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CHAPTER 1

INTRODUCTION

The diff erential diagnosis of neurodegenerative brain diseases may be diffi  cult on clinical 

grounds only, especially at an early disease stage. Neurodegenerative brain diseases such as 

Parkinson’s Disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), 

corticobasal degeneration (CBD), dementia with Lewy Bodies (DLB), Alzheimer’s Disease (AD) and 

frontotemporal dementia (FTD) have overlapping features at presentation, while the typical clinical 

syndrome may become clear only at later disease stages. For this reason, there is increasing interest 

to use neuroimaging techniques in the hope to discover abnormal patterns of brain structure, 

energy consumption or network activity which are characteristic of such diseases. It is important 

to determine the relationship between biochemical brain activities and disease processes. Positron 

emission tomography (PET) tracer methods assess specifi c biochemical activities of the human 

brain and can be used to obtain insight in the pathophysiology of brain diseases. 

In this thesis, the results of increasing possibilities of investigating resting brain activity 

in neurodegenerative brain diseases using [18F]-fl uorodeoxyglucose (FDG)-PET and magnetic 

resonance techniques imaging will be discussed.

The main objectives were to investigate diff erences in glucose metabolism and other image 

modalities in various neurodegenerative brain diseases using diff erent analysis techniques. A 

general introduction and the results are presented in the following chapters.

OUTLINE OF THE THESIS

In chapter 2 an introduction on Parkinson’s Disease and diff erent molecular imaging techniques is 

given including the relevance for clinical practice. 

In chapter 3 specifi c regional diff erences of brain metabolism applying [18F]-fl uoro- deoxyglucose 

positron emission tomography (FDG-PET), were identifi ed in seven diff erent neurodegenerative 

brain diseases when they were compared to a healthy control group using univariate methods. In 

chapter 4 the usefulness of FDG-PET in investigating diff erent neurodegenerative brain diseases 

and applying more advanced multivariate analysis methods like the scaled subprofi le model (SSM), 

principal component analysis (PCA) is reviewed.

In chapter 5 en 6 this SSM/PCA analysis technique is further investigated in our own population 

with parkinsonian syndromes in chapter 5 and in Alzheimer’s Disease in chapter 6, suggesting that 

this method can assist in early diff erential diagnosis of neurodegenerative brain diseases. In chapter 

7 the national database project GLucose IMaging in ParkinsonismS (GLIMPS) is introduced. The 

background, design and goal of the project will be outlined.

In chapter 8 a PD-related metabolic and perfusion covariance pattern is identifi ed using perfusion-

MRI and FDG-PET imaging and (dis)similarities in the disease-related pattern between perfusion 

and metabolism in PD patients is assessed. 

Chapter 9 provides an overview, discussion and future perspectives of the disease-specifi c brain 

patterns presented in this thesis.
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CHAPTER 2

ABSTRACT

Parkinson’s disease (PD) is manifested clinically by bradykinesia, muscular rigidity and sometimes 

rest tremor. The pathological hallmark of PD is the degeneration of dopaminergic cells within the 

substantia nigra-pars compacta (SNc) and the subsequent dopamine depletion of the striatum.  

Besides disturbances in motor performance, other symptoms like REM sleep behavior disorder, 

autonomic dysfunction, depression and cognitive defi cits can play a role in PD. It can be diffi  cult 

to distinguish PD from other neurodegenerative brain diseases, but early diagnosis is important 

because prognosis and treatment options diff er. Structural imaging is in general not helpful at early 

disease stages. However, nuclear imaging methods can display striatal dopaminergic activity in PD, 

but also visualize brain perfusion and glucose metabolism to show disease related changes in local 

brain function or identify cholinergic defi cits associated with cognitive dysfunction. Presynaptic 

dopaminergic imaging either with PET or SPECT is the gold standard to diff erentiate between 

patients with parkinsonian features associated with and without a presynaptic dopaminergic 

defi cit. In order to diff erentiate between PD and other neurodegenerative brain diseases, specifi c 

disease related metabolic patterns identifi ed with FDG-PET imaging could be of great assistance in 

the individual clinical diagnosis.

1.1 INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative brain disease after 

Alzheimer’s disease. The prevalence of PD in industrialized countries is generally estimated at 

0.3% of the entire population and about 1% in people over 60 years of age. Reported standardized 

incidence rates of PD are 8-18 per 100000 person-years (de Lau and Breteler. 2006). PD is manifested 

clinically by bradykinesia, muscular rigidity and sometimes rest tremor. Supportive features of the 

diagnosis are a unilateral onset of motor symptoms, progressive disorder and a good and consistent 

levodopa response (Litvan, et al. 2003).

The basal ganglia, which consist of the striatum (putamen, caudate nucleus) together with 

globus pallidus pars interna and externa (GPi, GPe), substantia nigra pars reticulata and compacta 

(SNr, SNc) and subthalamic nucleus (STN) play a role in motor control, but they are also involved 

in various emotional and cognitive functions (Alexander, et al. 1986). The pathological hallmark of 

PD is the degeneration of dopaminergic neurons within the SNc and the subsequent dopamine 

depletion of the striatum, especially putamen. Via diff erent types of dopamine receptors in the 

two populations of striatal output neurons, dopamine has an opposing eff ect on the basal ganglia 

output nuclei (GPi and SNr) and thus on the thalamic targets of these nuclei. Via the dopamine 

D1 receptor the activity of the direct pathway is facilitated. Activation of the direct pathway which 

projects directly to the GPi and SNr disinhibits the thalamus and thereby increases thalamocortical 

activity. 

The indirect pathway passes fi rst in a GABAergic way to the GPe and STN, and fi nally in an excitatory 

glutamatergic projection from the STN to the GPi, thereby inhibiting thalamocortical neurons. 
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The dopamine D2 receptor reduces transmission in the indirect pathway (DeLong and Wichmann. 

2009, Groenewegen and van Dongen Y.C. 2008) (Figure 1). So although their synaptic actions are 

diff erent, the dopaminergic inputs to the two pathways lead to the same eff ect, namely reducing 

inhibition of the thalamocortical neurons and thus facilitating movements initiated in the cortex. 

As mentioned before, in PD dopamine is depleted, which leads to reduced inhibition of the 

indirect pathway and reduced excitation of the direct pathway, with the net result of an excessive 

activation of the BG output nuclei and inhibition of thalamocortical and brainstem motor systems, 

leading to parkinsonian motor features (Bartels and Leenders. 2009, DeLong and Wichmann. 2007, 

Groenewegen. 2003). 

Figure 1:  Direct and indirect striatal output pathways and the infl uence of dopamine on these routes, repre-
sented in a semi-sagittal scheme of the cerebral cortex and the basal ganglia. The direct pathway runs from the 
striatum to the internal segment of the globus pallidus and the substantia nigra pars reticulata. This pathway 
contains the peptides substance P (SP) and dynorphin (DYN) as well as the dopamine D1 receptor. The fi rst link 
in the indirect striatal output pathway consists of the projections from the striatum to the external segment of 
the globus pallidus. These striatal neurons express the peptide enkephalin (ENK) and contain the dopamine D2 
receptor. The subsequent steps in the indirect route are the pallido-subthalamic and the subthalamo-pallidal 
projections. Dopamine has opposite eff ects on the two striatal output routes, stimulating the direct pathway 
and inhibiting the indirect pathway. Abbreviations: Acb, nucleus accumbens; Caud, caudate nucleus; GPe, ex-
ternal segment of the globus pallidus; GPi, internal segment of the globus pallidus; MC, primary motor cortex; 
MD, mediodorsal thalamic nucleus; O, occipital cortex; P, parietal cortex, PFC, prefrontal cortex; Put, putamen; 
sc, central sulcus; SNC, substantia nigra pars compacta; SNR, substantia nigra pars reticulata; STN, subthalamic 
nucleus; T, temporal cortex; VA, ventral anterior thalamic nucleus; VL, ventral lateral thalamic nucleus.
(Reproduced with permission: Wolters, van Laar, Berendse (eds.) Parkinsonism and Related Disorders. Amster-
dam, VU University Press, 2008)
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Especially at early disease stages in PD, levodopa administration is highly eff ective for improving 

motor symptoms. Long-term treatment is accompanied by fl uctuations in motor performance and 

dyskinesias. As PD progresses, patients develop features which are diffi  cult to treat, such as freezing 

episodes, autonomic dysfunction (orthostatic hypotension), depression and dementia (Horstink, 

et al. 2006). Deep brain stimulation (DBS) of the STN can be a highly eff ective and increasingly 

used treatment for selected patients in advanced disease stages. Reduction of motor fl uctuations 

and disappearance of levodopa induced dyskinesias after dosage reduction of antiparkinsonian 

medication are the main features of this intervention (Asanuma, et al. 2006, Limousin, et al. 1998).

Although the clinical progression and treatment response of PD is diff erent from other parkinsonisms 

such as multiple system atrophy (MSA) and dementia with Lewy Bodies (DLB), they share the 

pathological feature of disturbed α-synuclein and are designated as α-synucleinopathies (Gilman, et 

al. 2008, McKeith. 2006). α-Synuclein is a structural protein localized primarily to synaptic terminals. 

In PD and DLB α-synuclein is a key component of the pathological hallmark Lewy Body and in 

MSA there are α-synuclein containing glial cytoplasmic inclusions (Galpern and Lang 2006). Other 

neurodegenerative brain diseases with parkinsonism like progressive supranuclear palsy (PSP) and 

corticobasal degeneration (CBD) show disturbances in tau protein handling and are designated as 

tauopathies (Galpern and Lang 2006, Litvan, et al. 1996, Mahapatra, et al. 2004). It can be diffi  cult 

to distinguish PD from other neurodegenerative brain diseases, especially at early disease stages 

and on clinical grounds only.  Structural imaging is in general not helpful at early disease stages. 

However, nuclear imaging methods can display striatal dopaminergic activity in PD, but also 

visualize brain perfusion and glucose metabolism to show disease related changes in local brain 

function or identify cholinergic defi cits associated with cognitive dysfunction (Hilker, et al. 2005, 

Leenders, et al. 1984b). These techniques gain further insight in pathological mechanisms in PD 

and assist in the diff erential diagnosis of neurodegenerative brain diseases. In the next paragraphs, 

nuclear imaging methods which display diff erent aspects of pathological mechanisms in PD will be 

further discussed. 

2.2 STRIATAL DOPAMINERGIC IMAGING

Radiotracer neuroimaging techniques using positron emission tomography (PET) or single 

photon emission computed tomography (SPECT) can be helpful in visualizing and measuring 

striatal dopaminergic activity in patients with parkinsonism (Innis, et al. 1993, Leenders, et al. 

1990). Dopamine synthesis takes place within the striatal nerve terminals of dopaminergic 

neurons (Figure 2). Radioactive tracers can bind to the dopamine transporter (DAT), the vesicular 

monoamine transporter 2 (VMAT2) and the enzyme aromatic-amino-acid decarboxylase (AADC). 

The dopaminergic system can be measured using diff erent tracers (Piccini and Whone 2004). 
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2.2.1 Presynaptic dopaminergic imaging

The most widely used PET tracer to study the presynaptic dopaminergic system in PD is 6- [18F] 

fl uoro-L-3, 4-dihydroxyphenylalanine (FDOPA). It estimates the rate of decarboxylation of FDOPA 

to [18F]-fl uorodopamine by AADC, a function of striatal levodopa decarboxylase activity (Figure 2). 

[18F] FDOPA striatal uptake rate is correlated to cellular density of substantia nigra dopaminergic 

neurons and to striatal dopamine concentrations (Garnett, et al. 1983, Leenders, et al. 1986). In early 

PD patients, FDOPA uptake is diminished primarily in the posterior putamen and relatively preserved 

in the anterior putamen and caudate (Leenders, et al. 1990). In healthy controls the ratio of posterior 

putamen to caudate nucleus is about 1, whereas in early PD this ratio is around 0.6. In MSA patients, 

this gradient is not present and FDOPA uptake is reduced in both caudate and putamen (Otsuka, 

et al. 1996, Piccini and Whone. 2004). Nonetheless, subsequent studies have shown that caudate/

putamen diff erences are not suffi  ciently reliable to categorize individual cases. Another method 

to distinguish healthy controls from PD patients is to look for asymmetrical uptake between the 

left and right putamen. In healthy controls there is no asymmetry and in early PD the putamen 

contralateral to the most aff ected diseased body side is more decreased (Leenders, et al. 1990) 

Using SPECT and PET, the uptake of tracers with a high affi  nity for the dopamine transporter 

(DAT) can be measured (Booij, et al. 1997, Rinne, et al. 1995, Rinne, et al. 1999, Volkow, et al. 1995). 

Figure 2: Schematic representation of dopa-
mine synthesis within dopaminergic neurons, 
including sites of action of dopaminergic trac-
ers (a,b,c,d). Dopamine (DA) synthesis takes 
place within nerve the striatal nerve terminals 
of dopaminergic neurons. Within the cytoplasm 
of dopaminergic terminals, tyrosine is fi rst con-
verted to L-3,4,-dihydroxyphenylalanine (L-do-
pa) by the enzyme tyrosine hydroxylase (TH). L-
dopa is then decarboxylated by aromatic amino 
acid decarboxylase (AADC) to DA. The synthe-
sized DA enters the presynaptic vesicles via the 
vesicular monoamine transporter type 2 (VMAT 
2). Following depolarization of nerve terminals, 
the stored DA is released into the synaptic cleft 
and interacts with pre- and postsynaptic DA 
receptors. a) The PET tracer [18F] FDOPA binds 
to AADC and estimates the rate of decarbox-
ylation of FDOPA to [18F]-fl uorodopamine by 
AADC which represents a function of striatal le-
vodopa decarboxylase activity b) the PET tracer 
[11C]-DTBZ binds to VMAT2 and blocks the 
uptake of monoamines into the vesicles which 

represents the integrity of striatal monoaminergic nerve terminal density. c) The SPECT tracers [123 I]FP-CIT) and 
[123 I]β-CIT bind to the DA transporter which represents a marker of the integrity of presynaptic nigrostriatal 
dopamine terminals. d) The PET tracer [11C]-raclopride and the SPECT tracer [123I] iodobenzamide IBZM bind to 
the postsynaptic dopamine D2 receptor which allows the visualization of striatal dopamine D2 receptor binding.
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However, in clinical practice mostly SPECT is used, because this is more widely available. DATs are 

located on dopaminergic nerve endings and facilitate the release and reabsorption of dopamine in 

the presynaptic terminals and are modulated by the concentration of endogenous dopamine (Innis, 

et al. 1993). Striatal DAT binding represents a marker of the integrity of presynaptic nigrostriatal 

dopamine terminals and can be assessed with a variety of radio labeled cocaine derivatives, 

including [123 I]FP-CIT) and [123 I]β-CIT-SPECT (Figure 2). Several studies have demonstrated that 

striatal β-CIT and FP-CIT uptake is reduced in patients with PD compared to controls (Booij, et al. 

1997, Innis, et al. 1993, Rinne, et al. 1995, Tissingh, et al. 1998). Eshuis et al. demonstrated that both 

FP-CIT SPECT and F-DOPA-PET are equally able to distinguish patients with parkinsonian syndromes 

from healthy controls (Eshuis, et al. 2009) 

Since the mid-1990s [11C]-dihydrotetrabenazine (DTBZ)-PET has been used in humans to monitor 

the integrity of striatal monoaminergic nerve terminal density. However, nowadays it is only used 

in a few research centers in the world. Tetrabenazine binds to VMAT2 (a protein responsible for the 

uptake of monoamines into the synaptic vesicles) and blocks the uptake of monoamines into the 

vesicles (Figure 2) (Lee, et al. 2000). DTBZ has an advantage over FDOPA and DAT ligands in the 

sense that it has limited peripheral metabolism and is not subject to pharmacological regulation. 

However, the main disadvantage is the non-specifi city for dopamine (Au, et al. 2005). 

Presynaptic dopaminergic imaging can also be used to distinguish between PD patients and 

vascular parkinsonism or essential tremor, (Figure 3) (Gerschlager, et al. 2002, Marshall, et al. 2006) 

but not between PD and other parkinsonisms such as MSA and PSP (Piccini and Whone. 2004) 

Figure 3: Example of individual patients with and without a presynaptic dopaminergic defi cit using two diff er-
ent tracers. Above examples of a FP-CIT-SPECT scan and below examples of an FDOPA-PET scan. a) individual 
without a presynaptic dopaminergic defi cit (essential tremor) and b) individual with a presynaptic dopaminer-
gic defi cit (patient with Parkinson’s Disease).
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Functional imaging of the presynaptic nigrostriatal dopaminergic system has been used to assess 

the rate of disease progression in PD (Brooks, et al. 2003, Hilker, et al. 2005, Pavese, et al. 2009, Pirker, 

et al. 2003, Rinne, et al. 1995, Volkow, et al. 1998). Using FDOPA-PET in PD, a more rapid decline in 

the putamen was observed than in the caudate nucleus, giving an overall annual rate of decline of 

5.3% in the total striatum of FDOPA uptake (Morrish, et al. 1998). 

There are also a number of longitudinal SPECT studies which report annual rates of progression 

between 5-8% of baseline in the striatum. However, DAT-SPECT does not have the anatomical 

resolution to detect subregional diff erences in rate of progression (Au, et al. 2005, Pirker, et al. 2003).

Now that there is a marker of disease progression, it is also possible to study treatment interventions 

that may have an eff ect on disease progression. The CALM-PD study compared the early use of 

pramipexole with levodopa, using β-CIT-SPECT as an imaging modality, (Parkinson Study Group 

2000) the REAL-PET study compared ropinirole vs levodopa in de novo PD patients and used FDOPA-

PET as a marker to assess disease progression (Whone, et al. 2003) and in the ELLDOPA trial the eff ects 

of levodopa on clinical progression were studied using β-CIT-SPECT as an imaging modality (Fahn 

2005). Furthermore, a few studies have been conducted to assess the eff ects of human embryonic 

dopaminergic tissue transplantation and they used FDOPA-PET to monitor imaging changes (Ma, et 

al. 2010b). Overall the results of these studies show no clear eff ect of dopamine agonist treatment 

on disease progression as indicated by striatal dopaminergic features. The radiotracer methods 

applied in these studies are adequate, but simply an eff ective infl uence of the drug treatment on 

neuronal degeneration has been absent. On the other hand, if indeed a change of local striatal 

dopaminergic activity takes place as is the case after implantation of embryonic dopaminergic cells, 

then the applied radiotracer methods do indeed refl ect these changes.

Also it has been investigated whether DBS treatment of parkinsonian patients would halt or slow 

further progression of the disease since STN-DBS is expected to reduce the glutamatergic fi ring of 

the STN. One study investigated this but did not see an alteration of striatal FDOPA uptake in PD 

patients after implantation (Hilker, et al. 2005).

2.2.2 Postsynaptic dopaminergic imaging

One diff erence in striatal pathology between PD and other diseases like MSA and PSP can be 

evaluated by investigation of the postsynaptic dopamine D2 receptor. Examples of receptor 

binding ligands include [11C]-raclopride for PET imaging and [123I] iodobenzamide (IBZM) for 

SPECT imaging (Figure 2) (Farde, et al. 1985, Kung, et al. 1990). Several studies have shown that 

D2 receptors may be up-regulated in early untreated PD patients, but in later disease stages there 

is a reduction in striatal D2 receptor binding (Antonini, et al. 1997, Brooks, et al. 1992). Neurons 

containing dopamine 2 receptors are especially aff ected in patients with MSA and PSP (Brooks, et al. 

1992, Schwarz, et al. 1993, Schwarz, et al. 1994). The diff erential diagnosis between PD and MSA or 

PSP using postsynaptic dopaminergic imaging is diffi  cult because D2 receptor binding also declines 

in PD at later disease stages. Therefore [11C]-raclopride-PET and IBZM-SPECT are not recommended 
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to use for this indication. In more recent studies [11C]-raclopride is used to study medication eff ects 

in PD (Pavese, et al. 2006) 

2.3 REGIONAL BLOOD FLOW AND GLUCOSE METABOLISM 

In addition to changes in striatal dopaminergic activity, nuclear imaging techniques can be used to 

visualize disease-related changes in local brain function using tracers for regional brain perfusion 

and glucose metabolism. Sokoloff  et al. were the fi rst to report that under physiological steady 

state conditions, cerebral blood fl ow (CBF) is coupled to the level of cerebral oxygen (CMRO2) and 

glucose consumption (CMRglc) (Sokoloff , et al. 1977). Furthermore, they established that functional 

activity in specifi c components of the central nervous system, is closely coupled to the local rate of 

energy metabolism. Stimulation of functional activity increases the local rate of glucose utilization 

and reduced functional activity lowers it (Sokoloff . 1977). There are diff erent PET and SPECT tracers 

to visualize blood fl ow, oxygen and glucose consumption which will be discussed. 

2.3.1 Brain perfusion

The distribution for regional cerebral blood fl ow (rCBF) and regional oxygen metabolism (rCMRO2) 

is related to neuronal and synaptic functional activity. PET provides the opportunity to make 

regional measurements of rCBF and rCMRO2. Frackowiak et al. applied the PET tracers which 

were labeled with 15O to measure regional blood fl ow and oxygen metabolism (Frackowiak, et al. 

1980) Since then, this tracer has been used to study brain perfusion in diff erent clinical conditions. 

Leenders et al. measured rCBF and rCMRO2 in PD patients. They showed an increase of regional 

blood fl ow and oxygen metabolism in the basal ganglia of the aff ected hemisphere in PD patients 

with predominantly unilateral disease (Leenders, et al. 1984a). Furthermore, they studied the eff ect 

of levodopa administration on cerebral blood fl ow and they found a diff use increase in rCBF after 

levodopa administration without stimulation of regional oxygen utilization. The eff ect of levodopa 

on rCBF did not correlate with the degree of clinical improvement and they suggest that the rise in 

rCBF is caused by vasodilatation due to a direct eff ect of levodopa on blood vessels (Leenders, et al. 

1985). In the 80’s, a SPECT tracer, 99Tcm-hexamethylpropyleneamine oxime (99Tcm-HM-PAO), was 

also developed to detect cerebral blood fl ow with SPECT-imaging (Holmes, et al. 1985, Leonard, 

et al. 1986). Nowadays, measurements of rCBF with PET or SPECT are not used in clinical practice, 

because it is a demanding and time-consuming procedure. For research purposes, the upcoming of  

functional magnetical resonance imaging (fMRI) in the 1990s, which measures the hemodynamic 

response function has made it easier to study changes in cerebral blood fl ow for example in task 

specifi c activation studies. Changes in Blood Oxygen Level Dependence (BOLD), which is the MRI 

contrast of blood deoxyhemoglobin, are well correlated to changes in blood fl ow (Kwong, et al. 

1992). Since blood fl ow and brain metabolism are closely coupled, brain metabolism is measured 

with FDG-PET imaging in clinical practice to study regional diff erences in metabolism between 

diseases (see below). 
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2.3.2 Brain glucose metabolism

The PET tracer [18F]-fl uorodeoxyglucose (FDG) allows the measurement of cerebral metabolic 

rate of glucose (CMRglc). FDG is a glucose analogue with physiological aspects almost identical to 

glucose. It is transported from the blood to the brain by a carrier-mediated diff usion mechanism. 

Glucose is then phosphorylized to glucose-6-PO4, and FDG to FDG-6-PO4, katalyzed by hexokinase. 

While glucose phosphate is metabolized further to carbon dioxide and water, FDG phosphate is 

not a substrate for any enzyme known to be present in brain tissue and is trapped for some longer 

time and therefore a useful imaging marker.  Reivich et al. were the fi rst to study  FDG-PET in man 

(Reivich, et al. 1979) 

Since then, FDG-PET imaging has been used to identify characteristic disease-related patterns of 

regional glucose metabolism in patients with parkinsonism (Eckert, et al. 2005, Juh, et al. 2004, 

Teune, et al. 2010) (Figure 4).

Figure 4: SPM (t) maps of decreased metabolic activity were overlaid on a T1 MR template thresholded at P< 
0.001 with cluster cutoff  of 20 voxels. Patient groups are indicated on the vertical axis and on the horizontal axis, 
seven transversal slices through the brain are shown. PD = Parkinson’s Disease: Decreased metabolic activity in 
the contralateral to the most aff ected body side parieto-occipital and frontal regions; MSA = Multiple system at-
rophy: Decreased metabolic activity in bilateral putamen and cerebellum; PSP = progressive supranuclear palsy: 
decreased metabolic activity in the prefrontal cortex, caudate nucleus, thalamus and mesencephalon; CBD = 
corticobasal degeneration:  Decreased metabolic activity in the contralateral to the most aff ected body side 
cortical regions; DLB = dementia with Lewy Bodies: Decreased metabolic activity in the occipital and parieto-
temporal regions. Adapted from: Teune LK et al. Typical Cerebral Metabolic Patterns, Movement Disorders. (2010)  
25, 2395-2404
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A characteristic metabolic pattern is identifi ed in PD patients using principal component analysis 

showing regionally relatively increased metabolism in the globus pallidus and putamen, thalamus, 

pons and cerebellum and relatively decreased metabolism in the lateral frontal, premotor and 

parietal association areas. Ma et al. reproduced this Parkinson disease-related covariance pattern 

(PDRP) using H215O PET scanning (Eidelberg, et al. 1994, Ma, et al. 2007a). Increased striatal FDG 

uptake in PD patients is explained by loss of inhibitory nigrostriatal dopaminergic input, leading to 

functional overactivation of the putamen (Eggers, et al. 2009). Network expression in Parkinson’s 

disease also increases linearly with disease progression (Huang, et al. 2007c) 

FDG-PET studies have also been performed to study eff ects of treatment and their relations with 

neural network pathophysiology. A study using an automated approach for quantifying network 

activity in single scans, found that both STN DBS and levodopa therapy were associated with 

downward modulation of the PDRP. Furthermore, brain regions like the premotor cortex and post 

parietal areas which are reduced in untreated PD, rise after treatment with levodopa or STN DBS, 

presumably by increasing excitatory aff erent activity from the thalamus (Asanuma, et al. 2006).

Furthermore, STN DBS was found to activate glucose metabolism in the frontal limbic and associative 

territory (Hilker, et al. 2004). Hilker et al. investigated the metabolic eff ects of high frequency DBS of 

the STN and they conclude that STN-DBS excites the subthalamic area and the directly connected 

pallidum via an increased neuronal output originating from the stimulation site (Hilker, et al. 2008). 

Recently, newly developed high resolution PET scanners with a FWHM of 2.5 mm permits the 

determination of regional FDG uptake in small subcortical nuclei, showing a signifi cantly higher 

CMRGlc in PD patients compared to controls bilaterally in the basal ganglia output nuclei (pallidum 

and substantia nigra) and unilateral in the caudate and putamen (Eggers, et al. 2009).

Several studies have used FDG-PET imaging to diff erentiate PD from other diseases (Eckert and 

Eidelberg. 2004, Klein, et al. 2010, Klein, et al. 2005, Otsuka, et al. 1997, Yong, et al. 2007). Eckert et 

al. demonstrated disease-related metabolic patterns for MSA and PSP. The MSA-related pattern was 

characterized by decreased metabolism in putamen and cerebellum and the PSP-related pattern 

consisted of mediofrontal hypometabolism and hypometabolism of the brainstem (Eckert, et al. 

2008). Using an automated image-based classifi cation procedure, individual patients could be 

diff erentiated in PD, MSA and PSP categories with high specifi city (Tang, et al. 2010b) In contrast 

to the cognitive problems that are related to PD itself, in PD patients with dementia (PDD), and 

DLB patients compared to controls, decreased metabolism was found in parietal, frontal, anterior 

cingulate and in occipital areas. The metabolic defi cits were more extensive in DLB than in PDD. In 

comparison with PD patients, those with DLB and PDD showed greater metabolic defi cits in parietal 

and frontal regions (Yong, et al. 2007). 

For clinical practice disease specifi c patterns as found in PD and other neurodegenerative 

diseases with parkinsonism can be a valuable aid in the diff erential diagnosis. One should realize 

that the patterns show relative metabolic increases and decreases and not absolute values of 

glucose consumption. In PD however, mostly cortical decreases are not clear on visual inspection 
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and sometimes an accentuated striatum is shown. In contrast, metabolic decreases in other 

parkinsonisms can be detected with visual inspection (Figure 5).

Figure 5: Individual FDG-PET scans of 4 patients. a) Patient with Parkinson’s Disease: normal FDG uptake in the 
cortical regions, normal or slightly elevated uptake in the putamen; b) patient with multiple system atrophy: de-
creased FDG uptake in the cerebellum and striatum; c)  patient with progressive supranuclear palsy: decreased 
FDG uptake in the mediofrontal regions; d) patient with corticobasal degeneration: contralateral to the most 
aff ected body side, decreased FDG uptake in the all cortical regions and  in the striatum and thalamus, cerebellar 
diaschisis.

2.4 OTHER TRACERS

2.4.1 Cholinergic system

Many patients with PD develop mental dysfunction ranging from subtle cognitive defi cits to 

severe dementia (PDD). Cholinergic defi cits probably play an important role in the pathogenesis 

of PD-associated dementia. N-[11C]-methyl-4-piperidyl acetate (MP4a) is an established radiotracer 

for quantifi cation of cerebral acetylcholinesterase activity.  It has been used to assess defi ciency 

of cholinergic innervation in AD, PSP but also in PD, PDD and DLB, and for the assessment of the 

pharmacological eff ect of cholinesterase inhibitors. Hilker et al. (Hilker, et al. 2005)studied patients 

with PD and PDD with combined PET [11C]-MP4A and [18F]-fl uorodopa (FDOPA)-PET for evaluation 

of cholinergic and dopaminergic transmitter changes. They conclude that while non-demented 

PD patients had a moderate cholinergic dysfunction, patients with PDD presented with a severe 
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cholinergic defi cit in various cortical regions. In a recent study of Klein et al. (Klein, et al. 2010), PDD 

and DLB patients were compared with PD patients without dementia and they found in PDD as well 

as DLB a marked MP4A and FDG reduction in cortical areas compared to PD. Both studies did not 

fi nd a signifi cant diff erence in cortical and striatal FDOPA uptake between PD and PDD/DLB patients 

suggesting that cholinergic dysfunction seems to be crucial for the development of dementia in 

addition to the dopamine system related motor symptoms. Clinically, these data support the notion 

that cognitive function deteriorates in some predisposed patients with PD after administration 

of anticholinergic drugs (Ehrt, et al. 2010). Furthermore, they support the eff ect of cholinesterase 

inhibitors in PDD on cognition as has been shown in a placebo controlled trial with rivastigmine 

(Emre, et al. 2007). Recently, an 18F-labeled derivative of 11CMP4A, [18F] fl uoroethylpiperidin-

4ylmethyl acetate ([18F] FEP-4MA) showed desirable properties for quantifi cation of cerebral AChE 

activity by PET. This could potentially make measurement of AChE more widely applicable because 

of the longer half life of 18F than 11C, making it possible to transport the tracer from a center 

equipped with a cyclotron to other PET centers (Kikuchi, et al. 2010). 

2.4.2 Neuroinfl ammation

 [11C]-PK11195 PET, a peripheral benzodiazepine receptor has been used for in vivo brain imaging 

of microglia activation in PD patients. An increased number of activated microglia has been found 

in the SN of PD brains and animal studies have suggested the relevance of microglia activation to 

cell death (Teismann, et al. 2003). Ouchi et al. studied microglial activation using  [11C]-PK11195 PET 

in PD patients and found increases in midbrain binding potential of PK11195 correlated inversely 

with a dopamine transporter marker in putamen and correlated positively with clinical motor scores 

(Ouchi, et al. 2005). In contrast, Gerhard et al. found increased PK binding in the pons, basal ganglia 

and frontal, temporal cortical regions in PD patients which did not correlate with clinical severity of 

putamen 18FDOPA uptake. They suggested that microglia are activated early in the disease course 

and levels then remain relatively static (Gerhard, et al. 2006). This increased infl ammation in basal 

ganglia and midbrain could not be reproduced by Bartels et al. (Bartels, et al. 2010). They found 

variable results with diff erent methods of analysis. Therefore they conclude that tracers with higher 

levels of specifi c binding in brain and better capacity to quantify peripheral benzodiazepine receptor 

expression should be developed, because radiotracer studies that can monitor neuroinfl ammatory 

processes within the brain will be of great value for the translation of potentially eff ective treatments.

2.4.3 Adenosine system

Adenosine is an endogenous inhibitory neurotransmitter and modulates functions within the 

central nervous system. Adenosine A1 receptors (A1Rs) are widely distributed throughout the brain 

but adenosine A2A receptors (A2ARs) are highly concentrated within the basal ganglia (Fredholm 

and Svenningsson. 2003, Jarvis, et al. 1989). Adenosine A2A receptors have a selective localization 

to the basal ganglia and specifi cally to the GABAergic neurons of the indirect pathway which also 
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expresses the D2 dopamine receptor. This off ers an opportunity to modulate the output from 

the striatum and A2a antagonists could infl uence motor function in experimental models in PD 

suggesting that it might be eff ective as a symptomatic treatment in humans without provoking 

marked dyskinesias (Jenner, et al. 2009). Mishina et al. investigated the distribution of the A2Ars 

in humans using PET and [7-methyl-11C (E)-8-(3, 4, 5-trimethoxystyryl)-1, 3, 7-trimethylxanthine 

([11C] TMSX). The binding potential was largest in anterior and posterior putamen and next largest 

in caudate nucleus and thalamus and small in cerebral cortex (Mishina, et al. 2007). [11C] TMSX-PET 

is a promising PET ligand which can be used to detect diff erences in striatal adenosine receptor 

binding in PD patients compared to controls.

2.4.4 Cardiac sympathetic denervation

Orthostatic hypotension is an early indicator of MSA, but may also occur in advanced stages of 

PD. The underlying pathology of orthostatic hypotension is diff erent in both diseases. In PD, 

orthostatic hypotension is caused primarily by postganglionic sympathetic dysfunction. In MSA 

there is predominantly central and preganglionic degeneration. [123I]-metaiodobenzylguanidine 

(MIBG) binding in SPECT scanning visualizes catecholaminergic terminals and can be used to detect 

cardiac sympathetic degeneration. Reduced uptake of MIBG binding represents postganglionic 

cardiac sympathetic dysfunction which is the case in PD (Nakajima, et al. 2008). Sympathetic cardiac 

uptake in MSA patients is unaff ected (Braune, et al. 1999).  However, studies are not consistent in all 

cases. Some studies report that not all of the parameters of MIBG uptake could discriminate PD from 

MSA and is therefore in early PD patients of limited value  (Chung, et al. 2009, Ishibashi, et al. 2010)

CONCLUSIONS

Presynaptic dopaminergic imaging either with PET or SPECT is the gold standard to diff erentiate 

between patients with parkinsonian features associated with and without a presynaptic 

dopaminergic defi cit. In addition, in order to diff erentiate between PD and other neurodegenerative 

brain diseases, specifi c disease related metabolic patterns identifi ed with FDG-PET imaging could 

be of great assistance in the individual clinical diagnosis. Furthermore there are some promising 

nuclear imaging techniques identifying the cholinergic and adenosine system which in the future 

can assist in gaining further insight in pathofysiological mechanisms in PD.
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ABSTRACT

The diff erential diagnosis of neurodegenerative brain diseases on clinical grounds is diffi  cult, 

especially at an early disease stage. Several studies have found specifi c regional diff erences of 

brain metabolism applying [18F]-fl uoro-deoxyglucose positron emission tomography (FDG-PET), 

suggesting that this method can assist in early diff erential diagnosis of neurodegenerative brain 

diseases. 

We have studied patients who had an FDG-PET scan on clinical grounds at an early disease stage 

and included those with a retrospectively confi rmed diagnosis according to strictly defi ned 

clinical research criteria. 96 patients could be included of which 20 patients with Parkinson’s 

disease (PD), 21 multiple system atrophy (MSA), 17 progressive supranuclear palsy (PSP), 10 

corticobasal degeneration (CBD), 6 dementia with lewy bodies (DLB), 15 Alzheimer’s disease (AD) 

and 7 frontotemporal dementia (FTD). FDG PET images of each patient group were analysed and 

compared to18 healthy controls using Statistical Parametric Mapping (SPM5). 

Disease-specifi c patterns of relatively decreased metabolic activity were found in PD (contralateral 

parieto-occipital and frontal regions), MSA (bilateral putamen and cerebellar hemispheres), PSP 

(prefrontal cortex and nucleus caudatus, thalamus and mesencephalon), CBD (contralateral cortical 

regions), DLB (occipital and parieto-temporal regions), AD (parieto-temporal regions), and FTD 

(fronto-temporal  regions). 

The integrated method addressing a spectrum of various neurodegenerative brain diseases 

provided means to discriminate patient groups also at early disease stages. Clinical follow up 

enabled appropriate patient inclusion. This implies that an early diagnosis in individual patients 

can be made by comparing each subject’s metabolic fi ndings with a complete database of specifi c 

disease-related patterns. 
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3.1 INTRODUCTION

The diff erential diagnosis of neurodegenerative brain diseases may be diffi  cult on clinical grounds 

only. It is important to diagnose these patients early, because prognosis and treatment options diff er 

between neurodegenerative brain diseases. Moreover, accurate diff erential diagnosis is important 

to reduce heterogeneity in pharmacological trials (Litvan et al. 2003). Several neurodegenerative 

diseases have overlapping features at presentation, while the typical clinical syndrome may become 

clear only at later disease stages. 

Neurodegenerative brain diseases that present with parkinsonian features are Parkinson’s disease 

(PD) (Litvan et al. 2003), multiple system atrophy (MSA) (Gilman et al. 2008), progressive supranuclear 

palsy (PSP) (Litvan et al. 1996), corticobasal degeneration (CBD) (Mahapatra et al. 2004) and 

dementia with Lewy Bodies (DLB) (McKeith et al. 2005). Although the pathophysiology and clinical 

progression of these diseases are diff erent, PD, MSA and DLB share the pathological feature of 

disturbed α-synuclein and are designated as α-synucleinopathies (Galpern and Lang. 2006, Gilman 

et al. 2008). Other neurodegenerative brain diseases with parkinsonism show disturbances in tau 

protein handling. PSP and CBD are tauopathies, which points at similarities with frontotemporal 

dementia (FTD) (McKhann et al. 2001) and also overlap in pathology with Alzheimer’s disease (AD) 

(Galpern and Lang. 2006, McKhann et al. 1984). 

The establishment of an exact diagnosis of neurodegenerative brain diseases would benefi t from 

additional tests. Structural imaging is in general not helpful, although specifi c abnormalities can be 

identifi ed at later disease stages. Functional imaging of cerebral glucose metabolism with [18F]-fl uoro-

deoxyglucose positron emission tomography (FDG-PET) provides an index for regional neuronal 

activity. This method has shown diff erences in regional distribution of cerebral glucose metabolism 

for each neurodegenerative brain disease, suggesting that it can assist in early diff erential diagnosis 

(Diehl-Schmid et al. 2007, Eckert et al. 2005, Eckert et al. 2008, Foster et al. 2007, Herholz et al. 2002, 

Jeong et al. 2005, Juh et al. 2004, Klein et al. 2005, Ma et al. 2007a, Minoshima et al. 2001, Mosconi 

et al. 2008, Silverman et al. 2001, Yong et al. 2007). A problem with the general assessment of these 

results is, however, the use of diff erent analysing techniques of regional cerebral FDG uptake and 

inclusion of patients with a more advanced clinical disease stage. Before a generic approach and 

diagnostic consensus for all neurodegenerative brain diseases can be determined, an overview of 

specifi c disease-related metabolic patterns for parkinsonisms and dementias analysed using the 

same image statistical method needs fi rst to be established. The application of disease-specifi c 

metabolic patterns as a reference array for comparison with a single patient dataset will in the end 

be helpful in clinical practice to diagnose individual patients at early disease stages. 

The objective of the present study was to identify distinctive cerebral metabolic patterns at early 

disease stages, in patients with retrospectively confi rmed diagnosis of PD, MSA, PSP, CBD, DLB, AD 

and FTD as compared to healthy controls. Statistical Parametric Mapping (SPM5) and global mean 

normalization was used for all comparisons. 
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3.2 METHODS

Patients

All medical records of patients over the past ten years (Jan 1998 till Dec 2008) who were referred for 

FDG-PET imaging to assist in clinical diagnosis of a neurodegenerative brain disease were reviewed. 

At the time of referral for imaging, clinical diagnosis of most patients was uncertain. Disease 

progression over time, after the FDG-PET scan had been performed, allowed an exact diagnosis 

at a later stage. We were able to include patients with a clear retrospective diagnosis according 

to established clinical research criteria which were applied by the investigators LT and KL with a 

follow up time in PD (Litvan et al. 2003) of 4±3 (mean±SD in years) , MSA (Gilman et al. 2008) (2±1), 

PSP (Litvan et al. 1996) (3±2), CBD (Mahapatra et al. 2004) (3±1), DLB (McKeith et al. 2005) (2±1), AD 

(McKhann et al. 1984) (3±2) and FTD (McKhann et al. 2001) (3±1). In total 96 patients were included, 

of which 20 patients with PD (age 63±9 y)  with a Disease Duration (DD) at scanning of 3±2 years. 

Of the 20 PD patients, 6 were predominantly aff ected on the right body side (R) and 14 were left 

body sided aff ected (L). 13 probable MSA-P, one probable MSA-C and 7 possible MSA-P patients 

(age 64±10; DD 4±2) could be included. Furthermore, 13 probable and 4 possible PSP patients (age 

68±8; DD 2±1), 10 CBD patients of whom 7 were right body sided aff ected and 3 left body sided (age 

69±9; DD 2±1, 7R/3L) and 6 DLB patients (age 71±7; DD 3±2) were included. The diagnosis of all 15 

included AD patients (age 65±10; DD 3±2) was corroborated by neuropsychological examination. 

At last 7 FTD patients were included (61±10; DD 3±2). As a control group, 18 healthy controls out of 

an existing database (age 56±14) were included in the study. 

FDG PET data acquisition and image analysis

Patients underwent a static FDG PET scan under standard resting conditions with the eyes closed. 

FDG-PET scans were acquired in a 3D mode after injection of approximately 200 MBq FDG using a 

Siemens ECAT HR+ PET scanner. Patient groups were analysed using SPM5 (Statistical Parametric 

Mapping; Functional Imaging Laboratory (FIL), Wellcome Department of Imaging Neuroscience, 

London, UK) running on Matlab 7.1 (R14, Mathworks Inc.) All reconstructed FDG-PET images were 

spatially normalised onto the dimensions of a standard brain (Montreal Neurological Institute; MNI) 

with voxel sizes of the written normalised images of 1x1x1 mm and default estimation and writing 

options. The normalized images were smoothed using a 10 mm full width at half-maximum (FWHM) 

isotropic Gaussian kernel.  Images of the 6 predominantly right body side aff ected PD patients and 

7 right body side aff ected CBD patients were fl ipped so that all PD and CBD patients had the right 

side of the brain as most aff ected side. 

FDG-PET statistical analysis

Images of each of the seven patient groups were separately compared to controls using a two-

sample t test. The image data were proportionally scaled to the cerebral global mean (the image 
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global mean is calculated as the arithmetical mean of voxels above the threshold of 1/8th of the 

grand mean followed by grand mean scaling to 100) (Yakushev, et al. 2008). Threshold masking was 

set at 0.8 and an explicit mask in MNI space, supplied with SPM5, was added to remove emission 

counts outside the brain. SPM (t) maps were created and regions with a cluster-corrected threshold 

(P< 0.05) and voxels within each cluster (P<0.001) above a Z score of 3.4 will be reported. If clusters 

were adjacent to each other, statistical signifi cance of a cluster was assessed by examining its 

survival at a higher initial voxel threshold.

3.3 RESULTS 

SPM (t) maps were created and overlaid onto a single subject T1 MR template (MNI, SPM5).            

Figure 1 shows regions with decreased metabolic activity, relative to the global mean, in patient 

groups compared to controls and fi gure 2 displays regionally increased metabolic activity, relative 

to the global mean, of patient groups compared to controls. In table 1 and 2 regions with a cluster-

Figure 1: SPM (t) maps of decreased metabolic activity were thresholded at P< 0.001 with cluster cutoff  of 
20 voxels. Patient groups are indicated on the vertical axis and on the horizontal axis, seven transversal slices 
through the brain are shown. 
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Figure 2:  SPM (t) maps of increased metabolic activity were thresholded at P< 0.001 with cluster cutoff  of 
20 voxels. Patient groups are indicated on the vertical axis and on the horizontal axis, seven transversal slices 
through the brain are shown. 

corrected threshold (P< 0.05) and voxels within each cluster (P<0.001) above a Z score of 3.4 are 

reported. In table 1, each statistical signifi cant region of relatively decreased metabolism in the brain 

is reported for each patient group. Table 2 reports regions with relatively increased metabolism. 

Parkinson’s disease

In PD patients, decreased metabolic activity was seen almost entirely contralateral to the aff ected 

body side, distributed over the prefrontal cortex, anterior cingulate gyrus and a few parietal-

occipital regions. Relatively increased metabolic activity was seen predominantly in a few white 

matter regions including the posterior limb of the internal capsule bilaterally, extending at a relaxed 

threshold (P< 0.05 uncorrected) to the pallidum and posterior putamen contralateral to the aff ected 

body side. Furthermore, increased metabolic activity was seen in cerebellum, pons, contralateral 

hippocampal area and sensorimotor area. 
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Multiple system atrophy

In MSA patients, most prominent decreases in metabolic activity were seen in bilateral putamen and 

cerebellar hemispheres. Furthermore, a decrease was found in the right inferior frontal gyrus, primary 

motor cortex, right angular gyrus, right middle temporal gyrus and calcarine.  Relatively increased 

metabolic activity was seen in a few white matter regions, temporal regions, left sensorimotor area 

and middle occipital gyrus.  

Progressive supranuclear palsy

In PSP patients, a clear pattern of decreased metabolic activity was seen in the whole prefrontal 

cortex, including superior and inferior frontal gyrus, supplementary motor area (SMA), primary 

motor cortex and middle cingulate gyrus. Furthermore, decreased metabolism was found in the 

right caudate nucleus, thalamus and mesencephalon. Relatively increased metabolic activity 

was seen in a few white matter regions, cerebellum, insula, temporo-occipital regions and left 

sensorimotor area. 

Corticobasal degeneration

In the CBD patient group, a strictly unilaterally decreased metabolism was seen in cortical regions, 

contralateral to the aff ected body side, including parieto-temporal regions, prefrontal cortex 

and motor cortex. Furthermore, a decrease was found in the anterior and middle cingulate gyrus 

and a little in the contralateral caudate nucleus and thalamus. Interestingly, relatively increased 

metabolic activity was seen in cortical areas ipsilateral to the aff ected body side, including motor- 

and sensorimotor cortex. In addition, an increased metabolism was found bilaterally in a few white 

matter regions and cerebellar hemispheres. 

Dementia with Lewy Bodies

DLB patients had a marked decrease in metabolic activity in the occipital lobe. In addition, decreases 

were found in parieto-temporal and frontal regions. Relatively increased metabolic activity was seen 

in some white matter regions, thalamus, hippocampus and pons. Such relative increases were also 

seen in the sensorimotor and primary motor cortex, SMA, paracentral lobule and both anterior and 

middle cingulate gyrus. 

Alzheimer’s Disease

In AD patients, most prominent decreases in metabolic activity were found in the angular gyrus 

and other parieto-temporal regions including precuneus extending to the posterior- and middle 

cingulate gyrus. Furthermore, decreases were found in the right middle and inferior frontal gyrus. 

Relatively increased metabolic activity was seen in some white matter regions, cerebellum and 

pons, SMA and sensorimotor cortex.
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Frontotemporal Dementia

In FTD patients, decreased metabolic activity was seen in the superior and inferior frontal gyrus, 

anterior cingulate gyrus, SMA, sensorimotor area and middle temporal gyrus. Relatively increased 

metabolic activity was seen a little in occipital, cerebellar and white matter regions. 

3.4  DISCUSSION 

The present study demonstrates a series of typical cerebral metabolic patterns of patients with 

various neurodegenerative brain diseases in a relatively early disease stage using the same statistical 

image analysis for each group. The general features of diff erences in each of the patient groups, 

compared to controls, are consistent with previous studies. However, some interesting diff erences 

can be noted. In Parkinson’s disease, we found a disease-specifi c contralateral cortical decrease 

of metabolic activity, which to our knowledge has not been described before, probably because 

previous studies did not correct for most aff ected body side (Huang et al. 2007a, Ma et al. 2007a). 

One study of Eckert (Eckert et al. 2005)  did fl ip the data according to the most aff ected body side, in 

a small group of early and advanced stage PD. We included 20 PD patients at an early disease stage, 

and this disease-specifi c contralateral cortical decrease could hypothetically be an early marker of 

disease.

We found a distinct disease-specifi c metabolic pattern for MSA, PSP and CBD which is similar to 

the metabolic patterns found for these diseases by the Eidelberg group (Eckert et al. 2005, 2008). In 

neuropathological studies in MSA (Wenning et al. 1997), PSP (Hauw et al. 1994) and CBD (Dickson et 

al. 2002)  the areas described in our study  show neuronal degeneration. Another diff erence which 

explains the decreased striatal metabolic activity in MSA, PSP and CBD and distinguishes these 

diseases from PD is that a postsynaptic striatal neuronal loss is detected post mortem in MSA, PSP 

and CBD and not in PD (Stacy and Jankovic. 1992).

Decreased metabolic activity in occipital regions was the most defi ning feature in DLB patients, 

especially in comparison with AD patients and is consistent with previous imaging studies (Lobotesis 

et al. 2001, Minoshima et al. 2001, Yong et al. 2007). This could be related to the presence of complex 

visual hallucinations which are thought to be useful in distinguishing DLB from other dementias 

(McKeith et al. 2005).

In AD patients, we found expected decreased metabolic activity in parieto-temporal regions, 

corroborating a meta-analysis of  9 studies (AD patients versus controls) which showed  sensitivity 

and specifi city of 86% (Patwardhan et al. 2004). 

More limited metabolic decreases were found  in FTD patients in accordance with previous reports 

(Diehl-Schmid et al. 2007, Jeong et al. 2005). The clinical manifestation of FTD can comprise diff erent 

neuropathological diagnoses at autopsy and if patients die at an early disease stage the brain may 

be unremarkable (Cairns et al. 2007, McKhann et al. 2001).

In our study, global normalisation was applied to improve pattern recognition in the comparisons 

between patient groups. Recently, a discussion was started whether increases of metabolic activity 
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in PD are absolute or only relative i.e. artefactual due to the use of global mean normalization 

(Borghammer et al. 2009b, Grunder et al. 2009, Ma et al. 2009). The use of normalization to the 

global mean is valid if there is no diff erence in global mean values between groups (Grunder et 

al. 2009). Borghammer showed in simulated (15O)-PET images of disease states in control subjects 

that lower global values, even when not statistically signifi cant, led to localized subcortical 

increases in activity following normalization of the data to the global mean. They concluded that 

subcortical hyperactivity emerges as a general phenomenon of global mean normalized studies in 

which increases are then relative to cortical decreases (Borghammer et al. 2009b). Areas that show 

increased metabolic activity may in fact be regarded as most preserved brain regions. However, the 

question remains if this also holds for PD, especially because increased metabolic activity is seen in 

the pallidothalamic regions, which are proposed to be overactive in an absolute sense in PD (Eggers 

et al. 2009, Ma et al. 2009). 

Absolute quantifi cation of FDG-PET data may be the best method to overcome the global mean 

normalization problem. However, that is a time-consuming and demanding procedure, which is 

not feasible in clinical practice. As an alternative for normalization to the global mean, some studies 

have applied normalization to the white matter, pons, cerebellum or sensorimotor cortex (Foster et 

al. 2007, Minoshima et al. 2001, Yakushev et al. 2008). In these regions, we generally found increased 

activity in most of our patient groups, which may provide an argument that these areas are preserved 

and can be used as reference region for normalization. On the other hand, normalization to white 

matter may be not valid because it is not precisely known, whether and how metabolic changes 

occur in white matter in neurodegenerative brain diseases. The pons region is not an optimal 

reference region either, because it is very small and the sensorimotor area is hard to demarcate 

exactly from other brain regions. Cerebellar areas have been used in AD and FTD as reference region. 

However, the use is limited because for example in MSA patients a decreased cerebellar metabolic 

activity can be seen. Recently, Yakushev presented the reference cluster method as alternative 

for global mean normalization (Yakushev et al. 2009). The proposed algorithm normalizes not by 

structure/anatomical region, but rather by the metabolically most preserved part (reference cluster) 

and thus ensures the most eff ective count normalization (Borghammer et al. 2009a, Yakushev et al. 

2009). This method can only be used if metabolic diff erences are expected in one direction. In PD, a 

larger (cortical) reference cluster should then be chosen instead of subcortical or cerebellar, possibly 

hyperactive structures.

Our study was designed to detect distinctive metabolic brain patterns in diff erent typical patient 

groups at early disease stages. These patterns of relatively decreased and relatively increased 

metabolism can help in the diff erential diagnosis. A limitation of the present study is that, despite 

data acquisition of FDG-PET scans over the past ten years, some group samples are still small. 

Nevertheless, it is remarkable that the expected patterns were indeed present in the clinical scans of 

our appropriate patient groups and were clearly distinguishable. Furthermore, healthy controls had 

a younger mean age than some patient groups. An age-dependent global metabolic decrease is 
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well-known (comparing young and eldery subjects with a larger age diff erence) but this is cancelled 

out in the normalization procedure in this study. A major advantage is that typical metabolic brain 

patterns could be determined at early stages of a specifi c disease because we had access to long-

term follow up data of clinical disease progression. At last, statistical analysis of FDG-PET scans using 

SPM5 and global mean normalization is relatively easy. It can be implemented in each center, and 

could therefore be useful in clinical practice. 

Future perspectives

The build up of a database with disease-specifi c patterns, as shown in our study, can be used to 

prospectively compare patients who are clinically still without a clear diagnosis and improve early 

diagnosis in neurodegenerative brain diseases. Furthermore, the newer high resolution PET cameras 

will permit  more reliable absolute quantifi cation of FDG uptake as a marker of neuronal activity in 

small subcortical nuclei which are involved in the pathofysiology of PD (Yakushev et al. 2009). 

3.5 CONCLUSION 

This study reports an overview of specifi c patterns of cerebral metabolic activity with the same 

statistical image analysis technique for conditions with parkinsonism or dementia. Statistical 

analysis of FDG-PET scans using SPM5 and global mean normalization is relatively easy and therefore 

useful in clinical practice. It can assist in early diagnosis of individual patients when each subject’s 

metabolic fi ndings are compared with a database of specifi c disease-related patterns. 
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ABSTRACT

The diff erential diagnosis of neurodegenerative brain diseases may be diffi  cult on clinical grounds 

only, especially at an early disease stage. Neurodegenerative brain diseases such as Parkinson’s 

disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal 

degeneration (CBD), dementia with Lewy Bodies (DLB), Alzheimer’s disease (AD) and frontotemporal 

dementia (FTD) have overlapping features at presentation, while the typical clinical syndrome 

may become clear only at later disease stages. It is important to diagnose a neurodegenerative 

disease at an early disease stage, because treatment and also the expectancy of future motor or 

cognitive problems diff er between the diseases. It is increasingly recognised that positron emission 

tomography (PET) tracer methods can be used for the measurement of biochemical processes of 

the human brain, to obtain insight in the pathophysiology of brain diseases and to assist in an early 

diagnosis.

Neurodegenerative brain diseases are characterised by cellular malfunction and biochemical 

alterations that occur in early disease stages, before structural brain alterations may become clear. 

Increases and decreases of synaptic activity in the brain are accompanied by proportional changes 

in capillary perfusion and local glucose consumption. Loss of neurons may result in decreased 

glucose consumption in distant brain regions by deaff erentiation, while also increased regional 

glucose consumption by increased activation of aff erent neurons can occur. 

The PET tracer [18F]-fl uorodeoxyglucose (FDG) allows the measurement of glucose consumption. 

FDG is a glucose analog with physiological aspects almost identical to glucose.

FDG-PET imaging has been used intensively to study glucose metabolism and to identify disease-

specifi c cerebral metabolic patterns in several neurodegenerative brain diseases.

Disease-specifi c regional diff erences of brain glucose metabolism have been found in various 

neurodegenerative brain diseases, including parkinsonian syndromes and dementia. This has 

improved our understanding of the pathophysiology of these diseases as well as our ability to 

diagnose patients at an earlier disease stage. Reviewed here are the results of increasing possibilities 

of investigating brain energy metabolism in neurodegenerative brain diseases using FDG-PET with 

univariate and multivariate analysis methods. An overview of specifi c metabolic patterns in several 

neurodegenerative diseases will be given and the usefulness of FDG-PET in clinical practice will be 

discussed.
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4.1 CEREBRAL GLUCOSE METABOLISM

Increases and decreases of synaptic activity in the brain are accompanied by proportional changes in 

capillary perfusion and local glucose consumption. These changes in glucose consumption are the 

eff ect of changed activity or density of the aff erent nerve terminals in that region. Loss of neurons 

may result in decreased glucose consumption in distant brain regions by deaff erentiation, while 

also increased regional glucose consumption by increased activation of aff erent neurons can occur. 

The PET tracer [18F]fl uorodeoxyglucose (FDG) allows the measurement of glucose consumption. 

FDG is a glucose analog with physiological aspects almost identical to glucose. It is transported 

from the blood to the brain by a carrier-mediated diff usion mechanism. FDG and glucose are 

phosphorylated by hexokinase as the fi rst step of the glycolytic process. FDG diff ers from glucose 

in that a hydrogen atom replaced the hydroxyl group at the second carbon atom of the molecule. 

Glucose is then phosphorylated  to glucose-6-PO4, and continues along the glycolytic pathway for 

energy production. However, FDG is phosphorylated to FDG-6-PO4, which is not a substrate for 

further metabolism and trapped in tissues. As glucose is the only source of energy for the brain it 

refl ects the neuronal integrity of underlying brain pathology. Since FDG is a competitive substrate 

with glucose for both transport and phosphorylation, it is important for tracer uptake to avoid high 

blood glucose levels during an FDG-PET scan in subjects with diabetes. 

In neurodegenerative brain diseases, specifi c brain regions degenerate and specifi c patterns 

of metabolic brain activity develop. This happens before clear structural changes can be detected 

with imaging techniques. Measurement of glucose consumption with FDG-PET imaging thus allows 

us to identify disease-specifi c cerebral metabolic brain patterns in several neurodegenerative 

brain diseases at  an early disease stage. Since the fi rst FDG-PET study in man in 1979 (Reivich 

et al. 1979) regional diff erences in cerebral glucose metabolism have been reported in various 

neurodegenerative brain diseases including parkinsonian syndromes.  

4.2 DISEASE-SPECIFIC METABOLIC BRAIN PATTERNS: METHODS

Univariate methods like voxel-based statistical parametric mapping (SPM) analyses have been used 

to identify group diff erences between patients with neurodegenerative brain diseases and controls 

(Eckert et al. 2005, Juh et al. 2004, Yong et al. 2007). 

At the University Medical Center Groningen, The Netherlands, we have performed a retrospective 

study (Teune et al. 2010) selecting typical patients with 7 diff erent neurodegenerative brain diseases 

who had had a clinical FDG brain scan at a time point when their diagnosis was not sure yet. These 

patients developed in the following years the mentioned typical disease states. Images of each of 

the seven patient groups were separately compared to controls using a two-sample t test. At those 

early scans, already typical diff erences between patient groups and healthy controls were found for 

each disease. 

However, Scaled Subprofi le modelling/principal component analysis (SSM/PCA), a multivariate 

method, not only identifi es group diff erences, but is also able to identify relationships in relatively 
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increased and decreased metabolic activity between diff erent brain regions in combined samples of 

patients and control scans (Eidelberg 2009, Moeller et al. 1987). Covariance analysis techniques are 

considered appropriate methods to explore network activity. In the SSM, a threshold of the whole-

brain maximum can be applied to remove out-of-brain voxels, followed by a log transformation. A 

threshold of 35% is used by the Eidelberg research group resulting in a mask of mainly grey matter 

(Spetsieris and Eidelberg 2010). After removing between-subject and between-region averages, a 

principal component analysis (PCA) can be applied. PCA transformes a set of correlated variables 

into a new set of orthogonal uncorrelated variables that are called the principal components. Voxels 

participating in each principal component (PC) may have either a positive or a negative loading. 

The loadings express the covariance structure (i.e. the strength of the interaction) between the 

voxels that participate in the PC. They are ordered in terms of the variability they represent. That 

is, the fi rst principal components represents for a single dimension (variable) the greatest amount 

of variability in the original dataset. Each succeeding orthogonal component accounts for as much 

of the remaining variability as possible. They can be very helpful in determining how many of the 

components are really signifi cant and how much the data can be reduced. 

In most studies, the components that together describe at least 50% of the variance are 

used for further analysis, but this is an arbitrary limit. To identify a covariance pattern that best 

discriminates a patient group from a control group, each subject’s expression of the selected 

principal components with the lowest AIC (Akaike information criterion) value (Akaike 1974) are 

entered into a stepwise regression procedure. This regression results in a linear combination of the 

PCs that best discriminated the two groups and is designated as the disease-specifi c metabolic 

covariance pattern. 

Important for its use in clinical practice is that this metabolic covariance pattern can then be applied 

to individual patients to test whether they express the pattern or not. Every voxel value in a subject 

scan is multiplied by the corresponding voxel weight in the covariance pattern, with a subsequent 

summation over the whole brain volume. The resulting subject score captures to what extent a 

subject expresses the covariance pattern. 

4.3 DISEASE-SPECIFIC METABOLIC BRAIN PATTERNS IN PATIENTS WITH PARKINSONISM.

4.3.1 Parkinson’s Disease

Parkinson’s disease (PD) is characterized by bradykinesia, rigidity, sometimes rest tremor and postural 

instability. A disturbed α-synuclein protein forming so-called Lewy bodies seems to play a causal 

role, which was a reason to designate PD as a α-synucleinopathy.  The main pathophysiological 

changes result from degeneration of catecholaminergic, especially dopaminergic cells in brainstem 

regions. 

A characteristic metabolic covariance pattern has been identifi ed in PD patients (PD-related 

pattern, PDRP) showing regionally relatively increased metabolism in the globus pallidus and 
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putamen, thalamus, pons and cerebellum and relatively decreased metabolism in the lateral 

frontal, premotor and parietal association areas (Ma, et al. 2007b) Network expression in PD patients 

also increases linearly with disease progression (Huang, et al. 2007c). Tang tried to study network 

changes in the PD-related motor pattern before symptom onset by studying 15 hemiparkinsonian 

patients and focusing mainly on the “presymptomatic” hemisphere. They conclude that abnormal 

PDRP activity antecedes the appearance of motor signs by approximately 2 years (Tang et al. 2010a). 

However, this needs to be proven in future research in true presymptomatic patients.

Parkinson’s Disease and metabolic brain patterns related to specifi c symptoms

In addition to motor symptoms, cognitive dysfunction is also common in PD, especially executive 

and visuospatial dysfunction. FDG-PET studies have been performed to study these specifi c 

symptoms and their relations with neural network pathophysiology. The Eidelberg research group 

has shown PD subclassifi cations related to specifi c symptoms. Network analysis with the SSM/PCA 

approach detected a signifi cant covariance pattern in non-demented PD patients that correlated 

with memory and executive functioning tasks. The expression of this PD-related cognitive pattern 

(PDCP)  in individual patients correlated with severity of cognitive dysfunction (Huang et al. 2007b). 

Alterations in neuropsychological test results in advanced PD were found to correlate with 

decreases in glucose metabolism in the dorsolateral prefrontal cortex, lateral orbitofrontal cortex 

ventral and dorsal cingulum and in Broca area (Kalbe et al. 2009). In the study of Kalbe, PD patients 

with deep brain stimulation in the subthalamic nucleus (STN-DBS) showed cognitive decline that 

correlated with decrease in glucose metabolism in these areas. In another study in STN-DBS treated 

patients, STN-DBS was found to activate glucose metabolism in the frontal limbic and associative 

territory (Hilker et al. 2004). Interestingly, cortical areas that show hypometabolism in patients with 

depression (Mayberg HS. 1994) are similar to the regions that show restored glucose metabolism 

after STN-DBS. This fi nding agrees with the clinical observation that PD-related depression tends to 

improve after STN- DBS.

Mure identifi ed a spatial covariance pattern associated with Parkinson tremor which was 

characterized by covarying increases in the cerebellum/dentate nucleus and primary cortex and to 

a minor degree in the caudate/putamen (Mure et al. 2011). 

Hallucinations in PD have been related to relative frontal hypermetabolism compared to PD patients 

without hallucinations (Nagano-Saito et al. 2004). However, another study showed hypometabolism 

in occipitotemporoparietal regions in PD patients with hallucinations, sparing the occipital pole, 

while no signifi cant increase in regional glucose metabolism was detected (Boecker et al. 2007). 

Interestingly, in patients with dementia with Lewy bodies (DLB), who also suff er from hallucinations, 

glucose metabolism was also decreased in occipitoparietal regions, however without sparing of the 

occipital pole (see DLB section). 
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4.3.2 Multiple system atrophy 

Multiple system atrophy is a sporadic neurodegenerative brain disease which aff ects both men and 

women and generally starts in the sixth decade of life. The main clinical features are parkinsonism, 

autonomic failure, cerebellar ataxia, and pyramidal signs in any combination. However, two major 

motor presentations can be distinguished. Parkinsonian features predominate in 80% of patients 

(MSA-P subtype) and cerebellar ataxia is the main motor feature in 20% of patients (MSA-C subtype) 

(Gilman et al. 2008, Wenning et al. 1997). 

In MSA-P the striatonigral system is the main site of pathology but less severe degeneration can be 

widespread and normally includes the olivopontocerebellar system. In MSA-C pathological changes 

are mainly seen in the olivopontocerebellar system and involvement of striatum and substantia 

nigra are less severe (Wenning et al. 1997). The discovery of glial cytoplasmic inclusions in MSA 

brains highlighted the unique glial pathology as biological hallmark of the disease. Their distribution 

selectively involves basal ganglia, supplementary and primary motor cortex, the reticular formation 

and pontocerebellar system. Glial cytoplasmic inclusions contain besides classical cytoskeletal 

antigens also α-synuclein, which is a presynaptic protein present in Lewy Bodies, and this 

accumulation seems to play a central part not only in MSA but also in other α-synucleinopathies 

such as PD and DLB. 

Disease-related metabolic patterns were also present in MSA consisting of hypometabolism in 

putamen and cerebellum in MSA (Eckert et al. 2008). Poston found that diff erences in expression of 

the MSA-related pattern correlated with clinical disability (Poston et al. 2012). 

4.3.3 Progressive supranuclear palsy

The clinical picture of progressive supranuclear palsy (PSP) has been fi rst described by Steele, 

Richardson and Olszewski (Steele JC, Richardson J,Olszewski J. 1964) and is characterized by 

progressive parkinsonism, early gait and balance impairment, vertical gaze palsy and more profound 

frontal cognitive disturbances. PSP is one of several neurodegenerative diseases characterised by 

accumulation of hyperphosphorylated tau (tauopathy), forming abnormal fi lamentous inclusions in 

neurons and glia in the precentral and postcentral cortical areas but also in the thalamus, subthalamic 

nucleus, red nucleus and substantia nigra. Other neurodegenerative brain diseases which show 

disturbances in tau protein handling are corticobasal degeneration (CBD) and frontotemporal 

dementia (FTD) but there is also overlap in pathology with Alzheimer’s disease (AD).

However, the metabolic brain patterns in these tauopathies are quite diff erent. The covariance 

pattern of PSP consists of decreased metabolism in the prefrontal cortex, frontal eye fi elds, caudate 

nuclei, medial thalamus and upper brainstem (Eckert et al. 2008). Brain stem atrophy and atrophy 

of the medial frontal cortical regions have also been reported in histopathological studies (Hauw et 

al. 1994).
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4.3.4 Corticobasal Degeneration

The most striking features of patients with corticobasal degeneration (CBD) include marked 

asymmetrical parkinsonism and apraxia but also postural instability, limb dystonia, cortical sensory 

loss, dementia and the alien limb phenomenon. CBD is one of the tauopathies and 

clinical diagnosis is complicated by both the variability of presentation of true CBD and the 

syndromes that look alike but are caused by other tauopathies with parkinsonism like PSP or FTD 

(Josephs et al. 2006). However with functional neuroimaging a clear distinction can be made. In 

CBD, a typical pattern of hypometabolism is seen in cortical regions contralateral to the aff ected 

body side, including parieto-temporal regions, prefrontal cortex and motor cortex. Furthermore, 

a decrease can be found in the contralateral caudate nucleus, putamen and thalamus (Eckert et al. 

2005, Teune et al. 2010). No covariance pattern has been described using the SSM/PCA technique 

in CBD.

4.4 DISEASE-SPECIFIC METABOLIC BRAIN PATTERNS IN THE DIFFERENTIAL DIAGNOSIS OF 

INDIVIDUAL PATIENTS WITH PARKINSONISM.

Interestingly, Tang and co-workers studied the potential role of FDG PET in the individual diagnosis 

of 167 patients who had parkinsonian features but uncertain clinical diagnosis (Tang et al. 2010b) 

After FDG-PET imaging, patients were assessed by blinded movement disorders specialists for a 

mean of 2.6 years before a fi nal clinical diagnosis was made (gold standard). SSM/PCA analysis can 

quantify the expression of an obtained covariance pattern in each subject which allows assessing 

the expression of a given pattern on a single case basis. Using this automated image-based 

classifi cation procedure and the previously defi ned disease-related covariance patterns in PD, MSA 

and PSP, individual patients were diff erentiated with high specifi city. 

However, blinded, prospective imaging studies (ideally involving multiple centers, a larger validation 

group, repeat imaging, and more extensive post-mortem confi rmation) are needed to establish the 

accuracy and precision of this pattern-based categorisation procedure. These studies are currently 

undertaken.

For routine clinical practice, this knowledge of disease-specifi c patterns of regional metabolic 

activity in neurodegenerative brain diseases can be a valuable aid in the diff erential diagnosis of 

individual patients, especially at an early disease stage. 

4.5 DISEASE-SPECIFIC METABOLIC BRAIN PATTERNS IN DEMENTIA.

4.5.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disease accounting for 50-

60% of cases of dementia. AD is characterized by a severe decline in episodic memory together 

with general cognitive symptoms such as impaired judgement, decision making and orientation 
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(McKhann et al. 1984).  A correct clinical diagnosis can be diffi  cult, especially in early disease stages 

or in patients with for example comorbid depression, high education or young age (Bohnen et al. 

2012). FDG-PET imaging can be used to assist in the diff erential diagnosis, because for diff erent 

dementia syndromes, a separate pattern of hypometabolism can be found. In Alzheimer’s disease 

(AD), decline of FDG uptake in posterior cingulate, temporoparietal and prefrontal association 

cortex was related to dementia severity (Herholz et al. 2002). Foster used visual interpretation of 

an automated three-dimensional stereotactic surface projection technique of patients with AD and 

FTD. They showed that visual interpretation of FDG-PET scans after training is more reliable and 

accurate in distinguishing FTD from AD than clinical methods alone (Foster et al. 2007). 

Although multivariate analytical techniques might identify diagnostic patterns that are not captured 

by univariate methods, they have rarely been used to study neural correlates of Alzheimer’s 

Disease or cognitive impairment. Because cognitive processes are the result of integrated activity 

in networks rather than activity of any one area in isolation, functional connectivity can be better 

captured by multivariate methods. A study from Habeck examined the effi  cacy of multivariate and 

univariate analytical methods and concluded that multivariate analysis might be more sensitive 

than univariate analysis for the diagnosis of early Alzheimer’s disease (Habeck et al. 2008).

Scarmeas et al were the fi rst to derive an AD-related covariance pattern using H2
15O to measure 

brain perfusion (Scarmeas et al. 2004). It consisted of relatively increased perfusion in the bilateral 

insula, lingual gyri and cuneus with bilaterally decreased fl ow in bilateral inferior parietal lobule 

and cingulate in AD patients. However, using this PET tracer they found a sensitivity of 76-94% and 

a specifi city of 63-81% with considerable overlap in pattern expression among AD patients and 

controls. Therefore they concluded that the derived H2
15O pattern cannot be used as a suffi  cient 

diagnostic test in clinical settings. Specifi c FDG covariance patterns to distinguish early AD-related 

cognitive decline using multivariate methods have yet to be specifi ed.

4.5.2 Frontotemporal dementia

Frontotemporal dementia (FTD) is one of the neurodegenerative diseases commonly mistaken 

for AD. FTD patients do not have a true amnestic syndrome but can present with either gradual 

and progressive changes in behaviour, or gradual and progressive language dysfunction. Gross 

examination of the post-mortem brain from a patient with FTD usually reveals frontal or temporal 

lobar atrophy or both, but the distribution or severity of brain atrophy are not specifi c for a particular 

neurodegenerative brain disease. Jeong and Diehl-Schmid analysed FDG-PET scans of FTD patients 

on a voxel-by-voxel basis using Statistical Parametric Mapping (SPM). They found hypometabolism 

depending on disease stage in the frontal lobe, parietal and temporal cortices (Diehl-Schmid et al. 

2007, Jeong et al. 2005). 

4.5.3 Dementia with Lewy Bodies

The clinical overlap of dementia and parkinsonism is highlighted in Dementia with Lewy Bodies 
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(DLB). These patients show besides dementia extrapyramidal motor symptoms and marked 

neuropsychiatric disturbances including visual hallucinations, depression, variability in arousal and 

attention (McKeith 2006). Consistent observation of a metabolic reduction in the medial occipital 

cortex in DLB patients (Minoshima et al. 2001, Teune et al. 2010) using FDG-PET imaging suggests 

the use of FDG-PET in the diff erential diagnosis of AD and DLB and of PD and DLB. Minoshima found 

that the presence of occipital hypometabolism distinguished DLB from AD with 90% sensitivity and 

80% specifi city when using post-mortem diagnosis as the gold standard diagnosis (Minoshima et 

al. 2001). 

4.6 DISEASE-SPECIFIC METABOLIC BRAIN PATTERNS IN HYPERKINETIC MOVEMENT 

DISORDERS

4.6.1 Huntington’s disease

Huntington’s disease (HD) is characterized by progressive dementia and chorea, starting around 

30-40 years of age. HD is caused by a dominantly inherited CAG repeat expansion mutation that 

generates lengthening of the protein huntingtin, with size-dependent neurotoxicity. Several 

PET studies have shown hypometabolism in the caudate nucleus, both in symptomatic and 

asymptomatic mutation carriers (Grafton et al. 1992) (Antonini et al. 1996) In asymptomatic carriers, 

metabolic decreases were also signifi cantly associated with the CAG repeat number (Antonini et 

al. 1996). Furthermore, it was found that FDG uptake in the caudate nucleus provided a predictive 

measure for time of onset of the disease, in addition to the mutation size (Ciarmiello et al. 2012).

Another study applied network analysis of FDG-PET scans in presymptomatic mutation carriers 

(Feigin et al. 2001). They found a HD-related metabolic covariance pattern (HDRP) characterized 

by caudate and putaminal hypometabolism, but also including mediotemporal reductions as well 

as relative increases in occipital regions. Disturbances of these striatotemporal projections may 

underlie aspects of the psychiatric and cognitive abnormalities that occur in the earliest stages of 

HD, before the onset of motor signs (Cummings. 1995).

4.6.2 Dystonia

Dystonia is a movement disorder characterized by involuntary, sustained muscle contractions 

causing twisting movements and abnormal postures. The most common forms of primary torsion 

dystonia (PTD) are DYT1 and DYT6, both caused by  autosomal inherited mutations with a reduced 

penetrance. 

Functional neuroimaging techniques have been applied in diff erent dystonic disorders including 

primary generalized dystonia, mainly DYT1 and DYT6 and dopa-responsive dystonia, as well as focal 

dystonic syndromes such as torticollis, writer’s cramp and blepharospasm. A common fi nding is 

abnormality of the basal ganglia, cerebellum and associated outfl ow pathways to sensorimotor 

cortex and other regions involved with motor performance. However, controversial results have 
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been found in imaging dystonias, partly attributed to methodological diff erences but also to the 

heterogeneity of the dystonias. Using the SSM/PCA approach a reproducible pattern of abnormal 

regional glucose utilization in two independent cohorts of DYT1 carriers have been found (Eidelberg 

1998, Trost et al. 2002). This torsion-dystonia related metabolic pattern is characterized by increases 

in the posterior putamen/globus pallidus, cerebellum and SMA. Interestingly, also in clinically non-

manifesting mutation carriers this pattern was found, suggesting a cerebral “vulnerability to develop 

dystonia” network change. Also in manifesting and non-manifesting DYT 6 carriers abnormal 

network activity has been identifi ed. A diff erence between DYT1 and DYT6 metabolic patterns can 

be seen in the putamen, where glucose metabolism is increased in DYT1 and decreased in DYT6, 

possibly due to cell loss in DYT6. Furthermore, the cerebellum shows increased activity in DYT1 and 

normal activity in DYT6 (Carbon et al. 2004).

The TDRP network is not expressed in patients with Dopa-responsive dystonia (DRD) (Trost et al. 

2002).

DRD is characterized by an early onset of dystonic symptoms and later appearance of 

parkinsonian symptoms. A defi ning feature is a marked and sustained response to low doses of 

levodopa, suggesting that the lesion may be functional in the presynaptic dopaminergic system 

rather than anatomical. The DRD-related metabolic pattern is characterized by relative increases in 

the dorsal midbrain, cerebellar vermis and SMA, assiocated with covarying decreases in putamen, 

lateral premotor and motor cortical regions (Asanuma et al. 2005). This DRD-related pattern is not 

apparent in DYT 1 and 6 carriers supporting the hypothesis that the pathophysiology of DRD diff ers 

from that of other forms of dystonia. They also found that the Parkinson-related metabolic pattern is 

not apparent in DRD patients.  Thus FDG-PET can be useful to distinguish PD-related dystonia from 

dopa-responsive dystonia with parkinsonism (Asanuma et al. 2005). 

4.6.3 Gilles de la Tourette 

Tourette syndrome is characterized by the presence of chronic motor and vocal tics that develop 

before the age of 18. Comorbid behavioural abnormalities are common in Tourette syndrome, 

most notably obsessive-compulsive disorder and attention defi cit/hyperactivity disorder (Lebowitz 

et al. 2012). The neurophysiology remains poorly understood with varying and inconsistent 

neuropathological and neuroimaging fi ndings, possibly due to the clinical heterogeneity of the 

disorder. Pourfar identifi ed a Tourette syndrome related pattern characterized by reduced metabolic 

activity of the striatum and orbitofrontal cortex associated with relatively increased metabolic 

activity in the premotor cortex and cerebellum (Pourfar et al. 2011). A second metabolic brain pattern 

was found in patients with Tourette syndrome and obsessive compulsive disorder characterized by 

reduced activity in the anterior cingulate and dorsolateral prefrontal cortex and relative increases in 

primary motor cortex and precuneus. Subject expression correlated with symptom severity. These 

fi ndings  suggest that the diff erent clinical manifestations of the Tourette syndrome are associated 

with diff erent abnormal brain networks (Pourfar, et al. 2011).



47

4

FDG-PET IMAGING IN THE DIFFERENTIAL DIAGNOSIS OF NEURODEGENERATIVE BRAIN DISEASES 

4.7 CONCLUSION

FDG-PET imaging is increasingly available for routine clinical practice and has remained the only 

available radiotracer to detect accurately and reliably the cerebral glucose metabolism. As glucose 

is the only source of energy for the brain it refl ects the energy needs of underlying brain neuronal 

systems. The SSM/PCA method can identify relationships in relatively increased and decreased 

metabolic activity between diff erent brain regions in combined samples of patients and controls. 

The expression of a covariance pattern can be quantifi ed in an individual patient. The obtained 

subject score indicates to what extent that patient expresses the disease-related pattern. These 

metabolic brain patterns can therefore be a valuable aid in the diff erential diagnosis of individual 

patients with neurodegenerative brain diseases.
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ABSTRACT

Objective: To validate disease-related metabolic brain patterns for Parkinson’s Disease,

multiple system atrophy and progressive supranuclear palsy.

Methods: The study included twenty Parkinson´s Disease, twenty one with multiple system 

atrophy and seventeen progressive supranuclear palsy: all of whom had undergone a clinically 

motivated [18F]-fl uoro-deoxyglucose positron emission tomography scan at an early stage of their 

disease. At a follow up time after the scan of 2-4 years, a clinical diagnosis was made according to 

established clinical research criteria. Patient groups were compared to eighteen healthy controls 

using a multivariate covariance image analysis technique called scaled subprofi le model/principal 

component analysis (SSM/PCA).

Results: Disease-related metabolic brain patterns for these parkinsonian disorders were

identifi ed. Validation showed that these patterns were highly discriminative of the three disorders.

Conclusion: Early diagnosis of parkinsonian disorders is feasible when the expression of disease-

related metabolic brain patterns is quantifi ed at single-subject level. 
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5.1 INTRODUCTION

Visual examination of [18F]-fl uoro-deoxyglucose positron emission tomography (FDG-PET) scans 

may guide the diff erential diagnosis of parkinsonian syndromes. Nevertheless, interpretation 

of both clinical symptoms and FDG-PET scans can be diffi  cult. Previously, univariate methods 

like statistical parametric mapping (SPM) have been used to identify group diff erences between 

parkinsonian patients and controls (Eckert et al. 2005, Juh et al. 2004, Teune et al. 2010). However, 

scaled subprofi le modelling/principal component analysis (SSM/PCA), a multivariate method, not 

only identifi es group diff erences, but also relationships in metabolic activity between diff erent brain 

regions in combined samples of patients and control scans (Moeller and Strother. 1991, Spetsieris 

et al. 2009). A Parkinson’s disease-related metabolic pattern was characterized by relative increases 

in pallidothalamic, pontine and cerebellar metabolism and relative decreases in the premotor and 

posterior parietal areas while typical disease-related metabolic patterns have also been identifi ed 

for multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) (Eckert et al. 2008, Ma 

et al. 2007b, Poston et al. 2012). SSM/PCA additionally enables quantifying the magnitude of the 

expression of a network for individual subjects (subject score) thus facilitating clinical investigation 

at single-subject level (Spetsieris and Eidelberg. 2010).

Recently, Tang highlighted the diagnostic value of FDG PET in parkinsonian patients with diagnostic 

uncertainty, by discriminating between Parkinson’s disease (PD), MSA and PSP with high specifi city 

using an automated image-based classifi cation procedure (Tang et al. 2010b). Since all previously 

mentioned papers on SSM/PCA-processed FDG-PET data originate from one research group, the 

present study aimed to validate these patterns in other cohorts, which is an essential prerequisite 

before routine clinical application. Therefore, specifi city and sensitivity of disease-related metabolic 

patterns for PD, MSA and PSP were assessed in our own patient population.

5.2 METHODS

Patients 

FDG-PET scans selected from a previous study (Teune, et al. 2010) describing 18 healthy controls 

and 20 PD, 21 MSA, 17 PSP patients were included for the present analysis. At the time of referral for 

imaging, the clinical diagnosis of most patients was uncertain. The fi nal clinical diagnoses according 

to established clinical research criteria (Gilman, et al. 2008, Litvan, et al. 1996, Litvan, et al. 2003) 

were made after a follow up time after scanning of 4±3 years (y) in PD, 2±1y in MSA and 3±2y in PSP. 

Included PD patients were 9 male (M), 11 female (F), 6 right body-side aff ected, 14 left-side aff ected, 

with mean age of 63±9y and Disease Duration (DD) at scanning of 3±2 years. Fourteen probable 

MSA, 7 possible MSA patients (10M, 11F, age 64±10y; DD 4±2y) and 13 probable, 4 possible PSP 

patients (9M, 8F, age 68±8y; DD 2±1y) were included. 
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FDG-PET data acquisition and statistical analysis

Patients were scanned on a Siemens ECAT HR+ PET scanner in a 3D mode under standard resting 

conditions (eyes closed) after injection of approximately 200 MBq FDG in 4ml saline. Reconstructed 

FDG-PET images were spatially normalised to a standard brain PET template (Montreal Neurological 

Institute; MNI) using SPM8 (Functional Imaging Laboratory, running in Matlab 7.10.0 (R2010a, 

Mathworks)) and smoothed with a 10mm full width at half-maximum isotropic Gaussian kernel. 

SSM/PCA was applied using software written in-house, based on the methods of Spetsieris and 

Eidelberg (Eidelberg. 2009, Spetsieris and Eidelberg. 2010). A 35% threshold of the whole-brain 

maximum was applied to remove out-of-brain voxels which results in a mask of mainly grey matter, 

followed by a log transformation. After removing between-subject and between-region averages, 

a principal component analysis (PCA) was applied. All components that together described at 

least 50% of the variance were used for further analysis. A disease-related metabolic covariance 

pattern was determined by a linear combination of the selected principal components with the 

lowest AIC (Akaike information criterion) value (Akaike. 1974) in a stepwise regression procedure. 

The correctness of the in-house written script was verifi ed by performing the analysis both with the 

Eidelberg software and our own software, which provided identical results.

Without a second patient group for pattern validation (Spetsieris et al. 2010), a leave-one-out 

cross validation procedure was performed, resulting in subject scores independent from the pattern 

identifi cation step. Subject scores were transformed into z-scores with respect to the healthy control 

population and displayed, for each comparison separately, in a scatter plot. 

Receiving-operating-characteristic (ROC) curves were determined for the probability values of PD, 

MSA and PSP. Optimum cut-off  probability values for classifying individual patients were calculated 

by identifying an infl ection point on each ROC curve that corresponds to the best combination 

of sensitivity and specifi city. Patients were classifi ed as correctly diagnosed if their probability 

value was higher than the cut-off  value. Thereafter, we calculated for each comparison sensitivity, 

specifi city, and positive- and negative predictive value (PPV and NPV respectively). 

In addition to obtaining valid subject scores, the leave-one-out procedure provides an estimate 

of the disease-related metabolic brain patterns and their variances. Dividing the estimate by its 

variance a T-score is obtained. Resulting patterns are thresholded at T>3.7 (corresponding to 

p<0.001, assuming normality of data) and overlaid onto a T1 MR template using MRIcron. 

5.3 RESULTS

Spatial covariance analysis was performed on FDG-PET scans from PD, MSA and PSP patients. 

The model with the lowest AIC value (Akaike. 1974) was determined by a linear combination of 

PC (principal component) number 1,4,5 with variance accounted for (VAF) of 26.73% for PD;  PC 

1,2,4 (33.91% VAF) for MSA and PC 1 and 5 (26.30% VAF) for PSP. A leave-one-out cross validation 

procedure was subsequently performed, generating disease-related metabolic patterns (Figure.1) 

and scatter plots with corresponding ROC curves (Figure.2).
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The PD-related metabolic covariance pattern was characterized by relative metabolic decreases, 

especially contralateral to the aff ected body side in most patients, comprising the (posterior) 

parietal association cortex, visual cortex, lateral premotor and prefrontal association cortex. Relative 

increases were seen in the pons, bilateral thalamus, pallidum, dorsal putamen, primary motor 

cortex and supplementary motor area. Their corresponding z-scores showed an overlap between 

the patients and healthy controls using the PD-related metabolic pattern. A cut-off  value of z=0.45 

Figure 1: (T) maps of metabolic brain patterns were overlaid on a T1 MR template. Relative metabolic decreases 
(blue) and increases (red) compared to the control group are thresholded at T= 3.7-6.7 (P< 0.001). Patient groups 
are indicated on the vertical axis and on the horizontal axis seven transversal slices through the brain are shown. 

Figure 2: Scatter plot and ROC curves for each comparison. On the Y-axis the leave-one-out z-scores are dis-
played and on the X-axis the group comparisons. Receiving-operating-characteristic (ROC) curves were plotted 
for each comparison separately. * = infl ection point (z-score); Y-axis= sensitivity, X-axis= 1-specifi city; PPV = posi-
tive predictive value; NPV = negative predictive value. 
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resulted in a sensitivity of 80% and specifi city of 77.8% for correct PD classifi cation of an individual 

patient.

The MSA-related metabolic covariance pattern was characterized by relative metabolic decreases 

bilaterally in the putamen and caudate nucleus with minor decreases in the premotor and primary 

visual cortex on the right side. At a lower threshold (p<0.05) metabolic decreases were  seen in 

the cerebellum (data not shown). Relative increases were seen in the subcortical white matter and 

mid-temporal cortex. Their corresponding z-scores showed less overlap between the patients and 

healthy controls and at a cut-off  value of z=0.65, the MSA-related metabolic pattern had a sensitivity 

of 90.5% and specifi city of 83.3%. A direct comparison between PD and MSA patients, which is 

clinically relevant, improved specifi city to 90%.

The PSP-related metabolic covariance pattern was characterized by relative metabolic decreases 

bilaterally in prefrontal cortex regions, cingulate cortex, frontal eye fi elds and minor decreases in 

the posterior parietal association cortex, caudate nucleus, ventral putamen and cerebellum crus. At 

a lower threshold (p<0.05) metabolic decreases were seen in thalamus and mesencephalon (data 

not shown). Relative increases were seen in the inferior- and mid-temporal cortex, subcortical white 

matter, sensorimotor cortex, pons and vermis.  

The PSP-corresponding z-scores showed virtually no overlap with healthy controls. Using the PSP-

related metabolic pattern at a cut-off  value of z=0.94, sensitivity was 82.4% and specifi city of 100% 

(Figure.2).

5.4 DISCUSSION 

Metabolic covariance patterns for PD, MSA and PSP obtained by SSM/PCA and leave-one-out 

cross validation in our patients were in agreement with previous studies (Eckert et al. 2008, Ma et 

al. 2007a). These patterns showed high sensitivity and specifi city, supporting that these image-

based classifi cations may improve clinical practice concerning diagnosing individual parkinsonian 

patients. 

High stability and reproducibility of these metabolic covariance patterns was previously suggested 

by respectively a region-defi ned approach (Moeller et al. 1999), a test-retest design (Ma et al. 2007a) 

and in a cross-validation approach (Spetsieris et al. 2010), all by the same research group. This is now 

confi rmed by the present study. 

The next step is to prove the value in clinical practice. Tang et al have already demonstrated an 

image-based classifi cation routine with high specifi city to distinguish between parkinsonian 

patients (Tang et al. 2010b). In our present study we showed that the “simple” comparison between 

healthy controls and patient groups already yielded a high sensitivity and specifi city for correctly 

classifying PD, MSA or PSP patients. Especially specifi city increased by directly comparing PD 

and MSA, which is relevant because the clinical motivation for a FDG-PET originates from doubts 

between PD or MSA, not between healthy or PD. 

The current clinical diagnosis is made by expert movement disorder specialists, although 
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neuropathological confi rmation is considered to be more accurate. However, Hughes concluded 

that in case of a thorough examination made by expert movement disorder specialist using clinical 

research criteria and a suffi  cient follow up period, a sensitivity of 91.1% for PD, 88.2% for MSA and 

84.2% for PSP compared to neuropathological examination can be found (Hughes et al. 2002). In 

general neurological practice, diagnostic accuracy is around 76% (Hughes et al. 1992). Therefore, the 

metabolic brain pattern results, obtained at early disease stage, represent high values of specifi city 

and sensitivity and are especially benefi cial in the early diff erential diagnosis of parkinsonian 

patients.

Further data inclusion will increase sensitivity and specifi city of the listed metabolic brain 

patterns and will enable subclassifi cations in for example left/right body-side aff ected patients. 

The Eidelberg research group has already shown PD subclassifi cations related to specifi c symptoms 

(tremor, cognition) (Huang et al. 2007a, Mure et al. 2011, Poston and Eidelberg. 2009). Application 

of this method may also be useful for other parkinsonian and dementia syndromes to enhance 

diagnostic precision. This puts forward a research challenge to improve the SSM/PCA method. 

Regarding previous suggestions to select components used for creating a disease-related metabolic 

pattern (Spetsieris and Eidelberg. 2010), one might consider machine learning approaches like 

decision-tree methods to improve sensitivity and specifi city (Quinlan. 1993).

5.6 CONCLUSION 

The applied image-based classifi cations imply that an early diagnosis is feasible by quantifying the 

magnitude of the expression of diff erent disease-related metabolic brain patterns through subject 

scores for individual parkinsonian patients. 
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ABSTRACT

Introduction: [18F]fl uorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in 

the diff erential diagnosis of dementia. Group diff erences in regional cerebral glucose utilisation 

of patients with dementia compared to controls are well-known. However, multivariate analysis 

techniques aiming at identifying diagnostic neural networks in diseases, have been applied less 

frequently. The aim of this study was to present and validate an Alzheimer’s disease-related (AD) 

glucose metabolic brain pattern and to apply it prospectively in a second cohort of individual 

patients with memory complaints. 

Methods: As a fi rst step, we used a multivariate analysis technique (scaled subprofi le model, 

principal component analysis (SSM/PCA)) to identify an AD-related glucose metabolic covariance 

pattern  in 18 healthy controls and 15 AD patients (identifi cation cohort). The stability of the results 

was evaluated by a leave-one-out cross validation. 

Next, we investigated the ability of the identifi ed AD-related metabolic covariance pattern 

to discriminate between probable AD and non-probable AD (possible AD, mild cognitive 

impairment (MCI) or subjective complaints) and the association of the metabolic patterns with 

neuropsychological tests. This part of the study was done in an independent cohort of 15 patients 

referred to our memory clinic (confi rmation cohort). Pattern expression was quantifi ed as a z-score 

calculated on a single-case basis.

Results: The AD-related metabolic covariance pattern was calculated on the identifi cation cohort 

and was characterized by relatively decreased metabolic activity in the temporal and parietal 

regions and relatively increased metabolic activity in the subcortical white matter, cerebellum and 

sensorimotor cortex. Receiver-operating characteristic (ROC) curves were determined in cohort 

identifi cation cohort. At a cut-off  value of z=0.65, a sensitivity of 93% and a specifi city of 94% for 

correct AD classifi cation were determined.  In the confi rmation cohort, all the subjects with clinically 

probable AD diagnosis showed a high expression of the AD-related pattern whereas in all the 

subjects with a non-probable AD diagnosis a low expression was found. The mean Z-scores between 

probable and non-probable AD patients diff ered signifi cantly (Mann-Whitney U-test, p<0.000) and 

correlated signifi cantly with neuropsychological tests. 

Conclusion: The Alzheimer’s disease-related cerebral glucose metabolic covariance pattern 

identifi ed by SSM/PCA analysis was highly sensitive and specifi c for Alzheimer’s disease. This method 

is expected to be helpful in the early diagnosis of Alzheimer’s disease in clinical practice.
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6.1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disease accounting for 50-60% of 

cases of dementia. AD is characterized by a severe decline in episodic memory together with general 

cognitive symptoms such as impaired judgement, decision making and orientation (McKhann et al. 

1984).  Other types of dementia are dementia with Lewy Bodies (DLB) and frontotemporal dementia 

(FTD) which together account for 15-25% of dementia cases (Gauthier et al. 2006). A correct clinical 

diagnosis may be diffi  cult, especially in early disease stages or in patients with for example comorbid 

depression, higher education or younger age (Bohnen et al. 2012). 

[18F]fl uorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in the diff erential 

diagnosis of dementia (Bohnen et al. 2012). In AD, a decline of FDG uptake in posterior cingulate, 

temporoparietal and prefrontal association cortex - representing a reduction of the fi rst step of the 

glycolysis and thus the energy consumption in those brain regions - has been related to dementia 

severity (Herholz et al. 2002). Foster used visual interpretation of FDG-PET scans and statistical maps 

of patients with AD and FTD (Foster, et al. 2007). They showed that visual interpretation of regional 

brain glucose consumption is more reliable and accurate in distinguishing FTD from AD than clinical 

methods alone. Minoshima examined brain glucose metabolism of autopsy proven dementia with 

Lewy Bodies (DLB) and AD using an automated three-dimensional stereotactic surface projection 

technique (Minoshima et al. 2001). A signifi cant metabolic reduction in the occipital cortex, 

including the primary visual cortex, in patients suff ering from DLB compared to AD was found. We 

performed a retrospective study (Teune et al. 2010) selecting typical patients with parkinsonian and 

dementia syndromes, including AD, who had an FDG-PET scan at an early disease stage and a clear 

clinical diagnosis at follow-up.  Disease-specifi c regional cerebral diff erences in FDG uptake were 

found in all seven studied diseases using univariate voxel-based statistical parametric mapping 

(SPM) analyses comparing patient groups and healthy volunteers. In AD patients, most prominent 

decreases in metabolic activity were found in the angular gyrus and other parieto-temporal regions 

including precuneus extending to the posterior- and middle cingulate gyrus. 

Multivariate techniques like the scaled subprofi le model/principal component analysis (SSM/

PCA) are able to show information about underlying relationships between brain regions that are 

not captured by univariate techniques like SPM (Eidelberg. 2009, Habeck et al. 2008). In parkinsonian 

syndromes, SSM/PCA is increasingly used to study pathophysiological mechanisms and to assist in 

the diff erential diagnosis (Eckert et al. 2008, Ma et al. 2007a, Poston et al. 2012, Tang et al. 2010b, 

Teune et al. 2013). Huang used the SSM/PCA approach to identify specifi c spatial covariance 

patterns related to cognitive function in non-demented PD patients in addition to the previously 

found motor-related covariance pattern (Huang et al. 2007b).

However, almost no multivariate SSM/PCA techniques in patients with dementia, including 

Alzheimer’s disease, have been applied. 

The fi rst study that tried to apply this technique in patients with AD was presented by Scarmeas 

by using radiolabelled water (H2
15O)-PET scans to measure brain perfusion (Scarmeas et al. 2004). 
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They found sensitivities between 76-94% and specifi cities between 63-81% with considerable 

overlap in pattern expression among AD patients and controls. Therefore they concluded that the 

derived perfusion pattern cannot be used as a suffi  cient diagnostic test in clinical settings. Habeck 

performed univariate and multivariate discriminant analysis of brain FDG-PET scans to evaluate 

their ability to identify AD (Habeck, et al. 2008). They concluded that multivariate measures of AD 

utilize the covariance structure of imaging data and provide complementary, clinically relevant 

information that may be superior to univariate measures (Habeck, et al. 2008). In a parallel study by 

the same research group an AD-related spatial covariance pattern was identifi ed using continuous 

arterial spin labelling (CASL-MRI) (Asllani et al. 2008). However, they pointed out that it was necessary 

to do further research regarding specifi city and stability of the covariance patterns, before it can be 

used in clinical practice.

In this study we present and validate the Alzheimer’s disease-related glucose metabolic brain 

pattern using the SSM/PCA analysis identifi ed in a cohort of AD patients with a clinical diagnosis 

according to the the clinical research criteria for AD (McKhann et al. 1984) and scanned at an 

early disease stage. Furthermore, we tested this AD-related metabolic brain pattern prospectively 

in a second confi rmation cohort of patients with memory complaints ranging from subjective 

complaints to probable AD and correlated it with the patients’ performance on neuropsychological 

tests.

6.2 METHODS

6.2.1 Patients 

Identifi cation cohort

To identify AD-related metabolic brain patterns, we used data from a sample that was included in a 

previous study (Teune et al. 2010). This sample comprised 18 healthy controls and 15 patients with 

a diagnosis of AD according to the NINCDS-ADRDA clinical criteria (McKhann et al. 1984). The mean 

age of the 15 included AD patients was 65±10 years (mean±SD) and disease duration at the time of 

the FDG-PET scan 3±2 years. The diagnosis was confi rmed during a follow-up time after scanning 

of 3±2 years. These 15 AD patients and 18 healthy controls were used to identify an AD-related 

metabolic brain pattern.

Confi rmation cohort

The AD-related metabolic brain pattern that was identifi ed in the identifi cation cohort was 

prospectively tested in an independent confi rmation cohort. Inclusion criteria for the individual 

patients in the confi rmation cohort were a referral to the UMCG Center for Geriatric Medicine 

with a complaint of memory loss, a formal neuropsychological examination, and a FDG-PET scan. 

All patients gave written informed consent. In total 15 patients could be included in the present 
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analysis. Of these 15 patients, 9 patients (age 71±5; DD 3±1) were diagnosed as having probable 

AD according to the clinical research criteria for AD (McKhann, et al. 1984) by two independent 

dementia specialists (GI and JV), who were blinded to the outcome of the FDG-PET scan. Six patients 

were classifi ed as non-probable AD (age 63±11; DD 3±2) (one possible AD, two MCI and three 

subjective complaints).

6.2.2 Neuropsychological examination

Patients in the confi rmation cohort suspected having dementia received an extensive 

neuropsychological examination, covering several cognitive domains, including Mini Mental State 

Examination (MMSE) (Folstein et al. 1975); Dutch version: Kok & Verhey, 2002), for general cognitive 

function and orientation. Verbal memory (immediate recall, delayed recall, and recognition) was 

assessed with the Dutch version of the Rey Verbal Learning Test (RAVLT) (Saan and Deelman. 1986). 

Visual memory function (recall of cue- and association cards) was assessed with Visual Association 

Test (Lindeboom et al. 2002). Furthermore, attention and processing speed was assessed with the 

Stroop Colour Word Task (Stroop. 1935) and Trailmaking Test A & B (Reitan R. 1958). Language was 

assessed by naming and category fl uency; and visuospatial function and construction with the 

Clock Drawing and Visual Object and Space Perception (VOSP, subtests Incomplete Letters and Dot 

Counting) (Warrington and James 1991). Executive function was assessed with the Dutch version 

of the Frontal Assessment Battery (FAB) (Dubois et al. 2000) the Trailmaking Test part B and the Key 

Search task of the Behavioral Assessment of the Dysexecutive Syndrome (BADS) (Wilson et al. 1996)

6.2.3 FDG-PET scan acquisition

Patients were scanned 30 minutes after injection of approximately 200 MBq FDG in 4ml saline using a 

Siemens ECAT HR+ PET scanner or for some patients in the confi rmation cohort, a Siemens Biograph 

mCT camera in a 3D mode under standard resting conditions with the eyes closed. All reconstructed 

FDG-PET images were spatially normalized using the PET template supplied in SPM8 and smoothed 

with a 10 mm full-width at half-maximum (FWHM) isotropic Gaussian kernel in the identifi cation 

cohort and 12 mm for the individual patients in the confi rmation cohort. (SPM8; Functional Imaging 

Laboratory, running in Matlab 7.10.0 (R2010a, Mathworks))

6.2.4 FDG-PET statistical analysis

Identifi cation cohort

SSM/PCA was applied using software written in-house, based on the methods of Spetsieris and 

Eidelberg (Eidelberg. 2009, Spetsieris and Eidelberg. 2010). A 35% threshold of the whole-brain 

intensity maximum was applied to remove out-of-brain voxels which results in a mask of mainly 

grey matter, followed by a log transformation. After removing between-subject and between-

region averages, a principal component analysis (PCA) was applied. All components that together 
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described at least 50% of the variance were used for further analysis. A disease-related metabolic 

covariance pattern was determined by a linear combination of the selected principal components 

with the lowest AIC (Akaike information criterion) value (Akaike. 1974) in a stepwise regression 

procedure. Thereafter, a leave-one-out cross validation procedure was performed,  resulting in 

subject scores independent from the pattern identifi cation step and providing an estimate of the 

disease-related metabolic brain patterns and their variances. By dividing the estimate by its variance 

a T-score was obtained. Resulting patterns were thresholded at T > 3.7 (corresponding to p<0.001, 

assuming normality of the data) and overlaid onto a T1 MR template using MRIcron. 

Subject scores were transformed into z-scores with respect to the healthy control population and 

displayed, for each comparison separately, in a scatter plot. Receiving-operating-characteristic 

(ROC) curves were determined for the probability values of AD. Optimum cut-off  probability 

values for classifying individual patients were calculated by identifying an infl ection point on 

each ROC curve that corresponded to the best combination of sensitivity and specifi city. Patients 

were classifi ed as correctly diagnosed if their probability value was higher than the cut-off  value. 

Thereafter, we calculated sensitivity, specifi city, and positive and negative predictive value (PPV and 

NPV respectively). 

Confi rmation cohort

For each of the fi fteen individual patients, individual subject-scores were obtained for the expression 

of the AD-related metabolic brain pattern defi ned using cohort 1. These subject scores were 

transformed into z-scores with respect to the healthy control population and displayed separately 

for the probable and non-probable AD,  in a scatter plot. 

6.3 RESULTS

AD-related metabolic brain pattern calculated using the identifi cation cohort 

The fi rst four principal components accounted for 55% of the explained variance. In a stepwise 

regression model the lowest AIC value was calculated. The model with the lowest AIC value and 

hereafter considered as disease-related was determined by principal components 1 and 3 (36%). 

This AD-related covariance pattern was characterized by bilateral relatively decreased metabolic 

activity in the bilateral temporal regions, precuneus, posterior cingulate and angular gyrus, the 

inferior parietal region and supramarginalis. Relatively increased metabolic activity was seen in the 

subcortical white matter, cerebellum and sensorimotor cortex. (See fi gure 1 a) Their corresponding 

z-scores showed an overlap between the patients and healthy controls using the AD-related 

metabolic pattern. A cut-off  value of z=0.65 resulted in a sensitivity and positive predictive value 

of 93% and specifi city and negative predictive value of 94% for correct AD classifi cation of an 

individual patient. (See fi gure 1 b)
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AD-related pattern expression in the confi rmation cohort.

The Z-scores of the fi fteen individual subjects representing the AD-related pattern expression 

are displayed in fi gure 2. Table 1 displays correlations with the AD pattern Z-score and the 

neuropsychological profi les.

Figure 1:
a) A (T) map of the AD-related metabolic brain pattern using cohort 1 was overlaid on a T1 MR template. 
Relative metabolic decreases (blue) and increases (red) compared to the control group are thresholded at 
T= 3.7-6.7 (P< 0.001). Seven transversal slices through the brain are shown. 
b) Scatter plot and ROC curves for the AD-related metabolic brain pattern. On the Y-axis the leave-one-out 
z-scores are displayed and on the X-axis the group comparison of health controls vs AD. Receiving-operat-
ing-characteristic (ROC) curves were plotted for each comparison separately. * = infl ection point (z-score); 
Y-axis= sensitivity, X-axis= 1-specifi city; PPV = positive predictive value; NPV = negative predictive value. 

Figure 2:  Scatter plot of the individual patients with probable AD and non-probable AD of cohort 2 is dis-
played. On the Y-axis the leave-one-out z-scores are displayed and on the X-axis the individual patients with 
probable AD and non-probable AD. 



64

CHAPTER 6

MMSE and RAVLT immediate- and delayed recall showed signifi cant negative correlations with AD 

pattern scores, suggesting that subjects with a low score on memory tasks had a higher Z-score for 

the AD-related metabolic brain pattern. In the attention and information processing speed domain, 

Stroop Color/Word interference task and Trailmaking Test part A & B, signifi cant positive correlations 

with AD pattern expression were shown. High scores on the tasks for attention and speed refl ect a 

worse performance. 

Moderate to high, however non-signifi cant, correlations (negative and positive) were found 

between AD pattern expressions and Visual Association Test, Category Fluency, Clock Drawing, 

Stroop Color naming, and Frontal Assessment Battery.  

Diff erences in pattern expression between the 9 probable AD patients and the 6 non-probable 

AD patients were assessed using the Mann-Whitney U-test.  Mean of the Z-score of the probable 

AD-group was 1.6 and of the non-probable group 0.11 (p<0.000).

6.4 DISCUSSION 

The Alzheimer disease-related metabolic brain pattern presented in this study and obtained using 

FDG-PET scans and SSM/PCA analysis showed high sensitivity and specifi city. 

We have shown that individual patients within the independent confi rmation cohort with a 

diagnosis of non-probable AD (minimal or mild cognitive impairment) had a low Z-score for the AD-

related metabolic brain pattern and patients with a diagnosis of probable AD had a high Z-score for 

the AD-related pattern. Moreover, there was no overlap in z-scores between the individual subjects 

with probable AD and subjects with non-probable AD. 

Sensitivity and specifi city of the identifi ed metabolic brain pattern is higher in our study 

compared to the study of Scarmeas et al. This is possibly related to the lower signal-to-noise ratio of 

the  H2
15O-PET scans in their study. As Scarmeas suggested already in 2004, the fact that expression 

of the identifi ed pattern correlated with functional and cognitive measures in a population whose 

PET data were not used to derive the pattern, provides strong evidence for its validity (Scarmeas et 

al. 2004). This has now been confi rmed by our study presented here.

Moreover, sensitivity and specifi city are comparable to those found in larger studies including 

neuropathological confi rmation (Bohnen et al. 2012). These authors concluded that even in the 

situations in which FDG-PET disagreed with the clinical diagnosis, the correct pathological diagnosis 

was more likely to be congruent with FDG-PET than with the initial clinical diagnosis. 

The brain regions we found using the SSM/PCA analysis are comparable to the regions we 

already identifi ed using a univariate analysis in AD patients (Teune et al. 2010). The benefi t of 

the current approach is the ability to provide information about the way that brain areas co-vary 

with each other and to yield per subject a quantifi able expression (a Z-score) of the AD-related 

pathological pattern of neuronal degeneration. These Z-scores also correlated signifi cantly with 

several neuropsychological tests. Signifi cant negative correlations were found between the 

pattern and two memory subtests (RAVLT immediate and delayed recall) while signifi cant positive 
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correlations were found between two tasks for attention and processing speed and the pattern. Low 

scores on memory tests and high scores on attention and speed tasks refl ect a worse performance. 

This indicates that patients who performed worse on cognitive tests had a higher Z-score for the 

AD-related glucose metabolic brain pattern which in turn refl ects a glucose metabolism distribution 

pattern in the brain similar to  Alzheimer’s disease pathological patterns. 

After being taken up by the brain, glucose or its radiotracer analogue [18F]fl uoro-deoxyglucose, 

are phosphorylated by hexokinase to glucose-6-PO4 or fl uorodeoxyglucose-6-PO4, the fi rst step of 

the glycolytic process. However, FDG being a deoxy variant of glucose is not a substrate for further 

metabolism and consequently trapped in brain tissue for the duration of the scanning procedure. 

Thus the outcome measure of regional cerebral FDG-uptake measured by PET is the fi rst step of 

the glycolysis. From the early days on FDG has remained the only available radiotracer to detect 

accurately and reliably the cerebral glucose metabolism (Reivich, et al. 1979). As glucose is the only 

source of energy for the brain in normal conditions it refl ects the energy needs of underlying brain 

neuronal systems. The detected disease-related altered metabolic brain patterns using FDG-PET is 

therefore refl ecting the underlying pathological alterations of the aff ected brain regions. Since a 

few years FDG is commercially available and being used in many Nuclear Medicine Departments 

worldwide. Until recently the here presented statistical analysis techniques were not available for 

use in clinical practice, but can now be applied at a large scale.

Quantifying the magnitude of the expression of an AD-related metabolic covariance pattern 

on a single case basis may thus aid in the diff erential diagnosis of dementia. However, apart from 

confi rming the diagnosis of AD in an individual patient it will also be necessary to determine the 

abnormal brain patterns in other dementing conditions such as in frontotemporal dementia or 

dementia with Lewy Bodies in order to make the diff erential diagnosis of dementia more powerful. 

It will be clear that further elaboration of dementia patterns largely depend on the correct selection 

of the needed reference patient groups for the identifi cation procedure.

6.5 CONCLUSION 

The Alzheimer’s disease-related cerebral glucose metabolic covariance pattern identifi ed by SSM/

PCA analysis was highly sensitive and specifi c for Alzheimer’s disease. Individual patients within the 

confi rmation cohort with a diagnosis of probable AD had a high Z-score for the AD-related metabolic 

brain pattern, whereas patients with a diagnosis of non-probable AD had a low Z-score for the AD-

related metabolic brain pattern. This method is expected to be helpful in the early diagnosis of 

Alzheimer’s disease in clinical practice. 
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GLUCOSE IMAGING IN PARKINSONISMS

GLIMPS

A  NATIONAL DATABASE

PROVIDING ASSISTANCE IN THE CLINICAL DIAGNOSIS OF PATIENTS WITH NEURODEGENERATIVE 
BRAIN DISEASES
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In this chapter we present the prospective Dutch multicenter imaging project GLucose IMaging in 

ParkinsonismS (GLIMPS). 

It involves the establishment of a database of FDG-PET scans that depicts the glucose consumption 

of the brain in patients with neurodegenerative brain diseases. 

The project aims at testing the feasibility of a novel image-based classifi cation algorithm for the 

accurate and early individual diagnosis of patients with neurodegenerative brain diseases. 

7.1 FDG-PET IMAGING IN CLINICAL PRACTICE

[18F]-fl uoro-deoxyglucose positron emission tomography (FDG-PET) imaging is an easy and 

stable radiotracer method validated extensively through the years. FDG is only in recent years 

commercially available and being used in all the larger Nuclear Medicine Departments worldwide. 

FDG has remained the only available radiotracer to detect accurately and reliably the cerebral 

glucose metabolism. As glucose is the only source of energy for the brain it refl ects the energy needs 

of underlying brain neuronal systems. After being taken up by the brain, glucose or its radiotracer 

analogue FDG, are phosphorylated by hexokinase to glucose-6-PO4 or fl uorodeoxyglucose-6-

PO4, the fi rst step of the glycolytic process. However, FDG being a deoxy variant of glucose, is not 

a substrate for further metabolism and consequently trapped in brain tissue for the duration of 

the scanning procedure. Thus the outcome measure of regional cerebral FDG-uptake measured by 

FDG-PET is the fi rst step of the glycolysis. The detected disease-specifi c metabolic brain patterns 

using FDG-PET are therefore refl ecting the underlying pathological alterations of the aff ected brain 

regions. Specifi c brain regions degenerate and diff erent patterns of altered glucose metabolic brain 

activity develop in various neurodegenerative brain diseases (box 1). 

7.2 FDG-PET IMAGE ANALYSIS TECHNIQUES

At an early disease stage, visual interpretation of FDG-PET images can be diffi  cult, even for 

experienced specialists. As already mentioned in the previous chapters, measurement of glucose 

consumption with FDG-PET imaging allows us to identify disease-specifi c cerebral metabolic brain 

patterns in several neurodegenerative brain diseases at  an early disease stage, using the multivariate 

statistical analysis technique, called, Scaled Subprofi le modelling/ principal component analysis 

(SSM/PCA).

An important question is whether an early diagnosis of neurodegenerative brain disease in one 

individual is possible when individual metabolic patterns are compared with a database of disease-

specifi c metabolic brain patterns. It is possible to calculate a subject score by multiplying every 

voxel value in a subject scan by the corresponding voxel weight in the disease-related metabolic 

covariance pattern, with a subsequent summation over the whole brain volume. The obtained 

subject score indicates to what extent that patient expresses the disease-related pattern. In this way 

we can  prospectively calculate subject scores of an individual patient for to date identifi ed PD, MSA, 

PSP and AD disease-specifi c metabolic brain patterns. See box 2 for  examples of 2 patient cases. 
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7.3 GLIMPS DESIGN AND GOAL

The GLIMPS project  has been initiated  to create a national database of FDG-PET images of patients 

in diff erent disease categories together with their specifi c clinical information. 

Starting-point of the project must be the practical clinical situation of a patients who is suspected 

of having a neurodegenerative brain diseases and in whom the physician has a clinical reason to 

perform an FDG-PET scan. The FDG-PET scan must be considered as a useful diagnostic tool for 

Box 1

Healthy control: 
High symmetrical FDG uptake in the cortex, 
cerebellum, striatum and thalamus. Low 
FDG uptake  in the white matter/ventricles). 

Parkinson’s Disease (PD): 
Normal pattern or  high FDG uptake  in 
the striatum  compared to the cortex can 
be seen. 

Multiple System Atrophy (MSA): 
Low FDG uptake in the putamen and 
cerebellum.
 

Progressive Supranuclear Palsy (PSP): 
Low FDG uptake in the mediofrontal cortex. 
Sometimes low FDG uptake in the caudate 
nucleus.

Corticobasal degeneration (CBD): 
Asymmetrical low FDG uptake (contralateral 
to the most aff ected body side) in the cortex 
and in the striatum and thalamus. Cerebellar 
diaschisis: low FDG uptake in the cerebellum 
contralateral to the aff ected hemisphere.
 

Dementia with Lewy Bodies (DLB): 
Low FDG uptake in the occipital regions, 
especially visual cortex. Sometimes low 
FDG uptake parietal cortex.

Alzheimer’s Disease (AD): 
Low FDG uptake in the parietal cortex 
and posterior cingulate. Low FDG uptake 
in temporal and frontal regions (in more 
advanced stages).

Frontotemporal Dementia (FTD): 
Low FDG uptake (sometimes asymmetrical 
in the lateral frontal, mediofrontal and 
temporal cortex)

B. Typical example of FDG-PET  imaging of individual patients

A. Typical example of FDG-PET  imaging of a healthy control subject

High 
FDG 
uptake

Low 
FDG 
uptake
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Box 2
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doctor and patient to determine the global and regional glucose consumption in the brain.

The fi rst goal of the project is the benefi t in clinical practice by assisting in the diff erential 

diagnosis of neurodegenerative brain diseases in individual patients. The possible presence of a 

disease-specifi c metabolic brain pattern in an individual patient will be calculated by applying 

the image-based classifi cation algorithm for the to date identifi ed metabolic brain patterns. The 

outcome of the classifi cation algorithm will be compared to the fi nal clinical diagnosis to evaluate 

the eff ectiveness of the proposed new technique. A second goal is to develop further the glucose 

metabolic brain patterns in diff erent disease categories in specifi c scientifi c projects. It will be 

clear that further elaboration of glucose metabolic brain patterns for neurodegenerative brain 

diseases largely depend on the correct selection of the necessary reference patient groups for the 

identifi cation procedure.

Expanding the sample size will also increase sensitivity and specifi city of the listed metabolic 

brain patterns and will enable subclassifi cations in for example left/right body-side aff ected patients. 

Furthermore, a large control sample consisting of enough patients within diff erent age categories 

is important to study diff erences in for example man and women, right left handedness and to see 

diff erences in brain patterns in an aging population. In this way, patient care focused on the early 

diff erential diagnosis of patients with neurodegenerative brain diseases is expected to improve. 

7.4 GLIMPS ORGANISATION

This project has been initiated by the Department of Neurology of the University Medical Center 

Groningen (UMCG) and is coordinated in close collaboration with the Department of Nuclear 

Medicine and Molecular Imaging (NGMB) in the UMCG, Neuro Imaging Center (NIC) and the Johann 

 Bernoulli Institute for Mathematics and Computer Science (Scientifi c Visualisation and Computer 

Graphics group) at the RUG. Expertise center TARGET is involved to develop and maintain the 

GLIMPS database. Researchers and physicians of these departments together form the GLIMPS 

project group (see our website www.glimpsproject.com)

7.4.1 Department of Neurology

GLIMPS forms part of the main longstanding research topics of the department of Neurology at the 

UMCG i.e. clinical and pathophysiological studies of movement disorders in particular Parkinson’s 

disease within the context of Molecular Mechanisms of Neurodegeneration. The department 

is playing an important role in the development of the protocol. It includes the information for 

patients, clinical parameters which need to be collected, clinical research criteria and the latest 

version of the image acquistion and scanning protocols. Selection of patients takes place at the 

outpatient Neurology department. Inclusion criteria for the GLIMPS project are patients who are 

suspected of having a neurodegenerative brain disease and in whom the physician has a clinical 

reason to perform an FDG-PET scan. These patients can be asked to participate in the GLIMPS 

project. After informed consent, clinical and scan information can be stored anonymously in the 

GLIMPS database.  
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7.4.2 Department of Nuclear Medicine and Molecular Imaging

The Department of Nuclear Medicine and Molecular Imaging at the UMCG provides daily performance 

of brain PET scans using radiotracers for common clinical use, like FDG ([F-18]fl uoro-deoxy-glucose) 

and FDOPA ([F-18]fl uoroDOPA), but also a range of experimental tracers. The department plays an 

important role in the GLIMPS project concerning image acquistion and reconstruction of the scans 

performed at the UMCG. Apart from that they have developed the GLIMPS image acquistion and 

scanning protocols in order to ensure that scans of diff erent centers can be compared with each 

other.

7.4.3 NeuroImaging Center (NIC)

The NIC is a joint venture of the University Medical Center Groningen (UMCG) and theUniversity 

of Groningen (RUG). Currently, it is equipped with a 3 Tesla MR-scanner, EEG and TMS equipment 

and data analysis facilities. Research is focused on using and improving neuroimaging techniques 

for behavioral and cognitive neurosciences. The NIC supervises the running of the image-based 

algorithms and further improves their performance as an image-analysis tool.

7.4.4 Scientifi c Visualisation and Computer Graphics

The Scientifi c Visualisation and Computer Graphics (SVCG) research group, within the Department 

of Computer Science, is part of the Johann Bernoulli Institute of Mathematics and Computer Science 

(JBI) of the University of Groningen, the Netherlands. 

The group carries out research in the area of scientifi c visualization, information visualization, 

software visualization, multiscale shape analysis, illustrative computer graphics, and innovative 

interfaces using large displays. SVCG is participating in implementing the new versions of pattern 

recognition methods in the GLIMPS projects to be developed beyond the currently available image 

covariance techniques (Scaled Subprofi le Model, SSM).

7.4.5 TARGET

The Donald Smits Center for Information Technology at the RUG, the Faculty of Mathematics and 

Natural Sciences together with the UMCG and other Institutions and companies have created 

the expertise center TARGET. Expertise center Target is building a sustainable economic cluster of 

intelligent sensor network information systems in the Northern part of the Netherlands, aimed at 

data management for very large amounts of data. 

Target’s role in GLIMPS is to develop and maintain the GLIMPS database, which will be hosted on 

the Target testbed, according to the functionality requirements of the project. All anonymous data 

is electronically transferred to the GLIMPS database.  Target is also involved in ensuring smooth 

and reliable implementation of the image-based classifi cation algorithm on its processing cluster 

facilities. In the end, the diagnosis based on the image-based classifi cation algorithm will be 

compared to the clinical diagnosis to evaluate the eff ectiveness of the proposed new technique.  
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7.4.6. Other participating centers

Collaboration with other Dutch medical centers involved in our project will broaden our patient 

base and enable us to test the feasibility of this  approach across diff erent movement disorder clinics 

and imaging centers. At the moment more than 10 centers in the Netherlands are participating. It 

is the intention that the database and the classifi cation model is developed in such a way that it 

should be useful in clinical practice for each participating center. Furthermore, scientifi c questions 

can be formulated by each participating center.

Internationally an important and intensive collaboration exists with the Feinstein group (Center 

for Neurosciences, from the Feinstein Institute for Medical Research, Manhasset, New York). This 

collaboration is most relevant since that group has many years of experience with the SSM/PCA 

method and provided the proof of principle of the method to be applied here. The Feinstein group 

will serve as international reference partner for our project.  

7.5 GLIMPS in clinical practice 

Clinical information and FDG-PET scan data will be electronically transferred in a secure and 

confi dential manner to the GLIMPS database at TARGET of the RUG, where the image-based 

classifi cation algorithm will be performed. Individual physicians of the departments of Neurology, 

geriatrics or nuclear medicine of each participating center will each receive a username and 

password which they can use to access the GLIMPS database. Each participating center has its own 

center number under which all patients of that center can be uploaded. Before patient information 

can be stored in the database, patients have to be informed about the purpose of the project and 

they have to sign informed consent for the anonymous storage of their patient data. After informed 

consent, clinical and scan information can be uploaded to the GLIMPS database. Before a referring 

physician can enter a new patient, he will receive a GLIMPS number which belongs to that patient. 

This number will need to be stored together with the medical chart of the patient, in order to inform 

the referring physician which patient belongs to which number. In this way the referring physician 

can access the own patient population so that necessary additions or repeated studies can be 

added. The data of patients of the other centers are not accessible. After complete upload of all 

necessary data, the image-based classifi cation algorithm will be applied by the researchers of the 

GLIMPS project and feedback will be given within two weeks. This feedback will consist of z-scores 

of each of the known disease-related metabolic brain patterns (currently PD, MSA, PSP and AD, for 

an example of the feedback see box 2). 

For the latest update of the GLIMPS protocol see our website www. glimpsproject.com.
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ABSTRACT

Under normal conditions, the spatial distribution of resting cerebral blood fl ow and cerebral 

metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) 

technique, pseudo-continuous arterial spin labeling (PCASL), was used to measure regional brain 

perfusion. Fourteen Parkinson’s disease patients and seventeen healthy controls underwent [18F]-

fl uorodeoxyglucose  positron emission tomography (FDG-PET) imaging and PCASL-MRI to assess 

(dis)similarities between perfusion and glucose metabolism. Data were analyzed using scaled 

subprofi le model/principal component analysis (SSM/PCA).

Unique Parkinson’s disease-related perfusion and metabolic covariance patterns were identifi ed, 

indicating that both methods contribute to the diagnosis of individual parkinsonian patients.
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8.1 INTRODUCTION

For many years, nuclear imaging techniques have been used to visualize disease-related changes in 

brain perfusion and glucose metabolism in neurodegenerative brain diseases. 

Sokoloff  et al. were the fi rst to report that under physiological steady state conditions, cerebral 

blood fl ow (CBF) is coupled to the level of cerebral oxygen (CMRO2) and glucose consumption 

(Sokoloff . 1977). Leenders et al measured rCBF and rCMRO2 in patients with Parkinson’s disease (PD). 

They showed an increase of regional blood fl ow and oxygen metabolism in the basal ganglia of the 

aff ected hemisphere in PD patients with predominantly unilateral disease (Leenders et al. 1984a). In 

the 1980’s, a SPECT tracer, 99Tcm-hexamethylpropyleneamine oxime (99Tcm-HM-PAO), was developed 

to detect cerebral blood fl ow with SPECT-imaging. The PET tracer [18F]-fl uorodeoxyglucose (FDG) 

allows the measurement of cerebral metabolic rate of glucose (CMRglc). Regional diff erences in 

cerebral glucose metabolism have been reported in parkinsonian syndromes using univariate 

methods (Teune et al. 2010). Data-driven multivariate methods are increasingly used to examine 

disease-specifi c metabolic covariance patterns in parkinsonian syndromes (Ma et al. 2007a). This 

has improved our understanding of the pathophysiology of these diseases as well as our ability to 

diagnose patients at an earlier disease stage (Tang et al. 2010a, Teune et al. 2013). Ma reproduced 

this PD-related metabolic covariance pattern, using H2
15O PET scanning,  indeed suggesting that 

cerebral blood fl ow and glucose metabolism are tightly coupled in PD patients (Ma et al. 2007a). 

However, in clinical practice, blood fl ow measurements with PET are not widely used because it 

is a demanding and time-consuming procedure, while spatial resolution of SPECT is less optimal. 

Recently, it has become possible to measure brain perfusion with a relatively new MR technique, 

pseudo-continuous Arterial Spin Labeling (PCASL). It permits the noninvasive measurement of 

perfusion with MRI by using a train of radio frequency (RF) pulses and magnetic fi eld gradient 

pulses to achieve labeling of spins in fl owing blood (Dai et al. 2008, van Osch et al. 2009). Ma et al 

analyzed the expression of the existing PD- related metabolic covariance pattern in a small number 

of parkinsonian patients using perfusion MRI (continuous arterial spin labeling) and concluded that 

perfusion MRI can be used for accurate quantifi cation of disease-related covariance patterns (Ma et 

al. 2010a). Melzer et al were the fi rst to identify a PD-related perfusion covariance pattern (Melzer 

et al. 2011). In this study we identifi ed a PD-related perfusion and metabolic covariance pattern in 

the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-

related pattern between perfusion and metabolism in PD patients. 

8.2 PATIENTS & METHODS

8.2.1 Subjects

The study was approved by the medical ethics committee of the University Medical Center 

Groningen. Voluntary written informed consent was obtained from each subject after verbal and 

written explanation of the study, in accordance with the declaration of Helsinki. This study is part 
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of a larger study: in this part 14 PD patients (4 female, 10 male; mean age 63.8 years) and 17 gender 

and age-matched healthy controls (HC) (5 female, 12 male; mean age 61.5 years) participated. PD 

patients had to fulfi ll the UK brain Bank criteria for PD (Litvan et al. 2003). Healthy controls were 

not allowed to have fi rst-degree family members with parkinsonism or dementia.  All subjects 

underwent MRI and within 8 weeks an FDG-PET scan and two neuropsychological tests (Mini Mental 

State Examination (MMSE) and Frontal Assessment Battery (FAB)) and PD patients underwent the 

Unifi ed Parkinson’s Disease Rating Scale (UPDRS) part 3: motor symptoms. Neuropsychological 

scores did not diff er between groups (mean HC: MMSE 29, FAB 17; mean PD: MMSE 28, FAB 16) 

indicating that PD patients were non-demented. PD patients had mild to moderate motor symptoms 

with Hoehn&Yahr stage: mean 1.3; standard deviation (SD) 0.5 and a UPDRS part 3: mean 18; SD 

7. Antiparkinsonian medication was withheld for at least 12 hours and benzodiazepines 24 hours 

before MRI and FDG-PET scanning.

8.2.2 Image acquisition and preprocessing

MR imaging was performed on a 3T MRI scanner (Achieva 3 Tesla, Philips healthcare, Best, The 

Netherlands) using a standard 8-channel SENSE head coil. Subjects were wearing ear protection 

and instructed to lie still with their eyes closed, and to avoid falling asleep.

To enable PCASL imaging, the scanner was equipped with locally developed software. Pseudo-

continuous labeling was performed by employing a train of Hanning-shaped RF pulses (tip angle 

18°, duration 0.5ms) with an interpulse pause of 0.5 ms in combination with a balanced gradient 

scheme. PCASL images were obtained in a dynamic mode of 2x30 volumes (labeled and control) 

with an echo time of 14 ms, repetition time (TR) of 4200 ms, 23 axial slices, fi eld of view (FOV) 

240 mm with an 80x80 matrix and an isotropic voxel size of 3x3x6 mm. All 30 labeled and control 

volumes were fi rst motion-corrected in SPM8 (Functional Imaging Laboratory, running in Matlab 

7.10.0 (R2010a, Mathworks)). Volumes were smoothed with an 8 mm full-width-at-half-maximum 

isotropic Gaussian kernel (FWHM). Analogue to van Dijk (Van Dijk, et al. 2010), volumes were 

fi ltered against a time-course extracted from a ROI in white matter and liquor in order to diminish 

physiological noise. Thereafter, labeled perfusion-weighted images were subtracted from control 

images, creating one mean PCASL image per subject. These steps were performed using Matlab 

scripts developed in-house. Normalization with respect to the global mean is intrinsic in the used 

statistical analysis method (see below). 

FDG-PET imaging was performed in a 3D mode using a Siemens Biograph mCT-64. Image 

acquisition was performed in a resting state with the subject’s eyes closed in a dimly lighted room 

with minimal auditory stimulation. A 6-minute static frame was acquired starting 30 minutes after 

the injection of 200 MBq FDG in 4ml saline. 

The FDG-PET images were iteratively reconstructed using the OSEM algorithm with 3 iterations and 

24 subsets on a matrix of 400x400 and smoothed with 5 mm FWHM. No zoom was applied, resulting 

in images with an isotropic voxel-size of 2 mm with a specifi ed resolution of 5 mm in the center of 



79

8

PARKINSON’S DISEASE-RELATED PERFUSION AND GLUCOSE METABOLIC BRAIN PATTERNS IDENTIFIED WITH PCASL-MRI AND FDG-PET IMAGING

the fi eld of view. Scatter and attenuation correction were applied based on the acquired low dose 

CT. 

A study-specifi c template of all mean PCASL images was spatially normalized to a standard brain PET 

template (Montreal Neurological Institute; MNI) using SPM8 and then used to spatially normalize 

the individual mean PCASL images. An example of the mean PCASL images of seventeen healthy 

controls is shown in Figure 1 a. FDG-PET images were directly spatially normalized to a PET template 

and then both were smoothed with 10 mm FWHM.

8.2.3 Statistical analysis

SSM/PCA was applied using software written in-house, based on methods of the Eidelberg 

research group (Spetsieris and Eidelberg. 2010). A 35% threshold of the whole-brain maximum was 

applied for FDG-PET images to remove out-of-brain voxels, which results in a mask of mainly grey 

matter, followed by a log transformation. This grey matter mask was then applied to the PCASL 

images without subsequent log transformation. After removing between-subject and between-

region averages, a principal component analysis (PCA) was applied. All components that together 

described at least 50% of the variance were used for further analysis. A disease-related metabolic 

covariance pattern was determined by a linear combination of the selected principal components 

with the lowest AIC (Akaike information criterion) value in a stepwise regression procedure. 

Thereafter, a leave-one-out cross validation procedure was performed, resulting in subject scores 

independent from the pattern identifi cation step. This provides an estimate of the disease-related 

metabolic brain patterns and their variances. By dividing the estimate by its variance a T-score was 

obtained. Resulting disease-specifi c metabolic and perfusion brain patterns were thresholded at 

T=2.5 (corresponding to p<0.02) and overlaid onto a T1 MR template using MRIcron. Subject scores 

for the PD-related metabolic and perfusion patterns were transformed into z-scores with respect to 

the healthy control population. Moreover, z-scores of the PCASL images were calculated using the 

glucose metabolic covariance pattern as a reference. A correlation analysis was performed between 

z-scores of the PCASL- and FDG images on the PD-related glucose metabolic brain pattern. 

8.3 RESULTS

The PD-related perfusion covariance pattern was characterized by relatively decreased cortical 

metabolic activity bilaterally in the temporal, insular, posterior parietal, inferior parietal, lateral 

occipital and prefrontal association cortex. Relative increases were seen in the cerebellum and pons, 

right thalamus and pallidum, sensorimotor cortex, paracentral lobule and supplementary motor 

area (SMA) (Figure1 b).

The PD-related metabolic covariance pattern was characterized by relatively decreased cortical 

metabolic activity in the temporal, posterior parietal, inferior parietal, lateral occipital, prefrontal 

association cortex and SMA. Relative increases were seen in the cerebellum and pons, thalamus and 

pallidum, sensorimotor cortex, limbic association cortex, paracentral lobule and left SMA (Figure1 b).
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Figure 1: A) Example of the mean PCASL images of all healthy controls. Seven transversal slices through the 
brain are shown. B)  (T) maps of the PD-related perfusion (upper row) and metabolic covariance brain patterns 
were overlaid on a T1 MR template. Relative perfusion and metabolic decreases (blue) and increases (red) com-
pared to the control group are thresholded at T= 2.5-5.0 (P< 0.02). Seven transversal slices through the brain are 
shown.

Figure 2: Correlation between the PD-related 
metabolic brain pattern expression measured 
with FDG and PCASL. On the X-axis the leave-
one-out z-scores are displayed from the PCASL 
scans. On the Y-axis the leave-one-out z-scores 
are displayed from the FDG-PET scans. Healthy 
controls are denoted by open triangles; PD pa-
tients by open circles.



81

8

PARKINSON’S DISEASE-RELATED PERFUSION AND GLUCOSE METABOLIC BRAIN PATTERNS IDENTIFIED WITH PCASL-MRI AND FDG-PET IMAGING

We computed the z-scores of FDG and PCASL images on the PD-related metabolic brain pattern and 

performed a correlation analysis. The Pearson correlation coeffi  cient was 0.498 (p<0.007) (Figure 2).

8.4 DISCUSSION

In this study we identifi ed PD-related perfusion and glucose metabolic brain patterns measured in 

the same patients. The PD-related metabolic covariance brain pattern is in high accordance with 

previously described disease-related metabolic brain patterns in diff erent cohorts in PD patients 

using standard clinical FDG-PET imaging (Ma et al. 2007a, Teune et al. 2013). Furthermore, we 

obtained a disease-specifi c perfusion brain pattern using PCASL-MR imaging. Our disease-related 

pattern is comparable to the PD-related perfusion brain pattern described by Melzer, characterized 

by decreased perfusion in posterior parieto-occipital cortex, middle frontal gyri and preserved 

perfusion in globus pallidus, putamen, anterior cingulate and post/precentral gyri with decreased 

perfusion activity in the posterior parieto-occipital cortex, posterior medial cortex and middle 

frontal gyrus and increased activity in bilateral globus pallidus, putamen en primary sensorimotor 

cortex and SMA (Melzer et al. 2011). The most characteristic diff erence between our perfusion brain 

pattern and previous reports (Fernández-Seara et al. 2012, Melzer et al. 2011), is the decrease of 

cerebral perfusion in the insular cortex on both sides in our data.  However, Helmich et al have 

shown that PD patients had decreased connectivity between the posterior putamen and various 

cortical regions contributing to the corticostriatal loop, including the insula using resting-state 

functional MRI data (Helmich et al. 2010). 

Performing PCASL and FDG-PET imaging in the same patients enabled a comparison between 

both patterns. Z-scores of  PCASL datasets onto the metabolic pattern correlated positively (0.498) 

with the z-scores of FDG datasets onto the metabolic pattern. This value indicates there is substantial 

overlap, however, not complete. As discussed above, the larger perfusion decrease in the PD-related 

pattern in cortical regions including the insula than in the metabolic brain pattern, is suggesting 

that PCASL, is indeed adding relevant information to the PD-related pattern. 

Another diff erence is the less pronounced increased perfusion in the basal ganglia in the 

perfusion-related pattern compared to the metabolic brain pattern. This is probably related to a 

lower signal-to-noise ratio. It is known that MRI head coils with multiple receive channels result in 

better signal to noise ratio in the cortex than in deeper brain structures. 

Our data shows that PCASL is a promising technique, which gives supplementary information to 

FDG-PET and could thus be used as an additional measurement to improve image-based diagnosis 

of parkinsonian syndromes.

8.5 Conclusion

We identifi ed PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in 

the same patients which were comparable with results of existing research. In this respect, PCASL 

appears to be a promising addition in the early diagnosis of individual parkinsonian patients.
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The main aim of this thesis was to investigate diff erences in glucose metabolism in various  

neurodegenerative brain diseases using [18F]-fl uorodeoxyglucose (FDG)-PET imaging. Furthermore, 

specifi c analysis techniques which can assist in the applicability of these brain patterns in clinical 

practice were investigated. In the following paragraphs specifi c fi ndings and results will be 

highlighted. In the second part of this chapter, possibilities to extend to other image modalities and 

new methods that are currently subject of further study will be discussed.

9.1 BRAIN IMAGING IN THE DIFFERENTIAL DIAGNOSIS OF PARKINSONIAN SYNDROMES 

The diff erential diagnosis of neurodegenerative brain diseases may be diffi  cult on clinical grounds 

only. Parkinson’s disease (PD) is the second most common neurodegenerative brain disease 

after Alzheimer’s disease (AD). PD is manifested clinically by bradykinesia, muscular rigidity 

and sometimes rest tremor. Supportive features of the diagnosis are a unilateral onset of motor 

symptoms, progressive disorder and a good and consistent levodopa response (Litvan, et al. 2003). 

Especially at early disease stages, it can be diffi  cult to distinguish PD from other neurodegenerative 

parkinsonian syndromes such as multiple system atrophy (MSA), progressive supranuclear palsy 

(PSP), corticobasal degeneration (CBD) or dementia with Lewy Bodies (DLB). In general neurological 

practice, diagnostic accuracy of parkinsonian syndromes is around 76% (Hughes, et al. 1992).  In 

chapter 2, radiotracer neuroimaging techniques using positron emission tomography (PET) or 

single photon emission computed tomography (SPECT) are discussed which can be helpful to 

diff erentiate PD from other diseases. Presynaptic dopaminergic imaging either with [18F]F-DOPA PET 

or [123I]FP-CIT SPECT is used to diff erentiate between patients with parkinsonian features associated 

with a presynaptic dopaminergic defi cit such as PD, (but also MSA, PSP, CBD and DLB) and without 

a presynaptic dopaminergic defi cit such as essential tremor, drug-induced parkinsonism or vascular 

parkinsonism. In a recent study of Hellwig (Hellwig, et al. 2012), the diagnostic accuracy of FDG-PET 

compared to [123I] iodobenzamide (IBZM) for SPECT imaging was investigated. They concluded that 

the diagnostic accuracy of FDG-PET for discriminating Lewy Body Dementia from other parkinsonian 

syndromes is considerably higher than for IBZM-SPECT. This suggests that FDG-PET should replace 

IBZM-SPECT in clinical routine examinations of parkinsonian patients. In order to diff erentiate 

within the group of before mentioned neurodegenerative parkinsonian syndromes, disease-related 

metabolic brain patterns identifi ed with FDG-PET imaging could be of great assistance in the 

individual clinical diagnosis (see below). 

9.2 FDG-PET IMAGING IN THE DIFFERENTIAL DIAGNOSIS OF NEURODEGENERATIVE BRAIN 

DISEASES 

FDG-PET imaging is increasingly available for routine clinical practice and has remained the 

only available radiotracer to detect accurately and reliably the cerebral glucose metabolism. 

As glucose is the only source of energy for the brain, it refl ects the energy needs of underlying 

brain neuronal systems. After being taken up by the brain, glucose or its radiotracer analogue [18F]
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FDG, are phosphorylated by hexokinase to glucose-6-PO4 or fl uorodeoxyglucose-6-PO4, the fi rst 

step of the glycolytic process. However, FDG being a deoxy variant of glucose, is not a substrate 

for further metabolism and consequently trapped in brain tissue for the duration of the scanning 

procedure. The outcome measure of regional cerebral FDG-uptake measured by PET is the fi rst 

step of the glycolysis. The detected specifi c metabolic brain patterns using FDG-PET are therefore 

refl ecting the underlying pathological alterations of the aff ected brain regions. Specifi c brain 

regions degenerate and diff erent patterns of altered glucose metabolic brain activity develop in 

various neurodegenerative brain diseases, before structural (atrophy) changes can be detected with 

imaging techniques.

9.2.1 Univariate analysis method 

In chapter 3, we have performed a retrospective study selecting typical patients with PD, MSA, PSP, 

CBD DLB, AD and frontotemporal dementia (FTD). At the time of referral for imaging, the clinical 

diagnosis of most patients was uncertain. The fi nal clinical diagnoses according to established 

clinical research criteria (Gilman et al. 2008, Litvan et al. 1996, Litvan et al. 2003, Mahapatra et al. 

2004, McKeith. 2006, McKhann et al. 1984, McKhann et al. 2001) were made after a follow up time 

after scanning of PD 4±3 (mean±SD in years), MSA (2±1), PSP  (3±2), CBD  (3±1), DLB (2±1), AD (3±2) 

and FTD (3±1). 

To identify diff erences between patients and controls we used a univariate voxel-based analysis 

technique called statistical parametric mapping (SPM). Images of each of the seven patient groups 

were separately compared to 18 healthy controls using this SPM procedure and a two-sample t-test. 

Disease-specifi c patterns of relatively decreased metabolic activity were found in PD (contralateral 

parieto-occipital and frontal regions), MSA (bilateral putamen and cerebellar hemispheres), PSP 

(prefrontal cortex and nucleus caudatus, thalamus and mesencephalon), CBD (contralateral cortical 

regions), DLB (occipital and parieto-temporal regions), AD (parieto-temporal regions), and FTD 

(fronto-temporal regions). In these patients, scanned at an early disease stage, typical diff erences 

between patient groups and healthy controls were found for each disease. In chapter 4, an 

overview of the literature of disease-specifi c metabolic brain patterns in several neurodegenerative 

brain diseases is given. Furthermore, advances of using multivariate analysis methods compared 

to univariate methods are outlined. In a multivariate statistical analysis technique, called Scaled 

Subprofi le Modelling/Principal Component Analysis (SSM/PCA), not only group diff erences between 

patients and controls can be identifi ed like in univariate methods, but it is also possible to identify 

relationships in relatively increased and decreased metabolic activity between diff erent brain 

regions in combined samples of patients and control scans (Eidelberg. 2009, Moeller, et al. 1987).

9.2.2 Multivariate analysis method

In chapter 5 we validated disease-related metabolic brain patterns for PD, MSA and PSP using 

SSM/PCA in the same patients and controls that were used in the univariate analysis of chapter 
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3. Validation showed that the disease-related metabolic brain patterns were highly similar to  the 

earlier described group diff erences in chapter 3 and discriminative of the three disorders. The 

fi ndings are consistent with previous studies. However, some interesting diff erences can be noted. 

In our study the PD-related metabolic covariance pattern was characterized by an asymmetrical 

relatively decreased metabolic activity, contralateral to the aff ected body side in 14 out of 20 

patients, comprising the (posterior) parietal association cortex, visual cortex, lateral premotor and 

prefrontal association cortex. To our knowledge, an asymmetrical PD pattern has not been described 

before (Huang et al. 2007c, Ma et al. 2007a). 

Moreover, Tang studied longitudinal changes in network activity in each cerebral hemisphere, 

focusing specifi cally on the “presymptomatic” hemisphere, ipsilateral to the initially involved body 

side, to see whether the network changes appear at or before symptom onset. In the context of PD, 

the cerebral hemisphere ipsilateral to the initially aff ected limbs can be considered “presymptomatic” 

at least until symptoms appear on the opposite body side. They found that elevations at the network 

level of the PD motor-related pattern (PDRP) were already present at baseline in both hemispheres. 

This contrasts with hemispheric expression of the PD cognition-related pattern 4 years after the 

appearance of the motor network abnormality which was characterized by decreased metabolic 

activity in the contralateral precuneus (Tang, et al. 2010a). This localized metabolic change may 

refl ect the earliest stages of early cognitive decline in Parkinson disease as defi ned by mild cognitive 

impairment (Huang, et al. 2007a). 

We included PD patients at an early disease stage even before the clinical diagnosis was clear. 

However we did not diff erentiate between PD specifi c motor and cognitive related changes and 

we have not studied this cohort over time. Nonetheless, we hypothesize that the appearance of 

cortical metabolic decreased activity contralateral to the most aff ected body side in our cohort 

could be an early marker of advancing disease including the development of  neuropsychological 

defi cits. Future studies should be carried out to predict onset and progression of specifi c PD-related 

symptoms. Further data inclusion will increase sensitivity and specifi city of the listed metabolic 

brain patterns. Application of this SSM/PCA method may also be useful for other parkinsonian and 

dementia syndromes to enhance diagnostic precision. 

We extended the SSM/PCA approach in chapter 6 to identify an Alzheimer’s Disease-related 

glucose metabolic brain pattern. Group diff erences in regional cerebral glucose utilisation of 

patients with dementia compared to healthy controls are well-known. However, multivariate 

analysis techniques aiming at identifying diagnostic neural networks in diseases, have been 

applied less frequently. The aim of this study was to present and validate an AD-related glucose 

metabolic brain pattern and to apply it prospectively in a second cohort of individual patients 

with memory complaints. The identifi cation cohort consisted of the same AD patients and controls 

already described in chapter 3. The AD-related glucose metabolic brain pattern was characterized 

by relatively decreased metabolic activity in the temporal and parietal regions and relatively 

increased metabolic activity in the subcortical white matter, cerebellum and sensorimotor cortex. 
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The metabolic brain pattern we found using the SSM/PCA analysis was comparable to the regions 

we already identifi ed using a univariate analysis in AD patients (see chapter 3) with a sensitivity of 

93% and a specifi city of 94% for the AD-related metabolic brain pattern. Furthermore, we applied 

this method to investigate the ability of the identifi ed AD-related metabolic covariance pattern to 

discriminate between individual patients with probable AD and non-probable AD (possible AD, 

mild cognitive impairment (MCI) or subjective complaints) and the association of the metabolic 

patterns with neuropsychological tests. This part of the study was done in an independent cohort of 

15 patients referred to our memory clinic (confi rmation cohort). In the confi rmation cohort, all the 

subjects with clinically probable AD diagnosis showed a high expression of the AD-related metabolic 

brain pattern whereas in all the subjects with a non-probable AD diagnosis a low expression was 

found. 

9.3 FDG-PET IMAGING AND THE SSM/PCA METHOD IN CLINICAL PRACTICE

Since a few years FDG is commercially available and being used in many Nuclear Medicine 

Departments worldwide. Now we have the possibility, based on the disease-related patterns for PD, 

MSA, PSP and AD, to obtain a score for an individual subject. This score is calculated by multiplying 

every voxel value in a subject scan by the corresponding voxel weight in the disease-related 

metabolic covariance pattern, with a subsequent summation over the whole brain volume. The 

obtained subject score indicates to what extent that patient expresses the disease-related pattern. 

In chapter 5 we showed that the “simple” comparison between healthy controls and patient groups 

already yielded a high sensitivity and specifi city for correctly classifying PD, MSA or PSP patients. 

Tang et al have already demonstrated an image-based classifi cation routine with high specifi city 

to distinguish between PD and MSA/PSP and in a second step between MSA and PSP compared 

to controls. (Tang et al. 2010b). We performed another analysis in chapter 5 by directly comparing 

PD and MSA instead of a comparison against healthy controls and demonstrated that especially 

specifi city increased. This is relevant for applying this method in clinical practice because the clinical 

motivation for a FDG-PET originates from doubts between PD or MSA, not between healthy or PD. 

In a recent study of Hellwig (Hellwig, et al. 2012), the diagnostic accuracy of FDG-PET in discriminating 

parkinsonian patients was investigated. FDG-PET scans were analyzed by visual assessment 

including individual voxel based statistical maps (a 3D stereotactic surface projection technique 

(3D-SSP)). First, a diff erentiation between MSA, PSP and CBD from DLB was made, followed by a 

subclassifi cation in MSA, PSP and CBD. Sensitivity and specifi city of FDG-PET was 77/97% for MSA, 

74/95% for PSP and 75/92% for CBD respectively. These studies compared only two classes at a time 

or in two levels (healthy and patient group, or two patient groups). This puts forward a research 

challenge to improve the SSM/PCA method, to be able to distinguish diff erent neurodegenerative 

brain diseases from each other in one analysis. One might consider machine learning approaches 

like decision-tree methods to be able to compare more than two patient groups at the same time 

and possibly detect subclassifi cations within patient groups (see future perspectives).
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Rather than demonstrating pattern specifi city in group comparisons, it is important to know 

whether an early diagnosis of neurodegenerative brain disease of one individual is possible when 

individual metabolic patterns are compared with a database of disease-specifi c metabolic brain 

patterns. 

In chapter 7 we present the prospective Dutch multicenter imaging project GLucose IMaging 

in ParkinsonismS (GLIMPS) which aims at testing the feasibility of a novel image-based classifi cation 

algorithm for the accurate and early individual diagnosis of patients with neurodegenerative brain 

diseases. However, apart from confi rming the diagnosis of a neurodegenerative brain disease in 

an individual patient, it will also be necessary to determine abnormal glucose metabolic brain 

patterns in other parkinsonian and dementia syndromes such as in CBD, DLB and FTD in order 

to make the diff erential diagnosis of dementia more reliable. It is clear that further elaboration of 

glucose metabolic brain patterns largely depend on the correct selection of the needed reference 

patient groups for the identifi cation procedure. Expanding sample size will increase sensitivity and 

specifi city of the listed metabolic brain patterns and will enable subclassifi cations in for example 

left/right body-side aff ected patients. Furthermore, a large control sample consisting of suffi  cient 

patients within diff erent age categories is important to study diff erences in brain patterns in an 

aging population and for example in man and women or right and left handedness.

9.4 PARKINSON’S DISEASE-RELATED METABOLIC BRAIN PATTERNS COMPARED TO OTHER 

IMAGE MODALITIES. 

It is increasingly recognized that combining information derived from diff erent image modalities 

can be used for improvements in the sensitivity and specifi city of disease-related patterns for 

parkinsonian disorders. A prospective study was carried out in 20 PD patients and 17 healthy 

controls to test whether FDG-PET scanned on high resolution camera combined with magnetic 

resonance imaging (MRI)-based techniques such as arterial spin labeling (ASL), resting state fMRI 

images and diff usion tensor imaging (DTI) will provide an even more distinguished disease-related 

pattern for Parkinson’s disease. Under normal conditions, the spatial distribution of resting cerebral 

blood fl ow and cerebral metabolic rate of glucose are closely related. 

A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling 

(PCASL), (see box 1) was used to measure regional brain perfusion. 

In chapter 8 fourteen Parkinson’s disease patients and seventeen healthy controls could be 

included and underwent FDG-PET imaging and PCASL-MRI. Data were analyzed using scaled 

subprofi le model/principal component analysis (SSM/PCA). We identifi ed a PD-related metabolic 

and perfusion covariance pattern in the same patients using PCASL and FDG-PET imaging and 

assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD 

patients. The PD-related metabolic covariance brain pattern is in high accordance with previously 

described disease-related metabolic brain patterns in diff erent cohorts in PD patients. Furthermore, 

we obtained a disease-specifi c perfusion brain pattern using PCASL-MR imaging. The PD-related 
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perfusion covariance pattern was characterized by relatively decreased cortical metabolic activity 

bilaterally in the temporal, insular, posterior parietal, inferior parietal, lateral occipital and prefrontal 

association cortex. Relative increases were seen in the cerebellum and pons, right thalamus and 

pallidum, sensorimotor cortex, paracentral lobule and supplementary motor area (SMA). Performing 

PCASL and FDG-PET imaging in the same patients enabled a comparison between both patterns. 

The earlier described decreased perfusion in the insular cortex was not present in the  glucose 

metabolic brain pattern, which is suggesting that PCASL is indeed adding relevant information 

to the PD-related pattern. Our perfusion brain pattern is comparable to the earlier described PD-

related perfusion brain pattern (Melzer et al. 2011). The most characteristic diff erence between our 

perfusion brain pattern and previous reports (Fernández-Seara et al. 2012, Melzer et al. 2011) is 

the decrease of cerebral perfusion in the insular cortex on both sides in our data. In support of 

our fi ndings, Helmich used resting-state functional MRI data to test the eff ect of striatal dopamine 

depletion on cortico-striatal network properties. (see box 2 for an explanation of resting state fMRI). 

They showed that PD patients had decreased connectivity between the posterior putamen, which 

is early aff ected in PD (see chapter 2) and various cortical regions contributing to the corticostriatal 

loop, including the insula (Helmich, et al. 2010). Preliminary fi ndings of our own PD patient cohort 

showed that it is possible to adapt the SSM/PCA method to be used for resting state fMRI studies. 

Meaningful patterns of positive and negative correlations were identifi ed when the left pallidum 

Box 1: pseudo-continuous arterial spin labeling
Pseudo-continuous Arterial Spin Labeling (PCASL) permits the noninvasive measurement of 
perfusion with MRI by using a train of radio frequency (RF) pulses and magnetic fi eld gradient 
pulses to achieve labeling of spins in fl owing blood (Dai et al. 2008, van Osch et al. 2009). The 
arterial blood in the feeding artery is magnetically and non-invasively labeled (tagged) and an 
image is acquired after a time delay (i.e. labeled image). The labeled protons in blood act as 
endogenous tracers. They are exchanged with the water protons in brain tissue as the blood 
fl ows into the capillary. At a steady-state of this exchange, the concentration of the labeled 
protons in brain tissue refl ects the amount of blood perfusion which is weighted by regional 
T1 relaxation. A second image (i.e. control image) can be acquired in the same manner except 
that the incoming blood is not magnetically labeled and all the spins in the brain are aligned 
with static magnetic fi eld. The subtraction of label from control image provides an image that 
is proportional to the cerebral blood fl ow, also called the perfusion image (see fi gure below).
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was used as a seed region. Interestingly, a positive correlation was found between the left pallidum 

and the insular cortex on both sides. Future investigations are needed to further optimize the 

technique and use diff erent seed regions to determine resting state connectivity between this 

region and the rest of the brain. 

Another way of  looking at abnormal connectivity patterns between brain regions is diff usion 

tensor imaging (DTI)-tractography. It can be used to visualize nerve fi ber tracts or compute various 

anisotropy measures (see box 3). In our research group we are currently working on optimizing 

protocols for our own PD patient cohort, to be able to answer questions related to changed thalamo-

cortico-striatal connections in PD patients compared to controls. Earlier studies did investigate 

diff usion coeffi  cients and found promising results.

Box 2: Resting state fMRI
In functional magnetic resonance imaging (fMRI), changes in the Blood Level 
Oxygenation Dependent (BOLD) eff ect are measured and visualized in brain tissue. 
fMRI using task-based or stimulus-driven paradigms has been critical to our current 
understanding of brain function. Using the relative signal changes (0.5-5%) from baseline 
in the BOLD signal during the performance of a task or in response to a stimulus, one 
infers that certain areas of the brain are activated or deactivated. In recent years, there has 
been increasing interest in the application of the technique at rest, termed resting-state 
fMRI or functional connectivity MR imaging. In resting state fMRI, subjects are scanned 
without external stimulus to derive brain connectivity patterns which are assumed to 
represent a default-mode network. A seed-based approach is commonly used to identify 
brain regions that are functionally connected (Lee et al. 2012).

Box 3: Diffusion Tensor Imaging
Diff usion magnetic resonance imaging is increasingly used to investigate white matter 
structures in patients with neurodegenerative brain diseases. In Diff usion Weighted 
Imaging the direction of diff usion in each voxel can be determined. This will be used 
to estimate both the presence and orientation of white matter tracts. Diff usion tensor 
imaging (DTI) calculates a tensor in each voxel, taking into account parameters of the 
rate of diff usion and the preferred direction of diff usion. In an isotropic medium (liquor), 
water molecules naturally move randomly and isotropically. In biological tissues however, 
the diff usion may be anisotropic. Fractional anisotropy (FA) can be calculated for each 
voxel and contains combined information in multiple directions. Highly organized white 
matter tracts have high FA because diff usion is highly constrained by the tract’s cellular 
organization. As white matter is damaged, FA decreases due to decreased anisotropic 
diff usion. Apparent diff usion coeffi  cient (ADC) values measure the average water 
diff usion, and increasing ADC values indicate damaged white matter. In addition, DTI-
tractography can be used to visualize nerve fi ber tracts and study abnormal connectivity 
patterns between brain regions. Depending on the goal one can use either a voxel-based 
or skeleton-based approach. In voxel-based approaches one cannot be certain that the 
same regions of white matter tracts correspond across subjects. The tract-based spatial 
statistics (TBSS) method aims to solve this problem. (Rae et al. 2012)
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Ito compared ADC and FA values in the pons, cerebellum and putamen in patients with PD, MSA and 

controls and detected early pathological involvement prior to magnetic resonance signal changes 

in MSA. In particular, low FA values in the pons showed high specifi city in discriminating MSA from 

PD (Ito et al. 2007).

Although DTI has typically been used to study white matter tracts, it also holds promise to study 

grey matter areas. Vaillancourt demonstrated that the FA values were reduced in the SN of early 

stage, unmedicated patients with PD. The diff erence between de novo patients with PD and healthy 

control subjects was greatest in the caudal ROI of the SN compared with the middle and rostral 

SN ROI. By using this technique, all de novo patients with PD were distinguished from all healthy 

individuals with 100% sensitivity and specifi city (Vaillancourt et al. 2009).

9.5 FUTURE DIRECTIONS

We know now that disease-related metabolic and perfusion brain patterns can be derived in 

patients with neurodegenerative brain diseases. As already suggested in chapter 8, it is increasingly 

recognized that combining information derived from diff erent image modalities including FDG-

PET and PCASL can be used for improvements in the sensitivity and specifi city of biomarkers for 

parkinsonian disorders. However, complexity regarding analysis techniques increases. 

9.6 DECISION TREE CLASSIFICATION OF FDG-PET DATA TO PREDICT NEURODEGENERATIVE 

BRAIN DISEASES

As described above, diff erent image modalities can be used to extract disease-related metabolic 

brain patterns in neurodegenerative brain diseases. However, the above described SSM/PCA 

method can only deal with one image modality, and comparison of two classes (healthy and patient 

group, or two patient groups) at a time. This puts forward a research challenge to improve the SSM/

PCA method. Regarding previous suggestions to select components used for creating a disease-

related metabolic pattern (Spetsieris and Eidelberg. 2010), one might consider machine learning 

approaches like decision-tree methods to improve sensitivity and specifi city (Quinlan. 1993). (see 

box 4 for an explanation and example of the decision tree method). The objective for future research 

will be to explore the fi rst examples of the decision tree method by carefully looking at each step in 

the tree, identify misclassifi ed patients and get validated results. Furthermore, besides being able to 

classify patients of diff erent patient groups in one analysis, it is possible to use characteristic image 

features derived from multimodal brain data (FDG-PET, DTI, PCASL and resting state fMRI images). 

From these data, image features and network patterns can be extracted, which can be used as input 

for the decision tree method. Another advantage of this method is that non-linear combinations 

of image features can be used. This will result in a supervised classifi cation method for associating 

brain patterns to various stages of neurodegenerative diseases. 
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9.7 CONCLUSION 

FDG-PET imaging is increasingly available for routine clinical practice and has remained the only 

available radiotracer to detect accurately and reliably the cerebral glucose metabolism. The SSM/

PCA method can identify relationships in relatively increased and decreased metabolic activity 

between diff erent brain regions in combined samples of patients and controls. The expression of a 

covariance pattern can be quantifi ed in an individual patient. The obtained subject score indicates to 

Box 4: Decision tree
Decision tree method is an approach for analytically making decisions and uses graphical 
representation of decision tree(s) to present several decision classes. Decision trees have 
been known for their capability in classifi cation of objects and  they can be modifi ed as new 
cases or more information from diff erent image modalities is presented. 
In this example carried out by the Visualization and Computer Graphics group (RUG), 
a decision tree program (c4.5 by Quinlan (Quinlan. 1993)) was adapted to be used as a 
machine learning technique to classify neurodegenerative brain diseases. The decision 
tree program has been used to classify subjects as healthy, PD, MSA or PSP together in 
one analysis with respect to their individual subject score calculated for each principal 
component of each patient group instead of one score for the disease-related combination 
pattern. The data consists of 76 subjects (18 healthy controls, 20 PD, 21 MSA and 17 PSP) 
(see chapter 5) and in total 112 principal components (38 PD, 39 MSA and 35 PSP). The 
decision tree shows in oval shapes the features (principal components used in the process 
of classifi cation), the conditions on which decisions are made, and the resulting classes 
(decisions) are presented in rectangles. Below an example of an output of the decision tree 
method is shown.

Interestingly, the fi rst 15 of the MSA patients are classifi ed by using a component which 
belongs to PSP. When looking at the metabolic pattern of PSP PC11, it consists mainly of 
increased metabolic activity in the putamen. MSA patients have decreased metabolism 
in the putamen and this is probably the reason why patients with a low subject score for 
this component can be classifi ed. Another key component in this example is PD PC 7. The 
pattern in this component consists of decreased metabolism in thalamus, caudate nucleus, 
mesencephalon and prefrontal areas. These regions are typically decreased in PSP patients 
and 14/17 PSP patients could be classifi ed.
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what extent that patient expresses the disease-related pattern. These metabolic brain patterns can 

therefore be a valuable aid in the diff erential diagnosis of individual patients with neurodegenerative 

brain diseases. Furthermore, we propose that a disease biomarker can be identifi ed by using 

decision tree methods to combine network patterns from diff erent image modalities derived from 

patients with parkinsonian and dementia syndromes. This disease biomarker is expected to help in 

diagnosing patients at an early stage of the disease and can be used to track disease progression 

when follow-up scans are performed. 
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SUMMARY

The main aim of this thesis was to investigate diff erences in glucose metabolism in various  

neurodegenerative brain diseases using [18F]-fl uorodeoxyglucose (FDG)-PET imaging. Furthermore, 

specifi c analysis techniques which can assist in the applicability of these brain patterns in clinical 

practice were investigated. In the following paragraphs specifi c fi ndings will be summarized and 

discussed. 

The diff erential diagnosis of neurodegenerative brain diseases may be diffi  cult on clinical 

grounds only. Parkinson’s disease (PD) is the second most common neurodegenerative brain disease 

after Alzheimer’s disease (AD). It can be diffi  cult to distinguish PD from other neurodegenerative 

parkinsonian syndromes such as multiple system atrophy (MSA), progressive supranuclear 

palsy (PSP), corticobasal degeneration (CBD) or dementia with Lewy Bodies (DLB). In chapter 2, 

radiotracer neuroimaging techniques using positron emission tomography (PET) or single photon 

emission computed tomography (SPECT) are discussed which can be helpful to diff erentiate PD 

from other diseases. In order to diff erentiate between neurodegenerative brain diseases, disease-

related metabolic brain patterns identifi ed with FDG-PET imaging could be of great assistance in the 

individual clinical diagnosis.

FDG-PET imaging is increasingly available for routine clinical practice and has remained the 

only available radiotracer to detect the cerebral glucose metabolism accurately and reliably. As 

glucose is the only source of energy for the brain, it refl ects the energy needs of underlying brain 

neuronal systems. After being taken up by the brain, glucose or its radiotracer analogue [18F]FDG, 

are phosphorylated by hexokinase to glucose-6-PO4 or fl uorodeoxyglucose-6-PO4, the fi rst step of 

the glycolytic process. However, FDG being a deoxy variant of glucose, is not a substrate for further 

metabolism and is consequently trapped in brain tissue for the duration of the scanning procedure. 

The outcome measure of regional cerebral FDG-uptake measured by PET, therefore, is the fi rst step 

of the glycolysis. The detected disease-related metabolic brain patterns using FDG-PET refl ect the 

underlying pathological alterations of the aff ected brain regions. 

In chapter 3 we have performed a retrospective study selecting typical patients with PD, MSA, PSP, 

CBD DLB, AD and frontotemporal dementia (FTD). At the time of referral for imaging, the clinical 

diagnosis of most patients was uncertain. 

To identify diff erences between patients and healthy controls we used a univariate voxel-based 

analysis technique called statistical parametric mapping (SPM). Images of each of the 7 patient 

groups were separately compared to 18 healthy controls using this SPM procedure and a two-

sample t-test. Disease-specifi c patterns of relatively decreased metabolic activity were found in 

PD (contralateral parieto-occipital and frontal regions), MSA (bilateral putamen and cerebellar 

hemispheres), PSP (prefrontal cortex and nucleus caudatus, thalamus and mesencephalon), 

CBD (contralateral cortical regions), DLB (occipital and parieto-temporal regions), AD (parieto-

temporal regions), and FTD (fronto-temporal  regions). In these patients, scanned at an early 

disease stage, typical diff erences between patient groups healthy control were found for each 
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disease. In chapter 4 an overview of the literature of disease-specifi c metabolic brain patterns in 

several neurodegenerative brain diseases is given. Furthermore, advances of using multivariate 

analysis methods compared to univariate methods are outlined. In a multivariate statistical analysis 

technique, called Scaled Subprofi le Modelling/Principal Component Analysis (SSM/PCA), not only 

group diff erences between patients and controls can be identifi ed like in univariate methods, but 

it is also possible to identify relationships in relatively increased and decreased metabolic activity 

between diff erent brain regions in combined samples of patients and control scans.

Multivariate analysis method

In chapter 5 we validated disease-related metabolic brain patterns for PD, MSA and PSP using 

SSM/PCA in the same patients and controls that were used in the univariate analysis of chapter 3. 

Results showed that the disease-related metabolic brain patterns were highly similar to  the earlier 

described group diff erences and discriminative of the three disorders. 

In chapter 6 we identifi ed an Alzheimer’s Disease-related glucose metabolic brain pattern using 

the SSM-PCA methods. Group diff erences in regional cerebral glucose utilisation of patients with 

dementia compared to healthy controls are well-known. However, multivariate analysis techniques 

aiming at identifying diagnostic neural networks in diseases, have been applied less frequently. 

The aim of this study was to present and validate an AD-related glucose metabolic brain pattern 

and to apply it prospectively in a second cohort of individual patients with memory complaints. 

The identifi cation cohort consists of the same AD patients and controls as described in chapter 

3. The AD-related glucose metabolic brain pattern was characterized by relatively decreased 

metabolic activity in the temporal and parietal regions and relatively increased metabolic activity 

in the subcortical white matter, cerebellum and sensorimotor cortex with a sensitivity of 93% and a 

specifi city of 94%. Furthermore, we applied this method to investigate the ability of the identifi ed 

AD-related metabolic covariance pattern to discriminate between individual patients with probable 

AD and non-probable AD (possible AD, mild cognitive impairment (MCI) or subjective complaints) 

and the association of the metabolic patterns with neuropsychological tests. In the confi rmation 

cohort, all the subjects with clinically probable AD diagnosis showed a high expression of the AD-

related metabolic brain pattern whereas in all the subjects with a non-probable AD diagnosis a low 

expression was found. 

In chapter 7 we present the prospective Dutch multicenter imaging project GLucose IMaging in 

ParkinsonismS (GLIMPS) which aims at testing the feasibility of a novel image-based classifi cation 

algorithm for the accurate and early individual diagnosis of patients with neurodegenerative brain 

diseases. It is increasingly recognized that combining information derived from diff erent image 

modalities can be used for improvements in the sensitivity and specifi city of disease-related 

patterns for parkinsonian disorders. 
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Extending to other image modalities

A prospective study was carried out in 20 PD patients and 17 healthy controls to test whether FDG-

PET scanned on a high resolution camera combined with magnetic resonance imaging (MRI)-based 

techniques such as arterial spin labeling (ASL), resting state fMRI images and diff usion tensor imaging 

(DTI) will provide an even more distinguished disease-related pattern for Parkinson’s disease. 

Besides studying glucose metabolism, it is possible to study brain perfusion with a relatively new 

magnetic resonance based technique called pseudocontinous arterial spin labeling (PCASL). In 

chapter 8 we identifi ed a PD-related metabolic and perfusion covariance pattern in the same 

patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related 

pattern between perfusion and metabolism in PD patients. 

The PD-related metabolic covariance brain pattern is in high accordance with disease-related 

metabolic brain patterns in diff erent cohorts in PD patients previously described, showing 

bilaterally decreased metabolic activity in the (posterior) parietal association cortex, inferior parietal 

cortex, lateral occipital cortex, prefrontal association cortex and SMA. Relative increases were seen 

in the cerebellum and pons, thalamus and pallidum, sensorimotor cortex, limbic association cortex, 

paracentral lobule and left SMA. (see also chapter 5). 

Furthermore, we obtained a disease-specifi c perfusion brain pattern using PCASL-MR imaging. 

Our perfusion brain pattern is comparable to  the previously described PD-related perfusion brain 

patterns. We know now that disease-related metabolic and perfusion brain patterns can be derived 

in patients with neurodegenerative brain diseases. As suggested in chapter 8, it is increasingly 

recognized that combining information derived from diff erent image modalities including FDG-

PET and PCASL can be used for improvements in the sensitivity and specifi city of biomarkers for 

parkinsonian disorders. However, complexity regarding analysis techniques increases. 

As described above diff erent image modalities can be used to extract disease-related metabolic 

brain patterns in neurodegenerative brain diseases. However, the above described SSM/PCA 

method can only deal with one image modality, and comparison of two classes (healthy and patient 

group, or two patient groups) at a time. This puts forward a research challenge to improve the SSM/

PCA method. One might consider machine learning approaches like decision-tree methods to 

improve sensitivity and specifi city. 

CONCLUSION 

FDG-PET imaging is increasingly available for routine clinical practice and has remained the only 

available radiotracer to detect the cerebral glucose metabolism accurately and reliably. The SSM/

PCA method can identify relationships in relatively increased and decreased metabolic activity 

between diff erent brain regions in patients and controls. The expression of a covariance pattern 

can be quantifi ed in an individual patient. The obtained subject score indicated to what extent  

that individual patient expresses the disease-related pattern. These metabolic brain patterns can 

therefore be a valuable aid in the diff erential diagnosis of individual patients with neurodegenerative 

brain diseases.



99

REFERENCES



100100

REFERENCES

References 

Akaike H. A New Look at the Statistical Model Identifi cation IEEE Trans. Automat. Contr 1974: 716-23. 

Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia 
and cortex. Annu Rev Neurosci 1986; 9: 357-81. 

Antonini A,  Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and 
dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. 
Brain 1996; 119(Pt6):2085-95.

Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors 
in patients with parkinson’s disease: A study with positron emission tomography and [11C]raclopride. Mov 
Disord 1997; 12: 33-8. 

Asanuma K, Carbon-Correll M, Eidelberg D. Neuroimaging in human dystonia. J Med Invest 2005; 52 (suppl):272-9. 

Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of parkinson’s 
disease. Brain 2006; 129: 2667-78. 

Asanuma K, Ma Y, Huang C, Carbon-Correll M, Edwards C, Raymond D, et al. The metabolic pathology of dopa-
responsive dystonia. Ann Neurol 2005; 57(4):596-600.

Asllani I, Habeck C, Scarmeas N, Borogovac A,  Brown TR, Stern Y. Multivariate and univariate analysis of continuous 
arterial spin labeling perfusion MRI in Alzheimer’s Disease. J Cereb Blood Flow Metab 2008; 28: 725-36. 

Au WL, Adams JR, Troiano AR, Stoessl AJ. Parkinson’s disease: In vivo assessment of disease progression using 
positron emission tomography. Brain Res Mol Brain Res 2005; 134: 24-33. 

Bartels AL, Leenders KL. Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology. Cortex 2009; 
45: 915-21. 

Bartels AL, Willemsen AT, Doorduin J, de Vries EF, Dierckx RA, Leenders KL. [11C]-PK11195 PET: Quantifi cation of 
neuroinfl ammation and a monitor of anti-infl ammatory treatment in parkinson’s disease? Parkinsonism 
Relat Disord 2010; 16: 57-9. 

Boecker H, Ceballos-Baumann AO, Volk D, Conrad B, Forstl H, Haussermann P. Metabolic alterations in patients 
with parkinson disease and visual hallucinations. Arch Neurol 2007; 64: 984-8. 

Bohnen NI, Djang DSW, Herholz K, Anzai Y, Minoshima S. Eff ectiveness and safety of 18F-FDG PET in the evaluation 
of dementia: A review of the recent literature. J Nucl Med 2012; 53: 59-71. 

Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, et al. [123I]FP-CIT SPECT shows a pronounced 
decline of striatal dopamine transporter labelling in early and advanced Parkinson’s Disease. J Neurol 
Neurosurg Psychiatry 1997; 62: 133-40. 

Borghammer P, Aanerud J, Gjedde A. Data-driven intensity normalization of PET group comparison studies is 
superior to global mean normalization. Neuroimage 2009a;46(4):981-8.

Borghammer P, Cumming P, Aanerud J, Gjedde A. Artefactual subcortical hyperperfusion in PET studies 
normalized to global mean: Lessons from parkinson’s disease. Neuroimage 2009b; 45(2): 249-57. 

Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I]MIBG separates parkinson’s 



101101

REFERENCES

disease from multiple system atrophy. Neurology 1999; 53: 1020-5. 

Brooks DJ, Frey KA, Marek KL, Oakes D, Paty D, Prentice R, et al. Assessment of neuroimaging techniques as 
biomarkers of the progression of parkinson’s disease. Exp Neurol 2003; 184 Suppl 1: S68-79. 

Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, et al. Striatal D2 receptor status in patients 
with parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 
11C-raclopride and positron emission tomography. Ann Neurol 1992; 31:184-92. 

Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, et al. Neuropathologic diagnostic and 
nosologic criteria for frontotemporal lobar degeneration: Consensus of the consortium for frontotemporal 
lobar degeneration. Acta Neuropathol 2007; 114: 5-22. 

Carbon M., Trost M., Ghilardi MF., Eidelberg D. Abnormal brain networks in primary torsion dystonia. Adv Neurol 
2004;94:155-61.

Chung EJ, Lee WY, Yoon WT, Kim BJ, Lee GH. MIBG scintigraphy for diff erentiating parkinson’s disease with 
autonomic dysfunction from parkinsonism-predominant multiple system atrophy. Mov Disord 2009; 24: 
1650-5. 

Ciarmiello A., Giovacchini G, Orobello S, Bruselli L,  Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-huntington 
disease caudate aff ects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol 
Imaging 2012;39(6):1030-6.

Cummings JL. Behavioral and psychiatric symptoms associated with huntington’s disease. Adv Neurol 
1995;65:179-186.

Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous fl ow-driven inversion for arterial spin labeling using pulsed 
radio frequency and gradient fi elds. Magn Reson Med 2008; 60: 1488-97. 

de Lau LM, Breteler MM. Epidemiology of parkinson’s disease. Lancet Neurol 2006; 5: 525-35. 

DeLong M, Wichmann T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 
2009; 15 Suppl 3: S237-40. 

DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007; 64: 20-4. 

Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Offi  ce of rare diseases neuropathologic 
criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002; 61: 935-46. 

Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Forstl H, et al. Decline of cerebral 
glucose metabolism in frontotemporal dementia: A longitudinal 18F-FDG-PET-study. Neurobiol Aging 
2007; 28: 42-50. 

Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: A frontal assessment battery at bedside. Neurology 2000; 55: 
1621-6. 

Eckert T, Eidelberg D. The role of functional neuroimaging in the diff erential diagnosis of idiopathic parkinson’s 
disease and multiple system atrophy. Clin Auton Res 2004; 14: 84-91. 

Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the diff erential diagnosis of 
parkinsonian disorders. Neuroimage 2005; 26: 912-21. 



102102

REFERENCES

Eckert T, Tang C, Ma Y, Brown N, Lin T, Frucht S, et al. Abnormal metabolic networks in atypical parkinsonism. Mov 
Disord 2008; 23(5): 727-33.

Eggers C, Hilker R, Burghaus L, Schumacher B, Heiss WD. High resolution positron emission tomography 
demonstrates basal ganglia dysfunction in early parkinson’s disease. J Neurol Sci 2009; 276: 27-30. 

Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D. Use of drugs with anticholinergic eff ect and impact on cognition 
in parkinson’s disease: A cohort study. J Neurol Neurosurg Psychiatry 2010; 81: 160-5. 

Eidelberg D. Abnormal brain networks in DYT1 dystonia. Adv Neurol 1998;78:127-33.

Eidelberg D. Metabolic brain networks in neurodegenerative disorders: A functional imaging approach. Trends 
Neurosci 2009; 32: 548-57. 

Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of 
parkinsonism. J Cereb Blood Flow Metab 1994; 14: 783-801. 

Emre M, Cummings JL, Lane RM. Rivastigmine in dementia associated with Parkinson’s Disease and Alzheimer’s 
Disease: Similarities and diff erences. J Alzheimers Dis 2007; 11: 509-19. 

Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL. Direct comparison of FP-CIT SPECT and 
F-DOPA PET in patients with parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 2009; 
36: 454-62. 

Fahn S. Does levodopa slow or hasten the rate of progression of parkinson’s disease? J Neurol 2005; 252 Suppl 
4: IV37-42. 

Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, et al. Substituted benzamides as ligands for visualization 
of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U 
S A 1985; 82: 3863-7. 

Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in 
early huntington’s disease: An [(18)F]FDG PET study. J Nucl Med 2001; 42: 1591-5. 

Fernández-Seara MA, Mengual E, Vidorreta M, Aznárez-Sanado M, Loayza FR, Villagra F, et al. Cortical 
hypoperfusion in parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 2012; 
59: 2743-50. 

Folstein M, Folstein S, McHugh P. “Mini‐mental state”. A practical method for grading the cognitive state of 
patients for the clinician. Journal of psychiatric research 1975; 12: 189-98. 

Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in 
distinguishing frontotemporal dementia and alzheimer’s disease. Brain 2007; 130: 2616-35. 

Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood fl ow and 
oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure, and normal 
values. J Comput Assist Tomogr 1980; 4: 727-36. 

Fredholm BB, Svenningsson P. Adenosine-dopamine interactions: Development of a concept and some 
comments on therapeutic possibilities. Neurology 2003; 61: S5-9. 

Galpern WR, Lang AE. Interface between tauopathies and synucleinopathies: A tale of two proteins. Ann Neurol 
2006; 59: 449-58. 



103103

REFERENCES

Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature 1983; 305: 137-8. 

Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet 2006; 
367: 1262-70. 

Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with 
[11C](R)-PK11195 PET in idiopathic parkinson’s disease. Neurobiol Dis 2006; 21: 404-12. 

Gerschlager W, Bencsits G, Pirker W, Bloem BR, Asenbaum S, Prayer D, et al. [123I]beta-CIT SPECT distinguishes 
vascular parkinsonism from parkinson’s disease. Mov Disord 2002; 17: 518-23. 

Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the 
diagnosis of multiple system atrophy. Neurology 2008; 71: 670-6. 

Grafton ST, Mazziotta JC, Pahl JJ, St George-Hyslop P, Haines JL, Gusella J, et al. Serial changes of cerebral glucose 
metabolism and caudate size in persons at risk for huntington’s disease. Arch Neurol 1992;49(11):1161-7.

Groenewegen HJ. The basal ganglia and motor control. Neural Plast 2003; 10: 107-20. 

Groenewegen HJ, van Dongen Y.C. Role of the basal ganglia. In: E.Ch.Wolters, T.van Laar, H.W.Berendse, editors. 
Parkinsonism Relat Disord. : VU University press; 2008. 

Grunder G. “Absolute” or “relative”: Choosing the right outcome measure in neuroimaging. Neuroimage 2009; 
45: 258-9. 

Habeck C, Foster NL, Perneczky R, Kurz A, Alexopoulos P, Koeppe RA, et al. Multivariate and univariate 
neuroimaging biomarkers of Alzheimer’s disease. Neuroimage 2008; 40: 1503-15. 

Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, et al. Preliminary NINDS neuropathologic 
criteria for steele-richardson-olszewski syndrome (progressive supranuclear palsy). Neurology 1994; 44: 
2015-9. 

Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the 
diff erential diagnosis of parkinsonism. Neurology 2012; 79: 1314-22. 

Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. Spatial remapping of cortico-striatal connectivity 
in parkinson’s disease. Cerebral cortex  2010; 20: 1175-86. 

Herholz K, Salmon E, Perani D, Baron JC, Holthoff  V, Frolich L, et al. Discrimination between alzheimer dementia 
and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17: 302-16. 

Hilker R, Voges J, Weber T, Kracht LW, Roggendorf J, Baudrexel S, et al. STN-DBS activates the target area in 
Parkinson Disease: An FDG-PET study. Neurology 2008; 71: 708-13. 

Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in parkinson disease: Functional 
imaging of cholinergic and dopaminergic pathways. Neurology 2005; 65: 1716-22. 

Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores 
glucose metabolism in associative and limbic cortices and in cerebellum: Evidence from a FDG-PET study 
in advanced parkinson’s disease. J Cereb Blood Flow Metab 2004; 24: 7-16. 

Hilker R, Portman AT, Voges J, Staal MJ, Burghaus L, van Laar T, et al. Disease progression continues in patients 
with advanced parkinson’s disease and eff ective subthalamic nucleus stimulation. J Neurol Neurosurg 



104104

REFERENCES

Psychiatry 2005; 76: 1217-21. 

Holmes RA, Chaplin SB, Royston KG, Hoff man TJ, Volkert WA, Nowotnik DP, et al. Cerebral uptake and retention of 
99Tcm-hexamethylpropyleneamine oxime (99Tcm-HM-PAO). Nucl Med Commun 1985; 6: 443-7. 

Horstink M, Tolosa E, Bonuccelli U, Deuschl G, Friedman A, Kanovsky P, et al. Review of the therapeutic 
management of parkinson’s disease. report of a joint task force of the european federation of neurological 
societies and the movement disorder society-european section. part I: Early (uncomplicated) parkinson’s 
disease. Eur J Neurol 2006; 13: 1170-85. 

Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive 
function in parkinson’s disease. Neuroimage 2007a; 34: 714-23. 

Huang C, Eidelberg D, Habeck C, Moeller J, Svensson L, Tarabula T, et al. Imaging markers of mild cognitive 
impairment: Multivariate analysis of CBF SPECT. Neurobiol Aging 2007b; 28: 1062-9. 

Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of 
parkinson’s disease. Brain 2007c; 130: 1834-46. 

Hughes A, Daniel S, Kilford L, Lees A. Accuracy of clinical diagnosis of idiopathic parkinson’s disease: A clinico-
pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55(3):181-4.

Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist 
movement disorder service. Brain 2002; 125: 861-70. 

Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A, Wallace E, et al. Single photon emission computed 
tomographic imaging demonstrates loss of striatal dopamine transporters in parkinson disease. Proc Natl 
Acad Sci U S A 1993; 90: 11965-9. 

Ishibashi K, Saito Y, Murayama S, Kanemaru K, Oda K, Ishiwata K, et al. Validation of cardiac (123)I-MIBG 
scintigraphy in patients with parkinson’s disease who were diagnosed with dopamine PET. Eur J Nucl Med 
Mol Imaging 2010; 37: 3-11. 

Ito M, Watanabe H, Kawai Y, Atsuta N, Tanaka F, Naganawa S, et al. Usefulness of combined fractional anisotropy 
and apparent diff usion coeffi  cient values for detection of involvement in multiple system atrophy. J Neurol 
Neurosurg Psychiatry 2007; 78: 722-8. 

Jarvis MF, Schulz R, Hutchison AJ, Do UH, Sills MA, Williams M. [3H]CGS 21680, a selective A2 adenosine receptor 
agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 1989; 251: 888-93. 

Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A 2A antagonists, and 
parkinson’s disease. Parkinsonism Relat Disord 2009; 15: 406-13. 

Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al. 18F-FDG PET fi ndings in frontotemporal dementia: An SPM 
analysis of 29 patients. J Nucl Med 2005; 46: 233-9. 

Josephs KA, Petersen RC, Knopman DS, Boeve BF, Whitwell JL, Duff y JR, et al. Clinicopathologic analysis of 
frontotemporal and corticobasal degenerations and PSP. Neurology 2006; 66: 41-8. 

Juh R, Kim J, Moon D, Choe B, Suh T. Diff erent metabolic patterns analysis of parkinsonism on the 18F-FDG PET. 
Eur J Radiol 2004; 51: 223-33. 

Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, et al. Frontal FDG-PET activity correlates with cognitive 



105105

REFERENCES

outcome after STN-DBS in parkinson disease. Neurology 2009; 72: 42-9. 

Kikuchi T, Okamura T, Zhang MR, Fukushi K, Irie T. In vivo evaluation of N-[18F]fl uoroethylpiperidin-4ylmethyl 
acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesterase activity. 
Synapse 2010; 64: 209-15. 

Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, et al. Neurotransmitter changes in dementia 
with lewy bodies and parkinson disease dementia in vivo. Neurology 2010; 74: 885-92. 

Klein RC, de Jong BM, de Vries JJ, Leenders KL. Direct comparison between regional cerebral metabolism in 
progressive supranuclear palsy and parkinson’s disease. Mov Disord 2005; 20: 1021-30. 

Kung HF, Alavi A, Chang W, Kung MP, Keyes JW,Jr., Velchik MG, et al. In vivo SPECT imaging of CNS D-2 dopamine 
receptors: Initial studies with iodine-123-IBZM in humans. J Nucl Med 1990; 31: 573-9. 

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff  RM, Poncelet BP, et al. Dynamic magnetic resonance 
imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 
5675-9. 

Lebowitz ER, Motlagh MG, Katsovich L, King RA, Lombroso PJ, Grantz H, et al. Tourette syndrome in youth with 
and without obsessive compulsive disorder and attention defi cit hyperactivity disorder. Eur Child Adolesc 
Psychiatry 2012. 

Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for 
compensatory changes in presynaptic dopaminergic nerve terminals in parkinson’s disease. Ann Neurol 
2000; 47: 493-503. 

Leenders KL, Wolfson L, Jones T. Cerebral blood fl ow and oxygen metabolism measurement with positron 
emission tomography in parkinson’s disease. Monogr Neural Sci 1984a; 11: 180-6. 

Leenders KL, Gibbs JM, Frackowiak RS, Lammertsma AA, Jones T. Positron emission tomography of the brain: 
New possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol 1984b; 23: 1-38. 

Leenders KL, Wolfson L, Gibbs JM, Wise RJ, Causon R, Jones T, et al. The eff ects of L-DOPA on regional cerebral 
blood fl ow and oxygen metabolism in patients with parkinson’s disease. Brain 1985; 108 ( Pt 1): 171-91. 

Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, et al. The nigrostriatal dopaminergic system 
assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with 
parkinson’s disease. Arch Neurol 1990; 47: 1290-8. 

Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, et al. Brain dopamine metabolism in patients with 
parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 1986; 49: 
853-60. 

Leonard JP, Nowotnik DP, Neirinckx RD. Technetium-99m-d, 1-HM-PAO: A new radiopharmaceutical for imaging 
regional brain perfusion using SPECT--a comparison with iodine-123 HIPDM. J Nucl Med 1986; 27: 1819-23. 

Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoff mann D, et al. Electrical stimulation of the subthalamic 
nucleus in advanced parkinson’s disease. N Engl J Med 1998; 339: 1105-11. 

Lindeboom J, Schmand B, Tulner L, Walstra G, Jonker C. Visual association test to detect early dementia of the 
alzheimer type. J Neurol Neurosurg  Psychiatry 2002; 73: 126-33. 



106106

REFERENCES

Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, et al. Movement disorders society scientifi c issues 
committee report: SIC task force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov 
Disord 2003; 18: 467-86. 

Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, et al. Clinical research criteria for the diagnosis 
of progressive supranuclear palsy (steele-richardson-olszewski syndrome): Report of the NINDS-SPSP 
international workshop. Neurology 1996; 47: 1-9. 

Lobotesis K, Fenwick JD, Phipps A, Ryman A, Swann A, Ballard C, et al. Occipital hypoperfusion on SPECT in 
dementia with lewy bodies but not AD. Neurology 2001; 56: 643-9. 

Ma Y, Tang C, Moeller JR, Eidelberg D. Abnormal regional brain function in parkinson’s disease: Truth or fi ction? 
Neuroimage 2009; 45: 260-6. 

Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D. Abnormal metabolic network activity in parkinson’s disease: 
Test-retest reproducibility. J Cereb Blood Flow Metab 2007a; 27: 597-605. 

Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D. Abnormal metabolic network activity in parkinson’s disease: 
Test-retest reproducibility. J Cereb Blood Flow Metab  2007b; 27: 597-605. 

Ma Y, Huang C, Dyke JP, Pan H, Alsop D, Feigin A, et al. Parkinson’s disease spatial covariance pattern: Noninvasive 
quantifi cation with perfusion MRI. J Cereb Blood Flow Metab 2010a; 30: 505-9. 

Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, et al. Dopamine cell implantation in parkinson’s disease: Long-
term clinical and (18)F-FDOPA PET outcomes. J Nucl Med 2010b; 51: 7-15. 

Mahapatra RK, Edwards MJ, Schott JM, Bhatia KP. Corticobasal degeneration. Lancet Neurol 2004; 3: 736-43. 

Marshall VL, Patterson J, Hadley DM, Grosset KA, Grosset DG. Two-year follow-up in 150 consecutive cases with 
normal dopamine transporter imaging. Nucl Med Commun 2006; 27: 933-7. 

Mayberg HS. Frontal lobe dysfunction in secondary depression. J Neuropsychiatry Clin Neurosci 1994;6(4):428-42.

McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with lewy bodies (DLB): 
Report of the consortium on DLB international workshop. J Alzheimers Dis 2006; 9: 417-23. 

McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diagnosis and management of dementia 
with lewy bodies: Third report of the DLB consortium. Neurology 2005; 65: 1863-72. 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: 
Report of the NINCDS-ADRDA work group under the auspices of department of health and human services 
task force on Alzheimer’s disease 35. Neurology 1984; 34: 939-44. 

McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of 
frontotemporal dementia: Report of the work group on frontotemporal dementia and pick’s disease. Arch 
Neurol 2001; 58: 1803-9. 

Melzer TR, Watts R, Macaskill MR, Pearson JF, Rueger S, Pitcher TL, et al. Arterial spin labelling reveals an abnormal 
cerebral perfusion pattern in Parkinson’s disease. Brain 2011; 134: 845-55. 

Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with lewy 
bodies: Cerebral metabolic distinction with autopsy confi rmation. Ann Neurol 2001; 50: 358-65. 



107107

REFERENCES

Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, et al. Evaluation of distribution of adenosine 
A(2A) receptors in normal human brain measured with [C-11]TMSX PET. Synapse 2007; 61: 778-84. 

Moeller JR, Strother SC. A regional covariance approach to the analysis of functional patterns in positron emission 
tomographic data. J Cereb Blood Flow Metab 1991; 11: A121-35. 

Moeller JR, Strother SC, Sidtis JJ, Rottenberg DA. Scaled subprofi le model: A statistical approach to the analysis 
of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 1987; 7: 649-58. 

Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, et al. Reproducibility of regional metabolic 
covariance patterns: Comparison of four populations. J Nucl Med 1999; 40: 1264-9. 

Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the 
preclinical period of parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998; 64: 314-9. 

Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET 
diagnosis of mild cognitive impairment, alzheimer’s disease, and other dementias. J Nucl Med 2008; 49: 
390-8. 

Mure H, Hirano S, Tang CC, Isaias IU, Antonini A, Ma Y, et al. Parkinson’s disease tremor-related metabolic network: 
Characterization, progression, and treatment eff ects. Neuroimage 2011; 54: 1244-53. 

Nagano-Saito A, Washimi Y, Arahata Y, Iwai K, Kawatsu S, Ito K, et al. Visual hallucination in parkinson’s disease 
with FDG PET. Mov Disord 2004; 19: 801-6. 

Nakajima K, Yoshita M, Matsuo S, Taki J, Kinuya S. Iodine-123-MIBG sympathetic imaging in lewy-body diseases 
and related movement disorders. Q J Nucl Med Mol Imaging 2008; 52: 378-87. 

Otsuka M, Kuwabara Y, Ichiya Y, Hosokawa S, Sasaki M, Yoshida T, et al. Diff erentiating between multiple system 
atrophy and parkinson’s disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl 
Med 1997; 11: 251-7. 

Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Yoshida T, et al. Diff erences in the reduced 18F-dopa 
uptakes of the caudate and the putamen in parkinson’s disease: Correlations with the three main 
symptoms. J Neurol Sci 1996; 136: 169-73. 

Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine 
terminal loss in early parkinson’s disease. Ann Neurol 2005; 57: 168-75. 

Parkinson Study Group. Pramipexole vs levodopa as initial treatment for parkinson disease: A randomized 
controlled trial. JAMA 2000; 284: 1931-8. 

Patwardhan MB, McCrory DC, Matchar DB, Samsa GP, Rutschmann OT. Alzheimer disease: Operating 
characteristics of PET--a meta-analysis. Radiology 2004; 231: 73-80. 

Pavese N, Kiferle L, Piccini P. Neuroprotection and imaging studies in parkinson’s disease. Parkinsonism Relat 
Disord 2009; 15 Suppl 4: S33-7. 

Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, et al. Clinical correlates of levodopa-induced dopamine 
release in parkinson disease: A PET study. Neurology 2006; 67: 1612-7. 

Piccini P, Whone A. Functional brain imaging in the diff erential diagnosis of parkinson’s disease. Lancet Neurol 
2004; 3: 284-90. 



108108

REFERENCES

Pirker W, Holler I, Gerschlager W, Asenbaum S, Zettinig G, Brucke T. Measuring the rate of progression of 
parkinson’s disease over a 5-year period with beta-CIT SPECT. Mov Disord 2003; 18: 1266-72. 

Poston KL, Eidelberg D. Network biomarkers for the diagnosis and treatment of movement disorders. Neurobiol 
Dis 2009; 35: 141-7. 

Poston KL, Tang CC, Eckert T, Dhawan V, Frucht S, Vonsattel J-, et al. Network correlates of disease severity in 
multiple system atrophy. Neurology 2012; 78: 1237-44. 

Pourfar M, Feigin A, Tang CC, Carbon-Correll M, Bussa M, Budman C, et al. Abnormal metabolic brain networks in 
tourette syndrome. Neurology 2011; 76: 944-52. 

Quinlan JR. C4.5: Programs for machine learning. Morgan Kaufmann Publishers; 1993. 

Reitan. R. Validity of the trail making test as an indicator of organic brain damage. Perceptual and motor skills 
1958; 8: 271-276. 

Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fl uorodeoxyglucose method for the 
measurement of local cerebral glucose utilization in man. Circ Res 1979; 44: 127-37. 

Rinne JO, Kuikka JT, Bergstrom KA, Rinne UK. Striatal dopamine transporter in diff erent disability stages of 
parkinson’s disease studied with [(123)I]beta-CIT SPECT. Parkinsonism Relat Disord 1995; 1: 47-51. 

Rinne JO, Bergman J, Ruottinen H, Haaparanta M, Eronen E, Oikonen V, et al. Striatal uptake of a novel PET ligand, 
[18F]beta-CFT, is reduced in early parkinson’s disease. Synapse 1999; 31: 119-24. 

Saan RJ, Deelman BG. De 15 woorden tests A en B. (een voorlopige handleiding). Groningen afd neuropsychologie, 
UMCG 1986. 

Scarmeas N, Habeck CG, Zarahn E, Anderson KE, Park A, Hilton J, et al. Covariance PET patterns in early alzheimer’s 
disease and subjects with cognitive impairment but no dementia: Utility in group discrimination and 
correlations with functional performance. Neuroimage 2004; 23: 35-45. 

Schwarz J, Antonini A, Tatsch K, Kirsch CM, Oertel WH, Leenders KL. Comparison of 123I-IBZM SPECT and 
11C-raclopride PET fi ndings in patients with parkinsonism. Nucl Med Commun 1994; 15: 806-13. 

Schwarz J, Tatsch K, Arnold G, Ott M, Trenkwalder C, Kirsch CM, et al. 123I-iodobenzamide-SPECT in 83 patients 
with de novo parkinsonism. Neurology 1993; 43: S17-20. 

Silverman DH, Small GW, Chang CY, Lu CS, Aburto KD, Chen W, et al. Positron emission tomography in evaluation 
of dementia: Regional brain metabolism and long-term outcome. JAMA 2001; 286: 2120-7. 

Sokoloff  L. Relation between physiological function and energy metabolism in the central nervous system. J 
Neurochem 1977; 29: 13-26. 

Sokoloff  L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method 
for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the 
conscious and anesthetized albino rat. J Neurochem 1977; 28: 897-916. 

Spetsieris PG, Eidelberg D. Scaled subprofi le modeling of resting state imaging data in parkinson’s disease: 
Methodological issues. Neuroimage 2011; 54(4):2899-914.

Spetsieris PG, Dhawan V, Eidelberg D. Three-fold cross-validation of parkinsonian brain patterns. Conf Proc IEEE 



109109

REFERENCES

Eng Med Biol Soc 2010; 2010: 2906-9. 

Spetsieris PG, Ma Y, Dhawan V, Eidelberg D. Diff erential diagnosis of parkinsonian syndromes using PCA-based 
functional imaging features. Neuroimage 2009; 45: 1241-52. 

Stacy M, Jankovic J. Diff erential diagnosis of parkinson’s disease and the parkinsonism plus syndromes. Neurol 
Clin 1992; 10: 341-59. 

Steele JC, Richardson J,Olszewski J. Progressive supranuclear palsy: A heterogeneous degeneration involving the 
brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and 
dementia. Arch Neurol 1964; 10: 333-59. 

Stroop J. Studies of interference in serial verbal reactions. J Exp Psychology 1935; 18: 643-662. 

Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of 
motor symptoms in parkinson’s disease. J Neurosci 2010a; 30: 1049-56. 

Tang CC, Poston KL, Eckert T, Feigin A, Frucht S, Gudesblatt M, et al. Diff erential diagnosis of parkinsonism: A 
metabolic imaging study using pattern analysis. Lancet Neurol 2010b; 9: 149-58. 

Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, et al. Pathogenic role of glial cells in parkinson’s disease. 
Mov Disord 2003; 18: 121-9. 

Teune LK, Renken RJ, Mudali D, de Jong BM, Dierckx RA, Roerdink JBTM, et al. Validation of parkinsonian disease-
related metabolic brain patterns. Mov Disord, Epub ahead of print: 2013 Mar 11.

Teune LK, Bartels AL, de Jong BM, Willemsen AT, Eshuis SA, de Vries JJ, et al. Typical cerebral metabolic patterns 
in neurodegenerative brain diseases. Mov Disord 2010; 25: 2395-404. 

Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen AG, van Royen EA, et al. Iodine-123-N-omega-
fl uoropropyl-2beta-carbomethoxy-3beta-(4-iod ophenyl)tropane SPECT in healthy controls and early-
stage, drug-naive parkinson’s disease. J Nucl Med 1998; 39: 1143-8. 

Trost M., Carbon M., Edwards C., Ma Y., Raymond D., Mentis MJ., et al. Primary dystonia: Is abnormal functional 
brain architecture linked to genotype? Ann Neurol 2002;52(6):853-6.

Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diff usion tensor 
imaging in the substantia nigra of de novo parkinson disease. Neurology 2009; 72: 1378-84. 

Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a 
tool for human connectomics: Theory, properties, and optimization. J Neurophysiol 2010;103(1):297-321.

van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin 
labeling detect white matter perfusion signal? Magn Reson Med 2009; 62: 165-73. 

Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ, et al. A new PET ligand for the dopamine transporter: 
Studies in the human brain. J Nucl Med 1995; 36: 2162-8. 

Volkow ND, Gur RC, Wang GJ, Fowler JS, Moberg PJ, Ding YS, et al. Association between decline in brain dopamine 
activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 1998; 155: 
344-9. 

Warrington EK, James M. The visual object and space perception battery (VOSP). In: Anonymous Bury st 



110110

REFERENCES

Edmunds: Thames Valley test company. England; 1991. 

Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP. Multiple system atrophy: A review of 203 pathologically 
proven cases. Mov Disord 1997; 12: 133-47. 

Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of parkinson’s disease with 
ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003; 54: 93-101. 

Wilson B, Alderman N, Burgess P, Emslie H, Hodges J. Behavioural assessment of the dysexecutive syndrome 
(BADS). In: Anonymous Bury st Edmund: Thames Valley test company. England; 1996. 

Yakushev I, Hammers A, Fellgiebel A, Schmidtmann I, Scheurich A, Buchholz HG, et al. SPM-based count 
normalization provides excellent discrimination of mild alzheimer’s disease and amnestic mild cognitive 
impairment from healthy aging. Neuroimage 2009; 44: 43-50. 

Yakushev I, Landvogt C, Buchholz HG, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area 
in studies of alzheimer’s disease using positron emission tomography with fl uorodeoxyglucose-F18. 
Psychiatry Res 2008; 164: 143-53. 

Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in parkinson’s disease, parkinson’s 
disease dementia and dementia with lewy bodies. Eur J Neurol 2007; 14: 1357-62. 



111

SAMENVATTING



112112

Samenvatting

Neurodegeneratieve hersenziekten zijn hersenaandoeningen waarbij langzamerhand – over vele 

jaren -  de zenuwcellen in bepaalde gebieden verloren gaan. Vaak  is de oorzaak van deze hersenziekten 

onbekend en zijn de behandelingsmogelijkheden beperkt. De laatste tientallen jaren wordt echter 

veel onderzoek naar deze aandoeningen gedaan met de verwachting dat dit zal resulteren in beter 

inzicht en betere behandelingsmogelijkheden. Voorbeelden van neurodegeneratieve ziekten zijn 

onder andere Ziekte van Parkinson (PD), multisysteem atrofi e (MSA), progressieve supranucleaire 

parese (PSP), Corticobasale degeneratie (CBD) en Dementie met Lewy Bodies (DLB). Deze 

ziekten hebben gemeenschappelijk dat ze allemaal in meer of mindere mate parkinsonistische 

verschijnselen hebben (stijfheid, traagheid, rusttremor, balansproblemen). Daarnaast kunnen bij 

sommige aandoeningen op een bepaald moment in de ziekte geheugenklachten, problemen met 

het uitvoeren van complexe taken en visuele hallucinaties optreden. Bij de ziekte van Alzheimer 

(AD) staan vooral geheugenproblemen op de voorgrond en bij frontotemporale dementie (FTD) 

kunnen gedragsverandering en problemen met taal voorkomen. Alle bovenstaande  aandoeningen 

vallen onder de categorie neurodegeneratieve hersenziekten. 

Een precieze diagnose stellen kan vooral in een vroeg ziektestadium lastig zijn omdat de symptomen 

van patiënten op elkaar lijken. Het beloop van de ziekte in de tijd (welke symptomen precies, 

snelheid, ernst) leiden uiteindelijk naar de juiste diagnose. Hier kan soms jaren overheen gaan. Het 

is echter wel van belang voor de patiënt voor de prognose, en soms ook voor de behandeling om in 

een vroeg ziektestadium een precieze diagnose te kunnen stellen. 

Een aantal nieuwe beeldvormende technieken kunnen medisch specialisten, zoals de neuroloog, 

helpen om in een beginstadium van een ziekte een beter onderscheid tussen de verschillende 

neurodegeneratieve hersenziekten te maken. In hoofdstuk 2 worden verschillende radiotracer 

neuroimagingtechnieken besproken die kunnen helpen bij het onderscheid tussen PD en overige 

neurodegeneratieve hersenziekten. 

Om een onderscheid binnen de groep neurodegeneratieve hersenziekten te maken kan een [18F]-

fl uorodeoxyglucose (FDG)-PET scan behulpzaam zijn. Bij dit onderzoek wordt de radiotracer FDG 

(dit is een vorm van glucose (suiker)) ingezet. Glucose is normaal gesproken de enige energiebron 

van hersenweefsel. Door een FDG-PET scan van de hersenen te maken wordt zichtbaar welke 

hersengebieden meer of minder energie gebruiken en dus goed of minder goed functioneren 

volgens een bepaald patroon. Deze patronen van verminderde en soms verhoogd energieverbruik 

oftewel het glucosemetabolisme zijn verschillend voor de genoemde neurodegeneratieve 

hersenziekten en kunnen ook al aanwezig zijn in het begin van deze hersenziekten.

Het doel van dit proefschrift was om met behulp van een FDG-PET scan het glucose metabolisme 

in de hersenen bij neurodegeneratieve hersenziekten in beeld te brengen. Daarnaast werden 

verschillende analysetechnieken en ook andere beeldvormende MRI technieken onderzocht om de 

ziekte-specifi eke metabole patronen weer te geven. 
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In hoofdstuk 3 hebben wij retrospectief FDG-PET scans geanalyseerd van patiënten in een vroeg 

ziektestadium met verschillende neurodegeneratieve hersenziekten.

In totaal werden 96 patiënten geïncludeerd die een klinische FDG-PET scan ondergingen en voldeden 

aan klinische onderzoekscriteria waarvan 20 met de ziekte van Parkinson (PD), 21 multisysteem 

atrofi e (MSA), 17 progressieve supranucleaire parese (PSP), 10 corticobasale degeneratie (CBD), 6 

dementie met lewy bodies (DLB), 15 ziekte van Alzheimer (AD) en 7 frontotemporale dementie (FTD). 

De FDG-PET beelden werden geanalyseerd en vergeleken met 18 gezonden via Statistical Parametric 

Mapping (SPM5).  Verlaagde metabole activiteit in bepaalde hersengebieden ten opzichte van 

gezonde controles werd gevonden in PD (contralateraal parieto-occipitaal, frontaal), MSA (bilateraal 

putamen, cerebellum), PSP (prefrontale cortex, nucleus caudatus, thalamus, mesencephalon), CBD 

(contralaterale corticale regio’s), DLB (occipitaal, parieto-temporaal), AD (parieto-temporaal) en FTD 

(fronto-temporaal). In deze patiënten die gescand waren in een vroeg ziektestadium waren dus 

typische verschillen tussen patiënten groepen en gezonden te zien.

In hoofdstuk 4 wordt een literatuur overzicht gegeven van ziekte-specifi eke metabole patronen bij 

verschillende neurodegeneratieve hersenziekten. Daarnaast wordt in dit hoofdstuk een bepaalde 

wiskundige techniek uitgelegd, de zogenoemde scaled subprofi le model/principal component 

analyse (SSM-PCA). Dit is een multivariaat methode gebaseerd op principal component analyse 

waarmee het verschil in hersenpatronen in een gecombineerde groep gezonden en patiënten 

gevonden kan worden en weergegeven in een ziekte–specifi ek metabool patroon. Het laat relaties 

zien welke men niet zo direct op het oog kan zien en het bepaalt de kans dat veranderingen in het 

glucosemetabolisme in verschillende hersengebieden bij elkaar horen in een patroon.

Het grote voordeel van deze analyse methode is dat niet alleen twee groepen onderling 

vergeleken kunnen worden, maar dat ook de bijdrage van elk individu ten opzichte van het patroon 

berekend kan worden. Dit betekent dat voor elke nieuwe patiënt met behulp van deze methode 

een score (de zogenaamde z-score) berekend kan worden die weergeeft hoeveel het metabole 

hersenpatroon van die patiënt lijkt op het ziekte-specifi eke metabole groepspatroon van die ziekte. 

Hoe hoger de z-score, (hoge expressie van het ziekte-specifi eke patroon bij dat individu), hoe groter 

de kans (hogere waarschijnlijkheid) dat die patiënt ook die bepaalde ziekte heeft. Deze scores 

kunnen berekend worden voor elk beschikbaar en gevalideerd ziekte-specifi ek metabool patroon.

In hoofdstuk 5 valideerden wij het ziekte-specifi eke metabole patroon voor PD, MSA en PSP 

met behulp van deze SSM/PCA analyse waarbij bleek dat met behulp van deze patronen een 

goed onderscheid tussen de verschillende ziektebeelden gemaakt kon worden. In hoofdstuk 6 

identifi ceerden wij het Alzheimer-gerelateerde metabole patroon en pasten het daarnaast toe in 

een prospectieve groep patiënten onderverdeeld in een waarschijnlijk en niet- waarschijnlijk ziekte 

van Alzheimergroep. Voor elke patiënt werd een z-score berekend voor het AD-gerelateerde patroon 

die weergeeft hoeveel die patiënt lijkt op het ziekte-specifi eke AD groepspatroon. Het bleek dat de 
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patiënten uit de “waarschijnlijke”AD-groep inderdaad een hoge score hadden voor het AD-patroon 

en patiënten met “niet-waarschijnlijke” AD een lage score hadden.

In hoofdstuk 7 presenteren wij het GLIMPS project (GLIMPS is een acroniem voor GLucose IMaging 

in ParkinsonismS). Dit is een landelijk project, gecoördineerd vanuit het UMC Groningen, waaraan 

verschillende ziekenhuizen in Nederland meedoen. Het doel van dit project is om de diagnostiek 

bij patiënten in een vroege fase van een neurodegeneratieve hersenziekte te verbeteren door 

systematisch de het glucose metabolisme in de hersenen bij patiënten met neurodegeneratieve 

hersenziekten te onderzoeken met behulp van een FDG-PET scan.

Bij het beoordelen van een patroon bij een individuele patiënt is het van belang een krachtige 

referentiegroep van bekende ziekte-specifi eke metabole patronen van bepaalde patiëntengroepen 

ter vergelijking te hebben. Het landelijk verzamelen van deze metabolepatronen bij patiënten 

slechts sinds kort mogelijk aangezien thans FDG-PET in de meeste grote regionale centra in 

Nederland beschikbaar is. 

Daarnaast wordt het steeds duidelijker dat een combinatie van verschillende beeldvormende 

technieken zoals verschillende MRI scans kunnen bijdragen aan een verbeterde omschrijving van 

ziekte-specifi eke metabole patronen van de hersenen. Een prospectieve studie werd uitgevoerd 

bij 20 Parkinsonpatiënten en 17 gezonde vrijwilligers om te onderzoeken of FDG-PET gescand met 

een hoge resolutie camera gecombineerd met verschillende MRI scans zoals Arterial Spin Labeling 

(ASL), resting state fMRI en diff usion tensor imaging (DTI) een nog beter en duidelijker ziekte-

specifi ek patroon voor de ziekte van Parkinson zou opleveren. 

In hoofdstuk 8 werd het ziekte-specifi eke Parkinsonpatroon gemeten met de hoge resolutie FDG-

PET scan vergeleken met het patroon gevonden met ASL, een techniek om de doorbloeding (perfusie) 

in de hersenen te meten. Het metabole patroon voor PD gemeten met FDG-PET komt overeen met 

het eerder beschreven PD-patroon in hoofdstuk 5 en eerdere literatuur. Daarnaast is het mogelijk 

gebleken om een ziekte-specifi ek metabool- en perfusie-patroon bij dezelfde Parkinsonpatiënten 

te vinden. Beide patroon lijken veel op elkaar, maar er zijn ook enkele verschillen. We concludeerden 

dat het combineren van verschillende soorten scans, PET en MRI, meer inzicht kan geven in de 

onderliggende pathologische processen, maar dat de complexiteit van de data-analyse toeneemt. 

Ook worden de analysemethoden zelf verder ontwikkeld om voor de toekomst de technieken nog 

gevoeliger te maken voor de verschillen tussen de neurodegeneratieve hersenziekten. 

CONCLUSIE

FDG-PET is steeds meer beschikbaar voor de klinische praktijk en is nog steeds de meest betrouwbare 

techniek die nauwkeurig het energieverbruik in de hersenen laat zien. De wiskunde rekentechniek 

SSM/PCA kan verbanden tussen verhoogde en verlaagde glucose metabolisme in verschillende 

hersenengebieden in 1 patroon voor elke neurodegeneratieve apart laten zien. Vervolgens kan met 
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behulp van een rekenmethode een score berekend worden die weergeeft hoeveel het metabole 

hersenpatroon van een individuele patiënt lijkt op het ziekte-specifi eke metabole groepspatroon 

van bv PD, MSA of PSP. Hoe hoger deze score, hoe meer het hersenpatroon van de individuele 

patiënt lijkt op het groepspatroon en des te waarschijnlijker het is dat de patiënt deze ziekte heeft. 

Daarom kunnen bij patiënten met neurodegeneratieve hersenziekten deze ziekte-specifi eke 

metabole patronen in de hersenen een waardevol hulpmiddel zijn in de klinische praktijk bij het 

stellen van de juiste diagnose.
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Verder wil ik mijn 2e promotor, Prof. dr. R.A. Dierckx, bedanken voor het mede mogelijk maken van 

de verschillende onderzoeken en het beoordelen van de artikelen. Daarnaast ook mijn copromotor 

Dr. R.J. Renken; Beste Remco, ik heb veel van je geleerd in het analyseren van de MRI beelden en de 
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beoordelen van het proefschrift. Dear professor Eidelberg, it is a great honour for me to have you in 
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Alle mede-auteurs, bedankt voor de prettige samenwerking bij de totstandkoming van de artikelen. 
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