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Abstract

The Leibler theory [L. Leibler, Macromolecules 13 1602 (1980)] for mi-

crophase separation in AB block copolymer melts is generalized for systems

with arbitrary topology of molecules. A diagrammatic technique for calcula-

tion of the monomeric correlation functions is developed. The free energies

of various mesophases are calculated within the second-harmonic approxima-

tion. Model highly-branched tree-like structures are considered as an example

and their phase diagrams are obtained. The topology of molecules is found

to influence the spinodal temperature and asymmetry of the phase diagrams,

but not the types of phases and their order. We suggest that all model AB

block-copolymer systems will exhibit the typical phase behaviour.
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I. INTRODUCTION

One of the biggest challenges for theoretical polymer science is to predict the phase

behaviour of a polymer system with given molecular structure. The required theory should

explicitely contain molecular parameters and be able to predict thermodynamically stable

phases (whatever they are) and temperatures of transitions among them. Apart from the

theoretical interest this problem is of great industrial importance. Since the mechanical

properties of the phases are studied quite well it is useful to predict the conditions at which

these phases are stable. In the absence of such predictions the experimental search could

take even years. In the present situation of a rapidly increasing number of novel materials

even a crude theoretical model could help a great deal in direct applications.

Among the systems of interest are solutions of homopolymers, block copolymer melts,

blends and so on. In this article we focus our attention on the A-B block copolymer melts.

Such systems can only differ in the total content of one component, the length of molecules

and the way the A and B blocks are arranged in one molecule. As a function of these pa-

rameters and temperature, the following phases were observed experimentally: the lamellar

phase (LAM), the hexagonal phase (HEX), the body-centered cubic phase (BCC) and the

bicontinuous gyroid phase (GYR) [1,2]. However, the structure of these phases strongly de-

pends on temperature. Just below the order-disorder transition temperature the chains are

slightly stretched and the mesophases consist of periodic patterns with only a small increase

in the content of one component. This situation is called the weak-segregation regime. On

contrary, the strong-segregation regime (very low temperatures) is characterized by domains

which are almost pure in one component. Both regimes are limiting cases and therefore can

be studied analytically. In the intermediate regime there is no small parameter and only

numerical investigations are possible [3]

The first weak-segregation theory of AB melts is by Leibler [4] who considered a model

Gaussian diblock copolymer. He was able to estimate the order-disorder transition tem-

perature and predict the following sequence of transitions: DIS→BCC →HEX→LAM with
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decrease of temperature. Later, after the GYR phase was observed experimentally [5,6],

Milner and Olmsted [7] used the second-harmonic approximation and predicted the GYR

phase to be stable in between the HEX and LAM phases. The same conclusion was drawn

in [8,3] and in the Landau-Brazovskii theory of Hamley and Podneks [9,10].

The method developed by Leibler was applied to other topologies of block copolymer

molecules. Thus, Mayes and de la Cruz considered an ABA triblock molecule [11], de la

Cruz and Sanchez studied star- and simple graft-copolymers [12]; Dobrynin and Erukhi-

movich developed a computer-aided tool to calculate phase diagrams for various topologies

[13]. However, in all these studies the authors started with a fixed molecular topology. To

consider another topology one needed to go through the whole calculation procedure again,

from the very beginning. In this work we show how the Leibler approach can be used for an

arbitrary topology of molecules. Section I repeats some main points of Leibler’s paper [4] and

introduces a diagrammatic technique that helps to deal with molecules of arbitrary topol-

ogy. The first step in this direction was made by Read [14], who invented a way to calculate

structure factors of polymers of arbitrary complexity. We go further and show how to calcu-

late higher vertex functions for such systems. Section II describes the way to calculate the

free energies of different mesophases and discusses some of the approximations. We consider

the face-centered cubic phase (FCC), the ordered bicontinuous double-diamond phase, the

simple cubic (SC) and the square lattice (SL) phases in addition to the classical phases. In

the Results and Discussion we apply the developed technique to a model dendrimer system

which has recently attracted wide experimental [15] and theoretical [16] attention. The phase

diagrams of various dendrimers are presented and their features are discussed. The results

for many more systems that were not included in this publication are presented as sup-

plementary materials on the Internet: http://rugmd4.chem.rug.nl/˜morozov/research.html.

Finally, we summarize our work in the Conclusion and propose some possible developments

of the method.
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II. MEAN-FIELD THEORY

A mean-field theory of incompressible AB block copolymer melts was first formulated

by Leibler [4]. In his approach a local deviation of the density of A component from its

average value plays the role of an order parameter ψ(r). He found that the coefficients in

the phenomenological free energy expansion

F = F0 +
1

2

∫

q1

∫

q2

Γ2(q1,q2)ψ(q1)ψ(q2) +
1

3!

∫

q1

∫

q2

∫

q3

Γ3(q1,q2,q3)ψ(q1)ψ(q2)ψ(q3)

+
1

4!

∫

q1

∫

q2

∫

q3

∫

q4

Γ4(q1,q2,q3,q4)ψ(q1)ψ(q2)ψ(q3)ψ(q4) + · · · (2.1)

can be connected with microscopic properties of the system. This possibility is based on the

assumption that in a melt a single chain behaves as almost ideal. This constitutes the so-

called random phase approximation (RPA) which expresses the monomer density correlation

functions in terms of the correlation functions of a Gaussian chain. For the vertex functions

in (2.1) it gives [4]:

Γ2(q1,q2) = δ(q1 + q2)

[

SAA(q1) + SBB(q1) + 2SAB(q1)

SAA(q1)SBB(q1) − S2
AB(q1)

− 2χ

]

Γ3(q1,q2,q3) = −G(3)
ijk(q1,q2,q3)

[

S−1
iA (q1) − S−1

iB (q1)
]

×
[

S−1
jA (q2) − S−1

jB (q2)
] [

S−1
kA(q3) − S−1

kB(q3)
]

(2.2)

Γ4(q1,q2,q3,q4) = γijkl(q1,q2,q3,q4)
[

S−1
iA (q1) − S−1

iB (q1)
] [

S−1
jA (q2) − S−1

jB (q2)
]

×
[

S−1
kA(q3) − S−1

kB(q3)
] [

S−1
lA (q4) − S−1

lB (q4)
]

where

γijkl(q1,q2,q3,q4) = −G(4)
ijkl(q1,q2,q3,q4)

+
∫

p
S−1

mn(p)
[

G
(3)
ijm(q1,q2,p)G

(3)
nkl(−p,q3,q4) +G

(3)
ikm(q1,q3,p)G

(3)
njl(−p,q2,q4) (2.3)

+ G
(3)
ilm(q1,q4,p)G

(3)
nkj(−p,q3,q2)

]

The summation over repeating indices is assumed. The second, the third and the fourth order

correlation functions of the Gaussian chain are denoted by Sij, G
(3)
ijk and G

(4)
ijkl, respectively
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(i, j, k, l = A,B); S−1
ij are the elements of the inverse matrix ||Sij||−1. The Flory-Huggins

parameter describing the strength of interaction between A and B monomers is denoted by

χ.

A general method of calculating the Gaussian correlation functions was developed in

Appendix B of [4]. It is based on the fact that the Gaussian distribution is fully determined

by its first two moments. As a result the probability to find several monomers at given

positions on the chain is expressed as a product of the 2-point correlation functions of the

consequently neighbouring monomers along the chain. For example,

s s s

r1 r2 r3

= P (r1, r2)P (r2, r3)

The correlation functions Sij, G
(3)
ijk and G

(4)
ijkl are calculated by averaging the Fourier

transforms of expressions like one in the previous example over all possible positions of

monomers along the chain. At this point one needs to introduce some topology of the

polymer molecule in order to perform such an averaging. In [4] this was done for a diblock

molecule. A triblock molecule was considered in [11]. More sophisticated architectures were

studied in [13]. We generalize this procedure for arbitrary topology of a polymer molecule.

In the following we use the graphical method formulated in Appendix A. A correlation

function of a given order is calculated by drawing all possible (but topologically distinct)

diagrams of this order. Thus,

Sij = s s +
s

s

G
(3)
ijk = s s s +

s s

s

+ s

s

s
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G
(4)
ijkl = s s s s +

s s s

s

+
s s

s s

+
s s

s

s

+ s

s

s

s

This is just a schematic representation which shows that an n-th order diagram can con-

tain up to n blocks. The corresponding contributions to the correlation function are obtained

by connecting these blocks in all possible ways. The topologically different connections are

presented in Appendix A. The contributions to the correlation functions are calculated in

Appendix B.

We want to note that not all diagrams contribute to the correlation functions of the

system with given topology. One restriction is connected with the type of the correlation

function we want to calculate. For example, the equation for SAB only contains diagrams

with the first label placed on some A block and the second label placed on a B block.

Therefore the first diagram in the general equation for Sij does not contribute to SAB.

The other factor reducing the number of diagrams is a molecular architecture. Thus, for a

linear multiblock molecules all ’star’ and ’fork’ diagrams are impossible and should not be

considered.

The final expressions for the correlation functions are obtained in the following way.

Suppose we want to calculate Gi1,i2,.... To do this we need to place the first label on any

block of the type i1, the second label on any block of the type i2 and so on. The resulting

diagram will be one of the diagrams calculated in Appendix B. The corresponding expres-

sion is written down. Then we remove all labels and place them again avoiding previous

configurations. This procedure is repeated until we covered all possible arrangements of the

labels. The obtained expression is the equation for the required Gi1,i2,....

Once we have calculated the correlation functions for a given system, its free energy can

be obtained with the help of (2.1-2.3). In the next section this Landau-Ginzburg free energy

will be a starting point for our analysis of the phase transitions.

It is obvious that the formulated approach is general and within this framework all
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systems can be considered.

III. CALCULATION OF PHASE DIAGRAM

In this section we show how to calculate a phase diagram of a system once its free energy

functional (2.1) is known. Apart from some technical details this was developed elsewhere

[17,4,18,7,12,19–22,9,10].

In the beginning we need to determine the order-disorder transition (ODT) temperature.

The disordered phase can be described by the Landau-Ginzburg Hamiltonian with only a

quadratic term left [17,23]. The probability to create a spatial density fluctuation ψ(q) is

given by

P [ψ] ∼ exp
[

−1

2

∫

q
Γ2(q)ψ(q)ψ(−q)

]

(3.1)

The typical life-time of such a fluctuation is τ ∼ 1

Γ2(q)
. At some q∗, temperature (or

Flory-Huggins parameter) and total content of A monomers in the molecule
(

f =
NA

N

)

,

Γ2(q∗) reaches zero. The probability to create such a mode tends to unity, while its life-time

τq∗ diverges. It means that at this temperature the disordered phase becomes absolutely

unstable with respect to the appearance of an ordered mesophase with typical domain size

∼ q−1
∗ . Therefore, the set of equations:

Γ2(q∗, (χN)s)= 0 (3.2)

∂Γ2(q, (χN)s)

∂q

∣

∣

∣

∣

∣

q∗

= 0 ,
∂2Γ2(q, (χN)s)

∂q2

∣

∣

∣

∣

∣

q∗

> 0

determines the spinodal temperature (which is very close to the ODT value [4]) and the

typical lengthscale q∗.

As the next step we choose a set of mesophases which will possibly enter the phase

diagram. Then, for each mesophase we represent the order parameter field ψ(q) in such

a way that it possesses the symmetry of the mesophase. This representation necessarily

contains some unknown parameters. Next ψ(q) should be plugged in the eq.(2.1) and the

7



resulting expression should be minimized with respect to the parameters. This procedure

gives the free energies of different mesophases as functions of temperature and composition.

The molecular properties enter via the coefficients in eq.(2.1). For the given temperature

(below the ODT) and composition f the mesophase with the lowest free energy will be the

stable one. The phase diagram is drawn by varying temperature and f over some ranges.

The way to ascribe a given symmetry to the order parameter is to expand it in the full

orthonormal set of functions with the given symmetry. The most popular choice is to use

an expansion in plane waves:

ψ(q) =
∑

i

Ai

(

eiφiδq,ki
+ e−iφiδq,−ki

)

(3.3)

where {ki} is a set of vectors defining a lattice of the given symmetry, φi and Ai are the

arbitrary phases and amplitudes; δi,j denotes the Kronecker delta symbol. If the rotational

symmetry in the system is not broken we can rewrite (3.3) in the following way:

ψ(q) =
∑

i

ai

mi
∑

j=1

(

eiφ
(i)
j δ

q,k
(i)
j

+ e−iφ
(i)
j δ

q,−k
(i)
j

)

(3.4)

where the first sum runs over the Brillouin zones or coordination spheres in the reciprocal

space; mi is the number of vectors in the i-th zone. In practice we consider only the first few

terms in the series (3.4). The mathematical reason for that is to simplify the minimization

procedure. From the physical point of view, immediately below the transition temperature

the appearing mesophase is not well developed and we do not need too many details in

the representation (3.4). (As a rule, the length of the q-vectors increases with the number

of the zone. Therefore, the more terms are left in (3.4), the more detailed density profile

we get.) The next question is how many terms we should leave in (3.4). Unfortunately,

there is no quantitative criterion where to cut the density expansion. In the past, several

possibilities were considered. In the classical work [4] the expansion (3.4) was restricted

to i = 1. The so-called second-harmonic approximation (i = 2) [18] was formulated in

[24,7,25,26,19] in order to study complicated bicontinuous phases. Up to several hundred

harmonics were used in the numerical method of Matsen [8] (however, the authors studied
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the intermediate/strong segregation regimes and, therefore, our discussion is not directly

applicable to their model). Comparison of their results shows that higher harmonics not only

result in some non-significant shift of the phase boundaries, but also stabilize or destabilize

several morphologies. In such a situation the number of harmonics is crucial.

In this paper we adopt the criterion derived in [10,9]. Instead of the mean-field theory

Hamley and Podneks studied system with composition fluctuations. In their model the cut-

off value for qn (the q-vector from the nth shell) appears naturally as an adaptation of the

Ginzburg criterion:





(

qn
q∗

)2

− 1





2

≪ 1 (3.5)

We apply this criterion to our mean-field theory in order to keep uniformity with the fluctu-

ation approach (a similar criterion was used in [27]). There are several ways to support our

choice. One type of argument is connected with the applicability region for our theory. In

the RPA there is essentially one lengthscale associated with the gyration radius of molecules.

It is intrinsically connected with the typical wavevector q∗. Therefore, the representation

of the density profile by higher harmonics with q ≫ q∗ is in strong contradiction with the

used theory. (A similar idea was formulated in a different way in [28].) One can also specu-

late that near the spinodal the inequality (3.5) will always hold in the proper temperature

range. The questions of applicability of (3.5) and its influence on the phase diagram will be

addressed in future studies.

The cut-off (3.5) implies that only one harmonic should be used for LAM, HEX, BCC,

SC and SL phases, while FCC, GYR and OBDD phases are represented by two-harmonic

density profile. The basis vectors for LAM, HEX, BCC, SC and SL phases, as well as

the first-shell vectors for FCC and OBDD (which coincides with the BCC first shell), are

presented in [4,18]. For the rest we use (more detailed information can be found in [29]):
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FCC: k
(2)
1 = 2q∗√

3
(1, 0, 0) k

(2)
2 = 2q∗√

3
(0, 1, 0) k

(2)
3 = 2q∗√

3
(0, 0, 1)

OBDD: k
(2)
1 = q∗√

2
(1, 1, 1) k

(2)
2 = q∗√

2
(−1,−1, 1) k

(2)
3 = q∗√

2
(−1, 1,−1)

k
(2)
4 = q∗√

2
(1,−1,−1)

GYR: k
(1)
1 = q∗√

6
(1,−1,−2) k

(1)
2 = q∗√

6
(−1,−1,−2) k

(1)
3 = q∗√

6
(1, 2,−1)

k
(1)
4 = q∗√

6
(−1,−2,−1, ) k

(1)
5 = q∗√

6
(−2, 1,−1) k

(1)
6 = q∗√

6
(−2,−1,−1)

k
(1)
7 = q∗√

6
(1, 1,−2) k

(1)
8 = q∗√

6
(−1, 1,−2) k

(1)
9 = q∗√

6
(−1, 2,−1)

k
(1)
10 = q∗√

6
(1,−2,−1) k

(1)
11 = q∗√

6
(2, 1,−1) k

(1)
12 = q∗√

6
(2,−1,−1)

k
(2)
1 = 2q∗√

6
(0, 1, 1) k

(2)
2 = 2q∗√

6
(0, 1,−1) k

(2)
3 = 2q∗√

6
(1, 1, 0)

k
(2)
4 = 2q∗√

6
(1,−1, 0) k

(2)
5 = 2q∗√

6
(1, 0, 1) k

(2)
6 = 2q∗√

6
(1, 0,−1)

Once we have defined the density profile (3.4), we plug it into the equation for the free

energy (2.1). The integration is trivial since ψ(q) is a sum of delta-functions. The resulting

expression contains terms proportional to the vertex functions Γ2,Γ3 and Γ4 which arguments

are all possible combinations of two, three and four k
(i)
j that add up to zero. For the phases

represented by the two-harmonic density profile some of these terms will be the functions of

the wave-vectors from the different shells. However, while calculating the vertex functions

(Section 2 and Appendix A and B) we assumed everywhere that all wave-vectors have the

same modulus q∗. Correspondingly, we obtained the m-th order vertex function in the form

Γm(q∗n1, . . . , q∗nm) = Γm(x∗, h
(m)) (ni =

qi

qi
; h(m) and x are defined in the Appendix A).

This function cannot be directly used for the arguments with the different moduli. However,

the following trick helps to avoid this problem.

The criterion (3.5) implies that qj = q∗+∆j, where ∆j ≪ q∗. Therefore, to the first order

in ∆ we can approximate the m-th order vertex function of q-s with the different length by

Γm(q1, . . . ,qm) ≈ Γm(q∗n1, . . . , q∗nm) +
m
∑

α=1

κα∆α ,

where

κα =
∂Γm(q∗n1, . . . ,qα, . . . , q∗nm)

∂qα

∣

∣

∣

∣

∣

qα=q∗
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Any vertex function is a symmetric function of its arguments. Therefore, κα = κ is inde-

pendent on α. Let us now put all ∆α = ∆. This gives

Γm(q1, . . . ,qm) ≈ Γm(q∗n1, . . . , q∗nm) +mκ∆ (3.6)

But this expression should be identical to:

Γm(x∗ + δx, h(m)) ≈ Γm(x∗, h
(m)) +

dΓm(x, h(m))

dx

∣

∣

∣

∣

∣

x=x∗

δx (3.7)

where x = (q∗ + ∆)2R2
G = x∗ + δx, δx ≈ 2x∗

∆

q∗
. Comparing (3.7) with (3.6) gives

κ =
2x∗
mq∗

dΓm(x, h(m))

dx

∣

∣

∣

∣

∣

x=x∗

Finally,

Γm(q1, . . . ,qm) ≈ Γ̃m(
m
∑

α=1

∆α

q∗
, h(m)) = Γm(x∗, h

(m)) +
2x∗
m

dΓm(x, h(m))

dx

∣

∣

∣

∣

∣

x=x∗

m
∑

α=1

∆α

q∗
(3.8)

The angle variables h(m) are calculated from the vectors q∗ni. Here we assumed that the

latter sum up to zero, which is only approximately true. The approximation (3.8) allows us

to take into account the small differences in the length of the wave-vectors from the first

and the second shells.

The last step involves the minimization of the free energies with respect to the arbitrary

phases φ
(i)
j . The algebra is labouring but straightforward. Denoting a1 by a, and a2 by b we

obtain

FFCC = 4a2Γ2(x∗) + 3b2Γ2

(

4

3
x∗

)

+ 12a2bΓ̃3

(

2√
3
− 1

)

+ Ξ
(F )
1 a4 +

3

4
Ξ

(F )
2 b4 + 4Ξ

(F )
3 a2b2

FOBDD = 6a2Γ2(x∗) + 4b2Γ2

(

3

2
x∗

)

+ 8a3Γ̃3(0) +
3

2
Ξ

(O)
1 a4 + Ξ

(O)
2 b4 + 2Ξ

(O)
3 a2b2 (3.9)

FGY R = 12a2Γ2(x∗) + 6b2Γ2

(

4

3
x∗

)

+ 8a3Γ̃3(0) − 12a2bΓ̃3

(

2√
3
− 1

)

+8b3Γ̃3

(

2
√

3 − 3
)

+ 3Ξ
(G)
1 a4 +

3

2
Ξ

(G)
2 b4 + 2Ξ

(G)
3 a3b+ 2Ξ

(G)
4 a2b2

where the coefficients Ξ are given in Appendix C.
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The one-harmonic free energies for the LAM, HEX, BCC, SC and SL phases are presented

in [4,18]. As it was noticed in [30], we have two choices for the FCC free energy, which

arise from the different solutions of the phase minimization equations. The first solution is

presented in (3.9). The second (NFCC in the notation of [30]) was never found to be stable

in our calculations.

We want to emphasize that the second harmonic approximation was used extensively by

many authors [18,24–26,19,7]. However, almost all of them used the two-harmonic repre-

sentation of the density profile for all phases. On contrary, we apply the criterion (3.5) and

represent only the FCC, OBDD and GYR morphologies in the two-harmonic approximation.

This approach was also tried in several studies [10,9,27]. The main difference with our work

is that we not only keep the complicated angle dependence of the vertex functions, but also

take into account their dependence on the wave vectors moduli.

IV. RESULTS AND DISCUSSION

In this section we apply the developed formalism to particular systems. As an example

we will treat dendrimeric tree-like structures defined as follows. The origin of the molecule

is a branching point with n1 A-blocks of the same length f1 attached to it. All n1 A-

blocks are topologically equivalent. They form a so-called first generation of the molecule.

The end of each block is also a branching point with n2 B-blocks of the same length f2

attached to it. All n1n2 B-blocks are topologically equivalent and form the second generation.

The third generation again consists of A-blocks and so on till the g-th generation - the

highest generation of the molecule. We introduce a g-dimensional topology vector n =

{n1, n2, . . . , ng}. The i-th element of this vector defines the number of blocks (A-blocks if i

is odd, and B otherwise) originated from each block in the (i−1)-th generation. The lengths

of the blocks within one generation are necessarily the same but can be different in different

generations. It is therefore useful to measure the lengths of the A-blocks in terms of the

length of the first generation fA ≡ f1 (fB ≡ f2 for the B-blocks correspondingly). Thus, we

12



introduce the following g-dimensional vector τ = {1, 1, τ3, . . . , τg}. The length of the i-th

generation is given by

fi = τi (fAǫi + fB(1 − ǫi)) (4.1)

where

ǫi =















1 i is odd

0 otherwise

If we now introduce the total content of the A-component in the molecule p, then the

following equations hold:

p = fA

g
∑

i=1

ǫiτi
i
∏

j=1

nj

1 − p = fB

g
∑

i=1

(1 − ǫi)τi
i
∏

j=1

nj (4.2)

and for the given topology (fixed g, n and τ ) and the overall composition p, fA and fB are

determined in a unique way.

Next we want to be able to calculate the distance between two given blocks. We introduce

the system of coordinates and number all blocks originated from some block on the (i−1)-th

generation from 1 to ni. Then the position of some block is given by a set of numbers, that

define the trajectory from the origin of the molecule to this block, and will be denoted by

a g-dimensional vector R. For the i-th generation block all components of R higher than i

are equal to zero. (see Fig.1). The shortest distance between the ends of two blocks with

positions R(1) and R(2) is given by

∆ =
g
∑

i=1

τi (fAǫi + fB(1 − ǫi))
(

1 − δ
R

(1)
i

−R
(2)
i

,0

)(

2 − δ
R

(1)
i

,0
− δ

R
(2)
i

,0

)

(4.3)

We reformulate the framework of Sections 1 & 2 in the form of algorithm, depicted

schematically as follows:

1) Input: g, n and τ

2) Vary p and χN in the ranges of interest and for each point:

13



- calculate the vertex functions

- calculate the free energies for the mesophases

- find the stable mesophase (the one with the lowest free energy)

3) Output: the phase diagram

The calculation of the vertex functions is preformed in the fashion described in Section

1. For example, to calculate the third order correlation function GAAB we need to move two

labels over all A-blocks, and one label over all B-blocks. For each configuration of the labels

we need to determine the type of diagram and then use the length of the blocks with the

labels for fα, fβ, . . . and the distances between those blocks for ∆1, ∆2, . . . in the equations

from Appendix B. The resulting number should be added to GAAB.

To distinguish among the different types of diagrams (line, fork, star) we introduce the

concept of pathways. A pathway from one block to another one consists of the positions of

all blocks lying in-between those two (so, the pathway is a set of maximally 2(g−1) vectors).

Now suppose we know that the labels (three or four of them) occupy three different blocks.

According to Appendix A they can form a line- or a star-type diagram. In the first case one

of the blocks belongs to the pathway between the others, while in the second case it does

not. Checking this condition allows us to distinguish among different types of diagrams (In

the 4-block case the number of conditions increases but the general idea remains the same).

The procedure of the free energy minimization with respect to the amplitudes a and b is

the same as that of Leibler [4] and is not presented here. We proceed with the results for

different dendrimers.

Figs.2-7 show the phase behaviour of various architectures. Despite the differences in

topology, number of blocks and branching points, all systems behave in a similar way.

Their phase diagrams are very close to those of the diblock [4], triblock [11], stars and

graft copolymers [12,13]. The total number of blocks and branching points influences the

spinodal temperature, while the ratio nA/nB and the number of branching points influences

the asymmetry of phase diagrams. (A similar observation was made in [12] where the authors
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connected the increase of complexity of molecules with the shift of the spinodal temperature.)

Moreover, the relative sizes of the stability regions for different phases are almost the same

for all systems, while the types of phases and their order is completely independent of

the topology of molecules. Therefore, we conclude that all mean-field model systems with

Gaussian chains will have phase diagrams similar to Figs.2-7. This is in agreement with

the recently proposed constituting block copolymer hypothesis [31] which explains the phase

behaviour of complicated molecules on the basis of the behaviour of their constitutive blocks.

For example, in the case of the two-generation dendrimer from Fig.2, the A1B2 miktoarm-

stars are the building blocks of the molecules and their behaviour qualitatively corresponds

to the phase diagram of the {2, 2}-dendrimer. Since we can always construct a complicated

molecule from simple ones, like diblock, triblock and so on, the resulting phase behaviour

is going to be typical. However, unlike the general theory of Sections 2 and 3, our model

system does not consider structures where the ends of the blocks are the branching points

with both A and B blocks attached to them. (This is necessary, for example, to model comb

copolymers.) Therefore we cannot be sure that such systems will also have typical phase

diagrams. There is also evidence of the opposite: Dobrynin and Erukhimovich found that

the theory fails for the homo-stars AnBn with n > 5 and the corresponding phase diagrams

contain regions where the phase behaviour cannot be predicted within the used approach

[13]. Nevertheless, the other phase diagrams show the same typical behaviour.

We also want to notice the complete absence of the OBDD morphology. This is not

surprising even for the {4, 4, 4}-dendrimers with the 4-fold symmetry of molecules. As it

was shown by Matsen and Bates [3], the OBDD phase has larger interface in comparison

with the GYR phase and could be stable only at very low temperatures. It is however

screened by other morphologies (BCC and HEX).

Another interesting feature is a notably big region of stability of the bicontinuous gyroid

phase in Fig.6. For such molecules the highly branched structure and the relative confor-

mational freedom of the end A-B blocks favor the GYR phase to the LAM phase. This is

not a feature of the {3, 3, 3}- and {4, 4, 4}-dendrimers, for example, because there the outer
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shell of the molecule consists only of the A blocks. As the AB dendrimers were not studied

experimentally yet, we recommend the systems like {5, 1, 3, 1} to produce relatively easy the

bicontinuous gyroid phase.

At the end we want to mention that our tree-like model is capable of describing stars,

polyblocks, umbrellas, and many other architectures. Because of space limitations those

results are not presented here.

V. CONCLUSION

In the present paper we have shown how to calculate phase diagrams for systems with

arbitrary topology. The developed method is a generalization of the work by Leibler [4].

The monomeric correlation functions are calculated with the help of a special diagrammatic

technique which allows us to treat an arbitrary molecular topology. Apart from the assump-

tion that the polymers obey Gaussian statistics even below the order-disorder transition

temperature, the calculation of the vertex functions is approximation-free. The free ener-

gies for different mesophases are calculated within the second-harmonic approximation as it

was formulated by Hamley and Podneks [10,9]. The influence of this approximation and its

relationship with the random-phase approximation requires additional study.

The architecture of polymer molecules is known to influence the phase diagram only

slightly [12]. This was once again confirmed by our studies of highly-branched model

dendrimers. We found that the topology of molecules influences the spinodal tempera-

ture and asymmetry of the phase diagrams, but not the types of phases and their or-

der. The typical phase diagrams are presented in the Results and Discussion. That

model system, however, does not cover all possible architectures. Many more phase di-

agrams together with the C-code used to obtain them can be found on the Internet:

http://rugmd4.chem.rug.nl/˜morozov/research.html.

Our method can be a starting point for a fluctuation theory of systems with arbitrary

topology. This will require some straightforward generalization of the Hartree approximation
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by Brazovskii [32,33] and Fredrickson and Helfand [34], since for some systems (see, for

example, Figs.4 and 5) the 4-th order vertex function Γ4(h1, h2) exhibits a strong angle-

dependence and, therefore, cannot be approximated by the constant value Γ4(0, 0) or any

other. One of the possible ways for such a generalization was proposed by Dobrynin and

Erukhimovich [35].
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APPENDIX A: DIAGRAMMATIC TECHNIQUE

We consider a polymer molecule consisting of nA blocks of type A and nB blocks of

type B. The total number of monomers in the molecule is N . We shall use Greek letters to

number the blocks: α, β, γ, δ = 1 . . . nA + nB. The length of the α-th block is Lα = fαN .

We use solid lines to denote blocks and dashed lines to denote arbitrary distance between

blocks. The circles denote the labeled monomers. We use s, s′, s′′ . . . for the positions of

the labels on their blocks. A diagram with n labels will be called the n-th order diagram.

The labels act as sources of momentum. A circle labeled with a, b, c . . . emits qa,qb,qc . . .

respectively. The total momentum of any diagram should be zero, therefore all external

lines should carry zero momentum. We also introduce a convention (which does not affect

our results) that all momenta flow from left to right along the chain. This can be illustrated

by the following:

u u u

0 q1 q1 + q2 0

q1 q2 q3

A given number of blocks can form topologically different diagrams:

2: 3:
line line star

4:
line fork star

Necessarily, all momenta flowing in and out of each branching point should add up to

zero.

Following [4] we assume that all wavevectors have the same length |q| = q∗ and introduce

the following angle variables:
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for the 3rd order diagrams: q2
i = q2

∗h
(3)
i , h(3) = (1, 1, h)

for the 4th order diagrams: (qi + qj)
2 = q2

∗h
(4)
ij

where

h(4) =

























4 h1 4 − h1 − h2 h2

h1 4 h2 4 − h1 − h2

4 − h1 − h2 h2 4 h1

h2 4 − h1 − h2 h1 4

























The matrix h(4) has two important symmetry properties: h
(4)
ij = h

(4)
ji and h

(4)
ij = h

(4)
kl for

i 6= j 6= k 6= l. These properties will be extensively used in Appendix B.

For any internal line we subscribe the Gaussian propagator:

P(l) = e−
x
N

l , x = q2
∗R

2
G

where RG is the radius of gyration of an ideal chain of N monomers. The product of the

propagators is integrated over all possible positions of all labels on their blocks. The result

should be then multiplied with the symmetry factor arising from all possible permutations

of labels that result in topologically the same diagram and keep labels on the blocks they

initially occupied. Finally, the normalization constant 1/N is added.

The following functions will appear as the building blocks for all diagrams:

Ff =
1 − e−fx

x

Ff(h) =
[

Ffh

h
| Ff | f

]

Jf (h) =
1

x2

[

1

h
− e−fx

h− 1
− e−hfx

h− h2
| 1 − e−fx − fxe−fx | fx+ e−fx − 1

]

Df (h) =
1

x2

[

hfx+ e−hfx − 1

h2
| fx+ e−fx − 1 | f 2x2

2

]

T1(f, h) =
1

x4

[

fx

h
+ e−fx fx

h− 1
+ e−fx 2h− 3

(h− 1)2
+

e−fhx

h2(h− 1)2
− 2h+ 1

h2
|

f 2x2

2
e−fx + 2fxe−fx + fx− 3 + 3e−fx | f 2x2

2
+ 3 − 2fx− (3 + fx)e−fx

]
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T2(f, h) =
1

x3

[

1

h
− e−fhx

h(h− 1)2
− h− 2

(h− 1)2
e−fx − fx

h− 1
e−fx |

1 − e−fx − fxe−fx − f 2x2

2
e−fx | 2e−fx + fxe−fx + fx− 2

]

All functions of the angle variable h are defined in the following way:

. . . (h) = [ h 6= 0, 1 | h = 1 | h = 0 ]

Some of these functions were previously defined in [4,11,36]. Separate elements of the pre-

sented diagrammatic technique were used in [26,37–39].

APPENDIX B: CALCULATION OF DIAGRAMS

Sij = t t
α

ss′

+ t t
β α

ss′ N∆

I) =
2

N

∫ Lα

0
ds
∫ s

0
ds′P (s− s′) = 2NDfα(1)

II) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′P (s+ s′ +N∆) = NFfαFfβ

e−x∆

Gijk = t t t
α

ss′s′′

+ t t t
β α

ss′s′′ N∆

a
+ t t t

γ β α

ss′s′′ N∆1 N∆2

abc

+ t t

t

α β

γ

s s′

s′′

N∆1 N∆2

N∆3

a b

c

I) =
1

N

3
∑

a6=b6=c=1

∫ Lα

0
ds
∫ s

0
ds′

∫ s′

0
ds′′P

(

h(3)
a (s− s′) + h(3)

c (s′ − s′′)
)

= 2N2 [2g2(fα, h) + g2(fα, 1)]

II) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ s′

0
ds′′

[

P
(

h(3)
c (s′ − s′′) + h(3)

a (Lβ − s′ +N∆ + s)
)

+ P
(

h
(3)
b (s′ − s′′) + h(3)

a (Lβ − s′ +N∆ + s)
)]

= N2e−h
(3)
a x∆Ffα(h(3)

a )
[

Jfβ
(h) + Jfβ

(h(3)
a )

]
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III) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′ P

(

h(3)
c (s′′ +N∆1 + s′) + h(3)

a (Lβ − s′ +N∆2 + s)
)

= N2e−xfβh
(3)
c e−x(h

(3)
c ∆1+h

(3)
a ∆2)Ffα(h(3)

a )Ffβ
(h(3)

a − h(3)
c )Ffγ(h

(3)
c )

IV ) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′ P

(

h(3)
a (s+N∆1) + h

(3)
b (s′ +N∆2) + h(3)

c (s′′ +N∆3)
)

= N2Ffα(h(3)
a )Ffβ

(h
(3)
b )Ffγ(h

(3)
c )e−x(h

(3)
a ∆1+h

(3)
b

∆2+h
(3)
c ∆3)

Gijkl = t t t t
α

ss′s′′s′′′

+ t t t t
β α

ss′s′′s′′′ N∆

a
+ t t t t

β α

ss′s′′s′′′ N∆

b↔a
+ t t t t

αβγ

ss′s′′s′′′ N∆1 N∆2

ab

+ t t t t
αβγ

ss′s′′s′′′ N∆1 N∆2

ab
+ t t

t

t

α β

γ

s s′

s′′

s′′′

N∆1 N∆2

N∆3

a b

+ t t t t
αβγδ

ss′s′′s′′′ N∆1 N∆2 N∆3

ab

+ t t

t

t

δ γ

β

α

s

s′

s′′′ s′′N∆1 N∆2

N∆4

N∆3

b

a

+

t

t

t

t

β

α

γ

δ

s

s′

s′′′

s′′

N∆1

N∆2

N∆4

N∆3

N∆5

b

a

I) =
2

N

4
∑

p 6=q=1

∫ Lα

0
ds
∫ s

0
ds′

∫ s′

0
ds′′

∫ s′′

0
ds′′′

P
(

s′′ − s′′′ + h(4)
pq (s′ − s′′) + s− s′

)

= 8N3
4
∑

p=2

T1(fα, h
(4)
1p )
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II) =
2

N

4
∑

p=1,p 6=a

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ s′

0
ds′′

∫ s′′

0
ds′′′

P
(

s′′ − s′′′ + h(4)
ap (s′ − s′′) + Lβ − s′ +N∆ + s

)

= 2N3e−x∆Ffα

4
∑

p=1,p 6=a

T2(fβ , h
(4)
ap )

III) =
4

N

∫ Lα

0
ds
∫ s

0
ds′

∫ Lβ

0
ds′′

∫ s′′

0
ds′′′

P
(

s′′ − s′′′ + h
(4)
ab (Lβ − s′′ +N∆ + s′) + s− s′

)

= 4N3e−hx∆Jfα(h
(4)
ab )Jfβ

(h
(4)
ab )

IV ) =
2

N

∫ Lα

0
ds
∫ s

0
ds′

∫ Lβ

0
ds′′

∫ Lγ

0
ds′′′

P
(

s′′′ +N∆1 + s′′ + h
(4)
ab (Lβ − s′′ +N∆2 + s′) + s− s′

)

= 2N3e−x(∆1+h
(4)
ab

∆2)Ffγe
−xfβFfβ

(h
(4)
ab − 1)Jfα(h

(4)
ab )

V ) =
1

N

4
∑

p=1,p 6=a,b

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ s′

0
ds′′

∫ Lγ

0
ds′′′

P
(

s′′′ +N∆1 + s′′ + h(4)
ap (s′ − s′′) + Lβ − s′ +N∆2 + s

)

= N3e−x(∆1+∆2)FfαFfγe
−fβx

4
∑

p=1,p 6=a,b

Dfβ
(h(4)

ap − 1)

V I) =
2

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′

∫ s′′

0
ds′′′

P
(

s+N∆1 + s′ +N∆2 + h
(4)
ab (N∆3 + s′′′) + s′′ − s′′′

)

= 2N3e−x(∆1+∆2+h
(4)
ab

∆3)FfαFfβ
Jfγ (h

(4)
ab )

V II) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′

∫ Lδ

0
ds′′′

P
(

s′′′ +N∆1 + s′′ + h
(4)
ab (Lγ − s′′ +N∆2 + s′) + Lβ − s′ +N∆3 + s

)

= N3e−x(∆1+h
(4)
ab

∆2+∆3)FfαFfβ
(h

(4)
ab − 1)e−x(fβ+fγ)Ffγ(h

(4)
ab − 1)Ffδ

V III) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′

∫ Lδ

0
ds′′′

P
(

s+N∆4 + s′ +N∆3 + s′′′ +N∆1 + s′′ + h
(4)
ab (Lγ − s′′ +N∆2)

)

= N3e−x(∆1+h
(4)
ab

∆2+∆3+∆4)FfαFfβ
efγxFfγ(h

(4)
ab − 1)Ffδ
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IX) =
1

N

∫ Lα

0
ds
∫ Lβ

0
ds′

∫ Lγ

0
ds′′

∫ Lδ

0
ds′′′

P
(

s+N∆4 + s′ +N∆3 + h
(4)
ab N∆5 + s′′ +N∆2 + s′′′ +N∆1

)

= N3FfαFfβ
FfγFfδ

e−x(∆1+∆2+∆3+∆4+h
(4)
ab

∆5)

APPENDIX C: COEFFICIENTS Ξ

We use the following notation: Γ̃4

(

4
∑

α=1

∆α

q∗
, h1, h2

)

= Γ̃4

(

4
∑

α=1

∆α

q∗
, h(4)

)

.

FCC:

Ξ
(F )
1 = 6Γ̃4

(

0, 0,
4

3

)

+ Γ̃4 (0, 0, 0) + 2Γ̃4

(

0,
4

3
,
4

3

)

Ξ
(F )
2 = 4Γ̃4 (4Q, 0, 2) + Γ̃4 (4Q, 0, 0)

Ξ
(F )
3 = 3Γ̃4 (2Q, 0, z) + Γ̃4 (2Q, 2, z) + Γ̃4 (2Q, z, z) + Γ̃4

(

2Q,
8

3
, z
)

z = 2 − 2√
3

, Q =
2√
3
− 1

OBDD:

Ξ
(O)
1 = 2Γ̃4 (0, 0, 2) + 8Γ̃4 (0, 0, 1) + Γ̃4 (0, 0, 0) + 4Γ̃4 (0, 1, 1)

Ξ
(O)
2 = Γ̃4 (4Q, 0, 0) + 2Γ̃4

(

4Q,
4

3
,
4

3

)

+ 6Γ̃4

(

4Q, 0,
4

3

)

Ξ
(O)
3 = 4Γ̃4 (2Q, 0, 2) + 6Γ̃4 (2Q, 0, z) − 2Γ̃4

(

2Q, 2,
2

3

)

− 6Γ̃4 (2Q, 2, z) + Γ̃4 (2Q, z, z)

+Γ̃4 (2Q, 4, z) + Γ̃4

(

2Q,
8

3
, z
)

− 2Γ̃4

(

2Q,
4

3
, z
)

z = 2 − 2

√

2

3
, Q =

√

3

2
− 1

GYR:

Ξ
(G)
1 = Γ̃4 (0, 0, 0) + 4Γ̃4

(

0, 0,
1

3

)

+ 4Γ̃4 (0, 0, 1) + 8Γ̃4

(

0, 0,
5

3

)

− 4Γ̃4

(

0,
1

3
,
2

3

)

− 4Γ̃4

(

0,
5

3
,
5

3

)

+ 2Γ̃4

(

0, 0,
4

3

)

+ 2Γ̃4

(

0,
2

3
,
2

3

)

+ 4Γ̃4

(

0, 0,
2

3

)

Ξ
(G)
2 = 8Γ̃4 (4Q, 0, 1) + 2Γ̃4 (4Q, 0, 2) + 4Γ̃4 (4Q, 1, 1) + Γ̃4 (4Q, 0, 0)
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Ξ
(G)
3 = 2Γ̃4

(

Q, 0,
1

3

)

− 2Γ̃4

(

Q, 0,
5

3

)

+ Γ̃4

(

Q,
1

3
,
1

3

)

+ Γ̃4

(

Q,
2

3
,
5

3

)

+ 2Γ̃4

(

Q, 1,
4

3

)

− 6Γ̃4

(

Q, 2,
1

3

)

− 2Γ̃4

(

Q, 2,
1√
3

)

− 2Γ̃4

(

Q, 2,
√

3
)

− 2Γ̃4

(

Q,
1

3
,
4

3

)

+ 2Γ̃4

(

Q,
5

3
,
1

3
+

2√
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FIG. 1. Model dendrimeric tree-like structure. The empty circle denotes the origin of the

molecule. The filled circles denote the labeled blocks. a) Here we illustrate the introduced system

of coordinates. The positions of the labels A, B and C are R(A) = {1, 2, 2}, R(B) = {2, 0, 0} and

R(C) = {2, 3, 2}, respectively. b) The bold lines denote the pathways between the labeled blocks.

The pathways are: PW(A,B)={{1,2,0},{1,3,0}} and PW(C,D)={{2,2,0},{2,0,0},{3,0,0},{3,2,0}}.

29



0.77
p

42χN

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

20.0

40.0

60.0

80.0

100.0

χN

LAM

GYR

GYR

HEX

HEX

FCC

BCC BCC

FCC

DIS

FCCBCC

HEX

FIG. 2. Phase diagram for the g = 2, n = {2, 2} and τ = {1, 1} dendrimer. The DIS-FCC line

on the small graph does not touch the FCC-BCC line because of the finite step size.
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FIG. 3. Phase diagram for the g = 2, n = {10, 4} and τ = {1, 1} dendrimer.
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FIG. 4. Phase diagram for the g = 3, n = {3, 3, 3} and τ = {1, 1, 1} dendrimer.
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FIG. 5. Phase diagram for the g = 3, n = {4, 4, 4} and τ = {1, 1, 1} dendrimer. The cartoon

of the dendrimer is not in scale: all lengths of the A-blocks should be the same.
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FIG. 6. Phase diagram for the g = 4, n = {5, 1, 3, 1} and τ = {1, 1, 1, 1} dendrimer.
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(pentablock).
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