such a way that the contractionoverLorentz
indicescorrespondsto the Yang—Mills trace.Second,the spin-connectionmustbe
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written with H-torsion. Thesestepsdo not require the useof the identities(A.3).
We usethe notationJ’Vp.~= tr FMCX. The result is

e_~Jy~=—3-tM Ms trFMIMSFMIM
4 tFFMIMOFM7MO

+3-it/i e IEMIMIOBMM tr FMMFMM tr Fp.MFMM

+4WMCFA tr XSfAFMC— 2 tr FMCSfMFAP tr

— 4WMCFAP tr XSfMFAP

8 tr FMAFPA tr kF
91x — 16WM”F,, tr(Sf’~X)FMli

+ ( tr FMCF h/SAT — 12 tr FMCFMA~PFC+ 12 tr FM”FMAI/1CFP

2 tr FMCFA~F + 12 tr FMAFVPI/IMFP)WAP

+ (3- tr FMVF~F~A — 4 tr FMCFMA~F~CP+ tr FMVFAP~F~MV
—2 tr FMAFV I/I F1T — 4 tr FM~~FMITI/IVFITAp

+4 tr FMAFdtdI/JMF~,p+ 4 tr FMVFITAI/JpFMV(,)WAP

+ ( 3- tr FMVF(TTI/IAF — tr FMVF(TI/IMFVUTAP)WAP
+ 3- tr FMCF0~TI/JfFtp.V(,TAPW~~P

+ V~[(tr FMVFMVAFliP — 8 tr FMVFMAAFVP

—4 tr FMAFVPAFMV + 2 tr FMVFAPAFMV)WAP

+ 3- tr FMVFUT~FMVUTAPWAP]. (B.7)

The additional supersymmetrytransformationrules of x follow from (5.11), and
read

= — 3- edefgh6Fgh tr FedFef

+ FefEFcd(2tr FceFdf— tr FedFef)

— 3-F~feF~ftr FcdFcd+ 4FCfEFdf tr l7edFee~ (B.8)
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