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We construct the supersymmetric completion of quartic R + R*actions in the ten-dimensional
effective action of the heterotic string. Two invariants, of which the bosonic parts are known
from one-loop string amplitude calculations, are obtained. One of these invariants can be
generalized to an R+ F? + F*invariant for supersymmetric Yang-Mills theory coupled to
supergravity. Supersymmetry requires the presence of BA RARA RA R-terms, (BAFAF A
F A F for Yang-Mills) which correspond to counterterms in the Green—Schwarz anomaly
cancellation. Within the context of our calculation the Z(3)R%term from the tree-level string
effective action does not allow supersymmetrization.

1. Introduction

In recent years much work has been devoted to the study of the low-energy
effective action of string theory. In the limit of low energy, string theory can be
approximated by ordinary field theory, in which string effects should appear as
higher derivative interaction terms. This effective action provides a useful tool to
investigate the impact of string theory on particle physics.

In this context, the heterotic string [1] is of particular interest. Its zero slope
limit (the limit in which the inverse string tension, «’, goes to zero) is given by
ten-dimensional supergravity coupled to Yang—Mills [2,3]. Corrections to this zero
slope limit, proportional to «’, are required in d =10, N =1 supergravity to
achieve the cancellation of anomalies [4]. These corrections involve the introduc-
tion of the Lorentz Chern-Simons term, on the same footing as the Yang—Mills
Chern-Simons term required by supersymmetry in the Einstein—Yang-Mills su-
pergravity theory [3].

One method of investigating the implications of string theory for particle physics
involves the compactification of the effective field theory from ten to four dimen-
sions [5]. The inclusion of the Lorentz Chern—Simons term makes it possible to
obtain in this way phenomenologically interesting models in four dimensions [6].

0550-3213 /93 /$06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved
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Supersymmetry in four dimensions, a remnant of the space—time supersymmetry of
the heterotic string, is a common feature of most of these models.

Much is known about the bosonic contributions to the ten-dimensional string
effective action, .%%. In this paper we investigate the supersymmetric completion
of %, We may characterize the different contributions to £ by the power of
the Riemann tensor in the R"-terms which they contain:

G = LZpr- (L.1)

The main issue in this paper is the supersymmetrization of the R*-terms in Z,;.
Partial results about this work were presented in ref. [7].

Before discussing our results it is useful to present schematically what is known
about the bosonic part of .#.;. We use the results obtained by string amplitude
methods. Here one calculates string S-matrix elements for scattering of massless
particles, and then reconstructs a field theoretical action which reproduces these
amplitudes. There are contributions from the tree-level (classical) string theory,
from one-loop string effects, etc. This action is expressed in terms of the physical
fields of d =10, N =1 supergravity. The bosonic fields are the tenbein field e,
an antisymmetric tensor gauge field B,, (with field strength H,,,), the dilaton
field ¢, and the Yang-Mills gauge field A, (the fermions are introduced in sect. 2,
where we present some basic properties of ten-dimensional supergravity). The
presence of the dilaton in this action is limited by global scale invariance [8]. Our
fields (except the dilaton) are scale invariant, while ¢ transforms as ¢ — @&, &
being the parameter of scale transformations. Scale invariance implies that ¢
occurs only in the combination ¢ ~!d¢, or as an overall multiplicative factor in the
lagrangian.

From the tree-level string calculation [9-13] one obtains .#:

1
:/R~F¢*3[R+H2+(¢*'a¢)2], (12)

where « is the ten-dimensional gravitational coupling constant, of dimension
[mass] . Also from the string tree-level one obtains a quadratic action *

’

3R2~¢’3(%R2+ﬁ tr FZ) (1.3)

* Here B=1/(g,y)% g, the Yang—Mills coupling constant. The dimension of ' is [mass] 2, of B
[mass]®. The number of string loops is counted by the dimensionless coupling g2, which satisfies, for
the heterotic string, the relation g = 2x(2a’)72. B is fixed by 8= a' /(2x?) [1].
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and a quartic action *

’ '3

a 2 a”
Fre~a'k?¢ | SR+ B Ur F2) +—5¢ L3 X, (1.4)
K K

where X is the term [14,11]

X=thotsgn ..'VSRP'1/42V\VZRF-3#4V3V4R“5#6V5VhR.Uv7.“-8V7VX. (15)
The tensor ¢ is discussed in sect. 3. The transcendental coefficient {(3) makes it
impossible to relate the two contributions in s+ by supersymmetry.
At the one-loop level [15-17] %, obtains corrections to the quartic action:

3 2

a’ 2 a’’g
_7R4~a'K2g2[(FR2+BtrF2) +B2 tI'F4 +7X (]6)

Note the absence of the factor ¢ * in the one-loop contributions. In fact, each
string loop will give a factor ¢3g2 This can be understood in terms of a
background field sigma-model calculation from the coupling of the dilaton to the
Euler character of the world sheet [18-20].
Besides the above terms due to four-point scattering amplitudes there are also
contributions from one-loop five-point amplitudes [21,22]. These are of the form
Fge~ gttt tr F ..F (1.7)

Mapg ™" T popg?

while similar terms with F replaced by R also appear.

Other information about the quartic action comes from the counterterms in the
d = 10 action which are required for anomaly cancellations [4]. We would expect
these terms to be part of the string effective action. Indeed, terms of the form (1.7)
are among the counterterms of ref. [4]. It is then of interest to see, whether or not
they are linked by supersymmetry to some of the terms already present in (1.4) and
(1.6).

Let us now discuss the supersymmetrization of the effective action. The action
% corresponds to the supersymmetric Einstein action of d = 10, N = 1 supergrav-
ity [2]. The inclusion of the term B tr F? leads to the supersymmetric action of ref.
[3]. The field strength [ then has to be extended with the Yang-Mills Chern—
Simons term. The introduction of the Lorentz Chern-Simons term requires, by
supersymmetry, the presence of the RZ-action. The supersymmetrization of the
RZ%-action has been achieved by the Noether method [23-25] and by superspace
methods ** [27,28]. In ref. [25] an explicit supersymmetric action for the Lorentz

* The absence of the cubic action %33 is understood from the vanishing of three-point string
scattering amplitudes.
** For a recent review of superspace methods in connection with the Lorentz Chern—Simons terms, see
ref. [26).
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Chern-Simons term, including terms quartic in R, was presented. In the absence
of Yang—Mills couplings it is of the schematic form:

Zics =%+ o JaR*+ ¢ PR+ L. (1.8)

Each term has the same power of ¢, and, consistent with string amplitude results,
the n = 3 contribution is absent. Supersymmetry holds only iteratively in «, so that
the supersymmetry transformation rules of a generic field V" are

V=Y a"s,V. (1.9)
n=0

Here 8,V are the transformation rules corresponding to the action .#%. This can
easily be generalized to the case where Yang—Mills couplings are present. Again
schematically, one should make everywhere the replacement aR?— aR*+
tr F2. On identifying the a priori independent coupling @ with a’/k? one then
obtains exactly the terms in the tree-level string amplitude result (1.3), (1.4), except
for the {(3) X-term.

In this paper we address the problem of supersymmetrizing terms quartic in the
Riemann tensor. These include the remaining tree-level term ¢(3)¢ X and the
one-loop contributions (1.6). Since the supersymmetrization of the R2-terms in
Z. is complete, this supersymmetric R*-action should be of the form

F=F+yR'+ ..., (1.10)

with modifications to the supersymmetry transformation rules of refs. [2,3] propor-
tional to y. Here 7y is an additional parameter, of dimension [mass)?, a priori
independent of a and B. Relations between «, 8 and y will be required if quartic
contributions to . and the string cffective action .&,;; are to be identified, or if
the cancellation of anomalies is imposed. Supersymmetry by itself will not relate «a,
B and y.

An obvious problem is already evident from the schematic form of the action
given above. There are two contributions proportional to X, one with and one
without the dilaton-dependent factor. One would expect that supersymmetry gives
a unique value for the power of ¢ which appears in front of X. The same problem
arises for the terms with aR?+ B8 tr F2, In that case one should realize however
that in the tree-level quartic action this term is determined largely by the presence
of R? in (1.8), so that the tree-level and one-loop contributions to («R* + 8
tr F?)? do not appear on the same footing.

A second indication that factors of ¢ are important can be seen from (1.7). This
term is invariant under gauge transformations of the B-field only if the factor ¢ 3
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is absent. Therefore the presence of the parity-violating terms (1.7) requires the
absence of the factor ¢ ~3.

As we shall show in this paper the supersymmetrization of any action of the
form (1.10) requires eBR*terms, and therefore the absence of ¢ . Thus we
achieve the supersymmetrization of the one-loop contributions (1.6), but not that
of the {(3)-term in (1.3).

Some results about the supersymmetrization of R*-actions have been obtained
in superspace [29-31]. However, the supersymmetrization of X (1.5) in refs [29,30]
depends on an off-shell formulation of d = 10, N = 1 supergravity, which has not
yet been proven to exist. Also, it has not been worked out whether the proposed
superspace invariant for X represents the tree-level contribution (1.4) or the
one-loop term in (1.6). On the basis of our work we would have to conclude that
this can only be the one-loop term. Since other R*-terms besides X appear in Z;;,
we prefer to search systematically for the most general supersymmetric invariant
with the generic structure (1.10).

In this paper we use the component field Noether method. One starts with an
ansatz for the supersymmetric action that one wants to construct. The ansatz
should contain all possible terms, each with an unknown coefficient. Invariance
under supersymmetry is then used to determine these coefficients. This method
has the disadvantage of being algebraically complex. The ansatz contains many
terms, so working out the variations involves a large amount of work. However, this
tedious task can and has all been done by a computer program for algebraic
manipulations. Then the explicit nature of this method turns into an advantage.
The resulting invariant can be compared in detail with the results from string
amplitude calculations. Also, the explicit form of the modified transformation rules
is obtained. The transformation rules of the fermions play a crucial role in the
study of compactification to four dimensions [5].

The full calculation will be done for the gravitational sector only, i.e., without
the Yang—Mills coupling. We shall see that our results can be generalized to the
case were the Yang—Mills multiplet is present as well.

This paper is organized as follows. In sect. 2 we present some basic material on
d =10, N = 1 supergravity. We also briefly discuss results about the supersymmet-
ric R*-action. In sect. 3 we construct the ansatz (given explicitly in Appendix A) for
the supersymmetric R“-action. Of course, for practical reasons we have to limit
ourselves to certain sectors of the complete action (for instance, we never include
four-fermion terms). These limitations are also discussed in sect. 3. In sect. 4 we
give a schematic overview of the calculation, and consider in some detail a
particular sub-calculation which leads us to conclude that terms such as (1.7) must
be present in the final result. The full result, and its generalization to the
Yang-Mills case, is then presented in sect. 5 and Appendix B. Sect. 6 compares
our results with the string amplitude calculations and discusses the relation with
other work.
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2. N = 1 supergravity in d = 10 and the R*-action

The basic multiplet of N = 1 supergravity in ten space—time dimensions consists
of the tenbein field e,”, the dilation field ¢, an antisymmetric tensor gauge field
B,, and the Majorana~Weyl fermions 4, (gravitino) and A (dilatino) [2]. This
multiplet transforms under local supersymmetry as follows *:

de,* = sy, , (2.1)
8, = (9, — $02,%T,, )e + e(fermi)’, (2.2)
8B,,=3V2 €l i, (2.3)
dA = — V2 I'e¢p D, + " eH,,, + e(fermi)’, (2.4)
5= —1v2 EA. (2.5)

The derivatives &, are Lorentz covariant, supercovariant derivatives are de-
noted by D,. In the variation of the gravitino field we encounter a torsionful
spin-connection defined by

0,%=w, (e, ¢) + 32 H". (2.6)
Here, w#”"(e, r) is the usual spin connection with -torsion, i.e., the solution of

D“L(w)el,]“ = (. The additional torsion is determined by the supercovariant field
strength of the B — field, H,“", given by

H,,, =9, B, %J[MFVQ’/I/)]’ (2.7)

which is invariant under gauge transformations

8B, =09, A, —3,A,. (2.8)
Under local supersymmetry, w#“” and H transform as
dw, (e, ) = 1&0, " + ey M+ 1V2 &l .y, H, (2.9)
3H e = — iV2 & (2.10)
* Note that [+ = [lei] a2 ["4al Throughout this paper we use the conventions of ref. [25]. In our

calculations we will never consider terms quartic in fermions in the action, and, consequently, we may
ignore terms quadratic in fermions in the transformation rules.
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Here, ,, denotes the gravitino curvature
U =22,(2,),,+ (fermi)’. (2.11)
The transformations (2.9) and (2.10) can be combined to yield
80,0 = zel p . (2.12)
The gravitino curvature °? itself has the following variation:
sy = —ireweR () + e(fermi)’, (2.13)

where R M“b(ﬂ,) denotes the Riemann curvature tensor with spin connection (2 _.
The ten-dimensional action which is invariant under the transformations (2.1)-
(2.5) is given by

Fo= e[~ IR(0(€)) ~ THL N+ 3(675,0)
— 2T, (w0, + 22 AT G (€)Y,
AR (w())A+ 32 BT TA(S70,8) = 3, T, (670")

V2 BT (T, T, + 42 54,0 — 83,0 )|

+ (fermi)®. (2.14)

The equations of motion which follow from (2.14) will play an important role in

this paper. These equations, for the fields ¢, e *, A, Jﬂ and B, ,, respectively, read

D = e¢>’3[%R(w) —99,(w) (6 '9) + (¢ 9,0) + %HWH“”], (2.15)
gaﬂ' = e¢73e“beya|:RVb(w) - 39V(w)(d)_lab¢) + %Hu/\prAp] - %eﬂa(p’ (216)
A=ed T [8F(w)A +V2 T*y,, —12(d7'Pd)A — V2 TNH,,.|, (2.17)

W, —ed (I, + 202 D,(Q,)A) - V2 T,A, (2.18)

B = 30,(edp TPHM). (2.19)
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In this paper we frequently use identities which are implied by the fermionic
equations of motion and the Bianchi identity

g[p.(w)djv)\] = _%Fabdj[p,Rw\]ab(w) (220)

for the gravitino curvature. First of all, we use (2.18) to solve for the single
I'-contraction of the gravitino curvature

Iy, =e "¢ (¥, + V2 T,A) = 22 Z,A. (2.21)
From (2.21) we obtain by contracting with a further I'-matrix
Iy, =e '¢3(2r°w, +3v2 A). (2.22)

Combining (2.18) and (2.20) one derives two additional identities involving the
derivative of the gravitino field equation:

Pbap= —2D,(e 'O°W,) + 3V2 1,2, (e 'dA)
- %FCFEflpcRabef_ %‘/z FCdARabcd + Fclp[aRb]c’ (223)
DV, =F(e7'9°W,) — V2 [, F(e7'd°A) =D, (e~ '9)]
—3TIYOR o+ SR (7Y —¥7) + 3RY,, (224)
while (2.17) and (2.22) give

GFr=—e '3 (V2 T¥, + A). (2.25)
In the identities (2.20)—(2.25) we have not written contributions of H and ¢ '9¢.

In the next section we will discuss why these are neglected in our calculations.
In d =10, N=1 supergravity the only matter multiplet is the Yang-Mills
multiplet, which consists of the gauge field 4,, and a Majorana—-Weyl spinor y,

both in the adjoint representation of an arbitrary gauge group. The transformation
rules are

54, 2Ty, (2.26)
5/\/ - _ %FMVFMV(A)E + € (fermi)z. (227)

The coupling of the Yang-Mills multiplet (A4, x) to ten-dimensional supergravity
[2,3] leads to a supersymmetric action of the form %, +45.. This requires the
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inclusion of the Yang—Mills Chern—Simons term in the field strength (2.7) of the
B-field [3], and a corresponding modification of the B transformation rule.

The cancellation of anomalies requires a further modification of H by the
corresponding Lorentz Chern—-Simons term [4]. However, this mechanism breaks
the local supersymmetry. The fact that the transformation rules (2.12) and (2.13) of
.(2#”,[’ and the gravitino curvature “® have the same structure as those of the
Yang-Mills multiplet (A4, x) (2.26), (2.27) simplifies the restoration of supersym-
metry [24]. By replacing in the action R+ B tr F2, and in the corresponding
transformation rules A, by .Qu”,b, x by ¢, F, (A) by the corresponding curvature
R#V“b(.()_), and the coupling B by an a priori independent coupling «, the tr F?
Yang—Mills action can be immediately extended to a supersymmetric action of the
form R+ B tr F?2+ aR? This requires a modification, proportional to «, of the
supersymmetry transformation rule of the B-field. Since (£2,%%, ¢“*) depend on B
(see relations (2.6) and (2.11)), the transformation rules of £2,“* and 4" obtain
order « terms, besides the order B terms already present due to the Yang—Mills
coupling. This breaks the invariance of the R+ 8 tr F? + aR%action by terms
which are of order a? and aB. The best one can hope for in this explicit
supersymmetrization of the Lorentz Chern-Simons term is an iterative invariance
in the couplings « and B.

The iterative procedure outlined above was worked out for the cubic a’R>,
aBR tr F?, and for the quartic a’R*, a?BR? tr F?, aB?(tr F?)*-contributions to
the supersymmetric effective action. Bosonic cubic terms in the supersymmetric
action are not required. Contributions from the variation of the quadratic and
cubic action play a crucial role in the cancellations which lead to the final form of
the gquartic action [25]. Thus the quartic action obtained in ref. [25] is directly
linked to the inclusion of the Lorentz Chern—Simons form, and a priori unrelated
to the quartic actions which we will construct in this paper, which do not include
quadratic or cubic contributions.

3. R*invariants and the ansatz

The supersymmetrization of R%-action starts with the construction of an ansatz,
which should contain all terms that might be linked to the R*terms by supersym-
metry.

In order to make the supersymmetrization feasible one has to put restrictions
on the terms which are included in the ansatz, and, correspondingly, on the
contributions to its supersymmetry variation. In this section we will discuss the
structure of our ansatz and the restrictions we have imposed.

As we have already mentioned in sect. 2, we will not consider terms in the
action which are quartic in fermions. Hence, in the R*-action only purely bosonic
terms and terms quadratic in fermions will appear. Correspondingly, in the
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supersymmetry transformations of the bosonic fields only terms linear in fermions,
in the transformations of the fermionic fields only the bosonic contributions have
to be considered:

8(boson) = &(fermion),
d(fermion) = (boson)e.

In the R*-action we do not write terms which contain the equations of motion
of the R-action (2.15)—(2.19). Such contributions can always be eliminated by a
suitable redefinition of the corresponding field. As was outlined in refs. [11,13], the
results obtained from scattering amplitude calculations are insensitive to such
redefinitions of the fields. Thus, we do not have to include terms in the ansatz
containing a Ricci tensor or a curvature scalar. The same applies to terms
containing a contracted derivative of the Riemann tensor, since

D, (0)R, ' (w) =29 (w) R, (w). (3.1)

Similarly, fermionic terms containing the left-hand-side of (2.21)—(2.25) can be left
out.

The presence of the fields ¢ and B,, in d =10 supergravity complicates our
calculations considerably. The occurrence of B, itself is of course restricted by
the requirement of gauge invariance (see (2.8)), but many contributions containing
the field strength H are possible. One may attempt to restrict the contributions of
H by requiring that H only occurs as torsion (2.6), as seems to be indicated by
string amplitude calculations. However, we prefer not to bias our calculations by
introducing such input. Similarly, the appearance of ¢ can be restricted by
requiring global scale invariance, but ¢~ '¢ may appear anywhere.

We compromise by including in the action only terms independent of or linear
in H and ¢~ 'd¢. In the variation of the action we should then consider only those
terms in which H and ¢~ '9¢ are absent. From (2.4) we see that this implies for
instance that we never have to vary the field A, and that consequently there is no
need to include A*terms in the action. Furthermore, we can restrict the terms
containing H and ¢ ~'d¢ to be purely bosonic.

In the ansatz we use the spin connection with -torsion, i.e., w“”b(e, ), as the
argument of the Riemann tensor, and parametrize the terms linear in H sepa-
rately. In the H-dependent terms in the ansatz we use the supercovariant field
strength H, given in (2.7).

Note that with the above restrictions, it is no longer guaranteed that our method
will yield a useful result. It may well be, for instance, that the cancellation of
variations containing H is required to fix the coefficients of the terms linear in H
in the action uniquely. As the next sections will show, a large part of the
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supersymmetric action is determined, even though we do not consider the cancella-
tion of all possible variations. More fundamentally, we must admit that our method
does not strictly prove the existence of a supersymmetric invariant, since the
procedure may still fail for variations which we do not consider. The results, and
their relation with string amplitude calculations, give us confidence that our
procedure could in principle be continued to the end without essential obstruc-
tions.

The purpose of our present work is the supersymmetrization of R*actions, with
in view the application to the effective action of heterotic string theory. As
discussed in the introduction, the bosonic part corresponding to tree-level and
one-loop contributions to string amplitudes are known. There, the following
actions quartic in the Riemann tensor arise:

X= twl\p(rmﬁtabcdefghRwabRAp(dRmchapghs (3-2)
Yl _ tp.u/\p(rTaBRHVabR)‘pabRUTcdRch‘d’ (3_3)
Y2 _ t,LVApamﬁRMubRApb(-RMcdRaﬁda’ (3'4)
Z=R,""R.{ R, [IR " (3.5)

The tensor ¢ has the following structure when acting on commuting, antisymmetric
tensors * M, i=1,...,4

tabcdcfghMlungdM;foh
= =2(tr M\M, tr M;M,+tr MM, tr MM, +tr MM, tr M, M)
+8(tr M, M,M M, + tr M\MM,M, +tr M,M;M,M,). (3.6)

The action (3.2) was obtained from a calculation of the two-loop B-function in a
supersymmetric nonlinear sigma-model [14] and independently in string amplitude
calculations [11]. This action appears in the tree-level string effective action with a
characteristic coefficient £(3).

The action Y, which has the structure ¢ (tr R?)?, was also found in tree-level
string amplitude calculations ** [13]. Note that Y, has a different trace structure
t-(tr RY). Finally, (3.5) is invariant under linearized supersymmetry transforma-
tions, since by the Bianchi identity of the Riemann tensor,

\Q[M(w)R,,p]"h(w) =0, (3.7)

* In string amplitude considerations (see e.g. ref. [13]) the indices of the ¢-tensor indicate the eight
transverse directions in light-cone coordinates, and then ¢-contains an additional eight-dimensional
Levi-Civita symbol. Here we extend the range of the indices to all ten values.

** For comparison to tree-level string amplitude results we will use the very detailed result given in ref.
{13].
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the variation of Z is a total derivative for any variation of w. If Z is reduced to

eight dimensions it becomes a total derivative. This implies that it does not play a

role in light-cone gauge string amplitude calculations. Therefore one has no a

priori knowledge from string amplitude or sigma-model calculations about its

effects in a ten-dimensional supersymmetric invariant. The fact that in ten dimen-

sions one should allow the inclusion of a Z-action was emphasized in refs. [32-34].
In the supersymmetrization of R*-actions we look for invariants of the form

fZ=R+yR4+O('y2), (3.8)

where R is the pure d = 10, N = 1 supergravity action (2.14). Supersymmetry may
hold iteratively in 7y, so that the supergravity fields will need modifications of the
supersymmetry transformation rules of O(y) in order to achieve invariance of the
action (3.8) to O(y).

Our ansatz in the search for the supersymmetric completion of R*actions is
written in the form

Fr=yed” L, (39)

The sum is over the different structures that may occur in the action. We consider
15 different sectors, which are presented in Appendix A, four involving purely
bosonic terms (#,—=%,), four sectors involving the gravitino field ¢, and its
curvature ¥, ( #s=7,) and seven sectors containing the dilatino field A (Zy=%5).
We give a few comments on our ansatz.

We include an arbitrary power of the dilaton in front of the action (the R-action
also has such a structure, with ¢ *). Note that by supersymmetry the power of ¢
has to be independent of the index i labelling the different sectors, since the
supersymmetry transformation rules (2.1)—-(2.5) contain no explicit powers of ¢.

The sector ., (A.1) contains all possible contractions of four Riemann tensors.
Therefore, the actions (3.2)—(3.5) can be written as linear combinations of the
terms given in (A.1). Using pair exchange and cyclic identities for the Riemann
tensor, and neglecting terms containing the Ricci tensor or curvature scalar, one
finds *

X=12(A, — 164, +2A4,~32A45+16A4,+ 32A4,),
Y,= —2A,+16A4,— 44, +8A,,
Y,= —4A4,+2A4,— 1645+ 8A,+ 164,

Tsy (A= 164, + 24, + 164, = 3245 + 164~ 3247). (3.10)

* A capital letter denotes the term in the ansatz without the corresponding parameter (always given in
lower case) (see Appendix A).



338 M. de Roo et al. / Supersymmetric action of heterotic string

Note that the actions X, Y, and Y, are related by
X+6Y, —24Y,=0. (3.11)

The sector .#; is the only one for which the variation of ¢ in front of the action
has to be evaluated.
The #;-sector consists of the following two terms:
K,=ie '¢t—#0p R 4R R IR  cd (3.12)

Mpo " T p3pg Hshe Mty Ropgg ?

K2 =ie” 18#1“A#”)BﬂxuzRH3M4abRM5P«:CRM7#xbdRV-9#1[1”1’ (313)
Both terms are clearly invariant under gauge transformations (2.8) of the B-field
because of the Bianchi identity (3.7). Note that this gauge invariance requires the
absence of the dilaton field in (3.12) and (3.13), i.e. y =0 in (3.9). One-loop string
amplitude calculations reveal that these K-terms must be part of the effective
string action [21,22].

The sectors .%5_, parametrize terms of type J(Z)F(IJ(Z)RG@R, J(Z)Fgw(z)Rz,
JF([/(Z)R3 and YyI'YR2DR respectively. As we noted above, in constructing these
sectors we do not allow terms with any contractions of the form (2.21)-(2.24). Note
that a partial integration and the use of the Bianchi identity (2.20) may relate
terms of these sectors. Therefore, in order to find a minimal set of independent
terms for the ansatz only those terms are taken into account which are not related
by any of these operations.

Similar arguments apply for the A-sectors &;_,s. There we do not write terms
which are related to the equation of motions A (2.17) or ¥, (2.18).

4. The calculation
In this section we will discuss some of the technical aspects concerning the

calculation we have outlined in the previous section.

TasLE 1
The schematic form of the supersymmetry transformation rules considered in this paper. The symbol
represents the gravitino, 172 the gravitino curvature.

# Transformation

(¢ oy = D(w)e

2) 8H =&y, 3B=&p
(3) dw = &y,

4 0oy =€R

5 Se =gy

©) 8 = €A

N 8(¢p 1) =EP(w)A
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TABLE 2
The different structures in the variation of the action. The third column indicates identities used to
rewrite various contributions. The last column shows how these contributions are cancelled. A 8¢ or a
S8A-entry indicates a modification of the transformation rules of the corresponding fermion.

# Variation Identity Cancelled by

(A) &, R2IR (2.21), (2.22) 8¢, 8A
(B) EZ YR’ (2.20), (2.23)-(2.24) M, (1), 84, 8A
(©) EYR(ZR)? - -
(D) eYyR’DDR (4.4) n
(E) EFZAR’ZR (2.25) SA, 8y
(F) EFDAR? (2.25),(4.3) ), 8
(@ EAR(ZR)? - _
(H) EAR’G DR (4.4) )]
(0] eyR? - -

) EAR? - -

In table 1 we present a schematic form of the supersymmetry transformations
relevant for our purposes. Their precise form is given in sect. 2. Note that due to
the restrictions we have imposed we may refrain from considering various other
contributions such as dw = ey H.

Table 2 shows the generic structure of the variations of the action that emerge
when applying the transformations (1)—(7) to the ansatz. In calculating the varia-
tion of the ansatz we always integrate away from the supersymmetry parameter e
by performing a partial integration. The variation is then simplified by working out
products of I'-matrices, etc., and brought to a standard form. The result then has
to vanish, which determines the unknown coefficients.

In many cases however, contributions to a variation do not have to cancel
against each other. If a variation is proportional to one of the equations of motion
(2.15)-(2.19) it can be cancelled by changing the transformation rule of the
corresponding field with a contribution of O(y). Consider for example a variation
which is of the form

8Ly = YEOH W, , (4.1)

where O* is a field-dependent object which may contain I-matrices. Since v, is
the gravitino equation of motion of the action %, a variation 8,4y, of the
gravitino in %, with parameter —ve0, will give

8, FLr= —yeO Y,. (4.2)
This new transformation rule of the gravitino cancels (4.1) in the variation of

Lg +Z - The new transformation applied to %, gives a contribution propor-
tional to y?, which we need not consider in this stage of our procedure.
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TABLE 3
All contributions to the variations considered in table 2. The numbers in the table correspond to the
supersymmetry transformations given in table 1. The .#-entries denote the different sectors of the
ansatz, given in the appendix.

% (A) (B) ©) (D) (E) ® @ (H) D )]

2 ® - - - - - . - G ©®
e - - - - - - - - -

2 @ -
Z @ @ - - - - - - - -
2 ®» W - - - - - - o) -
P %) -

If a variation of %, ,, can be rewritten using an identity such as (2.20) then its
contribution is shifted to another part of the calculation. Besides (2.20) one also
has the useful relations

D, DA = —5“°AR (4.3)

unvab?
9[;1.‘91.']["(1[7611 = Rp,u[abe]fcd - Ry,u[ngabfz_i]' (44)

In some cases, using identities such as (2.21)—(2.24), a contribution can be
rewritten in terms of equations of motion and additional terms which contribute to
other variations. This mechanism is indicated in the third and fourth columns of
table 2. In the fourth column we have not indicated explicitly cancellation through
modifications to the transformation rule of the tenbein. Ricci tensors occur, either
directly or through (3.1), in all the variations (A)—(J).

The basic tactic is then to shift as much as possible of a particular variation to
equations of motion and/or the variations (I) and (J) of table 2, by using the
identities mentioned in the third column of the table. Everything which cannot be
shifted, which is true in particular for all contributions to the variations (I) and (J),
has to cancel and is used to fix coefficients. Table 3 indicates how the different
sectors of the ansatz contribute, through the supersymmetry transformations of
table 1, to the variations of table 2.

As an example consider variations of type (B), i.e. E,@¢(2)R3. From table 3 we
see that these variations are generated by the sectors %, and Z,. From .%, the
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(Z(z)F DR Z_terms, we obtain (B) by varying the first gravitino curvature, which is
the transformation numbered (4) in table 1. From %, the Noether terms I (//(2)R3,
we find this variation by varying the gravitino, and taking, after the partial
integration away from e, the contribution containing Z,,. This is transformation
(1). On simplifying these variations we isolate those contributions which can be
written as a Bianchi identity (2.20), or which take on the form (2.23)-(2.24). This
gives variations of type (I) and (I) ((J) only in the case (2.23) is used) and equations
of motion. Note that in the variations (B) we will not encounter the left-hand-side
of (2.21)-(2.22). Such contractions between ,, and I'-matrices are absent in the
ansatz, as explained in sect. 3. Contributions containing (2.21)-(2.22) would
therefore have to come from the variation of the Z-terms, but it is easy to see
that the products of I'-matrices in these variations do not involve the indices of the
gravitino curvature.

Of course also the bosonic equations of motion, and the Bianchi identity (3.7)
are used in the same way. However, the use of these does not generate a
remainder.

An important role in the calculation is played by the two K-terms (A.4). If they
are part of the action, the power of the dilaton in front of the action (3.9) will have
to vanish. We find that indeed the presence of the K-terms is unavoidable.
Interestingly, this result can be seen relatively easily, since only a few terms in the
ansatz interact with the K-terms. As an example, which also illustrates explicitly
our procedure *, we will work out the contribution of the K -term.

In the variation of K; we only have to consider the transformation of the field
B, (2.3). The e-tensor and the I'matrix are combined to give

61<1 = _% 2 RmnabquabRrstRrucdgrmnpq”mku' (45)

The only term in the ansatz which gives rise to a similar variation is M,y in (A.8).
In M, we have to vary the gravitino and the gravitino curvature. After a partial
integration, and upon using the Bianchi identity (3.7) we find

6M106 = _RmnabR RrstEanpqrﬂgtwcd

pqab
+%RmnabquabRerthquEFturmnpqr Su‘llv‘ (46)
In the first term we extract I'* from the I'-matrix, using

I-vmnpqr st I"mnpqr srt _ 6F[mnpqr§s]t‘

* Except for the fact that the algebraic manipulations in the following calculation were of course
performed by our computer program!
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Thus we obtain
_ ab cd=pmnpqr s
Rmn quabRrs er 9d/cd’

and other terms, which will never contribute to a variation with a nine-index
I'-matrix. Now we use (2.23) to obtain terms proportional to equations of motion,
as well as

+%RmnabquabRrstRtucdgrmnpqrsl—wrml’jv‘ (47)

We now work out all the products of I'-matrices in the second term in (4.6) and
(4.7), and finally obtain the following contribution with a I':

6M106 = %RmnabquabRrstRtuchrmnpqr stuulpv . (48)

The contributions (4.5) and (4.8) must cancel, since none of the other terms in the
ansatz produces such a variation. Therefore

klz%ﬁ Mygg - (4.9)

To find out whether or not a term of type K, is present we therefore have to know
the value of m,,,. This coefficient is determined by considering the following two
variations:

R_“R

mn pgab

R, (R CErmmPary, (4.10)

R RmnabR  RsicdgPry 4.11
sted r

mnab
To (4.10) we get contributions from M, on working out the product of I-matrices
in (4.6) and (4.7). We also get contributions from M,,. By a calculation similar to
the one outlined above for My, using the equation of motion (2.23), we get two
equal contributions from M,,. We then find m,, = 2m, . Finally we calculate the
contributions to the variation (4.11). These come from the previous calculation of
the variation of My, and also from the tenbein variation in 4,. The result is that
my, = 3a,. Thus we conclude that this calculation determines k:

k,=3V2 a,. (4.12)

The presence of the K,-term is therefore linked by supersymmetry to the presence
of A,. The possibility of having a, = 0 will be discussed in the next section. None
of the other terms in the ansatz contributes to (4.10) or (4.11). The feature which
singles out these variations is the contraction between the index of the gravitino
and the I-matrix. Such a contraction can only arise from the variation of the
tenbein in the A-terms (A.1), or from terms in %, (A.8), which already have such
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a contraction. A glance at such terms in the ansatz shows that indeed only M
and M,, have the appropriate structure.

The K,-term is only invariant under the gauge transformations of the B-field, if
the factor dependent on the dilaton in (3.9) is absent. We expect then, given the
presence of the K-term, that supersymmetry will fix y = 0. To see this we will
consider variations of type (J), éAR* There are three variations which play a
determining role in fixing the value of y. These are

R,.ap R R, R EA, (4.13)
Rm,,“bquabRs,CdRdeF’""”")t, (4.14)
R abR R Rtucdgrmnpqrstu/\' 4.15
mn pgab*trscd

To these variations we will get contributions from M, and M;,. These arise from
the use of (2.23) in (4.6) and in the related variation of M,,. Then there are
contributions from (A.10), in particular from P, and P,;, obtained from the
variation of the gravitino curvature i,,. Finally there is of course a contribution to
(4.13) from the variation of ¢ in front of the A ,-term. The resulting equations for
the coefficients read

(4.13) - —%y\/f a,— V2 msy + %Pl =0,
(4.14) - +2V2 my — V2 mye—p, + 2Dy =0,
(4.15) > +2V2 m s —p,; = 0.

These three equations fix p, and p,,, and set y = 0 (unless a, = 0, in which case y
remains arbitrary at this stage).

The above calculation shows that any solution with a, # 0 will require the
presence of K,, and therefore the absence of an overall dilaton-dependent factor
in front of the action.

The result of the above calculation should be compared with the results
presented in ref. [25]. There the same terms that we consider above appeared in
the ansatz for the quartic action, and a similar calculation was done. The major
difference is, however, that in ref. [25] an R*-action, related to the supersym-
metrization of the Lorentz Chern-Simons terms, is present as well. Then the
cancellation of the variation of the quartic action also involves contributions which
arise iteratively from the quadratic and cubic action. One may check, that these
contributions (which can be found in ref. [25]) have the effect of setting k£, = 0 and
y= -3
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The above calculation is a small part of the complete calculation which deter-
mines all coefficients in the ansatz. But the general procedure should now be clear.
The contributions to the variations are brought to a standard form, in such a way
that the remaining structures are all independent. Of course one uses the identities
mentioned in table 2 to express the variation in terms of independent structures.
For each independent structure in the variation of the action one finds an equation
between the coefficients in the ansatz. In solving the equations, free parameters
may remain. Certainly one free parameter is associated with the normalization of
the action. Free parameters may also indicate that the ansatz is overcomplete in
the sense that a subset of the contributions to the ansatz may be dependent. This
occurs, for instance, for the seven terms in (A.2), of which only four are indepen-
dent because of the identities (A.3). Other free parameters indicate the presence
of more than one solution to the problem of supersymmetrization. These aspects
of our result will be discussed in the following section.

Table 3 shows that the calculation splits in a natural way in two almost
independent parts. The variations (A)—(D) and (I) (the ¢-sector) are independent
of the dilatino A, the variations (E)-(H) and (J) (the A-sector) do depend on A. All
these A-dependent variations come from A-dependent terms in the ansatz, except
those due to the variation of the dilaton (see table 1). The transformation (7) in
table 2 is only applied to a single sector of the ansatz, (A.5), which does not
contribute to the y-sector. Therefore it seems that, except for the variation of the
dilaton factor in front of the total action, there is no contact between the -sector
and the A-sector. However, the use of (2.21)-(2.24) provides contributions which
move from the -sector to the A-sector. Therefore it is essential to first work out
the variations in the y-sector.

As we shall see, the equations resulting from the i-sector are very restrictive,
and result in two independent solutions. The equations in the A-sector are much
less restrictive. As we discussed above, the cancellation of the (B)-variations
involves only the identities (2.23)-(2.24). Using these, the (B)-variation produces
eAR?, ())-terms. We expect the identities (2.21) and (2.22) to play a role in the
variation (A). Since (2.21) contains a ZA-contribution, the use of (2.21) in the
cancellation of (A) provides a link between the y-sector and a variation containing
DA. In table 3 we see that there are several contributions to (A). Since no
contractions between a I'-matrix and the gravitino curvature are present in the
ansatz, only the variation of %, the YW R2DR-terms, can produce such a contrac-
tion. Therefore, all contributions containing 2A arising from the A-sector are
proportional to the parameters in .%,. However, the equations arising from the
-sector require, that all these parameters vanish!

We conclude that the only link between the - and A-sector is through (B) and
(J), and through the variation of ¢’ in front of the action, which also gives (J).
Therefore we may choose a minimal option in the A-sector, which is to include
only those A-dependent terms in the action which contribute to (J). As we see in
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table 3, this is the sector %, the Xz//(z)R3-terms. Indeed, the calculation shows that
cancellation of all A-dependent terms in the variation can be achieved by including
Zg only.

Besides this minimal option we have also considered the inclusion of the sectors
Z,, Z9_1s- The variations from these terms have to cancel against each other. We
have found that the resulting equations are not sufficiently restrictive to solve for
all parameters in this part of the ansatz. When discussing our results, in the next
section, we will restrict ourselves to the minimal option mentioned above. Of
course, this does not mean that we think that the coefficients in %,, %, s are
actually zero. It only means that these coefficients cannot be determined, in terms
of a small number of free parameters, in the present calculation. The same remark
holds for other sectors in the R“*action which we have not considered in the
construction of the ansatz (see sect. 3).

5. Results

Using the procedure discussed in the previous section, we find that supersym-
metry requires that the bosonic terms must occur in the following combination:

F=a,A,+(—16a, +b)A,+2a,4A,+ (12a, - 2b) A,
+(—32a,+4b) A5+ (16a, — 2b) Ay + (—16a, + 2b) A,
+b,B, +byBy+b3By+ (—3b, —b;+6V2 b)B,
+2b,Bs + (b + b, + 3by + 3V2 b)By— (b, — 2b, - 12V2 b) B,
+5V2 ¢, K, + 3V2 (—a, + $b)K,, (5.1)

where b= %V2(b,+ 2bs+ 2b,). The coefficients b,_, remain free parameters
after solving the equations. Three of these are redundant because of the three
identities (A.3), which imply that B,_, are not independent. We can therefore take
arbitrary values for b,_;, without changing the action. Thus b and a, are the only
true free parameters remaining in the action, which can therefore be written as a
linear combination of two independent invariants.

Expressed in terms of X, Y,, Y, and Z the R*contribution in (5.1) reads

ZL=cX+g7a;—§b)Z
Hoe=Gar @)y +[-24e da—)lve (52)

Here the coefficient ¢ is arbitrary and reflects the dependence of X, Y, and Y,
discussed in sect. 3.
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In (5.1) we remark that for any nontrivial choice of a, and b at least one of the
K-terms is present. OQur conclusion from sect. 4, that the exponent y in the factor
¢” must vanish, is therefore valid for arbitrary @, and b. Thus a, =0 plays no
special role in this respect.

We will now discuss the two independent solutions contained in (5.1). The first
one is associated with b = 0, the second with b = 8a,. The most convenient way to
express these two solutions in terms of X, Z, Y, and Y, is to take ¢ = (a, — 3b)
in (5.2). The parameter a, is then a normalization factor, which we set equal to
one.

The complete action corresponding to the choice b =0 (with b, ;=0) is
displayed in Appendix B (B.1). The bosonic part of this invariant reads

I, = e(RahefRabechdgthdgh - 16RacebecefRudgthdgh
+2Rper Reder Ravgn Reagn
FI2R e Rever Rucon Rpagn = 32R pper Reder Rugen Rigan
+H16R 1o R ecayRougonRegan = V0R wopp RecasRogen Rigan)

+él\/§ PLIRRANY R abp abp cdp cd

[ L A Msite Moty Mot 19

- %l‘/z Em”.“WBM1#2R,“-3#4abRM5MsaCR#7#xbdRP«9#lo(‘d' (53)
The R*terms in (5.3) correspond to the combination [ X + (6 X 7)Z].

Note that this solution has no terms linear in H. In ref. [13] it was found that in
the string effective action the Riemann tensor should depend on the modified
spin-connection {2_ (see (2.6)). However, when X and Z are written in terms of
the modified spin-connection {2 , and one then expands in H, terms linear in H
cancel. Thus the effect of torsion appears only in the terms at least quadratic in H,
which we do not consider here.

The complete action corresponding to the choice b =8a, (with b, =b, =0,
b, = —48/2 a,) is presented in (B.2). The bosonic part of this invariant is given by

I, = e[RabefRabechdgthdgh - 8Rac€becefRudgthdgh
F2R o RederRavenReagn = 4Ruper Reder RacgnRopagn
+96v2 ﬁabC( - %Rabenghfm@(Refgh + RabenghfmgeRcfgh)]
+§iV2 g#1#0B, R, R, R, R, . (5.4)

The R*terms in (5.4) are — 3Y,. The presence of K, implies that there is no
factor ¢ in front of I,.
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Using pair exchange for the Riemann tensor, all R*terms in (5.4) can be
rewritten in terms of

v,

=R (@) R, (w) (5.5)
and its contractions. Note that V, , is the Lorentz analogue of the Yang-Mills
invariant tr £, F, . Because the connection {2_ transforms under supersymmetry
as a Yang—Mills gauge field (compare (2.12) and (2.26)), this analogy only holds if
the spin-connection in V' is {2 . This suggests that the action should be rewritten
in terms of the torsionful connection 2_. Indeed, the two terms linear in H in
(5.4) are precisely what is needed to introduce H-torsion, with the coefficient as in
(2.6), in the R*-terms.

The fermionic contributions to both [, and [, can be found in Appendix B. One
surprise (for us) in this fermionic sector is that all terms of the type ¢T'WR’>PR
have a vanishing coefficient. Note that implicitly such terms appear in the action in
(A.1) in the ¢>torsion in o, and in (A.2) in the supercovariantization in H.
Another way of presenting our result about #; is to say that all such terms can be
absorbed into ¢ 2-torsion in » and in supercovariantizations.

Both the actions /, and 7, contain terms dependent on the field A. In sect. 4 we
discussed our procedure with respect to the A-sector. Because of the vanishing of
,, it is possible to include only %, in the A-sector, the so-called minimal option.
All the coefficients p, are then determined.

In the calculations leading to I, and I, we use the identities (2.23) and (2.24).
The terms in the variation in which we encounter the left-hand-side of (2.3) and
(2.24) are for I;:

(RabcdRajebekgh - %RahcdRabeijkgh)glldefgh‘g{/fjk
+ (2RabdeRabCinng + 12RacdeRafbingcj)EFdefg‘gdlij
+ ( —-8RacbdRaethcfd[ + 4RabcdRabceRdfhi + 4RhcadRefathcdi

+ 20RbcaeRadthbcdi + 2Radebecathcdi

1
- 16RabdeRcfathcdi + 24RabdeRafcthcdi - ERabcdRabcdRefhi
+2RabceRabdecdhi - RabcdRahefR(‘dhi + 8RaCbeRadbecdhi)Ellfgl!llzi

- 2RabdeRacfgRbhcigrdefgh‘@j‘?bij + (8RabceRabdecdgh - 4RacbeRadthcdgh
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- 8RabefRacngbcdh + 8RadebecagRbcdh)grefggidjhi

+ (32R cpe RudbfRedes = 20R ypeaRupes Redeg T 20R e aRupce Ruseg JEL; 23 -
(5.6)

Using the identities (2.23) and (2.24) this can be expressed as derivatives of the
equations of motion ¥, and A of ¢, and A, and terms proportional to ¥R and
AR, which contribute to other variations. These last terms have been taken into
account in the calculation. The equations of motion always occur in the combina-
tion ¥, + %\/f I’ A. The required additional variations of ¢, and of A, 6,4, and
8.4, are given in (B.2). Of course, the combination of the two equations of motion
implies a relation between 8,4, and & A. The fact that the only changes in the A
transformation rules occur in this particular combination with 6 4, is a conse-
quence of the fact that we need only %, in the A-sector. The variation of %,
never gives rise to additional A equations of motion.

For the invariant 7, (5.4) the remaining fermionic equations of motion arise
from

1 - 1
- ZRcdabRefabRghjkGchefghgdfjk + (2RceadefabRcdht - ERcdabRcdabRefhi

—RcdabRefabRcdhi + 4RcdabRceadefhi)gFefgdfhi' (57)

The corresponding modifications to the transformation rules of ¢, and A are given
in (B.6). The remaining variations containing bosonic equations of motion, which
imply additional transformation rules for the bosonic fields, will not be presented
explicitly. The new transformation rules of the bosonic fields are not immediately
relevant for the compactification procedure.

Let us now come back in more detail to the analogy between these R*-actions
and quartic Yang—Mills invariants. We already mentioned above that the Riemann
tensors in the bosonic part of I, can be expressed in terms of V,,,, (5.5), if we use
the torsionful spin-connection {2_. This requires the use of pair exchange for the
Riemann tensor, which gives rise to additional zZF ¢(2)R3 Noether terms, since

Rade( w) = RCdab( w)
- %chrd]l//ab - ‘Z[CF[ad/d]b] + %J[arb]‘//aj + ‘Z[ar[cll’b]d]- (5'8)

The additional fermionic terms due to pair exchange give contributions to the
action which make it possible to write 1, in terms of V" and

%V ER,U,Vab(w)wub’ (59)

W is also the Lorentz form of a Yang-Mills invariant: tr £, x.



M. de Roo et al. / Supersymmetric action of heterotic string 349

All contributions to (5.4) can be generalized to the d = 10 Yang-Mills multi-
plet, if we replace in the action

|4

urvip

—tr F, (A)F,,(A),
W, —tF,(A)x, (5.10)

where 4, and x are the fields of the d = 10 Yang-Mills multiplet. The resulting
quartic Yang—Mills action will then be invariant under the transformations (2.26),
(2.27), if the Yang—Mills analogue of the terms (5.7) allows the same treatment as
in the case of the R*action. Writing (5.7) in terms of Yang—Mills fields we obtain

— 3t Fo Fy &l g pon tt Foy B x + (2tr F Fyp—tr F F,;)el,, tr F P x
—str F F el tr F, @y + 4 tr F F &l tr Fy ey (5.11)

Now, the relevant terms in the y equation of motion which follows from the
quadratic Yang-Mills action read *

Z=e¢ (P(w, A)x + T F,,+ 3V2 T'°F,,)), (5.12)
so that the identity corresponding to (2.23) is
D(w, A)x=e '¢>% — Iy F,, — V2 I'*F . (5.13)

So indeed we can express Py in terms of 2, and ¥R and AR-terms. Note that
these last terms take on exactly the same form as the ¥R and AR contributions in
(2.23). This is of course essential for the invariance of the quartic Yang—Mills
action, since after the use of the identity (5.13) the rest of the calculation should
proceed in the same fashion as in the R*-case.

Z is the fermionic equation of motion of the FZ-action. Therefore, the
Z-contributions in (5.11) can only be cancelled by changing the y transformation
rule if we include the supersymmetric FZ-action. In this way we obtain an action

F=R+Btr F 4+ y(tr F?)’, (5.14)

and supersymmetry will require new transformation rules of y and A, of order
v/B. As a byproduct of our analysis of R*actions we therefore find also the

* We use here the form of the Yang~Mills supergravity action given in ref. [25].
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following Yang-Mills invariant (with W, =tr F, x):

Fym=Fp+ Lt ye(— st F, F, W F,F

Mfy™ B3ty MSHe™ [ty

+gie™'V2 g#1#0B  trF,  F,  trF, F

M H3Ma™ Mskte Ky Kol g

+4WHT* tr x9,F,, — 2 tr F**9,F* tr I,, X - 4W*T* tr x9,F,,
—8tr F*F", tr X1, 9, x — 16W* T, tr(2*x)F,, )
+yeV2|(tr F*F,XT,, 8 tr F¥*F,,xT,, — 4 tt F4,F,XT,,

+2 tr F¥F, AT, |W* + § tr F*Fo)I,

HVOTAD

w|
+ Noether terms. (5.15)

The complete invariant is presented in (B.7), the O(y) transformation rules of y in
(B.8). In the above we have not considered the bosonic equations of motion nor
the new transformation rules of A,. We have checked that indeed the bosonic
counterpart of (5.7) also allows the generalization to an arbitrary Yang—Mills
group.

In the abelian case (5.15) reduces to the quartic contribution to the Born-Infeld
action [35] coupled to supergravity, and agrees in the flat limit with the globally
supersymmetric Born—Infeld action presented in ref. [36]. In the Yang—Mills case
the structure of (5.15) differs in the flat limit from the result of ref. [36], since in
ref. [36] only the symmetric Yang—Mills trace Gi.e., ¢ - - - tr F*) is considered.

The invariant [, corresponds to one particular choice of the coefficients @, and
b in (5.1). One may wonder, whether other choices also lead to actions which have
a Yang—Mills generalization. There are, for an arbitrary Yang—-Mills group, eight
independent tr F* invariants. These are given by

YMl — FMVIF;LV JF)\pKFAp L,
YM, =F,'F*/F# KF L
YM,; = FW’F"AJFAPKFP“ L
YM, =F,'F, JF*KFre L,

multiplied by either tr 7,7, tr T, T,, giving YM D), or tr T;¢,T, T, , giving YM (2).
Here 7, are the Yang—Mills generators in the fundamental representation. These
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eight possibilities give the following R*-actions if we work them out for the SO(9,1)
Lorentz group *:

YM, (1) > A4,, YM,(2) > 4,,

YM,(1) > A4,, YM,(2) > 34,—As+A4,,

YM,(1) > A4,, YM,(2) > A,

YM, (1) 5> A5, YM,(2) > A4,. (5.16)

Note that Z (3.10) has the wrong combination of A5 and A4, to be the Lorentz
case of a general Yang—-Mills invariant. The only way to avoid having Z in our
solution (5.1) is to choose b= 8a,, which leads to I,. Thus I, is the only
Yang-Mills invariant which we can reconstruct from our result. This implies that a
supersymmetric action of the type ¢ tr F*, which would correspond to the
generalization of Y,, does not exist f or arbitrary Yang—Mills groups.

The action (5.15) can be generalized in the following way. We may choose a
semi-simple gauge group of of the form G X SO(9,1). Then we can identify the
gauge field of SO(9, 1) with £ _, and the corresponding field strength with the
Riemann tensor. The invariant (5.14) then takes on the form

F=R+Btr F2+y(R*+tr F2)". (5.17)

Note that an R*-term is not required for invariance. In the absence of quadratic
terms invariance holds up to (5.11) for G X SO(9, 1). For the contributions
containing &y, where y is the partner of the G gauge field, we use (5.13). This
requires the presence of the standard FZ-action. For the contributions containing
@, we use (2.23), which contains an equation of motion of the R-action.
Therefore no R%-action is needed to cancel particular variations.

6. Discussion

In this paper, we have found that two supersymmetric invariants of the type
R + yR* exist. As a byproduct, we have also obtained the leading terms of a locally
supersymmetric tr F2? + y(tr F?)*-invariant.

Let us now compare our results to the effective action obtained by other
methods. The tree-level string amplitude contributions to .#,;; contain the action
Fr, (2.14), with the Yang—Mills contribution .. The field strength H of the
antisymmetric tensor gauge field B,, is modified with Yang-Mills and Lorentz
Chern-Simons terms. As discussed in sect. 2, supersymmetry requires the presence

* In this calculation we use pair exchange and the cyclic identity for the Riemann tensor.
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of Zg-terms, and quartic contributions of the form (R?+tr F?)2 In these
quadratic and quartic actions the Riemann tensor depends on (2_, and the
couplings to the dilaton are limited to the same overall factor ¢ ~* which is also
present in .Z». As we discussed in sect. 4, this action does not contain a term K,
(3.12), so that the overall factor ¢ > does not interfere with the B,, gauge
transformations. The result of supersymmetrizing the Lorentz Chern-Simons
terms [25] agrees (up to field redefinitions) with the determination of the bosonic
part by a string amplitude calculation [13].

In ref. [13] a different basis is used for the independent fields. The dilaton is
denoted by the field D, with the correspondence ¢ = exp(%ff D), ¢ being our
scalar field. The tenbein in ref. [13] differs by a factor ¢ 3/® from our tenbein.
With this rescaling, we find indeed that the modified Riemann tensor R in ref.
[13], which contains e”H and 2% D-contributions, becomes equal to R,,**(£2_).

Among the tree-level terms obtained in ref. [13] is also the contribution ¢{(3).X,
with X given in (3.10). After the rescaling mentioned above, this term also obtains
the overall factor ¢ 3. Therefore we must conclude from our analysis, that this
term does not have a supersymmetric completion. As we have seen, the supersym-
metrization of X requires the presence of both K, and K, (3.12), (3.13), which
because of B gauge invariance conflicts with the presence of the ¢ 3-factor *
Therefore we still do not understand the properties of ¢(3)X in relation to
supersymmetry in ten dimensions.

At the one-loop level string amplitudes reveal again the presence of the X-term,
as well as further (R? + tr F?)*terms [16,17]. However, the one-loop contributions
to £, have no overall dilaton factor. One also finds a contribution proportional
to tr F*. For E¢ X Eg this term can be rewritten in the form (tr F?)?, but this is not
possible for SO(32).

Comparing now to our results in sect. 5, we see that we can indeed supersym-
metrize the one-loop contributions to the effective action, except for tr F*, which
remains a problem in case the gauge group is SO(32). In sect. 5 we showed that the
supersymmetrization of (R? + tr F2)? requires an F?-contribution to the action,
but no R%*terms. This implies that the R?-contributions to the effective action are
completely determined by the supersymmetrization of the Lorentz Chern-Simons
terms, or, in string amplitude terminology, by the tree-level contributions.

The counterterms required for the cancellation of anomalies for the gauge
group E¢ X E are, schematically, [4]

=

counter

~gti BB Xt R+ g (tr R?)” + (tr R¥)(tr F?) + (tr Fz)z]#

3. M0

* The terms d>“3K,- are gauge invariant under modified B gauge transformations: 8B, = 2[6““4,,]+
3~ ‘8[“45)/1”]. However, the conflict is now shifted to the H-dependence in #%. The field strength
H has to be modified to be invariant under the new B gauge transformations. This breaks the
supersymmetry of .%». These modified gauge transformations are discussed in ref. [37].
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All these counterterms can be seen as part of the supersymmetric actions pre-
sented in sect. 5. Note in particular, that we also obtain the relative coefficient }
between the two R*-terms. Thus we find that these counterterms are indeed linked
by supersymmetry to the known bosonic one-loop contributions to the quartic
effective string action. The other counterterms presented in ref. [4], which contain
products of Chern-Simons forms, belong in our terminology to actions R” with
n>4.

In a recent paper by Duff and Lu [38] it was argued that the coupling of the
heterotic five-brane [39] o-model to background supergravity fields implies the
existence of quartic terms in the Riemann tensor and Yang—Mills field strength.
However, these are obtained in the version of N =1, d = 10 supergravity with a
six-index antisymmetric gauge field, which is related to our B,, by a duality
transformation. Let us therefore consider the effect of a duality transformation on
the quartic action we obtain in this paper.

For this duality transformation we focus again on the B A R A R A R A R-terms.
They are related to Chern-Simons forms. The usual Lorentz Chern—-Simons term
w4 appears as a modification to the field strength H of the gauge field B,
schematically, this reads: H ~dB + tt(w A dw + w A w A w), along with the Yang—
Mills Chern-Simons term [3]. In the dual version of d = 10 supergravity with a
six-index gauge field Chern-Simons terms are absent, but are replaced by an
interaction term of the form A4, A R AR in the action.

By a similar duality transformation, the terms B AR AR AR AR will give rise
to the Chern-Simons forms w,

Hpgy ~3A +ti(w Adw Ada Adw) + ...,

in the seven-index field strength of Ay in the six-index version of d =10
supergravity. Such terms are indeed required in the anomaly cancellations in the
six-index version [40].

In this paper we have supersymmetrized the one-loop, quartic terms which
appear in the bosonic string effective action. We do not find a supersymmetric
completion for the {(3)¢ *X-term, which is part of the tree-level effective action.
This failure may be due to the fact that we limited ourselves to the use of the
physical fields of d = 10, N = 1 supergravity. Failure of the Noether method may
of course indicate the necessity of introducing additional fields. These could
correspond to massive fields, perhaps related to auxiliary fields of the d = 10,
N =1 supergravity multiplet, which become propagating fields in the higher
derivative actions we have considered.

We thank Eric Bergshoeff for a number of useful discussions. This work is
financially supported by the Stichting voor Fundamenteel Onderzoek der Materie
(F.O.M.). One of us (A.W.) gratefully acknowledges the financial support of the
Deutsche Forschungs Gemeinschaft (DFG) under contract nr. Wi 1033 /1-1.
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Appendix A

This appendix is devoted to the presentation of the various sectors we con-
structed for the ansatz. We write the ansatz as the sum (3.9)

L= 768’ LF,.

The first purely bosonic sector is formed by seven terms of the form R* and
therefore contains all possible independent contractions of four Riemann tensors:

2= tra R opeaRapcaResonRepen + 2R opcaRopee RargnRefen
T a3R peaRapesReagnRepon + s Ropee RaparReagn Resen
T asRopceRopag ResanRepon + @6 RacpaRacvg ReganRepen
+ ;R oepe Roapg RepanRepen- (A.1)

The second sector in our ansatz consists of seven terms of type HRZDR. Its
explicit form is

L= +b 1 Ho o R Roppe ZaRogon — baHuopRopeg Roacn DaR open
Fb3H g Ropce Roner DaResen + baHupe Rapea Roner DR epon
+bsHpo Rogco Ropen ZaReon + b6 Hop Ropes RegonDaR pon

+b7H 0 RoacpRocgnDaRegen- (A2)

It is important to realize that the seven terms in this sector are overcomplete. This

is due to the fact that the Bianchi identity for the H-field implies the following

relations among the different terms:
0= D[aﬁbcd]RabechdghRefgh =B, + B,
0= D{aﬁbcd]RabecheghRdfgh = 4B, —3B;+ 3B, + B,

0= D[aHbcd]RabechgehRdgfh = %BZ - %83 + BS' (A3)

The latter results are obtained by performing a partial integration. Note that these
identities are valid modulo terms of the form I (/;(2)R3. This is related to the fact
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that the Bianchi identity of the H-field involves a supercovariant derivative. The
eqs. (A.3) imply that three of the coefficients b; can be chosen arbitrarily.

The third purely bosonic sector consists of two terms of type BR*:
Ly = +kie” lgabcdefijleabRcdghRefghRijmanlmn
=1
+ kZIe EabcdefhileabRcdijefnghijanlmn' (A4)
There are four terms of the structure (¢ ~'9¢)R*ZR:

% = +d)—1aa¢(C1Rbcdengde'9aRbcfg + CZRdeeR 9alebfdg

cfeg
_C3Rabcdeefg-9bRcefg - C4Rabcdeefg‘96Rbefg)‘ (A.5)

This completes the list of the purely bosonic sectors.
We considered 17 terms of the type ;)1 ¥ RIR:

35 =+ (lebcaegaRbcdf + dZRbcadgaRbcef + d3Rabcd98Rabcf)(ngFe¢fg

+ (d5Rcdab96ngab + d6Rceab9degab + d7Rcfab9dRegab

FdgR b r DR papg T AR ep s DuR ey + leRaebfngacbg)lzched/fg

+ d21RbcafgaRbcde(zghFdefngh

+(dnRaeas DR pear + A3 Ragar D Rogap + d2aRuca 25 R seng Yen Do s g
F(—dosRefac DaRpugn — A2 Rynay ZaRocae — 421 R chas ZaRogae

gha cha

—dy R e Dy R pugn + d29Rcfah9bRagde)lzbcrdefdjgh' (A.6)

Next, there are six terms with the structure J(z)F Do R*:
L= +f1RadbcRaebchngd96¢’fg +f2RacbdRaebechd9e¢fg
+f3Rbcadegaerch9el!’fg +f4RbcafRdeangchd96wfg

_fSRcdafRegablehrcdegfdfgh +f()RcdabRefgh'Zachdegf‘pgh . (A7)
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For the Noether sector, the terms of type I’ w(z)R3, we constructed 92 indepen-
dent terms:

g7 =+ (mlRafbgRacdeRbcde + mZRafbcRagdeRbcde + m3RbfadchaeRbcde)l//hrfdlgh
+ (m4RefghRabcdRabcd + mSRefagRbhcdRabcd + m()RegabehcdRabcd

+m7RghaeRbfcdRabcd + mSRghabeecdRabcd + m9RefabRghcdRabcd

+m10RegabehcdRabcd + mllRefabRagcdehcd + leRegabRafcdehcd
+m13ngabRaecdehcd + m14RghabRaecdefcd + mlSRefaCRbgadehcd

+m 6 R guc RpraaRonca T M7 R poac RpeaaRinca T MisRynac RpeaaRosea

egac

+moR RypanRapea MR ece Ry paaRinea + MR e RyeqaRonca

accg
+Mp R RopcaRinea + m23RafbgRaecdehcd)lZeFfd/gh

+ (MR iR upeaRabea T M3 RepanRpicaRapea ¥ M2 Ryjae RipreaRaved
M3y R, pp RpicaRubea T MasRenap R picaRapea T M3rRefap RapcaRoica
+M 3R ap RopeaRiica ¥ MaoRuiap RaecaRirea T Maz Repac RpnaaRoica

MR o RpfaaRuica T MaaRyjac RpeaaRisea + MagRacenRosai abea

+M g R poen RopaaRbica t MasRueon R picaRapea) e lereWni
+ (MR janRpgeaRabea T M6 Repar RoncaRabea ¥ MaoRepan RageaRonea

M4 Ropap RypeaRpgea ¥ MasRefac RogaaRonea + M6 R opac RofaaRogea ) Wil ereWni

+ (mSOIRdhefRagbcRaibc M RopniRoape Rogoe + mSIRefadRhibcRagbr

+m52RefanghbcRaibc + m53RefahRdgbcRaibc + m54RefahRgibcRadbc
+m55RefahRdibcRagbc + mS()Rdeah ngbcRaibc - m57RdeahRfibcRagbc

+m58RehadegbcRaibc —MsyRopeaRrineRagpe + MeoRpyige RappcRaghe

M6 Ryiae Rgpe Ruave T M2 RyjaaReppe Rugbe T MeaRespaRaugen Raive

M Ry R g Raive T MesRoppon RageiRaape T Moo RoponRaaciRaghe
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+ Mg R yepn RaicpRaghe ¥ MegReppaRauicr Ragpe T Moo Ruipe RagerRauge
MR gear Rgac Rpive — My R b RefacRine = MR pap Rpiac Rpacg
MR opapRyiac Rpacg = m74RefabRghacRbdci — M35 R rap Ranac Riges

— M6 R geat Rpnac Rogei T M7 R cpap Redan Rigei ¥ Mg Ropap ReaayRpges
+m79RadbeRcfahRbgci)adrefglphi
F (MR geai Rpgpe Ranpe — m‘)lRdeabngacRbhci)'erdefghdlij
+(Mea R youi Rpgpe Rujpe T Moz RijuaRoppe Raghe + Mos R geai Rjpe Rughe
+ 15 R 4opi R o e; Rugie = Moo Ruteap R fiae Roges Wn e ponthi
+ (Mg R yoci R gap Rijar + Mg ReaijRopan Ronap + Mogi Rueij Refan R gab
+Mo9 R yeui Rpgpi Renas T Mioo Rucac Rijpr Ronas + Mio1 Raiac Reppi Ranab

M1 ReuaiRefpiRgnas + Mi03 R geac Rgpi Rijan

gha
My RdeachgbiRahbj)lZc Lyepenti
+ (mIOSRcdajRefkaghab + mloﬁRcdjkRefabRghab)‘Zircdefghi‘/fjk- (A.8)
Finally, in the cancellation mechanism we also included
P Terms of type y I VYyR2IR and T OYR*DR. (A9)

Altogether there are 70 terms of this type. In our solutions we find that all these
terms have to vanish. We will therefore not write them explicitly.

In principle there are 19 additional sectors to be included in the ansatz.
Roughly speaking, these have fewer fields and more derivatives. These sectors
consist of the following structures:

(Vd)RZR; (B0)ZRD?R; (I )R2°R;  ($d)(2R);
(W) Z°R; (#0) 2R (Fr¥) 2°R; (0 Z V1)) 2°R;
(9_(2>9‘/’<2))9R; (‘ZQ)‘@Z‘Z’@))QR? (9’@(2)92(/&2))13; ((Z(z)93¢(2)) R;
(_9’!’(2>)R9R’ (‘L@z‘/’(z))sz (_9%))931?; (J@zw(z))ng;
(Jg 111(2))9R, (lzlﬁ(z))@“R; 19RDR.
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They participate in the cancellation mechanism through the use of the relation
(4.4). We have constructed all possible terms of this type (for a few of the above
structures there are actually no contributions), and found that the equations
require that the corresponding coefficients vanish. Therefore these terms have no
effect on our solutions, and we refrain from presenting their explicit parametriza-
tion.

This completes the discussion of all sectors of the ansatz which contain the
gravitino field and the gravitino curvature.

There are six sectors which contain the dilatino field A. We constructed 21
independent terms of the structure AT Yo R*:

Zy= (leefghRabcdRabcd +p2RefagRbhcdRabcd +p3RghaeRbfcdRabcd
+D4Rfap RgncaRabea T PsRegan Rpncalavea T PeRefar RageaRonca
+D7R cgav RuseaRonca T PsRynapRoeccalisea t PoR fac RygaaRinca
+P10Regac RofaaRonca T P11Rghac RoeaaRifea T P12 Raccg RosanRabea
+P13R sece RofeaRonea +p14RaebgRafcdehcd)XFefd’gh

+(P1sR sean R rgpe Raive T PisRpiaaReppe Raghe T P17RacanRpine Rughe
P13 ReonRapciRagbe _p19RdeabehacRbgci)xrdefgll’hi
(PR cauiRefn; R onab +p21RcdinefabRghab)xrcdefghl//ij‘ (A.10)

Besides the sector .%, there are the following A-dependent contributions:

Zio~UAR*IR, (A.11)
F~UDAR?, (A.12)
Fo ~ Yy D AR, (A.13)
L3~ Uy PARZR, (A.14)
L4~ U ARDR, (A.15)
L5~ A FRIR. (A.16)

As we explained in sect. 4, these additional sectors may be included, but are not
actually required to achieve the cancellation of the variations we consider. Since
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we choose in sect. 5 for the minimal option of the including only (A.10) in the
presentation our results, we shall not give the parametrization of #;,_,5 explicitly.

For the same reason, we do not display A-dependent terms containing more
derivatives, which might participate through the use of (4.3).

Appendix B

This appendix is devoted to the presentation of the two solutions we have
found. If we choose in (5.1) b=0, b; =b,=b,=0 and a, = 1 we obtain

e 'y = +RupcaRopcaResenReson = 16R pcaRapce RusenRegen
t 2R pcaRabesReagnRepen T 12R gpee RapasReagn R epen
= 32R jpeeRopagResanRefen + 10R scpaRacog ReganRepen
—16R 4 Ryape ReganResen
+3iV2 e~ 1EabcdefijleabRcdghRefghRijmanlmn
—3iv2 e_leabcdefhiklBabRcdijefnghijnRklmn
+ (8RpcaaZuRpces = 8Rabcd=@eRabcf)(ngFel/ffg
(= 4R eas DaRgar — SR b DR gus
+16R s DR popg — 16R 1ot Dy R oo YWea s,
+ 4R 4our DR rgarWen Les B
+(8R,f0c D Ryugh + 4R hof Do Rygue ~ 4Refac9bRadgh)lechef¢’gh
+ 16RacbdRaeblecgrd‘9elpfg + 32RbcafRdeangchd‘@ewfg
+ 8RcdafRegab‘thrcde9fl/’gh T (—20R 14 Rycae Ricae
+20R 15 R ygae Ricae = 32Rp10a R egac Ricae )i ey,
(=R penRapcaRapea ¥ 8Rfag RoncaRabea + 4R ghae RiseaRabea

AR o RpecaRubea = 2R o fap RygneaRabea T 2R cgap R pncaRabea
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+4RefabRagcdehcd - 28RegabRaf(‘dehcd + 20ngabRaecdeh(‘d
+8RghuhRaecdefcd + 24RefaCRhgadeh(‘d + 48RegacRbfadehcd

+16R RbeadeIu'd - 16RghaereadRhfcd —24R Rbfthahcd

fgac aecg

+ SRaechbfaa’Rbhcd + 16Raethafdebhcd - 4RafbgRae('dehcd)Je[}’lpgh
+ (%RefhiRabcdRabcd - 4RefathicdRabcd - 4RhiaeRbfcdRabcd

+Re/"athicdRabcd - 2RefabR dei('d + 20RehabRa]'cdeicd

ahce

_2RhiabRaecdefcd - 16RehacRbfadeicd - 8Rhiatheadefcd

+ 8RaecthfdiRab('d - 8RaechRbfadeicd)Jg];fgwhi

+ ( - 8RefabRagcdth(‘d - 8RehabRafcdegcd

+ 8RefacRbgadth('a' + 4RehacRbfadRhgcd)lpirefgdfhi

+ ( _4RdhefRagbcRaibc - 2RefhiRudbcRagbc - 2RefadRhibcRagbc

+2RefahRdibcR - 4Rehadegth - 2RhiaengbcRadbf

agbc aibe

+8RefbdRagchRaibc - 4Refthadchaihc + 8RefthagciRadbc

+4Refb/1RadciRagbc + 16Rd€thaichagbc + 16RehbdRaichagbc

+8RhibeRadch - SRdeahngathihc - 8RdhahR R

aghe efac tgibc

- 4Refathiatha'cg + 8RehabeiacRbdcg - 12RefabR Rbdci

ghac
+ 4RefadehacRbg('i - 16RdeabehacRbgci + 8RehabRcdabegci
- 8RadbeRcfathgci)Jdrcfgd/hi

+ 2RdeabegacRbhci‘Zdeefgh‘/’ij

+ (2RdeaingbcRajbc - 12RdcabeiacRbgcj)'Zhrdefghdlij

+ ( - 2Rdecingathjab - %R

R tab Rgnab T+ 2R geac Rijo s Ronan

cdij

_4RdiacRefthglmh + 4Rdea('nghiRlljuh - 2RdeucngbiRahbj)l*[/(,‘chfghwij
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+ ( =R gajReppi Ropap + Rcd/kR¢fab Rghab)‘/f, Lgerenitin
+ ‘/7[( efenRabeaRabea = BRepug Ronen Rapea = R gnae RoeaRabea
2R, Rgncalabed = 4R pun RageaRinea T 40R o R rea Rinea
- 4RghabRae(‘defcd —32R

Ry faaRonca + 160R (o Rpeaa Ry pea

egac

+ 16Raechhfthabcd - 16Raechb/'adehcd - 32RaebgRafcdehcd)XI::fd’gh
+ ( - 4Rdeah ngbcRaib(' - 24RdeabthacRbgci)XFdefgll/hi

( 2Rcda1Refb]Rghab+ lR(dthefahRghab)/\Fdcfghlw[/zj] (Bl)

The modifications to the fermionic transformation rules follow from (5.6). The
result is

Sylpy = Db[(zoRbcdeRy.Cngdefg - ZORbC;LdR('engd(’fg - 32Rbd(‘fR;Lechdefg)€]
+ Db[(ZRp.bcdRefcdRefgh + 4Rp.ecdefcdRefgh - 16Rceudecdeefgh
+24Rucd0RdefRefgh - 24Rp.bchCdengefh - 12R[J.b(‘dRC€ngd€fh

_SR,ufcde('engefh + SRCfdeR,ubchdefh - 40RdefRC€[.Lng€fh

T24R,ryRecug Raern = 8RppeaRycog Ruepn
+4RbcdeR(‘fdeR;Lfgh - 16R('edebcng/,wfh)thG]
+ Dc[( - 16R;thbeechdefh - 12R,u.bdeRbfchde[h)rghE]

+4D, (R;Lb(defcdRefgh 5h€)+Df(RbchRhcde wfgh gh )

+ Dg[( - 28R;LfbcRb(rdeRdcfh +32 R;Lhca’Rbechdefh - 20RhecdefcdR,uefh)thE]

+D,,[(—2R Ry peRueni + 2Ry Rocfo R

ucde cefgVtdehi

+2’Rhcd€R Rdehi + 12Rb<'deCngRd('hi)rfghie]

ucfg
+ D([( - SR,uha'bee('ngehi + 4R/,thbengRa’ehi)rfghie]

+ D] [( - SR}L('hdeC(‘ng("li + 8R/,thcRb('enge/1i
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+4Ry e RpgenReaei = 8Rbep.chdthcdei)I}ghie]
+ Dy (3R bef ReagnReaij = 2Rpces Ryuagn Reais ) eponij
bi\ 2% ubeftrcdgh*rcedij beef* udgh*tcedij efghu€
- 2De(RubchbdghRcdijrefghije)’
8, A= —3V2 I'*5y,. (B.2)

Note that 6,4 contains R*Ze-terms. The appearance of new supersymmetry
transformations containing @e can easily be avoided. The contributions of the
equation of motion ¥ in (5.6) are, schematically, R3% V¥, or, after a partial
integration

—(9R*)eV - R (6)V. (B.3)

The first term must be cancelled by changing the transformation rule of the
gravitino. The second term can also be cancelled by adding to the action:

RV, (B.4)
Of course the new term has to be varied. The variation of ¢ gives Ze and cancels
the second term in (B.3) (this time we do not perform the partial integration away
from e!). The variation of ¥ gives a combination of bosonic equations of motion,
and this can be cancelled by changing the bosonic transformation rules. If this
procedure is followed, the new fermionic transformation rules are as in (B.2), but
without the De-terms.
The second solution is obtained by taking in (5.1) a,=1, b=8, b, =b,=0,
by= —48V2:
6_112 = +RabcdRahcdRefghRefgh - 8RabcdRabceRdfghRefgh
+ 2RabcdRabechdghRefgh - 4RabceRabdecdghRefgh
_48‘/5 HabdRabceRghcfngefgh + 96‘/5 HabeRabcngthngefgh
+ %i‘/f e IgabcdefijleabRcdghRefghRijmanlmn
+ 4Rcdab96ngab(chFewfg - 2Rbcaf9aRbcded]ghFdef¢gh
- 4Rghaf‘9aRbcde‘//chdef¢gh

- 8RadbcRaechngd’9edjfg - 16Rbcadegaelecrdge¢fg
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+(~RopenRupealupea T 16R oo RopcaRapea T 12R gpae RypeaRapea
—4R, i RpecaRapea = 2Refap RgneaRavea T+ AR eap RageaRonca
+8R . gur RopeaRinca T 8Rpgap Ruecalinea T 8RghabRaeCdefcd)lzeFf¢gh
+ (%RefhiRabcdRabcd - 4RhiaeRbfcdRabcd
+ R, ras Ryicalapea = 2RhiabRaecdefcd)‘/fgrefgll/hi
(= 4R, 4R jape Rugbe = 4Rpiae Rpgoe Radne
——4RhiadRefbcRagbc)lZdFefgd’hi
+ ( - %RcdinefabRghab - RdeincfabRghab)lZchefgh(//ij
+ 3R R tan Ronav¥il caeseni¥in

+ ﬁ[(RefghRabcdRabcd = 8RpaeRoscaRabea

+2R, fan RoncaRabea = 4RghabRaecdefcd)XI—:3g¢gh

+ %RcdinefabRghabxrcdefghdfij:l . (BS)

The modifications to the transformation rules can be calculated from (5.7). We
find

o4, = Db[(sz.bcdRcdefREfghrgh - 4Rubcha’echdefh)thE]
—8D,(RpcasRpcagRucrnlen€) + Di(RpcacRicae Ry penlen€)
+ %Ds( RoperReaenReaiileponii€)s
A= —gV2 M8y, (B.6)

The solution I, has a Yang-Mills analogon. The proper way to derive this
Yang—Mills solution from I, consists in two steps. First, by using pair exchange
(5.8), the R*terms must be written in such a way that the contraction over Lorentz
indices corresponds to the Yang-—Mills trace. Second, the spin-connection must be
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written with H-torsion. These steps do not require the use of the identities (A.3).
We use the notation W, = tr F,, x. The result is

e Uyy=—3t"#uF F trF,_ F

Himrz™ p3ly Hshe™ Ry

+5iV2 e"'e#1#wB,  trF,  F, trF, F

I3 H3pa™ Hstg Mg ™ Mol 10

+4WH T tr x9,F,, — 2 tr F**9,F* tr X, x

—4WHr T tr x9,F,,

—8tr F**F”, tr I, 9,x — 16W*'T, tr(2*x)F,,
+(~tr F*F,,8,I, = 12 tr F*F,,§,I, + 12 tr F*E,,3,T,
—2tr FYF,, 0,1, + 12 tt F*,F", 0, T, W™

+(% tr FRF,, 8,1, — 4 tr F*F,,§, I, +tr F*F,,3,T7,,

—2tr F4F*,§,I°,, — 4 tr F*F 7,1

v agAp

+4tr F5F gL, + 4t FoFoy I, W

p-vop

+(-3 ot FFUYT,,, — tr FRF T,

Ap
VUTAp)LV

voTp

+5 tr FRFoy, I¢ whe

KRVOTAD

+V2 |(tr F#F, XL, - 8 tr F*F, AT,

—4tr F*%\F, AL, +2 tr F*F, XTI, |W

vp

1 tr PRI

HVOTAD

wh). (B.7)

The additional supersymmetry transformation rules of y follow from (5.11), and
read

ByX = - %Ildefgthgh tr chFef
+ 1, eF (2t F Fyp—tr F ,F,;)

— 0, eF,; tr F, F.y+ 4T, ;¢Fy, tt FF,,. (B.8)
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