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Chapter 1

Introduction

1.1 Quantum Chromodynamics at low energies and

its symmetries

Quantum Cromodynamics (QCD) is the theory that describes the strong interactions
between quarks and gluons. It is a Yang-Mills gauge theory, based on a color gauge group
SUC(3). Quark fields are the fermion degrees of freedom of the theory, and the gluons are
its gauge fields. Quarks and gluons are the building blocks of hadrons, which are color
singlets, and are normally classified into two groups: mesons (quark-antiquark pair, qq̄)
and baryons (three-quark states, qqq).

The running of the coupling constant αs of the theory with energy determines two
prominent features of QCD: confinement and asymptotic freedom. As the energy in-
creases, the coupling constant reduces its value, resulting in asymptotic freedom. In this
regime quarks interact weakly, and one can make use of perturbative calculations, taking
αs as a small parameter. With decrease of the energy the coupling constant increases,
and quarks and gluons are bound; this is called color confinement. In this case it is not
possible to perform calculations perturbatively. These two regimes of QCD are usually
separated by the momentum scale ΛQCD, for which experimental measurements yield a
value of about 200 MeV. QCD perturbation theory is valid when the momentum scale
Q is somewhat larger than ΛQCD, above 1 GeV, and the strong interactions are treated
non-perturbatively at distances larger than 1/ΛQCD, which is roughly the size of the light
hadrons. In the low-energy regime QCD can be solved using lattice calculations, but they
are extremely consuming of time and computer resources.

In order to describe physics in the low-energy regime, effective field theories are widely
used [1–3]. The idea is to build a Lagrangian, which contains all assumed QCD sym-
metries, and to take into account the degrees of freedom that are relevant for a specific
energy scale. Since at low energies due to color confinement quarks are bound in hadrons,
the latter are taken as the physical degrees of freedom of these theories. This naturally
leads to the idea of molecular states, as these are produced by the attractive interaction
of their hadron components.

Phenomenological models based on effective field theory are built considering (approx-
imate) symmetries of QCD, for example an SU(2) isospin symmetry, or an SU(3) flavor
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2 INTRODUCTION

symmetry for the three light u, d, and s quarks. The SU(3) symmetry is surprisingly
well realized in the baryon spectrum, despite the fact that the s quark is about 90 MeV
heavier than u and d. The masses of the six known quarks including these three lightest
ones, together with their electric charges can be found in Table 1.1. Although the flavor
symmetry is not an exact one, all hadrons can be classified into isospin, SU(3), and SU(4)
multiplets, as well as the corresponding spin-flavor multiplets. If the corresponding sym-
metry was exact, the masses of hadrons belonging to the same multiplet would be the
same, which is of course not the case. Nevertheless, their masses are often fairly close to
each other, so one can make use of the flavor symmetry.

flavor u (up) d (down) s (strange)

charge [e] 2/3 −1/3 −1/3

mass 2.3+0.7
−0.5 MeV 4.8+0.7

−0.3 MeV 95± 5 MeV

flavor c (charm) b (bottom) t (top)

charge [e] 2/3 −1/3 2/3

mass 1.275± 0.025 GeV 4.18± 0.03 GeV 160+5
−4 GeV

Table 1.1: Quark flavors and their charges and masses, ordered by increasing quarks mass
(we work with “God-given” units, h̄ = c = 1). The masses are taken from the Particle
Data Group (PDG) [4]. The electric charge is given in units of the positron charge.
The masses of the quarks are found in a MS (modified minimal subtraction, see e.g. [5])
renormalization scheme.

An example of effective field theory is chiral perturbation theory (χPT). It uses the
approximate chiral SU(3)L× SU(3)R symmetry of QCD for vanishing u-, d-, and s-quark
masses mq → 0 [6–10]. In χPT the octet of light mesons (π, K, and η mesons) are
Goldstone boson fields.

In recent years, the introduction of nonperturbative methods has led to the extension of
the region of applicability of the chiral effective theory to much higher energies, and thus
in the vicinity of resonances [11]. These methods implement unitarity taking into account
all channels with the same quantum numbers, that is, the coupled-channels structure.
The constraints imposed by unitarity allow one to extend the information contained in
the chiral Lagrangian to higher energies, which is not accessible with the standard χPT
expansion. In this framework chiral amplitudes are used as a kernel to solve the scattering
equations. Chiral perturbation theory unitarized in coupled channels turned out to be very
successful in describing some of the existing experimental data (see [11] for an overview
of different nonperturbative methods and how their predictions agree with experimental
data; more references regarding chiral perturbation theory models in coupled channels are
mentioned in what follows).

The resonances that are predicted by the unitarized coupled-channels models are usu-
ally called dynamically-generated resonances, since they are created from the dynamical
interaction of the ground-state hadrons included as building blocks of the model.

While for the three light u, d, s quarks it is a good approximation to take the vanishing
quarks masses mq → 0, leading to the chiral symmetry, for heavy quarks (Q) it is a
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good approximation to take mQ → ∞. In this limit QCD shows other symmetries,
the heavy-quark spin and flavor symmetries [12–14]. Let us consider a Qq̄ meson that
contains a heavy quark Q (with the mass mQ � ΛQCD) and a light antiquark q̄ (with
the mass mq̄ � ΛQCD). The typical momentum transfer between Q and q̄ is of the order
of ΛQCD [14]. The velocity v of the heavy quark in the hadron is almost unchanged by
such an interaction, even though the momentum p of the heavy quark changes by about
ΛQCD, since ∆v = ∆p/mQ. The heavy quark’s velocity does not change with time, the
heavy quark behaves like a static external color source, and the meson dynamics reduces
to that of the light degrees of freedom interacting with this color source. The immediate
consequence is that the mass of the heavy quark is irrelevant in the mQ →∞ limit, and
thus all heavy quarks interact in the same way within heavy mesons. This is the heavy-
quark flavor symmetry, which states that the dynamics is unchanged under the exchange
of heavy quark flavors in the limit of infinitively heavy quark masses. The finite mass
effects can be taken into account by the 1/mQ corrections, which are different for heavy
quarks with different flavors. Consequently, heavy-quark flavor symmetry breaking effects
are proportional to (1/mQi − 1/mQj), where Qi and Qj are two heavy quark flavors.

A heavy quark interacts strongly only with gluons. In the limit of infinitely massive
quarks, mQ → ∞, the static heavy quark can interact with gluons only via its chromo-
electric charge. This interaction is spin independent. The spin-dependent interactions are
proportional to the chromomagnetic moment of the quark and are of the order 1/mQ [14].
As a consequence, this leads to the heavy-quark spin symmetry (HQSS), which states
that all types of spin interactions vanish for infinitely massive quarks, the dynamics is
unchanged under arbitrary transformations in the spin of the heavy quark.

1.2 Hadrons

The discovery of the Ω(1672) in 1964 [15] was a triumph of the SU(3) flavor symme-
try and its “eightfold way” version [16]. The Ω(1672) particle was predicted two years
earlier by Gell-Mann [16], based on the mass splitting between ∆(1232), Σ3/2+(1385),
and Ξ3/2+(1530). It was realized that there are three states that make the fundamental
representation 3 of the flavor SU(3) group, named quarks [17]. The actual baryons are
thus realized as the flavor representations found in the 3× 3× 3 product. That was the
beginning of the quark model, which describes hadrons as bound states of quarks and
antiquarks (qqq for baryons and qq̄ for mesons).

In that time there were many models built to describe hadrons as bound states of
quarks. Some popular examples include potential models (see [18] for an overview of
potential models), the one-gluon exchange model [19], the quark model with relativis-
tic kinematics (e.g. [20]), the relativistic quark model [21, 22], the MIT bag model [23],
skyrmions and other soliton models [24, 25], and QCD sum rules [26, 27]. These models
are usually very successful in describing low-lying hadrons and resonances, but often fail
in reproducing experimental data for hadrons with higher masses. Lattice QCD (LQCD)
calculations [28] turn out to be very successful in describing light hadrons, but LQCD in-
volving charm or bottom flavors is problematic because of significant discretization effects,
caused by the mass of the heavy quark itself, and accessible lattice spacings. Therefore,
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for heavy flavors, effective field theories are needed in addition to LQCD (see Ref. [29] for
a review of the baryon spectroscopy in LQCD and models that deal with heavy flavors).
Particles that cannot be described with quark models are sometimes called exotic. Ex-
amples of exotic mesons are π1(1400) and π1(1600) with JPC = 1−+ (quantum numbers
that cannot come from qq̄), or states like f0(980), a0(980), f0(1500), and X(3872), which
have attracted a lot of attention from the theoretical community. The possibilities for the
interpretation of exotic mesons include glueballs (bound states of gluons, gg or ggg), hy-
brids (states made of quarks and a gluon, qq̄g), tetraquarks (qqq̄q̄), and the interpretation
as molecular states (bound state of two mesons).

There are also a few examples of baryons that cannot be interpreted within the quark
model. An example is the Roper resonance, N1/2+(1440). This is the lowest-mass nucleon
resonance with quantum numbers of the nucleon, which is found at much lower mass
than expected by quark models. It turned out to be difficult to interpret it as a qqq
state. A coupled-channels meson-exchange model based on an effective chiral-symmetric
Lagrangian [30] has successfully interpreted the Roper resonance as generated dynamically
by the Nπ components. Nevertheless, this interpretation suffers from some inconsistencies
with the sign of the helicity amplitudes [31, 32]. Then, there was an idea that the Roper
resonance consists of two resonances [33], but this interpretation was ruled out, since
no two-poles structure1 has been observed [34]. Another example of an exotic baryon is
the N1/2−(1535) resonance. Its observed mass is in agreement with predictions of quark
models, but its unusually large decay branching ratio to Nη invited speculations that it
could be created dynamically. This resonance is successfully reproduced by an effective
chiral Lagrangian in Ref. [35]. Another example is Λ1/2−(1405). Its mass is difficult to
reproduce in quark models. It has been suggested to be a NK̄ quasibound state by
Dalitz and Tuan already in 1959-1960 [36, 37]. In models exploiting chiral symmetry
and imposing unitarity Λ1/2−(1405) is interpreted as being dynamically generated by the
interaction of mesons and baryons in coupled channels. In Ref. [38] Jido et al. suggested
the two-pole structure of Λ1/2−(1405).

One of the possibilities for building other kinds of exotic baryons is in the form of a
pentaquark, a particle made of five bound quarks and antiquarks (qqqqq̄, qq̄q̄q̄q̄). There
were several theoretical works predicting the existence of pentaquarks [39, 40], but no
conclusive experimental results were obtained for these states [41,42]. Some years ago, a
Θ+(1540) pentaquark was found experimentally [43], and later confirmed in a couple of
low-statistics experiments. This caused a lot of excitement in theoretical and experimental
research. Nevertheless, this state was not confirmed in later experiments with improved
statistics, and therefore nowadays the existence of Θ+(1540) and pentaquarks in general
is questionable [44].

Many baryon resonances that cannot be described as three-quark states are thought
to be molecular states, dynamically generated by baryon-meson interactions. As it is
mentioned above, unitarized chiral theory in coupled channels appears to be very suc-
cessful in describing hadron resonances. For example, in the particular case of baryons,
several resonances can be identified with states generated dynamically from the scattering

1Two hadron resonances with same quantum numbers form a two-pole structure when the masses of
these resonances are close to each other, as compared with their widths. The corresponding peaks, thus,
overlap when analyzing scattering observables, such as cross sections.
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of 0− octet Goldstone bosons off baryons of the ground-state 1/2+ octet [35, 38, 45–64].
The two-pole nature of the Λ(1405) resonance mentioned above is predicted in unitarized
chiral theory in coupled channels [38, 52, 56, 59, 65–67], and was confirmed experimen-
tally [68, 69]. A number of works have also been dedicated to the study of JP = 3/2−

baryon resonances [70–81]. Early works considered the interaction of pseudoscalar 0−

mesons with the 3/2+ decuplet baryons. Vector mesons were incorporated in the coupled-
channels models for studies of the axial 1+ meson resonances in Refs. [82, 83], but until
recently they have not been considered in the baryon-meson interaction. In Ref. [78]
the nonet of lowest-lying vector mesons was incorporated into the contact interaction
term of the lowest-order chiral Lagrangian (the Weinberg-Tomozawa interaction, WT),
extended to the SU(6) spin-flavor symmetry. This latter model successfully reproduces
the SU(3)-flavor WT results for the lowest-lying odd-parity baryon resonances (N(1535),
N(1650), Λ(1390), Λ(1405), Λ(1520), Λ(1690), Λ(1670), Ξ(1620), Ξ(1690)). It also pro-
vides some information on the dynamics of the heavier baryon resonances, such as Λ(1800)
and Λ(2325) [79–81].

It can happen that a resonance can be described both within a quark model and
also as a dynamically-generated state. An example is ∆(1232) resonance, which can be
considered as a Nπ resonance, and at the same time as a state of three light quarks. Other
examples are Λb(5912) and Λb(5920) beauty-flavored baryon resonances, that appear in a
constituent quark model, but can also be interpreted as molecular states.

1.3 Baryon resonances with heavy flavor

Another important discovery in particle physics was the observation of what we now call
the J/ψ meson. It was observed independently and simultaneously at two experimental
facilities: by the Ting group at Brookhaven National Laboratory (BNL), where it was
called a J particle (J looks similar to the Chinese character of Ting’s name) [84]; and
at the SLAC facility in Stanford, where it was called ψ (since ψ contains “SP”, after
SPEAR accelerator at SLAC)2 [85]. The observations of the two groups were published
in the same issue of Physical Review Letters, back to back. This new particle has been
interpreted as a bound state of a charm quark and its antiquark, cc̄, thus the new flavor
of quark was discovered. This finding was also another proof of the existence of quarks,
and was called the “November revolution”. Two years later a narrow state at 1865 MeV
was observed in e+e− annihilation, decaying to Kπ and Kπππ. The charmed D meson
was observed [86].

In connection with the discovery of charmed mesons, predictions for charmed baryons
were done as well [19,87]. The experimental evidence for the existence of a charmed baryon
was seen at BNL [88] in the νµp→ µ−Λπ+π+π+π−. The Σc baryon was discovered.

Later, in 1977, the bottom quark was found, in the form of the upsilon meson Υ = bb̄.
The heaviest known quark, the top quark, was only discovered in 1995. It was found at
the Fermilab pp̄ collider, with an unexpectedly large mass of about 175 GeV.

In the last decades the interest in the properties of hadrons with heavy flavor has

2By coincidence the image of the decay of ψ(2S) to J/ψ and π+π− with consecutive decay of J/ψ to
e+e− in the spark chamber reproduces the shape of ψ.
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increased. There have been many experimental facilities built that study heavy-flavor
physics. Examples include CLEO [a dedicated program of charm physics at the Cornell
Electron Storage Ring (CESR)], Belle [an experiment at the KEK B-factory that is mainly
dedicated to study the origin of the CP violation, and also the charm and beauty physics],
BaBar [an experiment at SLAC, which involves studies of charm and beauty physics],
LHCb [a collaboration dedicated to beauty physics at CERN] and others [89–130]. Also,
planned experiments such as PANDA (anti-Proton ANnihilation at DArmstadt) and CBM
(Compressed Baryonic Matter) at the FAIR (Facility for Antiproton and Ion Research)
at GSI Helmholtzzentrum für Schwerionenforschung [131, 132], which involve studies of
charm physics, open the possibility in the near future for the observation of more states
with exotic quantum numbers of charm and strangeness. The discovery of new states and
the plausible explanation of their nature is a very active topic of research. The ultimate
goal is to understand whether those states can be described with the usual three-quark
baryon or the quark-antiquark meson interpretation or, alternatively, qualify better as
hadron molecules. The PANDA experiment is well-suited for a comprehensive baryon
spectroscopy program, in particular with regards to the spectroscopy of (multi-) strange
and charmed baryons. In p̄p collisions, a large fraction of the inelastic cross section is
associated with channels resulting in a baryon-antibaryon pair in the final state. Thus,
reactions of the type p̄p → Λ̄cΛc, Σ̄cΣc, Λ̄cΣc/ΛcΣ̄c will take place, for which there is
no experimental data yet [132]. For charmed baryon resonances the range of excitation
energies accessible is restricted due to the kinematic limit at the High-Energy Storage Ring
(HESR) of

√
s = 5.5 GeV, which allows to populate excitation energies up to 0.93 GeV

above the Λc ground state. Searches for hidden-charm states are also a part of PANDA
program [132]. With the available energy limit, hidden-charm states with masses up to
approximately 4.5 GeV can be obtained in the reactions of the type p̄p→ Nc̄cp̄.

The BESIII experiment is nowadays extensively studying heavy-flavor physics, pay-
ing special attention to hidden-charm mesons. Unfortunately, the energy available at
this experiment (

√
s = 4.6 GeV) is not enough to study charm or hidden-charm baryon

resonances [133]. The on-going LHCb experiment at CERN with
√
s can also offer in-

formation on states with both charm and bottom degrees of freedom [134]. Searches for
heavy-flavored baryons are not in the list of the main scientific goals of the 12 GeV upgrade
at Jefferson Lab. The charm photoproduction is only used as a tool to study properties of
the nuclear target, such as multi-quark, gluonic, and hidden-color correlations in nucleons
and nuclei [135]. The energy available at the facility is, however, sufficient for finding
charmed baryon resonances, as well as for the hidden-charm ones [136].

Recently the charm degree of freedom has been incorporated in the unitarized coupled-
channels models, and several experimental states have been described as dynamically-
generated baryon molecules [137–153]. This is the case, for example, of the Λc(2595),
which is the charm sector counterpart of the Λ(1405). Some of these approaches are
based on a bare baryon-meson interaction saturated with the t-channel exchange of vector
mesons between pseudoscalar mesons and baryons [137–146], others make use of the Jülich
meson-exchange model [147–149] or some rely on the hidden gauge formalism [150–153].
In these studies the Λc(2595) shows a two-pole structure, like its counterpart in the strange
sector, the Λ(1405).

These models do not explicitly incorporate the heavy-quark spin symmetry, and there-
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fore it is unclear whether this symmetry is respected. HQSS connects vector and pseu-
doscalar mesons containing heavy quarks. For example, if the symmetry is exact, D and
D∗ mesons are degenerate, and therefore in order to respect HQSS both of them have
to be included. In contrast, the above-mentioned unitarized models in coupled channels
within the charm sector study the interaction of baryons with the pseudoscalar, and with
the vector mesons separately.

1.4 Outline of the thesis

In this thesis we study dynamically-generated baryon resonances3 with heavy (charm and
bottom) flavor. We use a unitarized model in coupled-channels, implementing the heavy-
quark spin symmetry constraints. We study charmed C = 1 baryon resonances with
strangeness S = −2, −1, 0, as well as C = 2, 3 states. Baryon resonances with hidden
charm are also analyzed in this thesis. One chapter is dedicated to baryon resonances
with bottom flavor.

This thesis is organized in the following way. In Chapter 2 we introduce the model.
The lowest-order chiral Lagrangian is presented, followed by the extension of its Weinberg-
Tomozawa term to the SU(6) symmetry, and then to the spin-flavor symmetry for four
flavors with the heavy-quark spin symmetry constraints. Furthermore, we introduce the
Bethe-Salpeter (BS) equation in coupled channels and its on-shell form, and the regu-
larization method for the baryon-meson loop function that appears in the BS equation.
Then, we study baryon resonances that appear as poles of the scattering amplitude and
the interpretation of states as they appear in different Riemann sheets. Finally in this
chapter we present the symmetry-breaking pattern. We break the symmetry adiabatically,
which allows us to unambiguously identify the corresponding group multiplets among the
resonances generated dynamically.

In Chapter 3 we study charmed baryon resonances. First, the analysis of the symmetry
multiplets and their group reduction are introduced, and the expected number of charmed
resonances with C = 1, 2, 3 is estimated in different sectors of strangeness, isospin and
total angular momentum. The following sections are dedicated to charmed C = 1 and
non-strange Λc and Σc resonances. For the Λc states we test the changes that appear when
one considers only the coupled channels to which each resonance couples the strongest.
Besides, we study the effect of the inclusion of an additional suppression factor in the
interaction for the case of the charmed meson exchange, in analogy with the t-channel
vector-meson exchange models. Further, we show our results for the C = 1 baryon
resonances with strangeness S = −1 (Ξc) and S = −2 (Ωc). After that, we discuss the
double-charmed states: Ξcc, with zero strangeness, and Ωcc with S = −1. Finally, results
are introduced for C = 3 Ωccc (S = 0) resonances.

Chapter 4 is dedicated to the hidden-charm N and ∆ baryon resonances. Similarly
to the previous chapter, we begin with the analysis of the group multiplets, showing the
results afterwards. We compare the predictions of our model with the findings of other
theoretical models (there is no experimental information yet available in this sector).

3Often we refer to all poles generically as resonances, regardless of their nature, since usually they
can decay through other channels not included in the model space.
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In Chapter 5 we study baryon resonances with beauty flavor. We check if the Λb(5912)
and Λb(5920) resonances that were found by the LHCb collaboration last year can be
interpreted as dynamically-generated resonances. Besides Λb states we also study Ξb

resonances.
We finish this thesis with an overview and conclusions. Several appendices are devoted

to technical issues.



Chapter 2

The phenomenological model

In this chapter we introduce the Lagrangian which we use to describe the interaction be-
tween mesons and baryons with charm. We start with the chiral Lagrangian, present the
Weinberg-Tomozawa interaction, and then discuss its SU(6) spin-flavor (SF) extension.
Then, we present its extension to a spin-flavor model for four flavors that includes charm,
and the implementation of heavy-quark spin symmetry (HQSS) constraints. The discussed
phenomenological model describes the interaction between states with the charm degree of
freedom, and is consistent with known symmetries of QCD. In particular, the Lagrangian
embodies chiral symmetry in the light-hadron sector, and HQSS when heavy hadrons are
treated. This model takes into account both pseudoscalar and vector light and heavy
mesons, as well as spin-1/2+ and spin-3/2+ light and heavy baryons. Implementation of
HQSS constraints requires some modification of the Lagrangian. The obtained interac-
tion is applied for studying open-charm and hidden-charm states in Chapters 3 and 4.
The same interaction is applied for studying beauty-flavored baryon resonances in Chap-
ter 5. The interest in developing such a model is corroborated by present and planned
experiments (see Section 1.3), which involve studies of heavy-flavor physics, and in which
the results of the model can be verified. Later in this chapter we discuss unitarization
in coupled channels by means of the Bethe-Salpeter (BS) equation in coupled channels,
taking, as bare interaction, the phenomenological interaction previously described. The
loop function that appears in the BS equation is ultraviolet-divergent and needs to be
regularized. Thus, the subtraction point regularization method is analyzed. Baryon res-
onances appear as poles of the scattering amplitude in the complex-energy plane, and as
causality imposes the absence of poles in the physical Riemann sheet, one has to search for
them by performing the analytical continuation of the scattering amplitudes. Therefore,
we present the behavior of the scattering amplitudes in the second Riemann sheet. As the
SF symmetry is strongly broken in nature, the breaking of the symmetry is introduced
at the end of this chapter. The SF symmetry is broken adiabatically down to an SU(2)
isospin symmetry, by incorporating the physical masses of hadrons and meson weak-decay
constants. In this way the resonances are labeled with the corresponding group multiplets,
and the HQSS partners are defined.

9
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2.1 Interaction potential

2.1.1 SU(3) chiral baryon-meson Lagrangian

The QCD Lagrangian respects chiral symmetry in the limit of massless quarks. Chiral
perturbation theory (χPT) is an effective field theory based on this limit. The χPT SU(3)
lowest-order Lagrangian describes the interaction of the octet of pseudoscalar mesons with
the octet of 1/2+ baryons, and reads (e.g. [9, 154])

LLO =: Tr(B̄iγµ∇µB)−MTr(B̄B)+
1

2
DTr(B̄γµγ5{uµ, B})+

1

2
FTr(B̄γµγ5[uµ, B]) :, (2.1)

where two colons indicate normal order,

∇µB = ∂µB + [Γµ, B],

Γµ =
1

2
(u+∂µu+ u∂µu

+),

U = u2 = exp(i
√

2Φ/f),

uµ = iu+∂µUu
+; (2.2)

and Φ and B are the SU(3) matrices of pseudoscalar mesons and 1/2+ baryons octets,
respectively1:

Φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 ,

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 .

Further, M is the average octet baryon mass, and D and F are coupling constants. We
use Bjorken and Drell [158] conventions for the metric tensor and the Dirac matrices. By
expanding the covariant derivative in Eq. (2.1), we obtain the Weinberg-Tomozawa (WT)
term [159,160]

LWT =
i

4f 2
: Tr(B̄iγµ[Φ(∂µΦ)− (∂µΦ)Φ, B]) : . (2.3)

From this SU(3) WT chiral Lagrangian one can find the interaction potential

Vij = Cij
1

4f 2
ū(p′)γµu(p)(kµ + k′µ), (2.4)

where we use the convention V = −L, and where i and j are the indexes of the incoming
and outgoing baryon-meson pair, p, p′ (k, k′) are the initial and final momentum of the

1Here the same phase convention is used as in J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963)
[Erratum-ibid. 37, 326 (1965)] (Ref. [155]). Later, when studying the baryon resonances with charm, a
different phase convention is used, from G. E. Baird, L. C. Biedenharn, J. Math. Phys. 5, 1723 (1964)
(Ref. [156]), and the relative phases between flavor multiplets inside a spin-flavor multiplet are defined
as in C. Garcia-Recio and L. L. Salcedo, J. Math. Phys. 52, 043503 (2011) (Ref. [157]).
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baryon (meson), respectively, and finally, u, ū are the Dirac spinors. The pion weak-decay
constant is taken f ' 93 MeV, while Cij are the WT SU(3) matrix coefficients that can
be written as

Cij =
∑
µ,γ,γ′

λµγ→µγ′

(
8 8 µγ

IMYM IBYB IY

)(
8 8 µγ′

I ′M ′Y
′
M ′ I ′B′Y

′
B′ IY

)
, (2.5)

where µ runs over the SU(3) decomposition of the product of the 8 (meson) and 8 (baryon)
representations,

8⊗ 8 = 27⊕ 10⊕ 10∗ ⊕ 8s ⊕ 8a ⊕ 1, (2.6)

and γ, γ′ are used to account for two octets (8s and 8a) that appear in the decom-
position. The SU(3) eigenvalues are λ27 = 2, λ8s = λ8a = −3, λ1 = −6,
λ10 = λ10∗ = λ8s ↔ 8a = 0 [59]. The last two terms in Eq. (2.5) are the SU(3)
isoscalar factors [155]. Thus, chiral symmetry puts constraints on the couplings, which
otherwise would be arbitrary functions of s.

For low energies the interaction potential of Eq. (2.4) simplifies to

Vij = Cij
1

2f 2
(
√
s−M)

(
E +M

2M

)
, (2.7)

where E is the baryon center-of-mass energy.
It is worth noticing that the same potential can be derived from t-channel vector-meson

exchange (TVME) interaction by taking the zero-range (t → 0) approximation. The
interaction potential due to the exchange of the vector meson “X” reads (e.g. Ref. [144]):

Vij =
∑
X

g2Cijū(~pi)γ
µ

[
−gµν +

kµkν
m2
X

]
1

t−m2
X

(qi + qj)
νu(~pj), (2.8)

with k being the momentum transfer (t ≡ k2 = kµkµ), g is the vector-meson coupling
constant, and mX stands for the mass of the exchanged meson. By expanding 1/(t−m2

X)
in powers of t/m2

X , and simplifying, such as disregarding the terms of order O(1/m2
X),

and making the interaction to be zero ranged, one obtains the potential of Eq. (2.7).

2.1.2 SU(6) extension of the Weinberg-Tomozawa baryon-meson
Lagrangian

Already about fifty years ago it was suggested that it might be a useful approximation to
assume that apart from the SU(3) flavor symmetry the interactions between light quarks
are spin-independent [161–163]. This assumption leads to the SU(6) symmetry group,
which means that six light quark states (u, d and s, each with spin up or down) are
treated equally. Despite the Coleman-Mandula theorem [164], which forbids combining
space-time and internal symmetries, there exist several predictions based on SU(6) (rel-
ative closeness of baryon octet and decuplet masses, the axial current coefficient ratio
F/D = 2/3, the magnetic moment ratio µp/µn = −3/2), which are remarkably well sat-
isfied in nature [165]; this suggests that SU(6) might be a useful approximate symmetry.
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Remarkably, the spin-flavor (SF) symmetry is exact for ground-state baryons in the large
Nc (number of colors) limit [166]; in the real Nc = 3 world, the zeroth-order SF symmetry
breaking appears to be similar in magnitude to O(N−1

c ) breaking effects [167]. Further,
in the meson sector, an underlying static (meaning non-relativistic; linear momenta of the
participating particles are set equal zero [168,169]) U(6)×U(6) symmetry has been used
by Caldi and Pagels [168, 170], in which vector mesons would be “dormant”2 Goldstone
bosons acquiring mass through relativistic corrections. This model solves a number of
theoretical problems in the classification of mesons, and makes predictions that are in
remarkable agreement with the experiment.

A consistent SU(6) extension of the Weinberg-Tomozawa baryon-meson chiral La-
grangian has been developed by Garcia-Recio, Nieves, and Salcedo in Ref. [78], and further
used in Ref. [81] for the study of the Λ(1520) production, and in Ref. [171], where nonex-
otic baryon resonances with strangeness numbers S = 0,−1,−2,−3 were analyzed, many
of them being identified with experimentally known odd-parity N , ∆, Σ, Λ, Ξ, and Ω res-
onances. The generalization of the model to an arbitrary number of colors has been done
in [172], and to the arbitrary number of colors and flavors in [173]. The authors of the
SU(6) model aimed at developing a scheme, which includes interactions of baryons with
both pseudoscalar and vector mesons. Inclusion of vector mesons definitely influences the
properties of baryon resonances which can be created as result of such interactions. Below
we review features of the SU(6) model of Refs. [78,81].

In the SU(6) scheme the mesons (36 quark-antiquark states) fall in the representations

6⊗ 6∗ = 35⊕ 1 = (81 ⊕ 83 ⊕ 13)⊕ 11, (2.9)

where multiplets without lower index are the SU(6) representations denoting their dimen-
sion, and the ones with lower indices are the SU(3) multiplets, written as µ2J+1 with µ
being the dimension of the representation, and J the spin. The 35 multiplet includes the
octet of pseudoscalar mesons (K, π, η, K̄) and the nonet of the vector mesons (K∗, ρ, ω,
K̄∗, φ), and the singlet 1 of SU(6) represents the η′ meson. In the case of baryons, with
the inclusion of the spin, one finds 216 three-quark states

6⊗ 6⊗ 6 = 56⊕ 20⊕ 70⊕ 70 =(82 ⊕ 104)⊕ (14 ⊕ 82)

⊕ 2× (102 ⊕ 84 ⊕ 82 ⊕ 12).
(2.10)

The lowest-lying baryons, including the spin-1/2 baryon octet (N , Σ, Λ, Ξ), and the
spin-3/2 baryon decuplet (∆, Σ∗, Ξ∗, Ω), are assigned to the symmetric 56 SU(6) rep-
resentation. Here we consider the s-wave interaction between the lowest-lying meson
multiplet 35 and the lowest-lying baryons 56 multiplet. The SU(6) decomposition of the
product of the 35 (meson) and 56 (baryon) representations yields

35⊗ 56 = 56⊕ 70⊕ 700⊕ 1134. (2.11)

Thus, assuming that the s-wave effective baryon-meson Hamiltonian is SU(6) invariant,
there are only four Wigner-Eckart reduced matrix elements, which are functions of the
baryon-meson Mandelstam variable s.

2A dormant Goldstone boson is defined to be a boson that in the static, nonrelativistic limit be-
comes a true Goldstone boson associated with the spontaneous vacuum breaking of a static Hamiltonian
symmetry [168].
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Let us denote a meson state from µM representation with spin JM , isospin IM , and
hypercharge YM such asM = [(µM)2JM+1, IM , YM ], and use a similar notation for baryons
B. The baryon-meson states expressed in terms of the SU(6) coupled basis

∣∣φ;µα2J+1IY
〉

are

|MB; JIY 〉 =
∑
µ,α,φ

(
µM µB µ

IMYM IBYB IY

)

×

(
35 56 φ

µMJM µBJB µJα

)∣∣φ;µα2J+1IY
〉
,

(2.12)

with Y = YM +YB, |IM − IB| ≤ I ≤ IM + IB, and for s-wave scattering |JM − JB| ≤ J ≤
JM+JB. The first and second factors in Eq. (2.12) are the SU(3) isoscalar factors [155] and
the SU(6)-multiplet coupling factors, respectively [174]. The multiplets φ stand for the
resulting four SU(6) irreducible representations 56, 70, 700, and 1134, and µα2J+1 for the
SU(3) representations of spin J , with α being the corresponding multiplicity. The index
µ runs over all SU(3) representations for the octet-octet, octet-decuplet, singlet-octet,
and singlet-decuplet decompositions. Note that chiral symmetry defines the coupling
constants for the octet-octet interaction in the WT potential (Eq. (2.5)).

The assumption that the s-wave baryon-meson potential is an SU(6)-invariant operator
implies that

∣∣φ;µα2J+1IY
〉

are eigenvectors of the potential, and the corresponding eigen-
values Vφ(s) depend only on the Mandelstam variable s and on the SU(6) representation
φ. Therefore, the matrix element of the potential can be written as

VMB,M′B′ = 〈M′,B′; JIY |V |M,B; JIY 〉 =
∑
φ

Vφ(s)Pφ,JIYMB,M′B′ , (2.13)

with the projection operators

Pφ,JIYMB,M′B′ =
∑
µ,α

(
35 56 φ

µMJM µBJB µJα

)(
µM µB µ

IMYM IBYB IY

)

×

(
µ′M ′ µ′B′ µ

I ′M ′Y
′
M ′ I ′B′Y

′
B′ IY

)(
35 56 φ

µ′M ′J
′
M ′ µ′B′J

′
B′ µJα

)
.

(2.14)

It turns out [78] that there is a unique extension of the chiral SU(3) WT potential to the
SU(6) symmetric case. This is done by taking

Vφ(s) = λ̄φ
1

2f 2
(
√
s−M)

(
E +M

2M

)
, (2.15)

with λ̄56 = −12, λ̄70 = −18, λ̄700 = 6, and λ̄1134 = −2, and M the baryon mass averaged
over the octet and the decuplet. In this way, when restricted to the 81 ⊗ 82 sector, the
seven SU(3) WT couplings are reproduced [78,81].

The SU(6) symmetry is broken in nature, so that it is necessary to implement the
symmetry breaking. The SU(6) symmetry breaking effects are taken into account by
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using the physical hadron masses and meson weak-decay constants. For this purpose the
following replacements in Eq. (2.15) were performed:(√

s−M
)
/2f 2 →

(
2
√
s−Mi −Mj

)
/4fifj,

E +M

2M
→

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj

, (2.16)

where Mi (Mj) and Ei (Ej) stand for the incoming (outgoing) baryon masses and center-
of-mass energies, and fi (fj) for the weak-decay constants of the incoming (outgoing)
mesons.

The extension of the WT interaction to SF symmetry for any number of flavors NF

has been studied in Ref. [172]. The corresponding Hamiltonian can be written as

−LWT = Hsf
WT(x) = − i

4f 2
: [Φ, ∂0Φ]ABB†ACDB

BCD :, A,B, . . . = 1, . . . , 2NF . (2.17)

The indices A,B, . . . denote spin and flavor, and so they take 2NF values. ΦA
B(x) is the

meson field, a 2NF ×2NF Hermitian matrix which contains the fields of 0− (pseudoscalar)
and 1− (vector) mesons. This matrix is not traceless; for later convenience it includes the
SU(2NF ) singlet meson (the mathematical η1). The contribution of η1 to Φ is proportional
to the identity matrix and so it does not couple in Hsf

WT. The normalization of Φ(x) is
such that a mass term (with a common mass m for all mesons) would read 1

2
m2tr(Φ2).

The quantity B(x) is the baryon field. BABC is a completely symmetric tensor; it has
56 components for NF = 3, and 120 components for NF = 4, and contains the lowest-
lying baryons with JP = 1

2

+
and 3

2

+
. The normalization of the field B is such that a

mass term (with a common mass M for all baryons) would take the form M 1
3!
B†ABCBABC .

E.g. the fields B123(x), B112(x)/
√

2, and B111(x)/
√

6 have the standard normalization of
a fermionic field. We refer to the Appendix A for the detailed construction of ΦA

B(x) and
BABC(x) in terms of the individual meson and baryon fields for NF = 4, which is relevant
for the states studied in this thesis.

2.1.3 Inclusion of charm – spin-flavor extension of the WT La-
grangian for four flavors including HQSS constraints

In this section we discuss an extension of the WT SU(3) chiral Lagrangian to implement
SF symmetry in order to incorporate the charm degree of freedom [175–177], including
heavy-quark spin symmetry (HQSS) constraints. HQSS is a proper QCD spin-flavor
symmetry when the quark masses become much larger than the typical confinement scale
(ΛQCD ≈ 200 MeV). HQSS predicts that all types of spin interactions involving heavy
quarks vanish for infinitely massive quarks, as the spin-dependent interactions are of the
order of 1/mQ, with mQ being the heavy-quark mass. Consequently, the spin of the
light degrees of freedom is also conserved in this limit. Thus, HQSS connects vector
and pseudoscalar mesons containing charmed quarks, and heavy hadrons come in HQSS
multiplets.



2.1 INTERACTION POTENTIAL 15

We start by considering an SU(8) SF model. In this scheme there are 64 quark-
antiquark states (qq̄), as it is shown below together with decomposition into SU(4) mul-
tiplets (those are denoted by n2J+1 with n being a dimension of the representation and J
a spin):

8⊗ 8∗ = 63⊕ 1 = (151 ⊕ 153 ⊕ 13)⊕ 11. (2.18)

The 63 multiplet includes the SU(4) 15-plet of pseudoscalar mesons (π, K, K̄, η, ηc, D,
D̄, Ds, D̄s) and the 16-plet of vector mesons (ρ, K∗, K̄∗, ω, φ, J/ψ, D∗, D̄∗, D∗s , D̄

∗
s),

while η′ belongs to the singlet 1 of SU(8). Pure cc̄ wave functions are used for ηc and J/ψ
mesons, while η = 1√

6
(uū + dd̄ − 2ss̄), η′ = 1√

3
(uū + dd̄ + ss̄), ω = − 1√

2
(uū + dd̄), and

φ = ss̄ for the physical isoscalar mesons. This implies some mixing between the isoscalar
SU(4) mathematical states to build the physical ones.

Moreover, there are 512 three-quark states (qqq),

8⊗ 8⊗ 8 =120⊕ 56⊕ 168⊕ 168 =

(202 ⊕ 20′4)⊕ (44 ⊕ 202)⊕ 2× (20′2 ⊕ 204 ⊕ 202 ⊕ 42).
(2.19)

The lowest-lying baryons are assigned to the 120 multiplet of SU(8), as it is the fully sym-
metric representation for the SF part of the wave function, to yield a fully antisymmetric
total wave function. The other states that belong to the 202 and 20′2 SU(4) multiplets
are charmed, double-, and triple-charmed baryons (Λc, Σc, Ξc, Ξ′c, Ωc, Ξcc, Ωcc, and Σ∗c ,
Ξ∗c , Ω∗c , Ξ∗cc, Ω∗cc, Ωccc respectively).

One can now build the s-wave interaction between the lowest-lying mesons of the 63
SU(8) multiplet, and the lowest-lying baryons of 120 at low energies, close to the relevant
thresholds. In the s-channel the baryon-meson space reduces into four SU(8) irreps,

63⊗ 120 = 120⊕ 168⊕ 2520⊕ 4752. (2.20)

It is mandatory that the SU(8) amplitudes for the scattering of the octet of the pseu-
doscalar mesons off the octet of JP = 1/2+ baryons reduce to the SU(3) chiral symmetry
amplitudes. Then, similarly to the SU(6) case, there is a choice of the four couplings for
the 63 ⊗ 120 that, when restricted to the 8 ⊗ 8 sector, produces the seven SU(3) WT
couplings uniquely. The appropriate s-channel couplings turn out to be proportional to
the following four eigenvalues [175]:

λ120 = −16, λ168 = −22, λ2520 = 6, λ4752 = −2. (2.21)

In our convention for the potential, a negative sign in the eigenvalues implies an attractive
interaction. Then, from the eigenvalues, we find that the multiplets 120 and 168 are
the most attractive ones, while the 4752-plet is weakly attractive and the 2520-plet
is repulsive. As it will be also discussed in Section 3.1, for studying charmed baryon
resonances with C = 1, 2, 3, we consider only states that belong to the two most attractive
representations 120 and 168.

It is also instructive to draw attention here to some of the findings of Ref. [78] when
the number of colors NC departs from 3 [172]. There it is shown that, in the 168 SU(8)
irreducible space, the SU(8) extension of the WT s-wave baryon-meson interaction scales
as O(1). Note that the SU(3) WT counterpart in some channels also scales as O(1)
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because the coupling strength for some channels scales as O(NC), which compensates
O(1/NC) coming from the square of the meson decay constant [178]. However, the WT
interaction behaves as O(1/NC) within the 120 and 4752 baryon-meson spaces. This
presumably implies that the 4752 states do not appear in the large-NC QCD spectrum,
since both excitation energies and widths grow with an approximate

√
NC rate.

HQSS is a fairly good approximate symmetry of QCD [12–14] and it is mandatory to
implement it in any hadronic model involving charmed quarks. HQSS implies conservation
of the number of charmed quarks, Nc, and of the number of charmed antiquarks, Nc̄,
with corresponding symmetry group Uc(1) × Uc̄(1). Likewise, the terms in the QCD
Hamiltonian which depend on the heavy quark or antiquark spin are suppressed, being
of order 1/mh, where mh is the mass of the heavy quark. Therefore, in the heavy-quark
limit, arbitrary rotations of the spin carried by the c quarks and, independently, of the
spin carried by the c̄ antiquarks, would leave unchanged the energy of the hadronic state.3

This implies a symmetry SUc(2) × SUc̄(2) in the heavy-quark limit. These invariances
are aspects of HQSS. In what follows we refer to SUc(2)× SUc̄(2)×Uc(1)×Uc̄(1) as the
HQSS group.

First, it should be noted that SF symmetry by itself already guarantees HQSS in many
sectors. Consider, for instance, the couplings involving the channels ND and ND∗. These
channels are related through HQSS since there should be invariance under rotations of
the c quark spin (leaving the light quarks unrotated), and this mixes D and D∗. But the
same invariance is already implied by SF, which requires symmetry under independent
rotations of spin for each flavor separately. The only cases where SF does not by itself
guarantee HQSS is when there are simultaneously c quarks and c̄ antiquarks: SF implies
invariance under equal rotations for c and c̄, but HQSS requires also invariance when the
two spin rotations are different.

To be more specific, let us consider baryon-meson channels, and let Nc be the number
of c quarks and Nc̄ the number of c̄ antiquarks. Nc ranges from 0 to 4, and Nc̄ from 0
to 1. SF guarantees HQSS in the sectors (Nc, Nc̄) = (0, 0), (0, 1), (1, 0), (2, 0), (3, 0), (4, 0),
thus whenever only heavy quarks are present (but not heavy antiquarks), or only heavy
antiquarks are present (but not heavy quarks). In the sectors (Nc, Nc̄) = (1, 1), (2, 1),
(3, 1), (4, 1) SF does not guarantee HQSS; as compared to the former sectors, the latter
ones contain extra cc̄ pairs. This observation suggests a simple prescription to enforce
HQSS in the interaction for the open-charm sectors considered in this work, namely, to
drop baryon-meson channels containing cc̄ pairs. Specifically, in Chapter 3 we study the
sectors (Nc, Nc̄) = (1, 0), (2, 0), (3, 0), for which the modified SU(8) WT interaction fulfills
HQSS. It should be noted that SU(8) is no longer an exact symmetry in the truncated
coupled-channel space. Nevertheless, for the low-lying resonances, the omitted channels
are kinematically suppressed anyway, due to their large mass. For s-wave interactions (the
ones of interest here), SU(6) SF is sufficient to guarantee HQSS in the sectors without
hidden charm: a rotation of the single heavy quark (or antiquark) can be produced by a
light-sector rotation followed by a global rotation, without changing the energy. In other
words, in those sectors and for s-wave interactions, any SF-invariant interaction enjoys
HQSS automatically. The hidden-charm sectors, in particular hidden-charm N and ∆

3However, all c quarks present in the state, being identical particles, are rotated by a common rotation,
and similarly for the c̄.
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resonances are studied in the Chapter 44.
It is perfectly possible to write down nontrivial models enjoying simultaneously SU(8)

and HQSS invariances [namely, by requiring SUq(8)×SUq̄(8)], but they would not reduce
to WT in the light sector. Concretely, SU(8)-WT conserves C = Nc−Nc̄ but not Nc and
Nc̄ separately. Of course, one could impose this by hand, but it is automatically taken
care of by our modified interaction below [Eq. (2.30)]. Also, the restrictions of SU(8)-WT
to the sectors (Nc, Nc̄) = (1, 1), (2, 1), (3, 1), (4, 1) turn out to violate HQSS.

In order to implement HQSS in the model let us analyze its content. We extract the
trivial kinematic part and work directly in the space with only spin and flavor as degrees
of freedom. The WT Hamiltonian with SF symmetry with four flavors takes the form of
Eq. (2.17). This operator contains two distinct mechanisms which stem from expanding
the meson commutator in Eq. (2.17),

HWT = Hex +Hac,

Hex = : MA
CM

†C
BB

BDEB†ADE :,

Hac = − : M †A
CM

C
BB

BDEB†ADE :, A, . . . , E = 1, . . . , 2NF . (2.22)

Here MA
B and BABC are the annihilation operators of mesons and baryons, respectively,

with M †A
B = (MB

A)†, and B†ABC = (BABC)†, with BABC being a completely symmetric
tensor. The operators are normalized as

[MA
B,M

†C
D] = δADδ

C
B ,

{BABC , B†A′B′C′} = δAA′δ
B
B′δ

C
C′ + · · · (six permutations). (2.23)

Note that in the SU(8)-WT model, the η′ [SU(8) singlet meson] does not couple and
could be ignored; however, this meson has to be present in the corrected interaction since
it mixes with the other mesons under HQSS.

Schematically, representing the quark and antiquark operators by QA and Q̄A, one gets

MA
B ∼ QAQ̄B, M †A

B ∼ Q̄†AQ†B, BABC ∼ QAQBQC , B†ABC ∼ Q†AQ
†
BQ
†
C . (2.24)

So, an upper index in M or B represents the SF of a quark to be annihilated, whereas
in M † it represents that of an antiquark to be created. Likewise, a lower index in M †

or B† represents the SF of a quark to be created, while in M it represents that of an
antiquark to be annihilated. From this identification it is immediate to interpret the two
mechanisms Hex and Hac in terms of quark and antiquark propagation.

The two mechanisms involved, Hex and Hac are displayed in Fig. 2.1. In Hex (exchange)
the quark with spin-flavor A is transferred from the meson to the baryon, as is the quark
with label B from baryon to meson. On the other hand, in Hac (annihilation-creation)
an antiquark with spin-flavor B in the meson annihilates with a similar quark in the
baryon, with subsequent creation of a quark and an antiquark with spin-flavor A. In
both mechanisms the quarks or antiquarks C, D and E are spectators from the point
of their spin-flavor (the ubiquitous gluons are not explicit). Also in both mechanisms
effectively a meson is exchanged. In passing, we note that the Okubo-Zweig-Iizuka (OZI)
rule is automatically fulfilled with regards to the exchanged meson. OZI-rule-violating
mechanisms would be of the type depicted in Fig. 2.2 and are not present in WT.

4In this thesis we refer collectively to the sectors with (Nc, Nc̄) = (1, 1), (2, 1), (3, 1), (4, 1) as sectors
with “hidden charm”, regardless of whether they have net charm or not.
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B A C A A

C A B C B B

Hex

DE DE

DEDE

C

Hac

Figure 2.1: The two mechanisms acting in the SF extended WT interaction. Hex (exchange of
quarks) and Hac (annihilation and creation of quark-antiquark pairs). In the HQSS corrected
version of the interaction, Eq. (2.29), the labels A and B in Hac only take light-flavor values.

Figure 2.2: OZI-rule-violating mechanisms. Gluons are implicit.

It appears that Hac can violate HQSS when the annihilation or creation of qq̄ pairs
involves heavy quarks, whereas Hex would not be in conflict with HQSS. To expose this
fact more clearly, let us consider the symmetries of these two interaction mechanisms. Let
NF = 4 and let U be a matrix of SF SU(8). Upper indices transform with U † and lower
indices with U

QA → U †ABQ
B, Q̄†A → U †ABQ̄

†B,

Q̄A → UB
AQ̄B, Q†A → UB

AQ
†
B. (2.25)

Therefore (with obvious matrix/tensor notation)

M → U †MU, M † → U †M †U,

B → (U † ⊗ U † ⊗ U †)B, B† → B†(U ⊗ U ⊗ U). (2.26)

The indices are so contracted that Hex and Hac are both invariant under these SU(8)
transformations. However, HQSS requires also invariance when the charm quark and
the charm antiquark receive different rotations. To examine this, let us consider the



2.1 INTERACTION POTENTIAL 19

transformation under U ∈ SUq(8) and Ū ∈ SUq̄(8), i.e., different transformations for
quarks and antiquarks (previously U = Ū). In this case

Q→ U †Q, Q̄† → Ū †Q̄†, Q̄→ Q̄Ū , Q† → Q†U, (2.27)

and therefore

M → U †MŪ, M † → Ū †M †U,

B → (U † ⊗ U † ⊗ U †)B, B† → B†(U ⊗ U ⊗ U). (2.28)

Clearly, the mechanism Hex, which depends on the combination MM †, is still invariant
under this larger group, SUq(8) × SUq̄(8).5 It certainly preserves SF and HQSS. On the
other hand, Hac depends on the combination M †M , which transforms with Ū , while BB†

transforms with U . Hac is SF invariant (U = Ū) but not HQSS invariant. A simple
solution to enforce HQSS with minimal modifications is to remove just the offending
contributions in Hac, which come from creation or annihilation of charm quark-antiquark
pairs. This implies to remove the interaction when the labels A or B are of heavy type
in Hac.

6 That is, we adopt the following modified version of the Hac mechanism

H ′ac = − : M †Â
CM

C
B̂B

B̂DEB†
ÂDE

:, C,D,E = 1, . . . , 8, Â, B̂ = 1, . . . , 6. (2.29)

The indices with hats are restricted to SU(6). By construction Nc and Nc̄ are exactly
conserved in H ′ac. Also SUc(2)×SUc̄(2) is conserved: when U and Ū act only on the heavy

sector, M †Â
CM

C
B̂ and BB̂DEB†

ÂDE
are unchanged, and therefore HQSS is preserved. On

the other hand, when U = Ū and this matrix acts on the light sector, H ′ac is unchanged,
so it enjoys SU(6) symmetry. Exact SF SU(8) and flavor SU(4) is no longer present.
Presumably, this breaking of SU(4) is comparable to the breaking through the kinematics
due to the substantially heavier mass of the charmed quark.

To summarize, our model (in all sectors) is defined by the modified interaction

H ′WT = Hex +H ′ac. (2.30)

This model fulfills some desirable requirements: (i) it has symmetry SU(6)× HQSS, i.e.,
SF symmetry in the light sector and HQSS in the heavy sector, the two invariances being
compatible, (ii) it reduces to SU(6)-WT in the light sector, so it is consistent with chiral
symmetry in that sector, and (iii) is a minimal modification that preserves simplicity and
does not introduce new adjustable parameters.

We can analyze the model in the different (Nc, Nc̄) sectors, which, as already noted, do
not mix due to HQSS. In all the sectors without hidden charm, namely, (Nc, Nc̄) = (0, 1),
(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), H ′ac produces the same amplitudes as Hac when the latter
is restricted to the corresponding sector. Indeed, these interactions vanish unless the
state contains a quark-antiquark pair with quark and antiquark of the same type. In the
absence of hidden charm, the pair must be light and in this case the two operators produce

5Note that the commutation relations, Eq. (2.23), are also preserved by this symmetry.
6Keeping the contributions with A = B of the heavy type would preserve Uc(1)×Uc̄(1), i.e., conser-

vation of Nc and Nc̄, but not SUc(2)× SUc̄(2).
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the same result. This is consistent with our previous observation that, when there are only
heavy quarks or heavy antiquarks but not both, SF already implies HQSS. So in all these
sectors, our model produces the same amplitudes as SU(8)-WT after removing channels
involving hidden charm. This observation has been previously applied in [175, 176], and
was used for studying charmed baryon resonances in Chapter 3 of this thesis.

It is noteworthy that in the sectors (Nc, Nc̄) = (0, 1) and (4, 0), corresponding to
C = −1 and C = 4, H ′ac = Hac = 0, as they do not contain light quark-antiquark pairs.
Also, these two sectors cannot couple to any other (Nc, Nc̄) sector in the baryon-meson
case. Therefore, for them our model coincides directly with SU(8)-WT.

Let us turn now to the sectors with hidden charm. These are (Nc, Nc̄) = (1, 1), (2, 1),
(3, 1), (4, 1). For all these sectors H ′ac vanishes. The reason is that in these sectors the
relevant quark-antiquark pair (quark and antiquark with equal labels) is necessarily of
heavy type, and such an amplitude has been removed from H ′ac. (Note that Hac does not
vanish in these sectors.) So for the hidden-charm sectors H ′WT reduces to the exchange
mechanism Hex.

After all the above considerations, the tree-level baryon-meson potential of the spin-
flavor extended WT interaction with HQSS constraints reads 7

V IJSC
ab (

√
s) = DIJSC

ab

2
√
s−Mi −Mj

4fifj

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj

, (2.31)

similarly to Eq. (2.7) for SU(3) chiral scheme, or Eq. (2.15) and Eq. (2.16) for SU(6)
model, where IJSC are the baryon-meson isospin, total angular momentum, strangeness
and charm quantum numbers respectively, a and b stand for the incoming and outgoing
baryon-meson pairs, M (E) is the mass (center-of-mass energy) of the baryon, and f is
the meson weak-decay constant (before implementing the SF symmetry breaking effects,
the mass M is averaged over the 120, and f over the 63 multiplets). Finally, DIJSC

ab are
the matrix elements of H ′WT in Eq. (2.30) in a coupled-channel space. The D-matrices in
the open-charm sectors are displayed in Appendix B, and those for the strangeless hidden
charm C = 0 case, for which H ′WT = Hex, are given in Appendix C.

2.2 Unitarization in coupled channels

2.2.1 The baryon-meson Bethe-Salpeter equation

The baryon-meson scattering amplitude is calculated using the Bethe-Salpeter (BS) equa-
tion [179]. The latter one was developed for describing bound states, in contrast to earlier
techniques for scattering matrix calculations that were usually based on perturbation the-
ory. As it will be discussed in Section 2.2.3, hadron resonances appear as poles of the
scattering amplitude, and a finite sum of perturbative Feynman diagrams cannot create
a pole, so one has to calculate an infinite number of such diagrams. The work of Bethe

7In Chapter 4, where we study the hidden-charm states, the potential was slightly modified to Vij =
Dij (k0

i + k′j
0)/(4fifj). The appropriate change of the factor (Ei + Mi)/(2Mi) was done in the loop

function, as discussed in Chapter 4.
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and Salpeter provides an alternative technique to calculate scattering amplitudes, which
considers an infinite number of rescattering diagrams [179].

The BS equation is an integral equation in momentum space, and omitting C, S, I,
and J labels, takes the form

Tij(ki, kj;P ) =Vij(ki, kj;P )+

i
∑
l

∫
d4kl

(2π)4
Vil(ki, kl;P )DB(kl, P )Dm(kl, P )Tlj(kl, kj;P ),

(2.32)

where ki and kj are the relative initial and final four-momentum, kl is the four-momentum
of the intermediate meson, and P is the total four-momentum of the system. The sum
over l refers to the different coupled channels, while Vij is the kernel that describes the
interaction between mesons and baryons. For this we use the WT SF extended poten-
tial described in the previous section [Eq. (2.31)]. Finally, the DB(kl, P ) and Dm(kl, P )
functions are the baryon and the meson propagators, respectively.

The BS equation is tedious to solve due to its off-shell nature, and moreover, due to
the poles along the integration contours contained in the meson and baryon propagators.
Therefore, usually three-dimensional reductions are used, which are more practical for nu-
merical solution. One of such approximations is the Lippmann-Schwinger equation [180].
The latter one can be obtained from the BS equation by integrating out the energy com-
ponent of the intermediate meson k0

l . In this thesis we make use of another method, which
is the on-shell reduction of the BS equation. The on-shell formalism has been justified
in Ref. [181] for the meson-meson interactions, and similarly used for the baryon-meson
interaction in Ref. [47]. It turns out that when dealing only with the s-wave interaction,
the on-shell information is sufficient. The potential can be split into an on-shell part and
the rest. This second constituent gives rise to an amplitude with the same structure as the
tree level one, and hence can be reabsorbed by a suitable renormalization of the masses
and meson weak-decay constants. Therefore, the use of the physical values for the hadron
masses and meson decay constants will incorporate these terms [47,181].

The on-shell BS equation in coupled channels has the form

Tij = (1− VilG0
ll)
−1Vlj, (2.33)

where G0
ll is a diagonal matrix containing the baryon and meson propagators for each

channel,

G0
ll = i2Ml

∫
d4kl

(2π)4

1

k2
l −m2

l

1

(P − kl)2 −M2
l

. (2.34)

The bare loop function G0
ll is logarithmically ultraviolet divergent and needs to be regu-

larized. The following subsection is dedicated to the regularization procedure.
Note that the BS equation in coupled channels can be expressed in a compact form as

T = V + V GT, (2.35)

where T and V are the scattering amplitude and potential, respectively, given by matrices,
and G is a diagonal matrix that accounts for the two-particle propagator of each channel.
One can isolate the potential V from Eq. (2.35) as V = (1 − V G)T, and multiplying by
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the inverse matrix 1/V , one obtains T−1 = V −1 −G. Given the previous expression, one
can analyze the behavior of the T -matrix on the mass shell and whether the unitarity
condition is fulfilled. The imaginary part of the inverse of the T -matrix is given by

−ImT−1 = ImG

due to the fact that the potential V on the mass shell is real. From the last expression
one can deduce

T = T ImGT ∗,

which is the optical theorem. Thus, unitarity is fulfilled by the BS equation in coupled
channels.

2.2.2 Loop regularization

In order to deal with the loop function, which is divergent, we use the one-subtraction
regularization method at a subtraction point

√
s = µ,

Gii(s) = G0
ii(s)−G0

ii(µ
2). (2.36)

Here we adopt the prescription of [141], namely, µ depends only on C, S, and I, and
equals

√
m2

th +M2
th, where mth and Mth are, respectively, the masses of the meson and

the baryon of the channel with the lowest threshold in the given CSI sector. Gii is
determined by the loop function J̄0 [53], that is

Gii(s) = 2Mi(J̄0(s;Mi,mi)− J̄0(µ;Mi,mi)), (2.37)

with J̄0 given by

J̄0(s;Mi,mi) =
1

(4π)2

{[
M2

i −m2
i

s
− Mi −mi

Mi +mi

]
ln
Mi

mi

+ L(s;Mi,mi)

}
, (2.38)

L(s;Mi,mi) ≡ L(s+ iε;Mi,mi) =
λ1/2(s,m2

i ,M
2
i )

s

ln

1 +
√

s−s+
s−s−

1−
√

s−s+
s−s−

− iπ
 , (2.39)

where λ(s,m2
i ,M

2
i ) is the Källen triangle function,

λ(s,m2
i ,M

2
i ) = s2 +m4

i +M4
i − 2sm2

i − 2sM2
i − 2m2

iM
2
i ,

and the pseudothreshold s− and threshold s+ variables are defined as

s− = (mi −Mi)
2, s+ = (mi +Mi)

2, (2.40)

while the logarithm is taken to be real. As we will discuss in the next subsection, for the
study of bound states we need the analytical continuation of L(z) in the complex energy
plane. Thus, L(z) reads

L(z, n) =
(ρ+ρ−)1/2

z
ei(θ++θ−+2nπ)/2{ln|R(z)|+iArg[R(z)]− 2πi},

R(z) =
ρ

1/2
+ eiθ+/2 + ρ

1/2
− eiθ−/2einπ

ρ
1/2
+ eiθ+/2 − ρ1/2

− eiθ−/2einπ
, (2.41)
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where ρ± = |z − s±|, θ± of |z − s±| is defined to lie in the range 0 ≤ θ+ < 2π and
−π ≤ θ− < π, whereas Arg[R(z)] is taken in the interval ]0, 2π] for n = 0 and in [0, 2π[
for n = 1. For n = 0 one gets the first Riemann sheet, which has a unitarity cut along the
real axis s+ ≤ s <∞. When crossing the unitary cut one jumps into the second Riemann
sheet, n = 1. When looping twice around the threshold branch point z = s+ the original
Riemann sheet is reached again. Since we work in the coupled-channels frame, we have
multiple Riemann sheets, as one crosses the mass thresholds of different coupled channels.

An enlightening discussion on the dependence of the loop function on the subtraction
point has been presented in [64]. There, a natural value is introduced for the subtraction
point, namely, the mass of the lightest baryon in the given coupled-channel sector (see [52]
for an alternative definition of natural value). As argued in [64], the natural value does
not need to coincide with the phenomenological one, and a comparison between both
provides valuable information on the nature of the resonances generated dynamically, to
wit, quark vs molecular structures. In the present work the phenomenological values,
obtained from reproducing experimental data on the position of the resonances, are not
available in general. With regard to the prescription of Ref. [141], this choice was justified
by guaranteeing an approximate crossing symmetry although, as noted in [175], such a
claim appears somewhat dubious because crossing symmetry involves isospin mixtures.
Thus, choosing an alternative subtraction point might lead to yet another reasonable re-
sult. This prescription for the subtraction point was indeed used in the SU(6) model [171].
The SU(6) approach recovered previous results for the lowest-lying 1/2− and 3/2− baryon
resonances appearing in the scattering of the octet of Goldstone bosons off the lowest
baryon octet and decuplet given in Refs. [182, 183], and leads to new predictions for
higher energy resonances, giving a phenomenological confirmation of its plausibility.

In Ref. [175] the value of the subtraction point was slightly modified to obtain the
position of the Λc(2595) resonance. In the present thesis the value has not been modified
because, on the one hand, results for the resonances in C = 1, S = 0 sector did not change
substantially by varying the value of the subtraction point and, on the other hand, there is
scarce experimental information about resonances in the other strange and charm sectors
beyond C = 1, S = 0. As we will see in Chapter 5, an exception is made for the bottom
baryon resonances, also studied in this thesis, in particular for J = 1/2 and J = 3/2
resonances of Λb, in order to get better agreement between the masses predicted by our
model and the ones found experimentally.

2.2.3 Resonances as poles of the scattering amplitude

The dynamically-generated baryon resonances8 can be obtained as poles of the scattering
amplitudes for given CSIJ quantum numbers. One has to check both first and second
Riemann sheets of the variable

√
s. The poles of the scattering amplitude on the first

(physical) Riemann sheet (FRS) on the real axis that appear below threshold are inter-
preted as bound states. The poles that are found on the second (unphysical) Riemann
sheet (SRS) below the real axis and above threshold are called resonances. The poles that
appear elsewhere (later we will refer to these poles as the ones appearing in unphysical

8We remind the reader that we often refer to all poles generically as resonances.
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regions of the Riemann surface) will be considered as artifacts. For any CSIJ sector,
there are as many branching points as channels involved, which implies a complicated
geometry of the complex s-variable space [53].

The mass and the width of the resonances can be found from the position of the pole
in the complex-energy plane. Close to the pole, the T -matrix behaves as

Tij(s) ≈
gigj√
s−√sR

. (2.42)

The mass and width of the resonance follow from
√
sR = mR − i

2
ΓR, while the constant

gi is the coupling of the resonance to the i channel, which is obtained from the behavior
of Tij(s) around the pole [184] as

gi =

(
∂

∂
√
s

1

Tii(s)

∣∣∣∣√
s=
√
sR

)−1/2

. (2.43)

Since the dynamically-generated states may couple differently to their baryon-meson com-
ponents, we will examine the ij-channel independent quantity

T̃ IJSC(s) ≡ max

{∑
i

|T IJSCi1 (s)|,
∑
i

|T IJSCi2 (s)|, ... ,
∑
i

|T IJSCin (s)|

}
, (2.44)

where n is a number of coupled channels, which allows us to identify all the resonances
within a given sector at once.

2.3 Symmetry breaking

2.3.1 Open-charm sectors

In this section we introduce the symmetry breaking pattern in the open-charm sectors. As
indicated in the previous section, we only keep channels without charmed antiquarks, so
that the SU(8) WT interaction complies with HQSS. This means that we remove channels
with extra cc̄ pairs. Without removing coupled channels with cc̄ in the open-charm sector,
the matrix elements Dij [Eq. (2.31)] display exact SU(8) invariance. Such channels are
heavier than the other ones, so they would be kinematically suppressed anyway. However,
the suppression introduced by HQSS in the matrix elements is more severe and we simply
take the infinite c-quark mass limit in those would-be couplings (but, of course, not in
the charmed hadron masses).

In addition, several soft symmetry-breaking mechanisms are introduced. In the present
work we use physical values for the masses of the hadrons and for the decay constants of
the mesons, since we consider that baryon-meson states interact via a pointlike interaction
given by the SU(8) model extension of the WT interaction modified according to the HQSS
constraints. The values used in this work are quoted in Table 2.1. It was already checked
in Ref. [171] that the SU(6) WT model leads to a reasonable description of the odd-
parity light baryon resonances. Indeed, it is shown there that most of the low-lying three-
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Meson mass decay constant SU(6) SU(3) HQSS Baryon mass SU(6) SU(3) HQSS

π 138.03 92.4 351, 0 81 singlet N 938.92 561, 0 82 singlet

K 495.68 113.0 351, 0 81 singlet Λ 1115.68 561, 0 82 singlet

η 547.45 111.0 351, 0 81 singlet Σ 1193.15 561, 0 82 singlet

ρ 775.49 153.0 351, 0 83 singlet Ξ 1318.11 561, 0 82 singlet

K∗ 893.88 153.0 351, 0 83 singlet ∆ 1210.00 561, 0 104 singlet

ω 782.57 138.0 351, 0 ideal singlet Σ∗ 1384.57 561, 0 104 singlet

φ 1019.46 163.0 351, 0 ideal singlet Ξ∗ 1533.40 561, 0 104 singlet

η′ 957.78 111.0 11, 0 11 singlet Ω 1672.45 561, 0 104 singlet

D 1867.23 157.4 6∗2, 1 3∗1 doublet Λc 2286.46 212, 1 3∗2 singlet

D∗ 2008.35 157.4 6∗2, 1 3∗3 doublet Ξc 2469.45 212, 1 3∗2 singlet

Ds 1968.50 193.7 6∗2, 1 3∗1 doublet Σc 2453.56 212, 1 62 doublet

D∗s 2112.30 193.7 6∗2, 1 3∗3 doublet Σ∗c 2517.97 212, 1 64 doublet

ηc 2979.70 290.0 11, 0 11 doublet Ξ′c 2576.85 212, 1 62 doublet

J/ψ 3096.87 290.0 13, 0 13 doublet Ξ∗c 2646.35 212, 1 64 doublet

Ωc 2697.50 212, 1 62 doublet

Ω∗c 2768.30 212, 1 64 doublet

Ξcc 3519.00 63, 2 32 doublet

Ξ∗cc 3600.00 63, 2 34 doublet

Ωcc 3712.00 63, 2 32 doublet

Ω∗cc 3795.00 63, 2 34 doublet

Ωccc 4799.00 14, 3 14 singlet

Table 2.1: Baryon masses, Mi, and meson masses, mi, and decay constants fi, (in MeV)
used throughout this work. The masses are taken from the PDG [4], except the masses
for Ξ∗cc, Ωcc, Ω∗cc, and Ωccc. While Ξ∗cc is obtained from Ξcc by adding 80 MeV, similarly
to the Ξ′c − Ξ∗c mass splitting, the masses for Ωcc, Ω∗cc are given in Ref. [185] and for
Ωccc in Ref. [186]. The decay constants fi are taken from Ref. [175], except for fηc and
fJ/Ψ. We take fJ/Ψ from the width of the J/Ψ → e−e+ decay and we set fηc= fJ/Ψ,
as predicted by HQSS and corroborated in the lattice evaluation of Ref. [187]. The
SU(6) × SUC(2) × UC(1) and SU(3) × SU(2) labels are also displayed. The last column
indicates the HQSS multiplets. Members of a doublet are placed in consecutive rows.

and four-star odd-parity baryon resonances with spin 1/2 and 3/2 can be dynamically-
generated within this scheme.

The symmetry breaking pattern, with regards to flavor, follows the chain SU(8) ⊃
SU(6) ⊃ SU(3) ⊃ SU(2), where the last group refers to isospin. To tag the resonances
with these quantum numbers, we start from the SU(8)-symmetric scenario, where hadrons
in the same SU(8) multiplet share common properties (mass and decay constants). As seen
in Section 2.1.3, the 120 and 168 multiplets are attractive and, thus, a single resonance
for the 120-irrep and another for the 168-irrep are produced. Subsequently, the SU(8) ⊃
SU(6) breaking is introduced by means of a deformation of the mass and decay constant
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parameters. Specifically, we use

m(x) = (1− x)mSU(8) + xmSU(6),

f(x) = (1− x)fSU(8) + x fSU(6). (2.45)

The parameter x runs from 0 [SU(8)-symmetric scenario] to 1 [SU(6)-symmetric sce-
nario]. The symmetric masses and decay constants are assigned by taking an average
over the corresponding multiplet. The same procedure is applied to the symmetry break-
ings SU(6) ⊃ SU(3) and SU(3) ⊃ SU(2), with

m(x′) = (1− x′)mSU(6) + x′mSU(3),

f(x′) = (1− x′)fSU(6) + x′ fSU(3), (2.46)

and

m(x′′) = (1− x′′)mSU(3) + x′′mSU(2),

f(x′′) = (1− x′′)fSU(3) + x′′ fSU(2). (2.47)

It should be noted that SU(6) and SU(3), as well as HQSS, are broken only kinemat-
ically, through masses and meson decay constants. On the other hand, the breaking of
SU(8) comes also from the interaction matrix elements, since we have truncated the SU(8)
multiplets by removing channels with cc̄ pairs, in order to enforce HQSS. Nevertheless, it
is important in our scheme to have SU(8) assignments to be able to isolate the dominant
168 and 120 SU(8) irreps, and to get rid of the subdominant and exotic 4752. Therefore,
instead of starting from an SU(6) × HQSS symmetric scenario, we find it preferable to
start from a SU(8) symmetric world, and let the charmed quarks mass get heavier. In this
way the offending channels with cc̄ pairs tend to decouple kinematically as we approach
the physical point. At the end, we remove those channels and this introduces relatively
small changes for the low-lying resonances that we are studying.

The procedure just described allows us to assign well-defined SU(8), SU(6), and SU(3)
labels to the resonances. We show the reduction of the most attractive 120 and 168
multiplets of baryon resonances to the SU(6) representations, and the following reduction
to the SU(3) multiplets in Section 3.1, while the corresponding number of the expected
states is compiled in Table 3.1 of the same section. Conceivably the labels could depend
on the precise choice of symmetric points, or change if different paths in the parameter
manifold were followed, but this seems unlikely. At the same time, the HQSS multiplets
form themselves at the physical point, since this symmetry is present in the interaction,
and also, approximately, in the properties of the ground-state hadrons. In order to un-
ambiguously identify those multiplets, one simply has to adiabatically move to the HQSS
point, by imposing exact HQSS in the masses and decay constants of the basic hadrons.
The members of a multiplet become exactly degenerate under this test.

Because light SF and HQSS are independent symmetries, the members of a HQSS
multiplet always have equal SU(6), SU(3), and SU(2) labels. Quite often, the SU(8) label
is also shared by the members of a HQSS multiplet, but not always, since this property
is not ensured by construction.9

9Note that if HQSS were an exact symmetry of the basic hadrons, we could move from the physical
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2.3.2 Hidden-charm sectors

In the sectors with hidden charm we also break the symmetry to SU(2), but in a different
way.10 We classify states under the symmetry group SU(6) × HQSS, as the SU(8) spin-
flavor symmetry is not present in these sectors, and consider the breaking of the light
SF SU(6) to SU(3) × SUJl(2) (SUJl(2) is a group of spin rotations of the light quarks).
Subsequently we break the SU(3) light flavor group to SU(2) isospin symmetry group,
preserving the HQSS, and finally we break the HQSS. The symmetry breaking is per-
formed by an adiabatic change of hadron masses and meson weak-decay constants, in
a similar way as in the previous subsection for open-charm sectors: at each symmetric
point, the hadron masses and meson decay constants are averaged over the corresponding
group multiplets. We again introduce three parameters, x, x′, and x′′ that are changed
from 0 to 1, to gradually break the symmetry from SU(6)×HQSS down to SU(3)×HQSS,
then to SU(2)× HQSS, and finally down to SU(2) isospin, respectively:

m(x) = (1− x) mSU(6)×HQSS + x mSU(3)×HQSS,

f(x) = (1− x) fSU(6)×HQSS + x fSU(3)×HQSS,

m(x′) = (1− x′) mSU(3)×HQSS + x′ mSU(2)×HQSS,

f(x′) = (1− x′) fSU(3)×HQSS + x′ fSU(2)×HQSS,

m(x′′) = (1− x′′) mSU(2)×HQSS + x′′ mSU(2),

f(x′′) = (1− x′′) fSU(2)×HQSS + x′′ fSU(2). (2.48)

In this way we can assign appropriate group representation labels to each found resonance,
and also identify the HQSS multiplets. In Chapter 4 we show a diagram (Fig. 4.1) with
the evolution of the hidden charm N and ∆ pole positions as the various symmetries are
gradually broken.

2.4 Summary

In this chapter we have presented a phenomenological model within a coupled-channels
unitary approach that implements the characteristic features of HQSS. This implies, for
instance, that D and D∗ mesons have to be treated on an equal footing and that channels
containing a different number of c or c̄ quarks cannot be coupled. This is accomplished
by extending the SU(3) WT chiral interaction to SF symmetric model for four flavors
modified with HQSS constraints, and implementing a strong flavor symmetry breaking.
Thus, our tree-level s-wave WT amplitudes are obtained not only by adopting the physical
hadron masses, but also by introducing the physical weak-decay constants of the mesons
involved in the transitions. With this interaction, we solve the BS equation in coupled
channels to find the corresponding scattering amplitudes. For renormalization of the UV
divergent baryon-meson loop function in the BS equation, we adopt the prescription of

point to the SU(6) symmetric point while preserving HQSS all the way. However, to reach the SU(8)
symmetric point would require to restore channels with cc̄ pairs, breaking HQSS, and in this way members
of a common HQSS can end up in different SU(8) irreps.

10Chapter 4 is based on Ref. [188], so here we keep the same symmetry-breaking pattern as was used
in this reference.
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Ref. [141]. It amounts to force the renormalized loop function to vanish at certain scale
that depends only on CSI. In this manner, we have no free parameters. We have then
analyzed the symmetry breaking pattern for open-charm and hidden-charm sectors to
SU(2) isospin symmetry.



Chapter 3

Charmed and strange baryon
resonances1

In this chapter we study the dynamically-generated states obtained in the different charm
and strange sectors. We have assigned to some of the found states a tentative identification
with known states from the PDG [4]. This identification is made by comparing the
data from the PDG on these states with the information we extract from the poles,
namely the mass, width and, most important, the couplings. The couplings give us
valuable information on the structure of the state and on the possible decay channels
and their relative strength. Many of our dynamically-generated resonances do not have a
straightforward identification and, thus, are predictions of our model, which require new
experimental data. In this respect the scientific program of PANDA at the future facility
FAIR is of particular relevance.

We start by showing the group reductions of the SU(8) multiplets to the SU(6) and
SU(3) ones. From such analysis we find a number of expected states in each CSIJ sector.
In Sections 3.2 - 3.8 we discuss the obtained dynamically-generated baryon resonances.
The masses, widths, and main couplings of the resonances found are displayed in Tables
3.2-3.9, which are organized according to the quantum numbers CSI. States with equal
CSI and spin J = 1/2 and J = 3/2 have been collected together in order to indicate
which states belong to the same HQSS multiplets. As a rule, two states with J = 1/2
and J = 3/2 and equal SU(8), SU(6), and SU(3) labels form a HQSS doublet [with one
exception in the case of the SU(8) label for Ξcc resonances, as is shown below in Table 3.7].
The other states are HQSS singlets.

In what follows, we occasionally use an asterisk in the symbol of the states to indicate
that a resonance has spin J = 3/2. For instance, Λ∗c denotes a state with CSIJ =
(1, 0, 1/2, 3/2). The symbol without asterisk may refer to the generic case or to the
J = 1/2 case.

1This chapter is based on O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L. L. Salcedo,
and R. G. E. Timmermans, Phys. Rev. D 85, 114032 (2012) (Ref. [177]).

29



30 CHARMED AND STRANGE BARYON RESONANCES

3.1 Analysis of the symmetry multiplets reduction in

open-charm sectors with C = 1, 2, 3

As was mentioned in Section 2.1.3 of the previous chapter, the baryon-meson space reduces
into four SU(8) group representations (Eq. 2.21): the two multiplets 120 and 168 are
the most attractive ones, while the 4752-plet is weakly attractive and the 2520-plet is
repulsive. Moreover, in the large-NC limit, the 4752 states are expected to disappear
[172]. As a consequence, dynamically-generated baryon resonances are most likely to
occur within the 120 and 168 sectors. Besides, as the interaction in the 4752 subspace is
weak, small corrections (higher orders in the expansion, d-wave terms, etc) could strongly
modify the properties of the states that belong to this representation. Therefore, we study
baryon resonances that belong to these two most attractive 120 and 168 representations.

To take into account the breaking of flavor symmetry introduced by the heavy charmed
quark, we consider the reduction

SU(8) ⊃ SU(6)× SUC(2)× UC(1), (3.1)

where SU(6) is the spin-flavor group for three flavors, and SUC(2) is the rotation group of
quarks with charm. We consider only s-wave interactions, so JC is just the spin carried
by the charmed quarks or antiquarks. Finally, UC(1) is the group generated by the charm
quantum number C.

The two most attractive SU(8) multiplets have the reductions

120 = 561,0 ⊕ 212,1 ⊕ 63,2 ⊕ 14,3,

168 = 701,0 ⊕ 212,1 ⊕ 152,1 ⊕ 61,2 ⊕ 63,2 ⊕ 12,3. (3.2)

For the right-hand side we use the notation R2JC+1,C , where R is the SU(6) irrep label
(for which we use the dimension), JC is the spin carried by the quarks with charm, and C
is the charm. Therefore, with C = 1 there are two 212,1: one from 120 and another one
from 168, and one 152,1 only from 168. With C = 2 there are two 63,2: one from each
SU(8) irrep, and one 61,2 from 168. Finally, there are two representations with C = 3:
14,3 and 12,3.

The SU(6) multiplets can be reduced under SU(3) × SUl(2). The factor SUl(2) refers
to the spin of the light quarks (i.e., with flavors u, d, and s). In order to connect with
the labeling (C, S, I, J) based on isospin multiplets, we further reduce SUl(2)×SUC(2) ⊃
SU(2), where SU(2) refers to the total spin J , that is, we couple the spins of light and
charmed quarks to form SU(3) multiplets with well-defined J . So, for instance, the
multiplet 212,1 reduces as 62⊕3∗2⊕64, where we use the notation r2J+1 and r stands for
the SU(3) irrep. Indeed, the 212,1 irrep can be realized by a baryon with quark structure
llc with the two light quarks in a symmetric spin-flavor state. In the light sector, and
from the point of view of SU(3), this is (32 ⊗ 32)s = 63 ⊕ 3∗1, the subindex being 2Jl + 1.
The coupling of Jl = 0, 1 with JC = 1/2 gives the decomposition quoted in the text. The
152,1 reduction follows similarly, but the pair ll is antisymmetric. The charmed SU(6)
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212,1

? ? ?

62 3∗2 64

? ? ?ss ss ss
Σc(S = 0, I = 1)

Ξc(S = −1, I = 1/2)

Ωc(S = −2, I = 0)

ss sΛc(S = 0, I = 0)

Ξc(S = −1, I = 1/2)

ss ss ss
Σ∗c(S = 0, I = 1)

Ξ∗c(S = −1, I = 1/2)

Ω∗c(S = −2, I = 0)

Figure 3.1: SU(3)× SU(2) reduction of the 212,1 multiplet of SU(6)× SUC(2)× UC(1).

152,1

? ? ?

62 3∗2 3∗4

? ? ?ss ss ss
Σc(S = 0, I = 1)

Ξc(S = −1, I = 1/2)

Ωc(S = −2, I = 0)

ss sΛc(S = 0, I = 0)

Ξc(S = −1, I = 1/2)

ss sΛ∗c(S = 0, I = 0)

Ξ∗c(S = −1, I = 1/2)

Figure 3.2: SU(3)× SU(2) reduction of the 152,1 multiplet of SU(6)× SUC(2)× UC(1).

multiplets reduce as

212,1 = 62 ⊕ 3∗2 ⊕ 64,

152,1 = 62 ⊕ 3∗2 ⊕ 3∗4,

63,2 = 32 ⊕ 34,

61,2 = 32,

12,3 = 12,

14,3 = 14. (3.3)

The decomposition of the SU(6)× SUC(2)×UC(1) multiplets under SU(3)× SU(2) is
shown in Figs. 3.1, 3.2, 3.3 for the multiplets in Eq. (3.2) with C = 1, 2, 3 (except the
singlets). The further reduction into (C, S, I, J) multiplets is also displayed.

Collecting the various CSIJ multiplets in the strongly attractive representations 120
and 168, we can estimate the expected number of dynamically-generated baryon-meson
resonances [Eqs. (3.2), (3.3)]. These expected numbers of states are shown in Table 3.1.
In this chapter we show the results of the model in the open-charm sectors, and we find
that none of these states for the sectors with charm goes to an unphysical region of the
Riemann surface in the complex s-plane, and so they can be identified with physical
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63,2

? ?

32 34

? ?s ss Ξcc(S = 0, I = 1/2)

Ωcc(S = −1, I = 0)

s ss Ξ∗cc(S = 0, I = 1/2)

Ω∗cc(S = −1, I = 0)

61,2

?

32

?s ss Ξcc(S = 0, I = 1/2)

Ωcc(S = −1, I = 0)

Figure 3.3: SU(3)× SU(2) reduction of the multiplets 63,2 and 61,2 of SU(6)× SUC(2)×
UC(1).

states.2

JP

C S I state 1
2

− 3
2

−

1 0 0 Λc 3 1

1 Σc 3 2

−1 1/2 Ξc 6 3

−2 0 Ωc 3 2

2 0 1/2 Ξcc 3 2

−1 0 Ωcc 3 2

3 0 0 Ωccc 1 1

Table 3.1: Expected number of baryonic resonances for the various CSIJ sectors.

It should be stressed that there will be mixings between states with the same CSIJ
quantum numbers but belonging to different SU(8), SU(6), and/or SU(3) multiplets, since
these symmetries are broken both within our approach and in nature. Additional breaking
of SU(8) [and SU(6) and SU(3)] is expected to take place not only in the kinematics but
also in the interaction amplitudes. This will occur when using more sophisticated models
going beyond the lowest order retained here.

As a final comment, it should be mentioned that the SU(6) irrep 561,0 in Eq. (3.2)
does not exactly coincide with the usual 56 irrep that one finds in spin-flavor with only
u, d, and s flavors. The latter is completely charmless, while the states in 561,0 contain
hidden-charm components in general. Actually, in the SU(8) case, there are further 561,0

irreps (in 2520 or 4752). Using a suitable angular mixing [similar to the ideal mixing in
SU(3)] one can recover the purely charmless 561,0 and construct another 561,0 of the form
|lll〉 |cc̄〉 (l standing for light quarks). When the hidden charm components are dropped,

2This is not always the case, for instance in [59,171], some resonances move to unphysical regions of
the Riemann surface after breaking the symmetry.
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one 561,0 combination remains while the other one disappears. These considerations can
be extended to the other irreps in Eq. (3.2). This explains why, when dropping the hidden-
charm components, we still get the same number of expected states quoted in Table 3.1,
even if the total dimension of the full baryon-meson space is reduced.

3.2 Λc states (C = 1, S = 0, I = 0)

In this section we present the poles obtained in the C = 1, S = 0, and I = 0 sector coming
from the 120 and 168 SU(8) representations. Moreover, we determine the coupling
constants to the various baryon-meson channels through the residues of the corresponding
scattering amplitudes, as in Eq. (2.42), and we are able to assign SU(8), SU(6), and
SU(3) labels to the resonances. Simultaneously, we also classify the resonances into HQSS
multiplets, in practice doublets and singlets. This is of great interest as this symmetry is
less broken than spin-flavor, being of a quality comparable to flavor SU(3).

3.2.1 Sector J = 1/2

In the sector C = 1, S = 0, I = 0, J = 1/2, there are 16 channels (the threshold energies,
in MeV, are shown below each channel):

Σcπ ND Λcη ND∗ ΞcK Λcω Ξ′cK ΛDs

2591.6, 2806.1, 2833.9, 2947.3, 2965.1, 3069.0, 3072.5, 3084.2,

ΛD∗s Σcρ Λcη
′ Σ∗cρ Λcφ ΞcK

∗ Ξ′cK
∗ Ξ∗cK

∗

3228.0, 3229.0, 3244.2, 3293.5, 3305.9, 3363.3, 3470.7, 3540.2.

Figure 3.4: T̃ I=0, J= 1
2
, S=0, C=1(s) amplitude (Λc resonances).

The dynamically-generated states are shown in Table 3.2. We obtain the three lowest-
lying states as reported in Ref. [175] and later obtained in Ref [177]. In Ref. [175] an
extension of the Weinberg-Tomozawa potential to the SU(8) spin-flavor symmetry was
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SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels Status PDG J

168 152,1 3∗2 2617.3 89.8 gΣcπ = 2.3gΣcπ = 2.3gΣcπ = 2.3, gND = 1.6, gND∗ = 1.4, 1/2

gΣcρ = 1.3

168 152,1 3∗4 2666.6 53.7 gΣ∗cπ = 2.2gΣ∗cπ = 2.2gΣ∗cπ = 2.2, gND∗ = 2.0, gΣcρ = 0.8, Λc(2625) 3/2

gΣ∗cρ = 1.3 ***

168 212,1 3∗2 2618.8 1.2 gΣcπ = 0.3gΣcπ = 0.3gΣcπ = 0.3, gND = 3.5, gND∗ = 5.6, Λc(2595) 1/2

gΛDs = 1.4, gΛD∗s = 2.9, gΛcη′ = 0.9 ***

120 212,1 3∗2 2828.4 0.8 gND = 0.3gND = 0.3gND = 0.3, gΛcη = 1.1, gΞcK = 1.6, 1/2

gΛD∗s = 1.1, gΣcρ = 1.1, gΣ∗cρ = 1.0,

gΞ∗cK
∗ = 0.8

Table 3.2: Λc (J = 1/2) and Λ∗c (J = 3/2) resonances predicted by our model in the
168 and 120 SU(8) irreps. The first three columns contain the SU(8), SU(6), and SU(3)
representations of the corresponding state. MR and ΓR stand for the mass and width of the
state, in MeV.a The next column displays the dominant couplings to the channels, ordered
by their threshold energies. In boldface we indicate the channels which are open for decay.
The last column shows the spin of the resonance. Pairs of states with J = 1/2 and 3/2
and equal SU(8), SU(6), and SU(3) labels form HQSS doublets. They are displayed in
consecutive rows. Tentative identifications with PDG resonances are shown when possible.

aWe show the values for the masses and widths up to one significant digit in order to compare with
predictions of other theoretical models. However, note that changes in the subtraction point within
reasonable limits can account for changes in the mass and width of the predicted states by a few tens of
MeV’s.

used, as well as the Bethe-Salpeter equation in coupled channels, in the similar way as it
is done in this thesis; it was applied to study the dynamically-generated baryon resonances
with C = 1 and S = 0 in all possible isospin-spin sectors. However, the analysis of the
dynamically-generated states in terms of the attractive SU(8) ⊃ SU(6) ⊃ SU(3) ⊃ SU(2)
multiplets was not done in Ref. [175]. We display in Fig. 3.4 the channel-independent
scattering amplitude defined in Eq. (2.44) in the second Riemann sheet for this sector,
where these three poles clearly show up. However, those states appear with slightly
different masses as compared to Ref. [175]. The reason is that the subtraction point
was slightly changed in this previous work in order to reproduce the position of the
Λc(2595) [4, 102, 103, 109, 189]. The same scaling factor for the subtraction point was
introduced in all the sectors in [175]. Another difference with [175] is that there the
value fD∗s = fD∗ = 157.4 MeV was used, whereas here we use the more realistic value
fD∗s = fDs = 193.7 MeV. Indeed, the value of fDs is known experimentally [110], and the
Ds and D∗s mesons are connected by the HQSS. These two modifications will affect the
comparison with other sectors too. A permutation on the order of the two first resonances
as compared to Ref. [175] is also observed.

The experimental Λc(2595) resonance can be identified with the 212,1 pole that we
found around 2618.8 MeV, as similarly done in Ref. [175]. The width in our case is,
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however, bigger due to the increase of the phase space available for decay. As indicated
in Ref. [175], we have not included the three-body decay channel Λcππ, which already
represents almost one third of the decay events [4]. Therefore, the experimental value of
3.6+2.0
−1.3 MeV is still not reproduced. Our result for Λc(2595) agrees with previous works on

t-channel vector-meson exchange models [137,141,144,146], but here as was first pointed
out in Ref. [175], we claim a large (dominant) ND∗ component in its structure. This is in
sharp contrast with the findings of the former references, where it was generated mostly
as one ND bound state.

In Fig. 3.4, we also observe a second broad resonance at 2617.3 MeV with a large
coupling to the open channel Σcπ, very close to Λc(2595). This is precisely the same
two-pole pattern found in the charmless I = 0, S = −1 sector for the Λ(1405) [38,56,59].

As discussed in Ref. [175], the pole found at around 2828 MeV, and stemming from
the 120 SU(8) irreducible representation, mainly originates from a strong attraction in
the ΞcK channel but it cannot be assigned to the Λc(2880) [4, 104–106] because of the
spin-parity determined by the Belle collaboration.

Some of the states found have coupling to channels with hadrons which are themselves
resonances, like ∆ or ρ. Their widths can be taken into account in the calculation by
doing a convolution of the loop function of the channel that contains these states with
their spectral functions, as done for instance in [73] and [176]:

G̃ii(s;Mi,mi) =
1

N

∫ (mi+2Γi)
2

(mi−2Γi)2
dM̃2S(M̃2,mi,Γi)Gii(s;Mi, m̃i), (3.4)

with mi and Γi being the mass and the width of the resonance, respectively, with the
normalization factor and spectral function

N =

∫ (mi+2Γi)
2

(mi−2Γi)2
dM̃2S(M̃2,mi,Γi),

S(M̃2,mi,Γi) = − 1

π
Im

(
1

M̃2 −m2
i + imiΓi

)
.

In practice the effect of introducing this improvement is found to be negligible on the
position of the dynamically-generated states. The reason is that in all cases the decay
thresholds for these channels are far above the pole, as compared to the widths involved.
In fact, the widths of the basic hadrons can be safely neglected in all sectors for the
low-lying states we obtain.

As can be seen from Table 3.2, every found Λc baryon resonance couples strongly
only to some of the 16 coupled channels. Therefore, we can study how the features
(masses, widths and couplings) of the Λc resonances change, when we consider only the
dominant baryon-meson coupled channels. It turns out that the masses and widths, as
well as couplings do not change drastically when we only consider the restricted coupled-
channels space. For instance, the width of the Λc(2617.3) resonance increases from 89.8
to 97.3 MeV, whereas the mass and the coupling to the Σcπ and other coupled channels
stay almost unchanged. The Λc(2618.8) resonance slightly increases its mass by 2.6 MeV,
and the width decreases from 1.2 to 1.1 MeV, while the coupling to ND∗ channel remains
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almost the same, as well as the other couplings. Finally, the mass of the Λc(2828.4) state
raises by 4.6 MeV, and its width is now 1.0 MeV; the couplings to the dominant Λcη and
Σ∗cρ channels slightly vary: both of them decrease by about 0.3; couplings to the ΞcK and
Σcρ channels decrease by 0.2, and the one to the Ξ∗cK

∗ channel slightly increases by 0.1.
The features (masses, widths, couplings) of the Λc resonances with the coupled channels
restricted to the main ones are collected in Table 3.3.

MR ΓR Couplings to main channels

2617.6 97.3 gΣcπ = 2.3gΣcπ = 2.3gΣcπ = 2.3, gND = 1.9, gND∗ = 1.3, gΣcρ = 1.3

2667.8 61.9 gΣ∗cπ = 2.2gΣ∗cπ = 2.2gΣ∗cπ = 2.2, gND∗ = 2.0, gΣcρ = 0.7, gΣ∗cρ = 1.3

2621.4 1.1 gΣcπ = 0.3gΣcπ = 0.3gΣcπ = 0.3, gND = 3.5, gND∗ = 5.7, gΛDs = 1.4,

gΛD∗s = 3.0, gΛcη′ = 0.95

2833.0 1.0 gND = 0.3gND = 0.3gND = 0.3, gΛcη = 0.8, gΞcK = 1.4, gΛD∗s = 1.1,

gΣcρ = 0.9, gΣ∗cρ = 0.7, gΞ∗cK
∗ = 0.7

Table 3.3: The masses, widths, and couplings to main channels of the Λc (J = 1/2) and
Λ∗c (J = 3/2) resonances predicted by our model in the 168 and 120 SU(8) irreps. Here
the number of coupling channels was restricted to the main ones (see text for details).
The order of states remains the same as in Table 3.2.

3.2.2 Sector J = 3/2

For the C = 1, S = 0, I = 0, J = 3/2 sector, the 11 channels and thresholds (in MeV)
are:

Σ∗cπ ND∗ Λcω Ξ∗cK ΛD∗s Σcρ Σ∗cρ Λcφ

2656.0, 2947.3, 3069.0, 3142.0, 3228.0, 3229.1, 3293.5, 3305.9,

ΞcK
∗ Ξ′cK

∗ Ξ∗cK
∗

3363.3, 3470.7, 3540.2.

We find one pole in this sector (see Fig. 3.5 and Table 3.2) located at
√
s = 2666.6 −

i26.7 MeV.
In Ref. [175], this structure had a Breit-Wigner shape with a width of 38 MeV and it

coupled most strongly to Σ∗cπ. It was assigned to the experimental Λc(2625) [4,102,107–
109]. The Λc(2625) has a very narrow width, Γ < 1.9 MeV, and decays mostly to Λcππ.
The reason for the assignment lies in the fact that changes in the subtraction point could
move the resonance closer to the position of the experimental one, reducing its width
significantly as it will stay below its dominant Σ∗cπ channel. In our present calculation,
we expect then a similar behavior.

A similar resonance was found at 2660 MeV in the t-channel vector-exchange model of
Ref. [142]. The novelty of our calculation is that we obtain a non-negligible contribution
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Figure 3.5: T̃ I=0, J= 3
2
, S=0, C=1(s) (Λ∗c resonance).

from the baryon-vector meson channels to the generation of this resonance, as already
observed in Ref. [175].

When restricting the number of coupled channels to the four ones, to which Λc(2666.6)
couples the most, namely Σ∗cπ, ND∗, Σcρ, Σ∗cρ, the resonance features are changed as
follows. The mass somewhat increases by 1.2 MeV, while the width grows by 8.2 MeV,
and the couplings remain almost unchanged, as can be seen in Table 3.3.

3.3 Σc states (C = 1, S = 0, I = 1)

3.3.1 Sector J = 1/2

The 22 channels and thresholds (in MeV) in this sector are:

Λcπ Σcπ ND ND∗ ΞcK Σcη Λcρ Ξ′cK

2424.5, 2591.6, 2806.1, 2947.3, 2965.1, 3001.0, 3062.0, 3072.5,

ΣDs ∆D∗ Σcρ Σcω Σ∗cρ Σ∗cω ΣD∗s ΞcK
∗

3161.7, 3218.3, 3229.1, 3236.1, 3293.5, 3300.5, 3305.5, 3363.3,

Σcη
′ Ξ′cK

∗ Σcφ Σ∗D∗s Σ∗cφ Ξ∗cK
∗

3411.3, 3470.7, 3473.0, 3496.9, 3537.4, 3540.2.

The three resonances obtained for J = 1/2 (Table 3.4 and Fig. 3.6) are predictions of
our model, since no experimental data have been observed in this energy region. Our
predictions here nicely agree with the three lowest lying resonances found in Ref. [175].

The model of Ref. [146], based on the full t-channel vector exchange using the in-
teraction between 1/2+ baryons and pseudoscalar mesons in coupled channels and the
Lippmann-Schwinger equation for obtaining scattering amplitudes, predicts the existence
of two resonances with I = 1, J = 1

2
, S = 0, C = 1. In this reference, the first one has a
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Figure 3.6: T̃ I=1, J= 1
2
, S=0, C=1(s) amplitude (Σc resonances)

mass of 2551 MeV with a width 0.15 MeV. It couples strongly to the ΣDs and ND chan-
nels and, therefore, might be associated with the resonance Σc(2572) with Γ = 0.8 MeV
of our model. Nevertheless, in our model this resonance couples most strongly to the
other channels which incorporate vector mesons, such as Σ∗D∗s and ∆D∗, as it is shown
in Table 3.4 and seen in Ref. [175].

The second resonance predicted in Ref. [146] has a mass of 2804 MeV and a width
of 5 MeV, and it cannot be compared to any of our results because it is far from the
energy region of our present calculations. This resonance, though, was identified with the
state found in Ref. [141] at a substantially lower energy, 2680 MeV. In this last reference
a zero-range t-channel exchange of vector mesons was used for the s-wave scattering of
pseudoscalar mesons off the baryons ground states in coupled channels. The interaction in
this model is determined by chiral symmetry, large-Nc consideration, and SU(4) symmetry.
The 2804 MeV resonance of Ref. [146] was also identified with one of the found resonances
in Ref. [144], around 2750 MeV. In Ref. [144] a model of Ref. [141] is adopted, but with
modifications in several important aspects, such as the method of regularization and the
zero-range t-channel meson-exchange interaction.

3.3.2 Sector J = 3/2

For the Σ∗c case, the 20 channels and thresholds (in MeV) are:

Σ∗cπ ND∗ Λcρ Σ∗cη ∆D Ξ∗cK ∆D∗ Σcρ

2656.0, 2947.3, 3062.0, 3065.4, 3077.2, 3142.0, 3218.3, 3229.1,

Σcω Σ∗cρ Σ∗cω ΣD∗s Σ∗Ds ΞcK
∗ Σ∗cφ Ξ∗cK

∗

3236.1, 3293.5, 3300.5, 3305.5, 3353.1, 3363.3, 3470.7, 3473.0,

Ξ′cK
∗ Σcφ Σ∗cη

′ Σ∗D∗s
3475.8, 3496.9, 3537.4, 3540.2.
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SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels J

168 212,1 62 2571.5 0.8 gΛcπ = 0.1gΛcπ = 0.1gΛcπ = 0.1, gND = 2.2, gND∗ = 1.2, 1/2

gΣDs = 1.5, g∆D∗ = 6.6, gΣD∗s = 1.1,

gΣ∗D∗s = 2.8

168 212,1 64 2568.4 0.0 gND∗ = 2.5, g∆D = 4.2, g∆D∗ = 5.3, 3/2

gΣD∗s = 2.2, gΣ∗Ds = 1.5, gΣ∗D∗s = 2.3

168 152,1 62 2622.7 188.0 gΛcπ = 1.9gΛcπ = 1.9gΛcπ = 1.9, gΣcπ = 0.2gΣcπ = 0.2gΣcπ = 0.2, gND = 2.2, 1/2

gND∗ = 3.8, gΞcK = 0.8, gΣcρ = 1.3,

gΣ∗cρ = 1.5

120 212,1 62 2643.4 87.0 gΛcπ = 0.2gΛcπ = 0.2gΛcπ = 0.2, gΣcπ = 2.0gΣcπ = 2.0gΣcπ = 2.0, gND = 2.4, 1/2

gND∗ = 1.7, gΛcρ = 0.9 g∆D∗ = 1.1,

gΣcρ = 0.9, gΣ∗D∗s = 1.3

120 212,1 64 2692.9 67.0 gΣ∗cπ = 1.9gΣ∗cπ = 1.9gΣ∗cπ = 1.9, gND∗ = 2.7, gΛcρ = 1.0, 3/2

gΣD∗s = 1.0, gΣ∗D∗s = 1.0

Table 3.4: As in Table 3.2, for Σc and Σ∗c resonances.

The two predicted states are shown in Fig. 3.7 and their properties are collected in
Table 3.4. A bound state at 2568.4 MeV (2550 MeV in Ref. [175]), whose main baryon-
meson components contain a charmed meson, lies below the threshold of any possible
decay channel. This state is thought to be the charmed counterpart of the hyperonic
Σ(1670) resonance. While the Σ(1670) strongly couples to ∆K̄ channel, this resonance is
mainly generated by the analogous ∆D and ∆D∗ channels.

The second state at 2692.9 MeV has not a direct comparison with the available exper-
imental data, as discussed in Ref. [175]. In fact, the experimental Σc(2520) [4, 111–113]
cannot be assigned to any of these two states due to parity and because of the dominant
decay channel, Λcπ (d-wave), which we do not consider in our approach.

With regards to the experimental Σ(2800) [4,114,115], there is also no correspondence
with any of our states due to its high mass and also the empirically dominant Λcπ com-
ponent. Heavier resonances were produced in [175], but they come from the SU(8) irrep
4752 which we have disregarded here.

3.4 Ξc states (C = 1, S = −1, I = 1/2)

We now study the C = 1, S = −1, I = 1/2 sector for different spin, J = 1/2 and
J = 3/2. Those states are labeled by Ξc and our model predicts the existence of nine states
stemming from the strongly attractive 120 and 168 SU(8) irreducible representations.



40 CHARMED AND STRANGE BARYON RESONANCES

Figure 3.7: T̃ I=1, J= 3
2
, S=0, C=1(s) amplitude (Σ∗c resonances).

Figure 3.8: T̃ I=
1
2
, J= 1

2
, S=−1, C=1(s) amplitude (Ξc resonances)

3.4.1 Sector J = 1/2

The 31 channels and thresholds (in MeV) for this sector are:

Ξcπ Ξ′cπ ΛcK̄ Σc, K̄ ΛD Ξcη ΣD ΛD∗

2607.5, 2714.9, 2782.1, 2949.2, 2982.9, 3016.9, 3060.4, 3124.0,

Ξ′cη ΛcK̄
∗ ΩcK ΣD∗ Ξcρ Ξcω ΞDs ΣcK̄

∗

3124.3, 3180.3, 3193.2, 3201.5, 3244.9, 3252.0, 3286.6, 3347.4,

Ξ′cρ Ξ′cω Σ∗D∗ Σ∗cK̄
∗ Ξ∗cρ Ξcη

′ Ξ∗cω ΞD∗s
3352.3, 3359.4, 3392.9, 3411.9, 3421.8, 3427.2, 3428.9, 3430.4,

Ξcφ Ξ′cη
′ ΩcK

∗ Ξ′cφ Ξ∗D∗s Ω∗cK
∗ Ξ∗cφ

3488.9, 3534.6, 3591.4, 3596.3, 3645.7, 3662.2, 3665.8.
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SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels Status PDG J

168 152,1 62 2702.8 177.8 gΞcπ = 2.4gΞcπ = 2.4gΞcπ = 2.4, gΛD = 1.2, gΣD = 1.1, 1/2

gΛD∗ = 2.1, gΣD∗ = 1.7, gΞD∗s = 1.1

168 212,1 3∗2 2699.4 12.6 gΞcπ = 0.8gΞcπ = 0.8gΞcπ = 0.8, gΛD = 1.2, gΣD = 3.4, 1/2

gΛD∗ = 2.2, gΣD∗ = 5.4, gΞDs = 1.9,

gΞcη′ = 1.0, gΞD∗s = 3.3

168 212,1 62 2733.0 2.2 gΞ′cπ = 0.5gΞ′cπ = 0.5gΞ′cπ = 0.5, gΛD = 1.9, gΣD = 1.8, 1/2

gΛD∗ = 0.9, gΣD∗ = 1.2, gΞDs = 1.2,

gΣ∗D∗ = 5.8, gΞ′cη
′ = 0.9, gΞ∗D∗s = 3.3

168 212,1 64 2734.3 0.0 gΛD∗ = 2.2, gΣD∗ = 2.1, gΣ∗D = 3.6, 3/2

gΣ∗D∗ = 4.6, gΞD∗s = 1.3, gΞ∗Ds = 2.1,

gΞ∗D∗s = 2.6

120 212,1 3∗2 2775.4 0.6 gΞcπ = 0.1gΞcπ = 0.1gΞcπ = 0.1, gΞ′cπ = 0.1gΞ′cπ = 0.1gΞ′cπ = 0.1, gΛcK̄ = 1.4, 1/2

gΞcη = 0.9, gΛD∗ = 1.0, gΣD∗ = 1.4,

gΣcK̄∗ = 1.0, gΣ∗cK̄
∗ = 1.3

168 152,1 3∗2 2772.9 83.7 gΞcπ = 0.1gΞcπ = 0.1gΞcπ = 0.1, gΞ′cπ = 2.3gΞ′cπ = 2.3gΞ′cπ = 2.3, gΣcK̄ = 1.2, 1/2

gΛD = 2.1, gΛD∗ = 1.5, gΩcK = 0.9,

gΣD∗ = 0.9, gΞcρ = 1.0, gΣcK̄∗ = 0.9,

gΞ′cρ = 1.0, gΣ∗D∗ = 1.4, gΞ∗D∗s = 1.1

168 152,1 3∗4 2819.7 32.4 gΞ∗cπ = 1.9gΞ∗cπ = 1.9gΞ∗cπ = 1.9, gΣ∗cK̄
= 2.3, gΛD∗ = 2.0, 3/2

gΛcK̄∗ = 1.0, gΞ∗cη = 1.1, gΣD∗ = 1.2,

gΞcρ = 1.1, gΣcK̄∗ = 1.0, gΣ∗cK̄
∗ = 2.0

120 212,1 62 2804.8 20.7 gΞ′cπ = 1.1gΞ′cπ = 1.1gΞ′cπ = 1.1, gΣcK̄ = 2.4, gΛD = 1.5, Ξc(2790) 1/2

gΣD = 1.2, gΞ′cη = 1.3, gΛcK̄∗ = 1.2, ***

gΣD∗ = 0.9, gΣcK̄∗ = 1.8, gΣ∗D∗ = 1.1,

gΣ∗cK̄
∗ = 1.0, gΞ∗D∗s = 1.2

120 212,1 64 2845.2 44.0 gΞ∗cπ = 1.9gΞ∗cπ = 1.9gΞ∗cπ = 1.9, gΣ∗cK̄
= 2.1, gΛD∗ = 2.6, Ξc(2815) 3/2

gΛcK̄∗ = 1.4, gΞ∗cη = 1.2, gΣD∗ = 1.2, ***

gΞcρ = 0.9, gΣcK̄∗ = 0.9, gΣ∗cK̄
∗ = 1.7,

gΞ∗Ds = 0.9, gΞ∗D∗s = 1.1

Table 3.5: As in Table 3.2, for the Ξc and Ξ∗c resonances.

Six baryon resonances were expected (Table 3.1) and found in this sector. The mass, width
and couplings to the main channels are given in Table 3.5 and Fig. 3.8. In the energy
range where these six states predicted by our model lie, three experimental resonances
have been seen by the Belle, E687, and CLEO Collaborations: Ξc(2645) JP = 3/2+

[4, 116–119], Ξc(2790) JP = 1/2− [4, 120] and Ξc(2815) JP = 3/2− [4, 116, 121]. While
Ξc(2645) cannot be identified with any of our states for J = 1/2 and J = 3/2 due to
parity, the Ξc(2790) might be assigned with one of the six resonances in the J = 1/2
sector. The experimental JP = 3/2− Ξc(2815) resonance will be analyzed in the J = 3/2
sector.
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The state Ξc(2790) has a width of Γ < 12 − 15 MeV and it decays to Ξ′cπ, with
Ξ′c → Ξcγ. We might associate it with our 2733, 2775.4, or 2804.8 states. Because of the
small coupling of 2775.4 to the Ξ′cπ channel, it seems unlikely that it might correspond
to the observed Ξc(2790) state. In fact, the assignment to the 2804.8 state might be
better, because of its larger Ξ′cπ coupling and the fact that a slight modification of the
subtraction point can lower its position to 2790 MeV and most probably reduce its width
as it will get closer to the Ξ′cπ channel, the only channel open at those energies that
couples to this resonance. Moreover, this seems to be a reasonable assumption in view
of the fact that, in this manner, this Ξc state is the HQSS partner of the 2845 Ξ∗c state,
which we will identify with the Ξc(2815) resonance of the PDG. Nevertheless, it is also
possible to identify our pole at 2733 MeV from the 168 irreducible representation with
the experimental Ξc(2790) state. In that case, one might expect that if the resonance
position gets closer to the physical mass of 2790 MeV, its width will increase and it will
easily reach values of the order of 10 MeV.

In Ref. [146] five baryon resonances were found in this sector for a wide range of energies
up to 2977 MeV. As discussed in this reference, none of these five states seemed to fit the
experimental Ξc(2790) because of the small width observed. Higher-mass experimental
states, such as the Ξc(2980) [4, 116, 122, 123], might correspond to one of the two higher-
mass states in Ref. [146]. In our calculation, none of the states can be identified with such
a heavy resonant state. In Ref. [141] three resonances appear below 3 GeV: 2691 MeV,
2793 MeV, and 2806 MeV, which mostly couple toDΣ, K̄Σc, andDΛ, respectively. Those
states are very similar in mass to some of those obtained in our calculations and we might
identify the first two states, Ξc(2691) and Ξc(2793), to our Ξc(2699.4) and Ξc(2804.8)
states because of the dominant decay channel.

3.4.2 Sector J = 3/2

The 26 channels (thresholds in MeV are also given) in the Ξ∗c sector are:

Ξ∗cπ Σ∗cK̄ ΛD∗ ΛcK̄
∗ Ξ∗cη ΣD∗ Ξcρ

2784.4, 3013.6, 3124.0, 3180.3, 3193.8, 3201.5, 3244.9,

Σ∗D Ξcω Ω∗cK ΣcK̄
∗ Ξ′cρ Ξ′cω Σ∗D∗

3251.8, 3252.0, 3264.0, 3347.4, 3352.3, 3359.4, 3392.9,

Σ∗cK̄
∗ Ξ∗cρ Ξ∗cω ΞD∗s Ξcφ Ξ∗Ds ΩcK

∗

3411.8, 3421.8, 3428.9, 3430.4, 3488.9, 3501.9, 3591.4,

Ξ′cφ Ξ∗cη
′ Ξ∗D∗s Ω∗cK

∗ Ξ∗cφ

3596.3, 3604.1, 3645.7, 3662.2, 3665.8.

The resonances predicted by the model and generated from the 120 and 168 irreducible
representations are compiled in Table 3.5 and Fig. 3.9.

The only experimental JP = 3/2− baryon resonance with a mass in the energy region
of interest is Ξc(2815) [4, 116, 121]. The full width is expected to be less than 3.5 MeV
for Ξ+

c (2815) and less than 6.5 MeV for Ξ0
c(2815), and the decay modes are Ξc+π

+π−,
Ξc0π

+π−. We obtain two resonances at 2819.7 MeV and 2845.2 MeV, respectively, that
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Figure 3.9: T̃ I=
1
2
, J= 3

2
, S=−1, C=1(s) amplitude (Ξ∗c resonances).

couple strongly to Ξ∗cπ, with Ξ∗c → Ξcπ. Allowing for this possible indirect three-body
decay channel, we might identify one of them to the experimental result. This assignment
is, indeed, possible for the state at 2845.2 MeV if we slightly change the subtraction point.
In this way, we will lower its position and reduce its width as it gets closer to the open
Ξ∗cπ channel.

In Ref. [142] a resonance with a similar energy of 2838 MeV and width of 16 MeV
was identified with the Ξc(2815). In this reference the JP = 3/2+ baryon molecules were
studied, using the zero-range exchange of vector mesons as a driving force for the s-wave
scattering of the pseudoscalar mesons off the ground state 3/2+ baryons. It was suggested
that its small width of the resonance was a consequence of its small coupling strength to
the Ξcπ channel.

3.5 Ωc states (C = 1, S = −2, I = 0)

In this section we will discuss the C = 1, S = −2, and I = 0 resonant states with J = 1/2
and J = 3/2 coming from the 120 and 168 SU(8) representations. States with the I = 1
and the J = 5/2 belong to the 4752-plet and are not discussed in this work.

3.5.1 Sector J = 1/2

The 15 physical baryon-meson pairs that are incorporated in the I = 0, J = 1/2 sector
are as follows:

ΞcK̄ Ξ′cK̄ ΞD Ωcη ΞD∗ ΞcK̄
∗ Ξ′cK̄

∗ Ωcω

2965.1, 3072.5, 3185.3, 3245.0, 3326.5, 3363.3, 3470.7, 3480.1,

Ξ∗cK̄
∗ Ξ∗D∗ Ω∗cω Ωcη

′ Ωcφ ΩD∗s Ω∗cφ

3540.2, 3541.8, 3550.9, 3655.3, 3717.0, 3784.8, 3787.8.



44 CHARMED AND STRANGE BARYON RESONANCES

Figure 3.10: T̃ I=0, J= 1
2
, S=−2, C=1(s) amplitude (Ωc resonances).

According to our analysis, there are three bound states which can be generated dynami-
cally as baryon-meson molecular entities resulting from the strongly attractive represen-
tations of the SU(8) group. In Table 3.6 and Fig. 3.10 we show the masses, widths, and
the largest couplings of those poles to the scattering channels.

SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels J

168 212,1 62 2810.9 0.0 gΞD = 3.3, gΞD∗ = 1.7, gΞcK̄∗ = 0.9, 1/2

gΞ∗D∗ = 4.8, gΩcη′ = 0.9, gΩD∗s = 4.2

168 212,1 64 2814.3 0.0 gΞD∗ = 3.7, gΞ∗D = 3.1, gΞ∗D∗ = 3.8, 3/2

gΩDs = 2.7, gΩ∗cη
′ = 0.9, gΩD∗s = 3.4

168 152,1 62 2884.5 0.0 gΞcK̄ = 2.1, gΞD∗ = 1.7, gΞ′cK̄
∗ = 1.5, 1/2

gΞ∗cK̄
∗ = 1.8, gΩcφ = 0.9, gΩ∗cφ = 1.1

120 212,1 62 2941.6 0.0 gΞ′cK̄
= 1.9, gΞD = 1.5, gΩcη = 1.7, 1/2

gΞcK̄∗ = 1.4, gΞ′cK̄
∗ = 1.1, gΩcφ = 1.0,

gΩD∗s = 0.9

120 212,1 64 2980.0 0.0 gΞ∗cK̄
= 1.9, gΩ∗cη = 1.6, gΞD∗ = 1.4, 3/2

gΞcK̄∗ = 1.6, gΞ∗cK̄
∗ = 1.3, gΩ∗cφ = 1.2

Table 3.6: Ωc and Ω∗c resonances.

There is no experimental information on those excited states. However, our predictions
can be compared to recent calculations of Refs. [141, 146]. In Ref. [146] three resonances
were found, one with mass M1 = 2959 MeV and width Γ1 = 0 MeV, a second one
with M2 = 2966 MeV and Γ2 = 1.1 MeV, and the third one with M3 = 3117 MeV and
Γ3 = 16 MeV. The dominant baryon-meson channels are K̄Ξ′c, K̄Ξ′c, andDΞ, respectively.



3.6 ΩC STATES (C = 1, S = −2, I = 0) 45

Three resonant states with lower masses were also observed in Ref. [141], but with slightly
different dominant coupled channels.

In both previous references, vector baryon-meson channels were not considered, break-
ing in this manner HQSS. In fact, it is worth noticing that the coupling to vector baryon-
meson states plays an important role in the generation of the baryon resonances in this
sector. Furthermore, we have checked that other states stemming from the 4752-plet
with the same quantum numbers might be seen in this energy region and, therefore, a
straightforward identification of our states with the results of Refs. [141, 146] might not
be possible.

3.5.2 Sector J = 3/2

In the C = 1, S = −2, I = 0, J = 3/2 sector, there are 15 coupled channels:

Ξ∗cK̄ Ω∗cη ΞD∗ ΞcK̄
∗ Ξ∗D Ξ′cK̄

∗ Ωcω Ξ∗cK̄
∗

3142.0, 3315.8, 3326.5, 3363.3, 3400.6, 3470.7, 3480.1, 3540.2,

Ξ∗D∗ Ω∗cω ΩDs Ωcφ Ω∗cη
′ ΩD∗s Ω∗cφ

3541.8, 3550.9, 3641.0, 3717.0, 3726.1, 3784.8, 3787.8.

We obtain two bound Ω∗c states (Table 3.6 and Fig. 3.11), with masses 2814.3, and
2980.0, which mainly couple to ΞD∗ and Ξ∗D∗, and to Ξ∗cK̄, respectively. As seen in
the J = 1/2 sector, no experimental information is available. In Ref. [142], two states at
2843 MeV and 3008 MeV with zero width were found. Those states couple most strongly
to DΞ and K̄Ξc, respectively, so an identification between the resonances in both models
is not possible.

Figure 3.11: T̃ I=0, J= 3
2
, S=−2, C=1(s) amplitude (Ω∗c resonances).
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3.6 Ξcc states (C = 2, S = 0, I = 1/2)

In the C = 2 sector no experimental information is available yet. Therefore, all our results
are predictions of our spin-flavor extended WT model for four flavors.

3.6.1 Sector J = 1/2

The 22 channels for C = 2, S = 0, I = 1/2, and J = 1/2 are as follows:

Ξccπ Ξccη ΛcD ΩccK Ξccρ ΛcD
∗ Ξccω ΣcD

3657.0, 4066.5, 4153.7, 4207.7, 4294.5, 4294.8, 4301.6, 4320.8,

Ξ∗ccρ Ξ∗ccω ΞcDs ΣcD
∗ Ξccη

′ Σ∗cD
∗ Ξccφ Ξ′cDs

4375.5, 4382.6, 4438.0, 4461.9, 4476.8, 4526.3, 4538.5, 4545.4,

ΞcD
∗
s ΩccK

∗ Ξ∗ccφ Ω∗ccK
∗ Ξ′cD

∗
s Ξ∗cD

∗
s

4581.8, 4605.9, 4619.5, 4688.9, 4689.2, 4758.7.

SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels J

168 61,2 32 3698.1 1.3 gΞccπ = 0.3gΞccπ = 0.3gΞccπ = 0.3, gΛcD∗ = 2.1, gΣcD = 3.2, gΣcD∗ = 2.6, 1/2

gΣ∗cD
∗ = 4.1, gΞ′cDs = 1.3, gΞcD∗s = 1.4, gΞ′cD

∗
s

= 1.1,

gΞ∗cD
∗
s

= 1.7

120 63,2 32 3727.8 17.8 gΞccπ = 1.0gΞccπ = 1.0gΞccπ = 1.0, gΛcD = 2.0, gΣcD = 1.1, gΞcDs = 1.5, 1/2

gΣcD∗ = 4.6, gΞccη′ = 1.4, gΞ∗ccρ = 0.9, gΣ∗cD
∗ = 3.6,

gΞ′cD
∗
s

= 2.0, gΞ∗cD
∗
s

= 1.6

168 63,2 34 3729.5 0.0 gΛcD∗ = 1.2, gΣ∗cD = 2.9, gΣcD∗ = 1.8, gΣ∗cD
∗ = 3.7 3/2

gΞcD∗s = 1.3, gΞ∗cDs = 1.2, gΞ∗ccη
′ = 1.1, gΞ∗cD

∗
s

= 1.5

168 63,2 32 3727.4 120.2 gΞccπ = 2.4gΞccπ = 2.4gΞccπ = 2.4, gΛcD = 2.4, gΛcD∗ = 1.5, gΣcD∗ = 2.3, 1/2

gΣ∗cD
∗ = 1.4, gΞ′cD

∗
s

= 1.0

120 63,2 34 3790.8 83.9 gΞ∗ccπ = 2.0gΞ∗ccπ = 2.0gΞ∗ccπ = 2.0, gΛcD∗ = 2.9, gΣ∗cD = 0.8, gΣ∗cD
∗ = 1.1, 3/2

gΞcD∗s = 0.8, gΞ∗cDs = 0.8, gΞ∗ccη
′ = 0.8, gΞ∗cD

∗
s

= 1.

Table 3.7: Ξcc and Ξ∗cc resonances. In this case, the HQSS classification differs from the
SU(8) classification for the two HQSS doublets: the resonances in two pairs that form
HQSS doublets stem from different SU(8) multiplets.

The three predicted poles in the Ξcc sector can be seen in the Table 3.7 and Fig. 3.12
together with the width and couplings to the main channels. Their masses are 3698.1,
3727.4, and 3727.8 MeV, with widths 1.3, 120.2, and 17.8 MeV, respectively. The domi-
nant channels for the generation of those states are, in order, Σ∗cD

∗, Ξccπ and ΛcD, and
ΣcD

∗. In Ref. [141] six states were found, two of them coming from the weak interaction
of the open-charm mesons and open-charm baryons in the SU(4) anti-sextet and 15-plet.
In this chapter, we only consider those states coming from the strongly attractive SU(8)
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Figure 3.12: T̃ I=
1
2
, J= 1

2
, S=0, C=2(s) amplitude (Ξcc resonances).

120- and 168-plets. Therefore, only three states are expected in this sector. Moreover,
an identification among resonances in both models is complicated because the strong
coupling of our states to channels with vector mesons, not considered in this previous
reference.

3.6.2 Sector J = 3/2

In the Ξ∗cc sector, the following 20 channels are coupled:

Ξ∗ccπ Ξ∗ccη Ω∗ccK Ξccρ ΛcD
∗ Ξccω Ξ∗ccρ

3738.0, 4147.5, 4290.7, 4294.5, 4294.8, 4301.6, 4375.5,

Ξ∗ccω Σ∗cD ΣcD
∗ Σ∗cD

∗ Ξccφ Ξ∗ccη
′ ΞcD

∗
s

4382.6, 4385.2, 4461.9, 4526.3, 4538.5, 4557.8, 4581.8,

ΩccK
∗ Ξ∗cDs Ξ∗ccφ Ω∗ccK

∗ Ξ′cD
∗
s Ξ∗cD

∗
s

4605.9, 4614.9, 4619.5, 4688.9, 4689.2, 4758.7.

Two states, with masses 3729.5 and 3790.8 MeV have been obtained, which couple mainly
to Σ∗cD and Σ∗cD

∗, and to Ξ∗ccπ and ΛcD
∗, respectively (see Table 3.7 and Fig. 3.13).

In Ref. [142], two states were obtained at 3671 MeV and 3723 MeV, with dominant
coupling to the channels ΣcD and Ξccπ, respectively. However, the analysis there was
done on the basis that the Ξcc(3519) resonance is, in fact, a JP = 3/2+ state, whereas
in our calculation this resonance is the ground state, JP = 1/2+. It is argued in [142]
that the second resonance should be more reliable in view of the dominant coupling to a
baryon-Goldstone boson. Moreover, the necessity of implementing HQSS was mentioned,
by incorporating 0− and 1− charmed mesons as well as 1/2+ and 3/2+ baryon in the
coupled-channel basis.
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Figure 3.13: T̃ I=
1
2
, J= 3

2
, S=0, C=2(s) amplitude (Ξ∗cc resonances).

3.7 Ωcc states (C = 2, S = −1, I = 0)

3.7.1 Sector J = 1/2

The 17 channels in this Ωcc sector are as follows:

ΞccK̄ Ωccη ΞcD ΞccK̄
∗ Ξ′cD ΞcD

∗ Ξ∗ccK̄
∗

4014.7, 4259.5, 4336.7, 4412.9, 4444.1, 4477.8, 4493.9,

Ωccω Ω∗ccω Ξ′cD
∗ Ξ∗cD

∗ ΩcDs Ωccη
′ Ωccφ

4494.6, 4577.6, 4585.2, 4654.7, 4666.0, 4669.8, 4731.5,

ΩcD
∗
s Ω∗ccφ Ω∗cD

∗
s

4809.8, 4814.5, 4880.6.

There are three predicted bound states at 3761.8 MeV, 3792.8 MeV, and 3900.2 MeV,
coupling strongly to Ξ∗cD

∗, Ξ′cD
∗ and ΞccK̄, respectively. They are shown in Table 3.8

and Fig. 3.14. In Ref. [141] four states were generated from the SU(4) 3-plet at 3.71 GeV,
3.74 GeV, and 3.81 GeV, and one coming from the SU(4) 15-plet at 4.57 GeV. We might
be tempted to identify our three states with those coming from SU(4) 3-plet in Ref. [141]
because the dominant channels are similar, if we do not consider those including vector
mesons and 3/2+ baryons. However, the only clear identification that can be done is
between our state at 3900.2 MeV and the one in Ref. [141] at 3.81 GeV because in this
case the dominant channels coincide. For this state, channels with vector mesons and/or
3/2+ baryons do not play a significant role.

3.7.2 Sector J = 3/2

The 16 channels in the Ω∗cc sector are:
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Figure 3.14: T̃ I=0, J= 1
2
, S=−1, C=2(s) amplitude (Ωcc resonances).

SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels J

168 61,2 32 3761.8 0.0 gΞcD = 1.2, gΞ′cD = 2.7, gΞcD∗ = 2.9, 1/2

gΞ′cD
∗ = 2.0, gΞ∗cD

∗ = 3.6, gΩcDs = 1.9,

gΩcD∗s = 1.4, gΩ∗cD
∗
s

= 2.5

168 63,2 32 3792.8 0.0 gΞccK̄ = 0.9, gΞcD = 2.3, gΞ′cD = 0.9, 1/2

gΩccη′ = 1.2, gΞ′cD
∗ = 3.5, gΞ∗ccK̄

∗ = 1.1,

gΞ∗cD
∗ = 2.7, gΩcD∗s = 2.6, gΩ∗cD

∗
s

= 2.0

168 63,2 34 3802.9 0.0 gΞcD∗ = 2.5, gΞ∗cD = 2.6, gΞ′cD
∗ = 1.6, 3/2

gΞ∗ccK̄
∗ = 0.9, gΞ∗cD

∗ = 3.3, gΩ∗cDs = 2.0,

gΩcD∗s = 1.2, gΩ∗ccη
′ = 1.1, gΩ∗cD

∗
s

= 2.5

120 63,2 32 3900.2 0.0 gΞccK̄ = 2.1, gΩccη = 1.1, gΞcD = 1.6, 1/2

gΞcD∗ = 0.9, gΞ∗ccK̄
∗ = 1.3, gΩcD∗s = 1.

120 63,2 34 3936.3 0.0 gΞ∗ccK̄
= 2.1, gΞccK̄∗ = 1.4, gΩ∗ccη = 1., 3/2

gΞcD∗ = 1.6, gΞ∗ccK̄
∗ = 1.3, gΩ∗cD

∗
s

= 0.9

Table 3.8: Ωcc and Ω∗cc resonances.

Ξ∗ccK̄ Ω∗ccη ΞccK̄
∗ ΞcD

∗ Ξ∗ccK̄
∗ Ωccω Ξ∗cD

4095.7, 4342.5, 4412.9, 4477.8, 4493.9, 4494.6, 4513.6,

Ω∗ccω Ξ′cD
∗ Ξ∗cD

∗ Ωccφ Ω∗cDs Ω∗ccη
′ ΩcD

∗
s

4577.6, 4585.2, 4654.7, 4731.5, 4736.8, 4752.8, 4809.8,

Ω∗ccφ Ω∗cD
∗
s

4814.5, 4880.6.
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Figure 3.15: T̃ I=0, J= 3
2
, S=−1, C=2(s) amplitude (Ω∗cc resonances).

Two bound states at 3802.9 MeV and 3936.3 MeV have been observed, which couple
mostly to Ξ∗cD

∗ and Ξ∗ccK̄, respectively (see Table 3.8 and Fig. 3.15). Compared to
Ref. [142], we observe a similar pattern as observed in the C = 2, S = 0, I = 1/2,
J = 3/2 sector. The two expected states are obtained with larger masses and the dominant
molecular composition incorporates a vector meson, or a vector meson and 3/2+ baryon
state when heavy-quark symmetry is implemented. As indicated also in Ref. [142], the
second resonance should be more reliable, as its main molecular contribution comes from
the interaction of a baryon with a Goldstone boson.

3.8 Ωccc states (C = 3, S = 0, I = 0)

We finally study baryon resonances with charm C = 3 and strangeness S = 0.

3.8.1 Sector J = 1/2

The 8 coupled channels in the sector with J = 1/2 are as follows:

ΞccD ΞccD
∗ Ωcccω Ξ∗ccD

∗ ΩccDs Ωcccφ ΩccD
∗
s Ω∗ccD

∗
s

5386.2, 5527.3, 5581.6, 5608.4, 5680.5, 5818.5, 5824.3, 5907.3.

There is only one baryon state generated by the model in this sector. The mass (4358.2
MeV), width (0 MeV), and the couplings are shown in the Table 3.9 and Fig. 3.16. In
Ref. [141], a resonance at 4.31 - 4.33 GeV was also obtained. In both schemes, the Ωccc

resonance couples strongly to ΞccD and ΩccDs, but in our model the dominant contribution
comes from channels with vector mesons and/or 3/2+ baryons. Therefore, this result
points to the necessity of extending the coupled-channels basis to incorporate channels
with charmed vector mesons and 3/2+ baryons as required by heavy-quark symmetry.
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SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels J

168 12,3 12 4358.2 0.0 gΞccD = 2.9, gΩccDs = 1.3, gΞccD∗ = 1.9, 1/2

gΞ∗ccD
∗ = 4.6, gΩ∗ccD

∗
s

= 2.1

120 14,3 14 4501.4 0.0 gΞccD∗ = 2.9, gΞ∗ccD = 2.4, gΩccD∗s = 1.8, 3/2

gΞ∗ccD
∗ = 2.9, gΩ∗ccDs = 1.5, gΩcccη′ = 1.2,

gΩ∗ccD
∗
s

= 1.9

Table 3.9: Ωccc and Ω∗ccc resonances. These two states are HQSS singlets.

Figure 3.16: T̃ I=0, J= 1
2
, S=0, C=3(s) amplitude (Ωccc resonance).

3.8.2 Sector J = 3/2

The 10 channels and thresholds (in MeV) in the sector Ω∗ccc are as follows:

Ωcccη Ξ∗ccD ΞccD
∗ Ωcccω Ξ∗ccD

∗ Ωcccη
′ Ω∗ccDs Ωcccφ

5346.5, 5467.2, 5527.3, 5581.6, 5608.4, 5756.8, 5763.5, 5818.5,

ΩccD
∗
s Ω∗ccD

∗
s

5824.3, 5907.3.

The Ω∗ccc resonance with J = 3/2 has a mass approximately 1 GeV below the lowest
baryon-meson threshold. This resonance stems from the 120 irrep of SU(8) and it is
shown in Table 3.9 and Fig. 3.17. One resonance was also seen in Ref. [142], much below
the first open threshold, coupling dominantly to ΞccD. Our results show that this bound
state mainly couples to ΞccD

∗, Ξ∗ccD
∗ and Ξ∗ccD states as we incorporate charmed vector

mesons and 3/2+ baryons according to heavy-quark symmetry. The large separation
from the closest threshold suggests that interaction mechanisms involving d-waves could
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Figure 3.17: T̃ I=0, J= 3
2
, S=0, C=3(s) amplitude (Ω∗ccc resonance).

be relevant for this resonance. This remark applies also to the Ωccc dynamically-generated
resonance with J = 1/2.

3.9 HQSS in the results

The factor SUC(2)×UC(1) in Eq. (3.1) implements HQSS for the sectors studied in this
work. The HQSS group acts by changing the coupling of spin of the charmed quarks,
relative to the spin of the block formed by light quarks. At the level of basic hadrons,
it reflects in the nearly degeneracy of D and D∗ mesons, which form a HQSS doublet.3

Other doublets are (D̄s, D̄
∗
s), and (ηc, J/ψ) in mesons, and (Σc,Σ

∗
c), (Ξ′c,Ξ

∗
c), (Ωc,Ω

∗
c),

(Ξcc,Ξ
∗
cc), (Ωcc,Ω

∗
cc), in baryons. On the other hand, Λc, Ξc and Ωccc are singlets, as are

all the other basic hadrons not containing charmed quarks. This information is collected
in Table 2.1. The classification of basic hadrons into HQSS multiplets can be obtained
from the hadron wavefunctions that are included in Appendix A. For instance, for Σc

and Σ∗c the two light quarks are coupled to spin triplet (since they form an isospin triplet
and color is antisymmetric) and this can give J = 1/2 or J = 3/2 when coupled to the
spin of the charmed quark. A systematic classification can be found in [190].

HQSS multiplets form also in the baryon-meson states. Specifically, in the reduction
in Eq. (3.3) and Figs. 3.1, 3.2, and 3.3, the pair (62,64) forms a HQSS doublet in the
reduction of 212,1, while 3∗2 is a singlet. Similarly, (3∗2,3

∗
4) in 152,1, and (32,34) in 63,2,

are doublets, whereas all other SU(3)× SU(2) representations are HQSS singlets.
HQSS is much less broken than spin-flavor of light quarks, implemented by SU(6), so

HQSS is more visible in the results. If we imposed strict HQSS, by setting equal masses
and decay constants as required by the symmetry, exactly degenerated HQSS multiplet

3We use “doublet” to indicate that only two multiplets with well-defined CSIJ get mixed by the
HQSS group. The space spanned by the eight D or D∗ states reduces into two dimension-four irreducible
subspaces under HQSS, corresponding to the four spin states of D and D∗ with given charge.
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would form, regardless of the amount of breaking of SU(6). We break HQSS only through
the use of physical masses and decay constants4, but not in the interaction. Therefore we
estimate that our breaking is no larger than that present in QCD. This suggests that the
amount of breaking we find is not an overestimation due to the model, on the contrary,
we expect to find more degeneracy than actually exists.

The approximate HQSS doublets can be observed in the results by comparing states
with equal SU(8) and SU(6) × SUC(2) × UC(1) labels with J = 1/2 and J = 3/2. The
only exception is for the Ξcc states in Table 3.7 where the SU(8) labels are mixed in the
two doublets. As noted in Section 2.3 this reflects the fact that exact SU(8) symmetry is
broken in the interaction after dropping the channels with extra cc̄ pairs.

For convenience we have arranged the tables so that HQSS partners are in consecutive
rows. So, in Table 3.2, the Λc state 2617.3 MeV with labels (168,152,1,3

∗
2), matches

the Λ∗c state 2666.6 MeV with labels (168,152,1,3
∗
4). The matching refers not only to

the mass but also the width and the couplings, taking into account that, e.g., Σc in one
state corresponds to Σ∗c in the other. (Note that HQSS also implies relations between
couplings in the same resonance.) If the identifications in Table 3.2 are correct, it would
imply that Λc(2595) is a HQSS singlet whereas Λc(2625) belongs to a doublet. Similarly,
in Table 3.4, the Σc state 2571.5 MeV is the HQSS partner of the Σ∗c state 2568.4 MeV
[both in (168,212,1)], whereas the states 2643.4 MeV and 2692.9 MeV are partners in
(120,212,1). Of special interest is the case of Ξc states. Here we find that the two
three-star resonances Ξc(2790) and Ξc(2815) are candidates to form a HQSS doublet.
Further doublets are predicted for Ωc and for the C = 2 resonances, Ξcc and Ωcc. On
the other hand, no doublet is present in the Ωccc sector. All these considerations follow
unambiguously from the SU(8) structure if the 168 and 120 irreps are dominant, as
predicted by the extended WT scheme.

3.10 Inclusion of an additional charm-exchange sup-

pression factor

In this section we discuss the effect of the inclusion of a suppression factor in the interaction
when charm-exchange is present, in order to compare to previous works [144,145].

In our approach, the interactions are implemented by a contact term, and each matrix
element is affected by the decay constants of the mesons in the external legs of the
interaction vertex. In particular, the charm-exchange terms always involve a D ↔ π-
like transition, and thus they carry a factor 1/(fπfD). This source of flavor symmetry
breaking turns out to enhance (suppress) these transitions with respect to some others
like ND → ND (Σcπ → Σcπ), where there is no charm exchange, and that scale instead
like 1/f 2

D (1/f 2
π).

On the other hand, only decay constants of light mesons are involved in the t-channel
vector-meson exchange models, as the one used in [141, 142, 144]. Nevertheless, there is
another source of quenching for charm-exchange interactions, coming from the larger mass

4Most of the values in Table 2.1 are obtained from experiment, while some of them are guesses from
models or from lattice calculations.
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of the charmed meson exchanged, as compared to those of the vector mesons belonging to
the ρ nonet. Qualitatively, a factor κc = 1/4 ' m2

ρ/m
2
D∗ is applied in the matrix elements

involving charm exchange, whereas κc = 1 is kept in the remaining matrix elements [144].
The introduction of these quenching factors does not spoil HQSS (note, however, that
neither the scheme of Ref. [141,142] nor that of Ref. [144] are consistent with HQSS) but
it is a new source of flavor breaking. Here, in this section, we study the effects of including
this suppression factor κc within our scheme. In this case, the potential looks as follows:

Vij(s) = κcDij
2
√
s−Mi −Mj

4 fifj

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj

. (3.5)

SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels Status PDG J

168 152,1 32 2624.6 103.9 gΣcπ = 2.3gΣcπ = 2.3gΣcπ = 2.3, gND = 0.4, gND∗ = 0.4, 1/2

gΣcρ = 1.6

168 152,1 34 2675.1 65.7 gΣ∗cπ = 2.1gΣ∗cπ = 2.1gΣ∗cπ = 2.1, gND∗ = 0.5, gΣcρ = 0.9, Λc(2625) 3/2

gΣ∗cρ = 1.6 ***

168 212,1 32 2624.1 0.1 gΣcπ = 0.1gΣcπ = 0.1gΣcπ = 0.1, gND = 3.4, gND∗ = 5.7, Λc(2595) 1/2

gΛDs = 1.4, gΛD∗s = 3.0, gΛcη′ = 0.2 ***

120 212,1 32 2824.9 0.4 gND = 0.1gND = 0.1gND = 0.1, gΛcη = 1.1, gΞcK = 1.9, 1/2

gΛD∗s = 1.1, gΣcρ = 1.1, gΣ∗cρ = 1.4,

gΞ∗cK
∗ = 1.0

Table 3.10: Λc and Λ∗c resonances with inclusion of the suppression factor κc.

In Tables 3.10 and 3.11 we show the results including the κc factor for the sectors with
C = 1, S = 0. As can be seen, there are some small changes in the masses and the
widths of the resonances in comparison with the values shown in Tables 3.2 and 3.4, while
the values of the couplings also change in some cases. However, in general, the changes
induced by the inclusion of this new source of flavor breaking are not dramatic, and they
do not modify the main conclusions of this work.

3.11 Summary

In this chapter we discuss the predictions of the model for all C = 1 strange sectors and
analyzed the C = 2 and 3 predicted states. The extended to SF symmetry WT model
modified with HQSS constraints generates a great number of states, most of them stem-
ming from the 4752 representation. The interaction in this subspace, though attractive, is
much weaker than in the 168 and 120 ones. Indeed, in the large NC limit, we expect that
the 4752 states will disappear and only those related to the 168 representation will re-
main [172]. Besides, being so weak the interaction in the 4752 subspace, small corrections
(higher orders in the expansion, d-wave terms, etc) could strongly modify the properties
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SU(8) SU(6) SU(3) Couplings

irrep irrep irrep MR ΓR to main channels Status PDG J

168 212,1 62 2583.4 0.0 gΛcπ = 0.03gΛcπ = 0.03gΛcπ = 0.03, gND = 2.4, gND∗ = 1.3, 1/2

gΣDs = 1.7, g∆D∗ = 6.8, gΣD∗s = 1.2,

gΣ∗D∗s = 3.1

168 212,1 64 2577.8 0.0 gND∗ = 2.7, g∆D = 4.3, g∆D∗ = 5.4, 3/2

gΣD∗s = 2.4, gΣ∗Ds = 1.6, gΣ∗D∗s = 2.4

168 152,1 62 2691.3 137.6 gΛcπ = 1.6gΛcπ = 1.6gΛcπ = 1.6, gΣcπ = 0.3gΣcπ = 0.3gΣcπ = 0.3, gND = 0.5, 1/2

gND∗ = 0.7, gΞcK = 1.1, gΣcρ = 1.8,

gΣ∗cρ = 2.5, gΞ∗cK
∗ = 0.9

120 212,1 62 2653.9 95.0 gΛcπ = 0.2gΛcπ = 0.2gΛcπ = 0.2, gΣcπ = 2.0gΣcπ = 2.0gΣcπ = 2.0, gND = 0.6, 1/2

gND∗ = 0.4, gΛcρ = 1.7 g∆D∗ = 0.4,

gΣcρ = 1.3, gΣ∗D∗s = 0.4

120 212,1 64 2697.2 65.8 gΣ∗cπ = 1.9gΣ∗cπ = 1.9gΣ∗cπ = 1.9, gND∗ = 0.6, gΛcρ = 1.7, 3/2

gΣ∗cρ = 1.1, gΣD∗s = 0.3, gΣ∗D∗s = 0.3

Table 3.11: Σc and Σ∗c resonances with inclusion of the suppression factor κc.

of the states that arise from this representation. For these reasons, we have restricted our
study in this work to the 288 states (counting multiplicities in spin and isospin) that stem
from the 168 and 120 representations, for which we believe the predictions of the model
are more robust.

To identify these states, we have adiabatically followed the trajectories of the 168 and
120 poles, generated in a symmetric SU(8) world, when the symmetry is broken down
to SU(6) × SUC(2) and later SU(6) is broken down to SU(3) × SU(2). In this way, we
have been able to assign well-defined SU(8), SU(6) and SU(3) labels to the resonances. A
first result of this work is that we have been able to identify the 168 and 120 resonances
among the plethora of resonances predicted in Ref. [175] for the different strangeless C = 1
sectors. As expected, they turn out to be the lowest-lying ones, and we expect them to
find experimental confirmation in the near future. This appreciation is being reinforced
by the previous study of Ref. [171] in the light SU(6) sector. Thus, we interpret the
Λc(2595) and Λc(2625) as the members of the SU(8) 168-plet, and in both cases with
a dynamics strongly influenced by the ND∗ channel, in sharp contrast with previous
studies inconsistent with HQSS. Moreover, the changes induced by a suppression factor
in the interaction when charm is exchanged do not modify the conclusions. Second, we
have identified the HQSS multiplets in which the resonances are arranged. Specifically,
the Λc, Λ∗c sector arranges into two singlets, the Λc(2595) being one of them, a doublet,
which contains the Λc(2625). Similarly, the Σc, Σ∗c sector contains one singlet and two
doublets. For the Ξc, Ξ∗c sector, there are three doublets and three singlets. According
to our tentative identification, Ξc(2790) and Ξc(2815) form a HQSS doublet. Finally, Ωc,
Ω∗c states form two doublets and one singlet. Third, we have worked out the predictions
of the model of Ref. [175] for strange charmed and C = 2 and C = 3 resonances linked
to the strongly attractive 168 and 120 subspaces. To our knowledge, these are the first
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predictions in these sectors deduced from a model fulfilling HQSS. The organization into
HQSS multiplets is also given in this case. There is scarce experimental information in
these sectors, and we have only identified the three-star Ξc(2790) and Ξc(2815) resonances,
but we believe that the rest of our predictions will find experimental confirmation in the
future. Of particular relevance in this respect will be the program of PANDA at the future
facility FAIR.



Chapter 4

Hidden-charm baryon resonances1

In this chapter we study dynamically-generated baryon resonances with hidden charm,
in particular charmless (C = 0) and strangeless (S = 0) states N (I = 1/2; J =
1/2, 3/2, 5/2) and ∆ (I = 3/2; J = 1/2, 3/2).

We start this chapter with the analysis of the structure of the group multiplets. We
classify the possible states under the symmetry group SU(6) × HQSS. Subsequently, we
study the breaking of the light SF SU(6) down to the SU(3)×SU(2) (flavor symmetry and
spin symmetry for light flavors, respectively), keeping HQSS. Further, the SU(3) flavor
symmetry is broken to SU(2) isospin symmetry, and finally the HQSS symmetry is broken.
Furthermore, in this chapter we present our dynamically-generated hidden-charm states.
We predict the existence of seven N -like and five ∆-like resonances, with masses around
4 GeV, most of them as bound states. We also identify the different HQSS multiplets,
which are nearly degenerate in mass.

There are some recent works [150–153] that predict the existence of a few N -like states
with masses around 4 GeV, which result from the baryon-meson scattering in this hidden-
charm sector. We compare our results with the results of these other theoretical models.
No experimental data is yet available for the states we study, but the predicted new reso-
nances might be subject to experimental detection in the forthcoming PANDA experiment
at FAIR. If confirmed, they definitely cannot be accommodated by quark models with
three constituent quarks.

1This chapter is based on C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, and L. Tolos,
Phys. Rev. D 87, 074034 (2013) (Ref. [188]).
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4.1 Analysis of the hidden-charm sector with C = 0

We want to classify the possible states in the hidden-charm sectors under the symmetry
group SU(6) × HQSS, with HQSS = SUc(2) × SUc̄(2) × Uc(1) × Uc̄(1). Since in the
hidden-charm sectors there is exactly one heavy antiquark, it is not necessary to specify
the irrep of the factor SUc̄(2)×Uc̄(1) and we can use the notation R2Jc+1,C for the irreps
of SU(6) × HQSS, R being the SU(6) irrep of the light sector, C the charm quantum
number and Jc the total spin carried by one or more c quarks (not including the spin of
the c̄ antiquarks). The corresponding dimension is dimR× (2Jc + 1)× 2 (the last factor
coming from the two possible spin states of the c̄).

Subsequently, we study the breaking of light SF SU(6) down to SU(3)×SU(2) keeping
HQSS, and enumerate the number of attractive channels in each (C, r, J) sector, where
r is the SU(3) irrep and J is the total spin.

In practice we will assume exact isospin and spin SU(2)I×SU(2)J , as well as conserva-
tion of each flavor, but not exact SU(3) and HQSS, for the baryons and mesons forming
the coupled-channels space. Therefore the sectors are labeled by (C, S, I, J), S = 0 be-
ing the strangeness quantum number and I the isospin. This implies a further breaking
of each (C, r, J) sector into (C, S, I, J) subsectors. Here we consider the hidden-charm
sector with C = 0, i.e. Nc̄ = 1 and Nc = 1.

For C = 0, the quark content is ```cc̄, with two possibilities of grouping into baryon-
meson: (```)(cc̄) and (``c)(`c̄). (Here ` denotes any light flavor quark, u, d, s.) The total
dimension of the space is 56 × 2 × 2 + 21 × 2 × 6 × 2 = 728, and contains the following
SU(6)× HQSS multiplets:2

HC=0 = 562,0 ⊕ 562,0 ⊕ 702,0 [SU(6)× HQSS]. (4.1)

The eigenvalues turn out to be

λ562,0 = λ702,0 = −2, λ′562,0
= 6. (4.2)

An accidental degeneracy between 702,0 and one 562,0 that occurs in our model is not a
necessary consequence of SU(6)×HQSS. This symmetry does not fix the three eigenvalues
and the precise splitting between the two copies of 562,0. The accidental symmetry is lifted
in V and the T -matrix even when an exact SU(6) × HQSS invariance is assumed in the
hadron masses and meson decay constants.

Next, we consider the breaking of light SF SU(6) down to SU(3)× SUJ`(2), e.g., 56 =
82 ⊕ 104, while HQSS is unbroken. After recoupling the spin carried by light and heavy
quarks and antiquarks to yield the total spin J , we obtain the representations of SU(3)×
SU(2)J labeled as r2J+1, where r is the SU(3) irrep. This yields the following reductions
(the two 562,0 have the same reduction):

562,0 =(82 ⊕ 104)2,0 = (82 ⊕ 82 ⊕ 84)⊕ (102 ⊕ 104 ⊕ 104 ⊕ 106),

702,0 =(12 ⊕ 82 ⊕ 84 ⊕ 102)2,0 = (12 ⊕ 12 ⊕ 14)⊕ (82 ⊕ 82 ⊕ 84)

⊕ (82 ⊕ 84 ⊕ 84 ⊕ 86)⊕ (102 ⊕ 102 ⊕ 104). (4.3)

2(```)(cc̄) is purely 562,0 from the symmetry of the three light quarks. The two light quarks in (``c)
are symmetric giving a 21 of SU(6), that couples to the light quark in (`c̄) giving 21 ⊗ 6 = 56 ⊕ 70.
These two 562,0 are not directly those in Eqs. (4.1) and (4.2).
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In the reduction (82)2,0 = (82 ⊕ 82 ⊕ 84) in 562,0, the three octets only differ in how
the light-sector spin is coupled to the heavy-sector spin; therefore these three irreps are
degenerated if exact HQSS is assumed. The (82⊕82⊕84) is a multiplet of SU(3)×HQSS.
Similar statements hold in the other cases: each 562,0 produces two such multiplets and
702,0 produces four. Consequently, in the hidden-charm sector with C = 0 we expect to
find eight different eigenvalues after SU(6) × HQSS is broken down to SU(3) × HQSS.
Let λ1, λ2 be the eigenvalues of the two multiplets in the repulsive 562,0, λ3, λ4 in the
attractive 562,0, and λ5, λ6, λ7, λ8 those in 702,0. In this case, the spectra in each (C, r, J)
sector are as follows:

12 : (λ5, λ5),

14 : (λ5),

82 : (λ1, λ1, λ3, λ3, λ6, λ6, λ7),

84 : (λ1, λ3, λ6, λ7, λ7),

86 : (λ7),

102 : (λ2, λ4, λ8, λ8),

104 : (λ2, λ2, λ4, λ4, λ8),

106 : (λ2, λ4). (4.4)

In the SU(6) limit, λ1 = λ2, λ3 = λ4, λ5 = λ6 = λ7 = λ8. Breaking down the symmetry
to SU(3), one expects

λ3,4,5,6,7,8 < 0 < λ1,2. (4.5)

Each negative eigenvalue can give rise to a resonance or bound state. Each such state
is a full multiplet of SU(3)×SU(2)J . This implies the following expected number of states
in each (C, r, J) sector: up to two states in 12, one in 14, five in 82, four in 84, one in 86,
three in 102, three in 104, and one in 106, all of them with C = 0. These results are also
summarized in Table 4.1.

C 0

J SU(3) 1 8 10

1/2 2 7 4

(2) (5) (3)

3/2 1 5 5

(1) (4) (3)

5/2 0 1 2

(0) (1) (1)

Table 4.1: Total number of channels for each J and each SU(3) irrep, for the hidden-charm
C = 0 sector. Here each channel represents a full SU(3) and spin multiplet (C, r, J) [rather
than a isospin-spin multiplet, (C, S, I, J)]. The expected number of resonances in each
case is shown between parentheses.
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4.2 Dynamically-generated hidden-charm N and ∆

states

As was mentioned in Section 2.1.3, we use a slightly different expression for the potential,
as compared to Eq. (2.31). This was done to be consistent with Ref. [188]. The potential
reads

Vij(
√
s) = Dij

1

4fifj
(k0
i + k′j

0), (4.6)

where k0
i and k′j

0 are the center-of-mass energies of the incoming and outgoing mesons,
respectively, and fi and fj are the decay constants of the meson in the i-channel and
j-channel. The Dij matrices for this sector are collected in Appendix C. With this
prescription for the potential, the loop function that appears in the Bethe-Salpeter equa-
tion (2.33) reads

Gii(s) =
(
√
s+Mi)

2 −m2
i

2
√
s

(J̄0(s;Mi,mi)− J̄0(µ;Mi,mi)). (4.7)

As compared to Eq. (2.37), there is a factor (Ei +Mi)/(2Mi) difference.
We find several I = 1/2 and I = 3/2 hidden-charm states, which correspond to N -like

and ∆-like states, respectively (here we use the same notation as in Refs. [150,151]). All
these states have odd parity and different values (J = 1/2, 3/2 and 5/2) of total angular
momentum.

In this hidden-charm sector and in the SU(6) × HQSS limit, we saw [Eqs. (4.1) and
(4.2)] that the group structure of the HQSS-constrained extension of the WT interaction
developed in this work consists of two 562,0 and one 702,0 representations. One of the 562,0

multiplets and the 702,0 one are attractive. Thus, from the decomposition in Eq. (4.3) (see
also Table 4.1), we could expect up to a total of ten N -like and seven ∆-like resonances.3

Because of the breaking of the SU(6)×HQSS symmetry due to the use of physical hadron
masses and meson decay constants, we only find seven heavy N and five heavy ∆ states
in the second Riemann sheets. They have masses around 4 GeV and most of them turn
out to be bound. The remaining missing states show up in an unphysical region of
the Riemann surface. The evolution of all states as we gradually break the symmetry
from SU(6) × HQSS down to SU(3) × HQSS, then to SU(2) × HQSS, and finally down
to SU(2) isospin, is depicted in Fig. 4.1. Thanks to this latter study, we could assign
SU(6)× HQSS and SU(3) × HQSS labels to each of the predicted resonances, which are
all of them collected in Tables 4.2 and 4.4, and could also identify two HQSS multiplets
in each isospin sector.

4.2.1 N states (C = 0, S = 0, I = 1/2)

As mentioned above, we find seven heavy nucleon resonances: three states with the spin-
parity JP = 1

2

−
, also three states with 3

2

−
sectors, and one state with JP = 5

2

−
. Their

masses, widths and couplings to the different channels are compiled in Table 4.2.

3Those lie in the SU(3) octets and decuplets irreps, respectively, contained in the attractive 562,0

and 702,0 multiplets.
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• J = 1/2 : In this sector, there are seven coupled channels, with the following
threshold energies (in MeV):

Nηc NJ/ψ ΛcD̄ ΛcD̄
∗ ΣcD̄ ΣcD̄

∗ Σ∗cD̄
∗

3918.6, 4035.8, 4153.7, 4294.8, 4320.8, 4461.9, 4526.3.

• J = 3/2 : In this sector, there are five coupled channels, with the following threshold
energies:

NJ/ψ ΛcD̄
∗ Σ∗cD̄ ΣcD̄

∗ Σ∗cD̄
∗

4035.8, 4294.8, 4385.2, 4461.9, 4526.3.

• J = 5/2 : In this sector there is only one channel, Σ∗cD̄
∗, with threshold equal to

4526.3 MeV.

From the group decomposition of the SU(6)×HQSS representations, we could expect
up to a maximum of five states with spin J = 1/2 (see Table 4.1): one state from each of
the two J = 1/2 octets encoded in the attractive 562,0 representation, and three states
corresponding to the each of the 82 octets that appear in the reduction of the 702,0

representation [Eq. (4.3)]. However, the two poles related to the 562,0 representation
appear in an unphysical region of the Riemann surface at the physical point (i.e., at the
point of the evolution when the hadron masses and meson decay constants attain their
physical values). As it can be seen from Fig. 4.1, these poles disappear from the physical
sheet when we pass from the SU(3)× HQSS limit to the SU(2)× HQSS one. Indeed, we
could observe how the (82)2,0 ⊂ (562)2,0 pole almost coincides with the threshold value
of the degenerated Nηc and NJ/ψ channels in the first steps of this evolution until it
finally disappears. On the other hand, the (82)2,0 ⊂ (562)2,0 pole also gives rise to an
octet of J = 3/2 states [see Eq. (4.3)], which is also lost at the physical point. Thus, for
J = 3/2 we are also left only with the three baryon resonances stemming from the 702,0

representation, one from (82)2,0, and two from (84)2,0. The J = 5/2 state is originated
also from this latter multiplet.

From the above discussion, it is clear that the N -like resonances found in this work,
and collected in Table 4.2, form two HQSS multiplets. In the first one the light degrees of
freedom have quantum numbers (82)2,0 ⊂ 702,0. This multiplet is formed by the three first
resonances of the table (two with spin 1/2 and third one with spin 3/2) that correspond to
the blue lines with labels 702,0 and (82)2,0 in Fig. 4.1. They only differ in how the light-
sector spin is coupled to the spin of the cc̄ pair. The second HQSS multiplet corresponds to
(84)2,0 ⊂ 702,0 quantum numbers for the light sector, and it consists of the four remaining
states in Table 4.2 (displayed with green lines with labels 702,0 and (84)2,0 in Fig. 4.1):
one with spin 1/2, two with spin 3/2 and a third one with spin 5/2. The members of each
HQSS multiplet are nearly degenerate, but not totally because we also break the HQSS
by the use of physical hadron masses.

A word of caution is needed here. The mass of the J = 5/2 resonance is around
4027.2 MeV. In this sector there is only one channel (Σ∗cD̄

∗, with threshold equal to
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4526.3 MeV), thus this state is around five hundred MeV bound. We expect our model to
work well close to threshold, and therefore, in this case, interaction mechanisms neglected
here and involving higher partial waves could be relevant for determining the actual
properties of this resonance.

SU(6)× SU(3)×
HQSS HQSS Couplings

irrep irrep MR[ MeV] ΓR[ MeV] to main channels J

702,0 (82)2,0 3918.3 0.0 gNηc = 0.5, gNJ/ψ = 0.6, gΛcD̄ = 3.1, 1/2

gΛcD̄∗ = 0.5, gΣcD̄ = 0.2 , gΣc D̄∗ = 2.6,

gΣ∗c D̄∗ = 2.6

702,0 (82)2,0 3926.0 0.1 gNηc = 0.2gNηc = 0.2gNηc = 0.2, gNJ/ψ = 0.04, gΛcD̄ = 0.4, 1/2

gΛcD̄∗ = 3.0, gΣcD̄ = 4.2, gΣcD̄∗ = 0.2,

gΣ∗cD̄
∗ = 0.7

702,0 (82)2,0 3946.1 0. gNJ/ψ = 0.2, gΛcD̄∗ = 3.4, gΣ∗cD̄
= 3.6, 3/2

gΣcD̄∗ = 1.1, gΣ∗cD̄
∗ = 1.5

702,0 (84)2,0 3974.3 2.8 gNηc = 0.5gNηc = 0.5gNηc = 0.5, gNJ/ψ ∼ 0.05, gΛcD̄ = 0.4, 1/2

gΛcD̄∗ = 2.2, gΣcD̄ = 2.1, gΣcD̄∗ = 3.4,

gΣ∗cD̄
∗ = 3.1

702,0 (84)2,0 3986.5 0. gNJ/ψ = 0.2, gΛcD̄∗ = 1.0, gΣ∗cD̄
= 2.7, 3/2

gΣcD̄∗ = 4.3, gΣ∗cD̄
∗ = 1.8

702,0 (84)2,0 4005.8 0. gNJ/ψ = 0.3, gΛcD̄∗ = 1., gΣ∗cD̄
= 1.6, 3/2

gΣcD̄∗ = 3.2, gΣ∗cD̄
∗ = 4.2

702,0 (84)2,0 4027.1 0. gΣ∗c D̄∗ = 5.6 5/2

Table 4.2: Odd-parity hidden-charm N (J = 1/2, J = 3/2, and J = 5/2) resonances
found in this work. The first two columns contain the SU(6)×HQSS and SU(3)×HQSS
quantum numbers of each state, while MR and ΓR stand for its mass and width (in MeV).
The largest couplings of each pole, ordered by their threshold energies, are collected in
the next column. In boldface, we highlight the channels which are open for decay. Finally,
the spin of the state is given in the last column. Resonances with equal SU(6) × HQSS
and SU(3) × HQSS labels form HQSS multiplets, and they are collected in consecutive
rows.

There exist previous works on hidden-charm odd-parity nucleon states, also named
crypto-exotic hadronic states. These studies can be divided in two types. Namely, those
based on a constituent-quark description of the resonances, and those where they are
described as baryon-meson bound molecules or resonating states. Some of the predictions
of these other models are compiled in Table 4.3.

The baryon-meson coupled-channel zero-range vector exchange model by Hofmann and
Lutz [141,142] makes predictions for the hidden-charm N resonances. Baryon resonances
with JP = 1/2− are predicted from the interaction of pseudoscalar mesons with JP = 1/2+
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ground-state baryons [141], and the JP = 3/2− baryon resonances are predicted from the
interaction of pseudoscalar mesons with JP = 3/2+ ground-state baryons [142]. Vector
mesons in the coupled-channel space were omitted in those early studies, thus channels
like ΣcD̄

∗ or ΛcD̄
∗ were not considered.

More recently baryon-meson calculations using a hidden-gauge model have been carried
out in Refs. [150–152]. These works consider 1/2+ baryons interacting with pseudoscalar
mesons that generate dynamically JP = 1/2− hidden-charm nucleon resonances as poles
in the T -matrix. Yet, the interaction of vector mesons with 1/2+ baryons is also taken
into account in [150–152], which leads to additional and degenerate JP = 1/2− and 3/2−

hidden-charm nucleons. However, the J = 3/2+ baryons are not included, and thus some
channels like Σ∗cD̄

∗ are excluded.
The main difference between our scheme and the hidden-gauge models is the definition

of the coupled-channels space. We consider simultaneously pseudoscalar meson–baryon
(PB) and vector meson–baryon (V B) channels, with JP = 1/2+ and 3/2+ baryons.
However, in the approaches of Refs. [150–152] all interaction terms of the type PB → V B
are neglected. Furthermore, channels with JP = 3/2+ baryons are not considered either.
The potential used in [150–152] for the PB → PB transitions, with JP = 1/2+ baryons,
is similar to that derived here. However, there exist important differences in all transitions
involving vector mesons. When restricting our model to the PB → PB sector, we still
do not obtain the same results as in Refs. [150–152]. This is mainly due to i) the use
of a different renormalization scheme and, ii) the presence in these latter works of a
suppression factor in those transitions that involve a t-channel exchange of a heavy charm
vector meson, as discussed in Sect. 3.10.

However, when we use our full space, the inclusion of a similar suppression factor in our
HQSS kernel is not quantitatively relevant for the dynamical generation of the resonances.
Note that HQSS does not require the presence of such suppression factor. In summary,
when we compare our approach with the other molecular-type ones, we observe in our
model a rich structure of resonances due to the many channels cooperating to create them.
Our states are much lighter than those predicted in Refs. [150–152], though significantly
less bound that the crypto-exotic baryons reported in Refs. [141,142].

Finally, we will pay attention to the recent work of Ref. [191]. There a constituent-
quark model is used to describe isospin I = 1/2 baryons with uudcc̄ quark content. The
mass spectra is evaluated with three types of hyperfine interactions: the color-magnetic
interaction (CM) based on one-gluon exchange, a chiral interaction (FS) based on meson
exchange, and an instanton-induced interaction (INST) based on the non-perturbative
QCD vacuum structure. The FS (CM) model predicts the lowest (highest) mass for each
state. Results for the FS and CM models are displayed in Table 4.3. In all cases, the
mass predicted by the INST model (not displayed in the table) lies between the values
predicted by the other two models. Our results are closer to those predicted by the FS
model, specially for the lowest lying states.

4.2.2 ∆ states (C = 0, S = 0, I = 3/2)

In this sector we find five heavy resonances (bound states; all of them appear below

threshold): three with spin-parity JP = 1
2

−
and another two with JP = 3

2

−
. Their
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masses, widths and couplings to the different channels are compiled in Table 4.4.

• J = 1/2 : In this sector, there are four coupled channels, with the following threshold
energies (in MeV):

∆J/ψ ΣcD̄ ΣcD̄
∗ Σ∗cD̄

∗

4306.9, 4320.8, 4461.9, 4526.3.

• J = 3/2 : In this sector, there are five coupled channels, with the following threshold
energies:

∆ηc ∆J/ψ Σ∗cD̄ ΣcD̄
∗ Σ∗cD̄

∗

4189.7, 4306.9, 4385.2, 4461.9, 4526.3.

• J = 5/2 : In this sector there are only two channels, with the following threshold
energies:

∆J/ψ Σ∗cD̄
∗

4306.9, 4526.3.

We obtain three ∆ (J = 1/2) states as expected from the group decomposition of the
SU(6) × HQSS representations (see Table 4.1): one state from each of the two J = 1/2
decuplets encoded in the attractive 702,0 representation, and a further state correspond-
ing to the J = 1/2 decuplet that appears in the reduction of the 562,0 representation
[Eq. (4.3)]. The evolution of the corresponding poles is shown in Fig. 4.1.

The pole that corresponds to (104)2,0 ⊂ 562,0 (light magenta circles with labels 562,0

and (104)2,0 in Fig. 4.1) has a mass quite close to the ∆ηc and ∆J/ψ degenerated thresh-
olds, between the SU(6)× HQSS and the SU(2)× HQSS symmetric points. Later, while
moving to the SU(2) isospin symmetric point, the spin-1/2 ∆ resonance keeps having a
mass close to the ∆J/ψ threshold, and ends up with a final mass of 4306.2 MeV (the
∆J/ψ threshold is at 4306.9 MeV). However, the spin-5/2 and the two spin-3/2 states,
that are also originated from this (104)2,0 ⊂ 562,0 pole, essentially disappear. One of
the J = 3/2 states still shows up as a cusp very close to the ∆J/ψ threshold, and it
has been included in the table. The second state with spin-3/2 (light magenta triangles
disappearing between SU(2) × HQSS and SU(2) symmetric points in Fig. 4.1) and the
spin-5/2 one appear as small unnoticeable peaks right at the ∆ηc and ∆J/Ψ thresholds,
respectively.

From the discussion above, the (104)2,0 ⊂ 562,0 HQSS multiplet could be incomplete.
However, the three ∆ states (dark magenta circles for the two JP = 1/2− states and
dark magenta triangles for the JP = 3/2− resonance in Fig. 4.1) that stem from the
(102)2,0 ⊂ 702,0 configuration of the light degrees of freedom turn out to be quite bound.
Indeed, we find binding energies of at least 250 (150) MeV in the spin-1/2 (3/2) sector.
These three states, nearly degenerate, form a clear HQSS multiplet.
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SU(6)× SU(3)×
HQSS HQSS Couplings

irrep irrep MR ΓR to main channels J

702,0 (102)2,0 4005.8 0. g∆J/ψ = 0.3, gΣcD̄ = 2.7, gΣcD̄∗ = 4.4, 1/2

gΣ∗cD̄
∗ = 1.2

702,0 (102)2,0 4032.5 0. g∆ηc = 0.2, g∆J/ψ = 0.1, gΣ∗cD̄
= 2.9, 3/2

gΣcD̄∗ = 1.8, gΣ∗cD̄
∗ = 4.1

702,0 (102)2,0 4050.0 0. g∆J/ψ = 0.2, gΣcD̄ = 0.8, gΣcD̄∗ = 1.9, 1/2

gΣ∗cD̄
∗ = 5.1

562,0 (104)2,0 4306.2 0. g∆J/ψ = 1.3, gΣcD̄ = 0.3, gΣcD̄∗ = 0.3, 1/2

(cusp) gΣ∗cD̄
∗ = 0.3

562,0 (104)2,0 4306.8 0. g∆ηc ∼ 0.1, g∆J/ψ = 0.8, gΣ∗cD̄
= 0.2, 3/2

(cusp) gΣcD̄∗ = 0.2, gΣ∗cD̄
∗ = 0.1

Table 4.4: As in Table 4.2, for the ∆ (J = 1/2, J = 3/2) resonances with hidden-charm
content.

The models based on vector-meson exchange naturally use a suppression factor in
the baryon-meson amplitudes involving exchange of charm, from the propagator of the
exchanged heavy vector meson. In the heavy-quark limit, the suppression factor is of
the order of 1/mH .4 Therefore, in that limit, one expects a quenching of order mV /mD∗

for the charm exchanging amplitudes of those models. (Of course, the true factor for
large but finite physical heavy hadron masses does not need to coincide exactly with
this heavy-quark limit estimate). Our model is not directly based on exchange of vector
mesons. Nevertheless, we have verified that adding such suppression by hand in the
charm-exchanging amplitudes does not have an impact on our results. Even a factor
(mV /mD∗)

2, proposed in the literature [144] has a very small effect in the position of the
resonances we find. Presumably, this is due to the fact that the relevant channels have a
small coupling. An exception comes from the two very weakly-bound ∆ resonances from
the 562,0 irrep, which disappear due to the suppression of their dominant decay channel
∆J/ψ.

4.3 Summary

In this chapter we studied hidden-charm N and ∆ resonances. We have carried out a
detailed analysis of the hidden-charm sector (i.e., with cc̄ pairs) with C = 0 and its
breaking as the symmetry is lifted from SU(6) × HQSS to SU(3) × HQSS (and then to
SU(2)×HQSS and SU(2) of isospin). This allows to count the expected number of bound
states or resonances, and to classify them into multiplets corresponding to the various

4The boson propagator is approximately 1/(2mH(EH −mH)), with mH the mass of the heavy vector
meson and EH its energy, and EH −mH is O(1) in the heavy-quark limit.
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symmetries.
After analyzing the charmless and strangeless sector, we have dynamically generated

several N and ∆ states. Actually, we predict the existence of seven N -like and five ∆-like
states with masses around 4 GeV, most of them as bound states. These states form heavy-
quark spin multiplets, which are almost degenerate in mass. The N states form two HQSS
multiplets. The lowest one has the light quark flavor-spin content coupled to 82. Since
the c̄c pair can couple to spin Scc̄ = 0, 1, this HQSS multiplet consists of three nucleon
states with J = 1/2, 1/2, and 3/2, and masses around 3930 MeV. On the other hand, the
highest HQSS nucleon-like multiplet contains four resonances with J = 1/2, 3/2, 3/2,
and 5/2, and masses around 4000 MeV. In this case, these states are originated from the
84 SF light configuration. These two SU(3)× HQSS multiplets arise from the 70-plet of
SU(6) × HQSS. There are no N physical states coming from the 56-plet. With regards
to ∆ states, we find two multiples with very different average masses, because in this
case they are originated from different SU(6) × HQSS representations. The ∆ multiplet
coming from the (102)2,0 ⊂ 702,0 irrep is formed by 3 states (J = 1/2, 1/2, 3/2) with
an average mass of 4035 MeV. Besides, we find only two (J = 1/2, 3/2) ∆ resonances at
the physical point out of the four states originated from the (104)2,0 ⊂ 562,0 in the SU(6)
limit. These two states are nearly degenerate, with a mass of 4306 MeV.

When we compare our approach with the other molecular-type ones, we observe in our
model a rich structure of resonances due to the many channels cooperating to create them.
Our states are much lighter than those predicted in the hidden-gauge scheme [150–152],
though significantly less bound than the crypto-exotic baryons reported in the zero-range
vector meson exchange model of Refs. [141, 142]. Moreover, we have presented the first
prediction for exotic hidden-charm ∆-like resonances within a molecular baryon-meson
scheme.

In comparison with the quark model of Ref. [191], we find that our results are closer
to those predicted by the FS hyperfine interaction discussed in Ref. [191], especially for
the lowest-lying states.

The predicted new resonances definitely cannot be accommodated by quark models
with three constituent quarks and they might be looked for in the forthcoming PANDA
experiment at the future FAIR facility.



Chapter 5

Baryon resonances with beauty1

In this chapter we study dynamically-generated baryon resonances with beauty (or bot-
tom) flavor, in particular Λb and Ξb particles. Such a study was motivated by the dis-
covery of two narrow baryon resonances with beauty by the LHCb Collaboration in
2012 [126], with masses 5911.97 ± 0.12 (stat) ± 0.02 (syst) ± 0.66 (Λ0

b mass) MeV, and
5919.77± 0.08 (stat) ± 0.02 (syst) ± 0.66 (Λ0

b mass) MeV. These states are interpreted as
the orbitally-excited Λ0

b(5912) and Λ0
b(5920) bottom baryon resonances, with spin–parity

JP = 1/2− and JP = 3/2−, respectively. The limits on the natural widths of these states
are ΓΛ0

b(5912) ≤ 0.82 MeV and ΓΛ0
b(5920) ≤ 0.72 MeV at 95% confidence level [126].

We use our phenomenological model for predicting these states. In Chapter 2 we
normally referred to a charm quark as the heavy one in the system. The prescription
here is to replace the c quark by a bottom b quark. We obtain the masses, the quantum
numbers, and the couplings of the Λb resonances to the different baryon-meson channels.
We find that the resonances Λ0

b(5912) and Λ0
b(5920) are HQSS partners, which naturally

explains their approximate mass degeneracy. We also predict Ξb resonances that belong
to the same SU(3) × HQSS representations as generated Λb and Λ∗b states. The two Λb

resonances found by the LHCb Collaboration, and Ξb(6035.4) (JP = 1
2

−
) and Ξb(6043.3)

(JP = 3
2

−
) states complete a multiplet of SU(3)× HQSS.

There exists an old prediction for the masses of the two Λb resonances by Capstick
and Isgur [20], which is in very good agreement with the results reported by the LHCb
Collaboration. Their relativistic quark model predicts 5912 MeV and 5920 MeV for the
masses of the lightest orbitally-excited states, with quantum numbers JP = 1/2+ and
JP = 3/2+ [20]. In this work we describe these odd-parity excited states as dynamically-
generated resonances obtained within our unitarized baryon-meson coupled-channels scheme.

1This chapter is based on C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, and L. Tolos, Phys.
Rev. D 87, 034032 (2013) (Ref. [192]).
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5.1 Beautiful dynamically-generated Λb and Ξb reso-

nances

In this section we study dynamically-generated bottom-flavored Λb (JP = 1/2−) and Λ∗b
(JP = 3/2−) resonances. Similarly to Chapter 3, we consider baryon resonances that stem
from the most attractive 120 and 168 SU(8) representations. We also study the Ξb J

P =
1/2− and JP = 3/2− resonances that belong to the same SU(3)×HQSS representations as
the Λb states. We use the phenomenological model described in Chapter 2. By replacing
the c-quark by the b-quark we move to the baryon-meson sector with bottom B = −1.
The D-matrices in the B = −1 sector, which are needed for calculating the potential
[Eq. (2.31)], are the same as in Appendix B for C = 1 sectors with obvious renaming of
the heavy hadrons. We consider a system with baryon number one, one bottom quark
(B = −1) and strangeness, isospin, and spin-parity given by: (S, I, JP ) = (0, 0, 1/2−)
denoted as Λb, (0, 0, 3/2−) as Λ∗b , (−1, 1/2, 1/2−) as Ξb and (−1, 1/2, 3/2−) as Ξ∗b .

The bottomed baryon masses are given in Table 5.1, while the masses and the weak-
decay constants of the bottom-flavored mesons are collected in Table 5.2.

Baryon M [ MeV] Γ [ MeV] SU(6) SU(3)2J+1 HQSS

Λb 5619.37 [193] 21 3∗2 singlet

Ξb 5789.55 [4] 21 3∗2 singlet

Σb 5813.4 [4] 7.3 21 62 doublet

Σ∗b 5833.55 [4] 9.5 21 64 doublet

Ξ′b 5926 [194] 21 62 doublet

Ξ∗b 5945 [195] 21 64 doublet

Ωb 6050.3 [196] 21 62 doublet

Ω∗b 6069 [197] 21 64 doublet

Table 5.1: Masses and widths of the ground-state baryons with beauty used throughout
this work. The SU(6) and SU(3)2J+1 labels are also displayed. The last column indicates
the HQSS multiplets. Members of a HQSS doublet are placed in consecutive rows.

5.1.1 Λb and Λ∗b states

In the Λb sector (B = −1, C = 0, S = 0, I = 0, JP = 1/2−), the following sixteen
channels are involved:

Σbπ Λbη NB̄ NB̄∗ ΞbK Λbω Ξ′bK ΛB̄0
s

ΛB̄∗s Λbη
′ Σbρ Σ∗bρ Λbφ ΞbK

∗ Ξ′bK
∗ Ξ∗bK

∗ .

Likewise for the Λ∗b sector (B = −1, C = 0, S = 0, I = 0, JP = 3/2−), there are eleven
channels:
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Meson m [ MeV] f [ MeV] SU(6) SU(3)2J+1 HQSS

B̄ 5279.335 [4] 133.6 [198] 6∗ 3∗1 doublet

B̄∗ 5325.2 [4] fB̄ 6∗ 3∗3 doublet

B̄s 5366.3 [4] 159.1 [199] 6∗ 3∗1 doublet

B̄∗s 5415.4 [4] fB̄s 6∗ 3∗3 doublet

Table 5.2: Masses, m, and decay constants, f , of the mesons with bottom flavor used
throughout this work. The SU(6) and SU(3)2J+1 labels are also displayed. The last column
indicates the HQSS multiplets. Members of a HQSS doublet are placed in consecutive
rows.

Σ∗bπ NB̄∗ Λbω Ξ∗bK ΛB̄∗s Σbρ

Σ∗bρ Λbφ ΞbK
∗ Ξ′bK

∗ Ξ∗bK
∗ .

In both cases the channels are ordered by increasing mass thresholds.
Several states are generated in each of the two sectors. The three lowest-lying Λb

resonances have masses of 5880 and 5949 MeV (JP = 1/2−) and 5963 MeV (JP = 3/2−).
As one can expect, the situation in the J = 1/2− channel is analogous to that of the
Λc(2595) resonance in the charm sector [175, 177]. For both heavy flavors the structure
obtained mimics the well-known two-pole pattern of the Λ(1405) [38, 59]. Thus, we find
that the state at 5880 strongly couples to the NB̄ and NB̄∗ channels, with a negligible
Σbπ coupling, while the 5949 MeV state has a sizable coupling to this latter channel.
On the other hand, the JP = 3/2− state at 5963 is generated mainly by the (NB̄∗,
Σ∗bπ) coupled-channel dynamics. This state is the bottom counterpart of the Λ(1520) and
Λ∗c(2625) resonances.

These results are encouraging, but to achieve a better description of the Λb(5912) and
Λb(5920) states reported by the LHCb Collaboration, we have slightly changed the value
of the subtraction point used in the RS defined by Eqs. (2.36) and (2.37) [175]. Thus, in
this sector, we have set the baryon-meson loop to be zero at the center-of-mass energy√
s = µ given by

µ2 = α (M2
Σb

+m2
π) . (5.1)

For α = 0.967, we find two poles above the Λ0
bππ threshold, with masses 5910.1 MeV

(JP = 1/2−) and 5921.5 MeV (JP = 3/2−), which admit a natural identification with the
two experimental Λb resonances observed in [126]. The results for the masses, the widths,
and the couplings are presented in Table 5.3. We have assigned well-defined group labels
to the resonances. The multiplets of SU(6) × HQSS and of SU(3) × HQSS to which
the resonances belong are identified by means of the procedure discussed in Section 2.3,
namely, by adiabatically following the trajectories of the poles generated as the various
symmetries are restored or broken. The mass differences ∆MR of the resonances with
respect of ground state Λb are also shown in Table 5.3. They are defined by

∆MR = MR −MΛb(g.s.). (5.2)
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For each resonance, the decay mode with largest phase-space allowed by strong interac-
tions (or electromagnetic ones when the strong decay is forbidden) is shown in the last
column.

We find that the states Λb(5912) and Λ∗b(5920) are HQSS partners. Indeed, these two
states would be part of a 3∗ irreducible representation (irrep) of SU(3), embedded in a
15 irrep of SU(6) (which in turn belongs to the irrep 168 of SU(8) [Section 3.1]). Thus,
the light-quark structure of these two states is the same, and in particular their total
spin, jl = 1. Hence, the coupling of the b-quark spin (jb = 1/2) with the spin of the
light degrees of freedom yields J = 1/2 and J = 3/2. Then the two states, Λb(5912) and
Λ∗b(5920), form an approximate degenerate doublet; they are connected by a spin rotation
of the b-quark.

Comparison of Table 5.3 with Table 3.2 in the charm sector shows that states with
the same group labels in both tables are the heavy-flavor counterpart of each other.
In particular, the Λb(5920) resonance is the bottom version of Λc(2625) one, while the
Λb(5912) would not be the counterpart of the Λc(2595) resonance, but it would be of the
second charmed state that appears around 2595 MeV, and that gives rise to the two-
pole structure mentioned above. The same conclusion follows from inspection of their
couplings: the Λc(2595) couples weakly to Σcπ, while the coupling to Σbπ is sizable for
the Λb(5912) state.

The two states observed by the LHCb Collaboration are detected through their decay
to Λb(g.s.)ππ. The fit to the data of the experiment of Ref. [126] yields

N(pp→ Λb(5912)→ Λbππ) = 17.6± 4.8 events, (5.3)

with mass MΛb(5912) = 5911.97± 0.12 MeV and

N(pp→ Λ∗b(5920)→ Λbππ) = 52.5± 8.1 events, (5.4)

with mass MΛ∗b (5920) = 5919.77 ± 0.08 MeV. The experimental setup of LHCb and the
strong decay mechanism of the resonances observed guarantees that the decay to Λbππ
always takes place within the space and time intervals set for detection [200]. Therefore,
no bias is expected from the possible different decay rates of the two resonances, and

N(pp→ Λ∗b(5920))

N(pp→ Λb(5912))
=
N(pp→ Λ∗b(5920)→ Λbππ)

N(pp→ Λb(5912)→ Λbππ)
. (5.5)

This translates into an experimental ratio of cross sections

σ(pp→ Λ∗b(5920))

σ(pp→ Λb(5912))

∣∣∣∣
exp

=
N(pp→ Λ∗b(5920))

N(pp→ Λb(5912))
= 3.0± 1.0. (5.6)

From the theoretical side, due to the dominant strong interactions taking place during
creation and hadronization of the quark b, a natural assumption is that the b-quark spin
ends up in a random state. In that case, and assuming that Λb(5912) and Λ∗b(5920)
form a HQSS doublet, the ratio of production of these states should be the quotient of
multiplicities, that is,

σ(pp→ Λ∗b(5920))

σ(pp→ Λb(5912))
≈

2JΛ∗b
+ 1

2JΛb + 1
= 2. (5.7)
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Although not fully satisfactory, this ratio is not inconsistent with the observed ratio in
Eq. (5.6), and it gives support to our conclusion that the two observed states form a
HQSS doublet.

From the couplings shown in Table 5.3, the dominant decay mechanisms of Λb(5912) is
expected to be of the form Λb(5912)→ Σbπ with subsequent decay of the off-shell heavy
baryon Σb → Λbπ. Its heavy-quark partner, Λ∗b(5920), follows a similar pattern with Σ∗b .
The approximate HQSS requires the two resonances to have a similar width. In order to
estimate this width, we consider the effective Lagrangian

L(x) =
gΣbπ√

3
~Σ†b~πΛres

b + g ~Σ†bσi∂i~πΛb + H.c. (5.8)

The averaged experimental decay width of the Σb, 7.3 MeV, allows to extract the value
g ≈ 51. The value of gΣbπ = 1.8 taken from our calculation, Table 5.3, gives a small width
for Λb(5912) around 8 keV. A similar calculation for Λ∗b(5920) yields a width around
12 keV.2 The smallness of the widths are due to the reduced phase space available since
the resonances are fairly close to the threshold. This is consistent with the experimental
bounds quoted in [126].

Different quark models [20,201–204] have also conjectured the existence of one or more
excited Λb(1/2

−) and Λb(3/2
−) states. While the predicted masses for [201–204] differ

few tenths of MeV from the LHCb experimental ones (see Table VIII of Ref. [204] for a
summary of some of the results), the early work of Capstick and Isgur [20] generated the
first two excited Λb(1/2

−) and Λb(3/2
−) states with masses that are in very good agree-

ment with the ones observed by the LHCb collaboration. Indeed, their relativistic quark
model predicts 5912 MeV and 5920 MeV for the masses of the lightest orbitally-excited
states [20]. However, the same model yields a mass of the ground state Λ0

b (JP = 1/2+)
which is about 35 MeV smaller than the measured value [4]. More recently, Garcilazo,
Vijande, and Valcarce [201] have also presented results from a constituent-quark model
scheme. They adjusted the mass of the Λ0

b ground state and predicted the masses of the
JP = 1/2− and 3/2− orbitally excited Λb states, which turned out to be around 30 MeV
lower than the LHCb experimental values. Note, however, that the masses predicted
in [201] are in turn 20-30 MeV higher than those obtained in other schemes based also
on the relativistic quark model [202], or on the color hyperfine interaction [203] or on
the heavy-quark effective theory [204]. More recently, in [205] heavy baryonic resonances
Λb (Λc) with JP = 3/2− were studied in a constituent-quark model as a molecular state
composed by nucleons and B̄∗ (D∗) mesons.

Our model reproduces the experimental Λb(5912) and Λb(5920), but with an alternative
explanation of their nature as molecular states, which moreover are HQSS partners. It is
known that some baryon states can be constructed as a qqq state in a quark model, and
simultaneously as a dynamically generated resonance in a baryon-meson coupled-channel
description (that is a qqq - qq̄ molecular state) [206]. Some of their properties might
however differ, and it is thus interesting to consider both points of view in order to get
in the future a joint or integral description of hadronic resonances in terms of quarks and
hadrons degrees of freedom.

2These numbers are just estimates. Being close to threshold any refinement in the treatment will
induce relatively large changes in the values quoted.
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5.1.2 Ξb and Ξ∗b states

Next, we analyze the (B = −1, C = 0, S = −1 , I = 1/2) sector, for both J = 1/2
and J = 3/2 spins (Ξb and Ξ∗b states, respectively). Our model predicts the existence of
nine states (6 Ξb and 3 Ξ∗b) stemming from the strongly attractive 120 and 168 SU(8)
irreducible representations (analogously to the charm sector, see Section 3.1). However,
only three Ξb and one Ξ∗b belong to the same SU(3)×HQSS multiplets as the Λb and Λ∗b
states reported in Table 5.3. In this exploratory study, we restrict our discussion to these
states.

In the Ξb sector, the following 31 channels are involved:

Ξbπ Ξ′bπ ΛbK̄ ΣbK̄ Ξbη ΛB̄ ΛB̄∗ ΣB̄

Ξ′bη ΛbK̄
∗ ΣB̄∗ ΩbK Ξbρ Ξbω ΞB̄s Ξ′bρ

ΣbK̄
∗ Ξ′bω Σ∗B̄∗ Ξ∗bρ Σ∗bK̄

∗ Ξ∗bω ΞB̄∗s Ξbη
′

Ξbφ Ξ′bη
′ ΩbK

∗ Ξ′bφ Ξ∗B̄∗s Ω∗bK
∗ Ξ∗bφ ,

while in the Ξ∗b sector, the 26 channels, ordered by increasing thresholds, are:

Ξ∗bπ Σ∗bK̄ ΛB̄∗ Ξ∗bη ΛbK̄
∗ ΣB̄∗ Ω∗bK Ξbρ

Ξbω Σ∗B̄ Ξ′bρ ΣbK̄
∗ Ξ′bω Σ∗B̄∗ Ξ∗bρ Σ∗bK̄

∗

Ξ∗bω ΞB̄∗s Ξbφ Ξ∗B̄s Ξ∗bη
′ ΩbK

∗ Ξ′bφ Ξ∗B̄∗s
Ω∗bK

∗ Ξ∗bφ .

For the subtraction point we use µ2 = M2
Ξb

+ m2
π, and thus we assume our default

value α = 1 in Eq. (5.1). There is no particularly good reason to use the same value as
in the Λb case. Even SU(3) does not relate the two µSI points, M2

Σb
+m2

π and M2
Ξb

+m2
π,

required to fix the RS in each sector. If instead we take α = 0.967 as in the Λb sector,
Ξb and Ξ∗b binding energies (masses) will be larger (smaller) by about 60-80 MeV. These
60-80 MeV should be admitted as an intrinsic systematic uncertainty in our predictions
in this sector.

In this way, we find the Ξb and Ξ∗b states that complete the Λb and Λ∗b SU(3)×HQSS
multiplets. The properties of the dynamically-generated Ξb and Ξ∗b states are compiled in
Table 5.4. By studying the evolution of the poles from the SU(6)×HQSS symmetric point,
we find that Λb(5797.6) and Ξb(5874) belong to the same irreducible representation, and
similarly the Λb(6009.3) and Ξb(6072.8) states. Also, the pair Ξb(6035.4) and Ξ∗b(6043.3),
in the 15 irrep of SU(6), form the HQSS doublet related by SU(3) to the doublet formed
by the Λb(5910.1) and Λ∗b(5921.5) states.

The three Ξb and one Ξ∗b states have also partners in the charm sector. We find that
states with the same group labels are the heavy flavor counterpart of each other, as already
noted for the Λb and Λ∗b sectors. By comparing Table 5.4 with Table 3.5 of the Chapter 3,
we see that the HQSS partners in the charm sector coming from the 15 representation,
Ξc(2772.9) and Ξ∗c(2819.7), are the bottom counterparts of the Ξb(6035.4) and Ξ∗b(6043.3)
states. Moreover, the charmed Ξc(2699.4) and Ξc(2775.4) resonances are analogous to the
Ξb(5874) and Ξb(6072.8) ones in the bottom sector, respectively. None of these bottomed
states have been seen experimentally yet. Schemes based on quark models [20, 201–204]
predict Ξb(1/2

−) and Ξb(3/2
−) states with similar masses to our estimates, although there
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exist some differences between the various predictions. The experimental observation of
the Ξb and Ξ∗b excited states and their decays might, on the other hand, provide some
valuable information concerning the nature of these states, whether they can be described
as pure quark states or they have an important molecular component.

 200

 300

 400

 500

Λb Λ
∗

b
Ξb Ξ

∗

b

∆
M

R
 [
M

e
V

] 

Λbππ

Σbπ

Σ
∗

bπ

Ξbππ   Ξ’bπ

Ξ
∗

bπ

Ξbπ   Ξ’b

Ξb

Exp  

Figure 5.1: Summary of the new predicted states, which are represented by red lines. We
also show the experimentally observed Λ0

b(5912) and Λ0
b(5920) states as black dots, and

some relevant hadronic thresholds with blue dashed lines. The experimental errors are
small (±0.8 MeV for Λb(5912) and ±0.76 for Λb(5920)) and are, thus, covered by the size
of the dots.

Fig. 5.1 shows a summary of the masses of the predicted Λb(1/2
−), Λb(3/2

−), Ξb(1/2
−)

and Ξb(3/2
−) states with respect to the mass of the ground state Λb, together with several

thresholds for possible two- and three-body decay channels. The experimental Λ0
b(5912)

and Λ0
b(5920) of LHCb are given for reference. Tables 5.3 and 5.4 show that, except for

Ξb(6072.8), our predicted states have a negligible width. This implies that they do not
strongly couple to two-body channels with lower mass, such as Σbπ or Ξbπ. Three-body
channels are not included in our calculation. These channels allow the possibility of strong
decay for some of the states. This is the case of the Λb(3/2

−) and the two Λb(1/2
−) which

lie above the threshold of Λbππ, but it is not the case for the lightest Λb and Ξb states.
They are below all hadronic channels, and hence they are stable under strong interactions.
These states could be detected through electric dipole decay to Λbγ and Ξbγ. Note that
the strong decay of Ξb(3/2

−) to Ξbπ is forbidden in s-wave but allowed through d-wave
mechanisms not included in our model.

In Fig. 5.2, we depict the (±|T |)-matrix for the four (SIJ) sectors studied in this
work. Sectors related through SU(3) or by HQSS are plotted with opposite sign to better
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appreciate the degree of fulfillment or breaking of these symmetries. The extra poles
stand for other states which stem from other SU(8)/SU(6) irreps to those considered in
this exploratory study.

Lb
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*

5700 5800 5900 6000 6100 6200 6300

-300

-200

-100

0

100

200

300

s @MeVD

±
ÈT
È
@f

m
D

Figure 5.2: ±maxj
∑

i|Tij(
√
s)| for the four (I, J) sectors studied. We use the “plus” sign

for the sectors Λb (blue, solid line) and Ξ∗b (red, dashed line) and the “minus” sign for
Λ∗b (blue, solid line) and Ξb (red, dashed line). Exact SU(3) or HQSS symmetries would
translate into exact mirror symmetries in the plot.

As we now deal with even heavier quarks, we would like to address one present tech-
nical aspect at this point. It follows from QCD that, as one flavor of quarks becomes
heavy, the spectrum of hadrons with one such quark tends to a universal pattern, shifted
by the heavy-quark mass. However, it is well known [53] that the renormalized loop func-
tion, G, grows logarithmically as any one of the hadrons in the loop gets heavy. This
implies that, in the infinitely-heavy-quark limit, the interaction (and so the binding en-
ergy in attractive sectors) would effectively increase at a logarithmic rate, rather than
stabilizing. By artificially increasing the bottomed-hadron masses we have verified that
such spurious binding would indeed arise for sufficiently large masses,3 however, it is not
clear how sizable the effect is in a realistic scenario. As we have seen above, the generic
subtraction point [Eq. (2.36)] actually produces too little binding and we have to move
to a phenomenological subtraction point to pinpoint the experimentally observed states.
This would suggest that the problem is not yet a pressing one at the bottom scale, at
least for the sector we are considering and those related to it by softly broken symme-
tries. It can be expected that whenever the subtraction point is shifted to finetune the

3Simultaneously, we find that the gaps between resonances decrease as 1/mQ.
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overall position of a multiplet of resonances, any spurious binding will produce at most
a residual distortion in the individual positions, without compromising the existence and
main couplings of the resonances under study.

5.2 Summary

We have analyzed odd-parity baryon resonances with one bottom quark. A summary
of our predictions is graphically shown in Fig. 5.1. The experimental states Λ0

b(5912)
and Λ0

b(5920) reported by the LHCb collaboration are obtained as dynamically-generated
baryon-meson molecular states. Within our scheme, these states are identified as HQSS
partners, which naturally explains their approximate mass degeneracy. Other Λ(1/2−)
states coming from the same attractive SU(6) × HQSS representations are also analyzed,
and we find a close analogy to the charm and strange sectors. In particular, the Λ0

b(5920)
is the bottomed counterpart of the Λ∗(1520) and Λ∗c(2625) resonances. Moreover, the
Λ0
b(5912) is part of a two-pole structure similar to the one observed in the case of the

Λ(1405) and Λc(2595) resonances.
Mass and decay mode predictions are also obtained for some Ξb(1/2

−) and Ξb(3/2
−)

resonances, which belong to the same SU(3) multiplets as the Λb(1/2
−) and Λb(3/2

−)
states. We find three Ξb(1/2

−) and one Ξb(3/2
−) states coming from the most attractive

SU(6) × HQSS representations. Two of these predicted states, Ξb(6035.4) and Ξ∗b(6043.3),
form a HQSS doublet similar to that formed by the experimental Λb(5912) and Λ∗b(5920)
resonances. None of these states have been detected yet, and their existence is also
predicted by constituent-quark models. It constitutes a clear case for discovery.
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Chapter 6

Conclusions and overview

In the last few decades, in connection with many on-going experiments, such as Belle,
CLEO, BaBar, and future ones, like CBM and PANDA at FAIR facility, the attention
of the theoretical community has turned towards predicting features of possible states
with heavy flavor. The goal is the explanation of the nature of the newly discovered
states. Effective field theory is a commonly used tool for exploring the low-energy regime
of Quantum Chromodynamics (QCD). The development of nonperturbative techniques
has led to the extension of the applicability of effective field theories to higher energies,
and thus made it suitable for studies of resonances or bound states. Heavy flavor has
been studied using unitarized coupled-channels models, and the latter has proved to be
successful in describing existing experimental data in the light sector. When dealing with
heavy quarks, a new symmetry of QCD plays an important role, the heavy-quark spin
symmetry (HQSS). This is a proper symmetry of QCD in the limit of infinitely massive
quarks. Thus, implementation of the HQSS constraints in the unitarized coupled-channels
models seems to be a natural step.

In this thesis we study baryon resonances with heavy flavor, which are dynamically gen-
erated by the interaction of mesons and baryons. For this purpose we use an extension of
the chiral Weinberg-Tomozawa potential to the spin-flavor (SF) symmetry for four flavors
(three light ones, and one heavy) with HQSS constraints. The resulting potential takes
into account two mechanisms: the one that involves an exchange of quarks between the
scattered meson and baryon, and the mechanism of an annihilation of a light antiquark in
the meson with a similar quark in the baryon and the subsequent creation of an antiquark-
quark pair to form a new meson and baryon. The potential is then implemented in the
on-shell Bethe-Salpeter (BS) equation, in order to obtain the scattering amplitudes. The
baryon-meson loop function that appears in the BS equation is logarithmically divergent,
and needs to be regularized; this is done using the subtraction point method. Baryon
resonances appear as poles of the scattering amplitude. The poles on the first Riemann
sheet on the real axis, that appear below threshold, are interpreted as bound states. The
poles that are found on the second Riemann sheet below the real axis and above threshold
are interpreted as resonances. Poles on the second Riemann sheet on, or below the real
axis, but below threshold, are virtual states. From the analysis of the pole in the complex
energy plane we find the mass and the width of the corresponding baryon resonances,
while the couplings to the baryon-meson channels are obtained from the residues of the
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scattering amplitudes. The couplings indicate the possible decay channels of the found
resonances.

In addition, several soft symmetry-breaking mechanisms are introduced. This is done
by the implementation of the physical values of hadron masses and meson decay constants.
The symmetry is broken adiabatically to the isospin SU(2) symmetry. In this way the
baryon resonances can be labeled with the original group representations, and in particular
the HQSS multiplets can be determined.

With such phenomenological model we have studied baryon resonances with heavy
flavor in several sectors, e.g. C = 1 sectors and also the C = 2 and 3 states. The
model generates a large number of states, stemming from three SU(8) representations:
4752, 168, and 120. The interaction in the first one, although attractive, is much weaker
than in the last two representations. Therefore, we have restricted our study to the 288
states (counting multiplicities in spin and isospin) that result from the 168 and 120
representations. We have determined the masses, the widths, and the coupling constants
of the found resonances, and analyzed the underlying group multiplet structure. Some
of our states could be identified with the experimentally known particles, whereas many
others are predictions of the model. For example, we reproduce the Λc(2595) and Λc(2625)
resonances, and interpret them as a members of the SU(8) 168-plet, and in both cases
with a dynamics strongly influenced by the ND∗ channel, in sharp contrast with previous
studies, where this coupled channel was not considered. We have also studied the changes
induced by a suppression factor in the interaction when charm is exchanged in the Λc

sector, and found that such changes do not modify the conclusions. Moreover, we have
identified the HQSS multiplets to which the resonances belong. Specifically, in the (Λc,
Λ∗c) sector two singlets are found, the Λc(2595) being one of them, and one doublet, which
contains the Λc(2625). Similarly, the (Σc, Σ∗c) sector contains one singlet and two doublets.
For the (Ξc, Ξ∗c) sector, there are three doublets and three singlets. We reproduce the
Ξc(2790) and Ξc(2815) resonances, and according to our tentative identification, these
states form a HQSS doublet. Finally, Ωc and Ω∗c states form two doublets and one singlet.
Furthermore, we have also analyzed the strange and charmed resonances with C = 2
and C = 3 linked to the strongly attractive 168 and 120 subspaces. To our knowledge,
these are the first predictions in these sectors obtained from a model fulfilling HQSS. The
organization into HQSS multiplets is also given in this case. There is scarce experimental
information in these sectors, but we believe that our predictions are robust, and will find
experimental confirmation in the future.

We have also studied hidden-charm N and ∆ resonances. We have carried out a
detailed analysis of the hidden-charm sector (i.e., with cc̄ pairs) with C = 0 and its
breaking as the symmetry is lifted from SU(6) × HQSS to SU(3) × HQSS (and then to
SU(2)×HQSS and SU(2) of isospin). We predict seven N -like and five ∆-like states with
masses around 4 GeV, most of them as bound states. These states form HQSS multiplets,
which are almost degenerate in mass. The N states form two HQSS multiplets. The
lowest one has the light-quark flavor-spin content coupled to 82, the light-flavor octet
of states with spin 1/2. Since the c̄c pair can couple to spin Scc̄ = 0, 1, this HQSS
multiplet consists of three nucleon states with J = 1/2, 1/2, and 3/2, and masses around
3930 MeV. On the other hand, the highest HQSS nucleon-like multiplet contains four
resonances with J = 1/2, 3/2, 3/2, and 5/2, and masses around 4000 MeV. In this



83

case, these states originate from the 84 SF light configuration. These two SU(3)×HQSS
(82)2,0 and (84)2,0 multiplets arise from the 70-plet of SU(6)× HQSS. According to our
analysis, there are no N physical states coming from the 56-plet. With regards to ∆
states, we find two multiples with very different average masses, because in this case they
originate from different SU(6)×HQSS representations. There is the ∆ multiplet coming
from the light-flavor decuplet with spin 1/2, which comes from the 702,0 SU(6)× HQSS
representation, (102)2,0 ⊂ 702,0, and it is formed by 3 states (J = 1/2, 1/2, 3/2) with
an average mass of 4035 MeV. Besides this multiplet, another one is formed by only two
∆ (J = 1/2, 3/2) resonances at the physical point out of the four states originating
from the (104)2,0 ⊂ 562,0 in the SU(6) limit. These two states are nearly degenerate,
with a mass of 4306 MeV. When we compare our approach with other molecular-type
ones, we observe in our model a richer structure of resonances due to the many channels
cooperating to create them. We have compared the N -like states found in our model with
findings of other approaches. Our states are much lighter than those predicted in the
hidden-gauge scheme [150–152], although significantly less bound than the crypto-exotic
baryons reported in the zero-range t-channel vector meson exchange model [141, 142].
We also compared our results with findings of a constituent-quark model, and obtain
that our predictions are close to those seen by the chiral interaction, based on meson
exchange [191], especially for the lowest-lying states. To our knowledge, our results for
exotic hidden-charm ∆-like resonances within a molecular baryon-meson scheme are the
first predictions in this sector.

We have finally analyzed even heavier baryon resonances, with one bottom quark. This
study was inspired by the finding of the LHCb collaboration, where two narrow resonances
with beauty flavor were seen, Λ0

b(5912) and Λ0
b(5920). Using our phenomenological model,

these states are interpreted as dynamically-generated baryon-meson molecular states, and
identified as HQSS partners, which naturally explains their approximate mass degeneracy.
We also find a close analogy with the charm and strange sectors. In particular, the
Λ∗b(5920) is the bottomed counterpart of the Λ∗(1520) and Λ∗c(2625) resonances. Moreover,
the Λb(5912) is part of a two-pole structure similar to the one observed in the case of the
Λ(1405) and Λc(2595) resonances. Mass and decay mode predictions are also obtained for
the Ξb(1/2

−) and Ξb(3/2
−) resonances, which belong to the same SU(3) multiplets as the

Λb(1/2
−) and Λb(3/2

−) states. We find three Ξb(1/2
−) and one Ξb(3/2

−) states coming
from the most attractive SU(6) × HQSS representations. Two of these predicted states,
Ξb(6035.4) and Ξ∗b(6043.3), form a HQSS doublet similar to that of the experimental
Λb(5912) and Λ∗b(5920) resonances. None of these states have been detected yet, and their
existence is also predicted by constituent-quark models [201]. It constitutes a clear case
for discovery.

Thus, exploiting the phenomenological model that uses the SF extension of the WT
interaction for four flavors with HQSS constraints, we have studied a rich number of
baryon resonances with charm and beauty flavors. The prominent features of our model
are the inclusion of the vector mesons and J = 3/2+ baryons in order to fulfill HQSS, and
the subsequent richer spectrum of the generated states as compared with previous models.
Some of the states generated in the model can be readily identified with the experimentally
known states, whereas others need more data for verification. For the open-charm and
hidden-charm states studied in this thesis, desirable data might be provided by the future



84 CONCLUSIONS AND OVERVIEW

PANDA experiment at FAIR facility.



Appendix A

Spin-flavor states

In this appendix we give details regarding the construction of the tensors MA
B and BABC ,

and the computation of the matrix elements of the interaction.
The wave functions in spin-flavor space of the basic meson and baryons are constructed

in terms of bosonic quark and antiquark operators with spin and flavor labels, namely,
Q†f↑,Q

†
f↓, Q

†
f̄↑ Q

†
f̄↓, f = u, d, s, c. The wave functions are shown below for the ground-state

hadrons, for states with the highest isospin projection (I3) in each isospin multiplet.

Wave functions for the ground-state hadrons:

Pseudoscalar mesons

|π〉 = 1√
2
(Q†u↑Q

†
d̄↓ −Q

†
u↓Q

†
d̄↑)|0〉,

|K〉 = − 1√
2
(Q†u↑Q

†
s̄↓ −Q

†
u↓Q

†
s̄↑)|0〉, |K̄〉 = 1√

2
(Q†s↑Q

†
d̄↓ −Q

†
s↓Q

†
d̄↑)|0〉,

|D〉 = 1√
2
(Q†c↑Q

†
d̄↓ −Q

†
c↓Q

†
d̄↑)|0〉, |Ds〉 = − 1√

2
(Q†c↑Q

†
s̄↓ −Q

†
c↓Q

†
s̄↑)|0〉,

|D̄〉 = 1√
2
(Q†u↑Q

†
c̄↓ −Q

†
u↓Q

†
c̄↑)|0〉, |D̄s〉 = 1√

2
(Q†s↑Q

†
c̄↓ −Q

†
s↓Q

†
c̄↑)|0〉,

|η〉 = 1√
12

(Q†u↑Q
†
ū↓ −Q

†
u↓Q

†
ū↑ +Q†d↑Q

†
d̄↓ −Q

†
d↓Q

†
d̄↑ − 2Q†s↑Q

†
s̄↓ + 2Q†s↓Q

†
s̄↑)|0〉,

|η′〉 = 1√
6
(Q†u↑Q

†
ū↓ −Q

†
u↓Q

†
ū↑ +Q†d↑Q

†
d̄↓ −Q

†
d↓Q

†
d̄↑ +Q†s↑Q

†
s̄↓ −Q

†
s↓Q

†
s̄↑)|0〉,

|ηc〉 = 1√
2
(Q†c↑Q

†
c̄↓ −Q

†
c↓Q

†
c̄↑)|0〉.

Vector mesons

|ρ〉 = −Q†u↑Q
†
d̄↑|0〉,

|K∗〉 = Q†u↑Q
†
s̄↑|0〉, |K̄∗〉 = −Q†s↑Q

†
d̄↑|0〉,

|D∗〉 = −Q†c↑Q
†
d̄↑|0〉, |D

∗
s〉 = Q†c↑Q

†
s̄↑|0〉, |D̄∗〉 = −Q†u↑Q

†
c̄↑|0〉, |D̄∗s〉 = −Q†s↑Q

†
c̄↑|0〉,

|ω〉 = − 1√
2
(Q†u↑Q

†
ū↑ +Q†d↑Q

†
d̄↑)|0〉, |φ〉 = Q†s↑Q

†
s̄↑|0〉,

|J/ψ〉 = −Q†c↑Q
†
c̄↑|0〉.
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Spin-1/2 baryons

|Λ〉 = − 1√
2
(Q†u↑Q

†
d↓Q

†
s↑ −Q

†
u↓Q

†
d↑Q

†
s↑)|0〉, |N〉 = − 1√

3
(Q†u↑Q

†
u↑Q

†
d↓ −Q

†
u↑Q

†
u↓Q

†
d↑)|0〉,

|Σ〉 = − 1√
3
(Q†u↑Q

†
u↑Q

†
s↓ −Q

†
u↑Q

†
u↓Q

†
s↑)|0〉, |Ξ〉 = − 1√

3
(Q†u↑Q

†
s↓Q

†
s↑ −Q

†
u↓Q

†
s↑Q

†
s↑)|0〉,

|Σc〉 = − 1√
3
(Q†u↑Q

†
u↑Q

†
c↓ −Q

†
u↑Q

†
u↓Q

†
c↑)|0〉,

|Ξ′c〉 = − 1√
6
(2Q†u↑Q

†
s↑Q

†
c↓ −Q

†
u↑Q

†
s↓Q

†
c↑ −Q

†
u↓Q

†
s↑Q

†
c↑)|0〉,

|Ωc〉 = − 1√
3
(Q†s↑Q

†
s↑Q

†
c↓ −Q

†
s↑Q

†
s↓Q

†
c↑)|0〉, |Ξc〉 = − 1√

2
(Q†u↑Q

†
s↓Q

†
c↑ −Q

†
u↓Q

†
s↑Q

†
c↑)|0〉,

|Λc〉 = − 1√
2
(Q†u↑Q

†
d↓Q

†
c↑ −Q

†
u↓Q

†
d↑Q

†
c↑)|0〉, |Ξcc〉 = − 1√

3
(Q†u↑Q

†
c↓Q

†
c↑ −Q

†
u↓Q

†
c↑Q

†
c↑)|0〉,

|Ωcc〉 = − 1√
3
(Q†s↑Q

†
c↓Q

†
c↑ −Q

†
s↓Q

†
c↑Q

†
c↑)|0〉.

Spin-3/2 baryons

|∆〉 = 1√
6
(Q†u↑Q

†
u↑Q

†
u↑)|0〉, |Σ∗〉 = 1√

2
(Q†u↑Q

†
u↑Q

†
s↑)|0〉, |Ξ∗〉 = 1√

2
(Q†u↑Q

†
s↑Q

†
s↑)|0〉,

|Ω〉 = 1√
6
(Q†s↑Q

†
s↑Q

†
s↑)|0〉, |Σ∗c〉 = 1√

2
(Q†u↑Q

†
u↑Q

†
c↑)|0〉, |Ξ∗c〉 = 1√

2
(Q†u↑Q

†
s↑Q

†
c↑)|0〉,

|Ω∗c〉 = 1√
2
(Q†s↑Q

†
s↑Q

†
c↑)|0〉, |Ξ∗cc〉 = 1√

2
(Q†u↑Q

†
c↑Q

†
c↑)|0〉, |Ω∗cc〉 = 1√

2
(Q†s↑Q

†
c↑Q

†
c↑)|0〉,

|Ωccc〉 = 1√
6
(Q†c↑Q

†
c↑Q

†
c↑)|0〉.

As compared to the wave functions that are given in the Appendix A of [175], there is
a minus sign difference in all 1/2+ baryons, in all 0− mesons except η, η′, and ηc, and in
φ, ω, and J/ψ (denoted ψ in [175]). No difference of sign appears in the wave functions
of 3/2+ baryons, neither in η, η′, and ηc, nor in 1− mesons (except φ, ω and J/ψ).

The states just defined are standard with respect to the flavor and spin-flavor groups
conventions of [157]. In particular they are SU(2)J , SU(2)I standard and follow the
convention of [156] for flavor SU(3) and SU(4). The only exceptions come from the
neutral mesons for which we use ideal mixing. In terms of these, the states of [157] are
given by:

|η′〉stan = |η′〉 [SU(3)], (A.1)

|η′〉stan =

√
3

4
|η′〉+

1

2
|ηc〉 [SU(4)], (A.2)

|ηc〉stan = −1

2
|η′〉+

√
3

4
|ηc〉 [SU(4)], (A.3)

|ω8〉 =

√
1

3
|ω〉+

√
2

3
|φ〉 [SU(3) and SU(4)], (A.4)

|ω1〉 =

√
2

3
|ω〉 −

√
1

3
|φ〉 [SU(3)], (A.5)

|ω1〉 =

√
1

2
|ω〉 − 1

2
|φ〉+

1

2
|J/ψ〉 [SU(4)], (A.6)

|ψ〉 = −
√

1

6
|ω〉+

√
1

12
|φ〉+

√
3

4
|J/ψ〉 [SU(4)]. (A.7)
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In these formulas, the right-hand sides contain the physical (or rather ideally-mixed)
neutral mesons that we use in this work; their wave functions are shown above. The
left-hand sides contain the standard or mathematical states used in [157]. They have
proper quantum numbers with respect to SU(6) or SU(8) (and their corresponding chain
of subgroups).1

In order to construct the tensors MA
B and BABC , M †A

B and B†ABC , the following
procedure is used: For all flavors f = u, d, s, c, and for the various creation operators
Q†f↑, Q

†
f↓, Q

†
f̄↑, and Q†

f̄↓, appearing in the wave-functions of the hadrons, the following
replacements are to be applied:

Q†f↑ → +Q†f1, Q†f↓ → +Q†f2, Q†
f̄↑ → −Q̄

†f2, Q†
f̄↓ → +Q†f1. (A.8)

Note i) the minus sign in Q†
f̄↑, and ii) for quarks, the labels 1 and 2 correspond to spin

up and down, respectively, but for antiquarks they correspond to spin down and up,
respectively.

After the replacement, there are only operators Q†A, and Q̄†A for creation (and QA,
and Q̄A for annihilation), carrying any of the eight labels A = u1, d1, s1, c1, u2, d2, s2, c2.
These operators transform under SU(8) in the way indicated in Eq. (2.25).

The meson matrix is then obtained by replacing Q̄†AQ†B with M †A
B and expressing it

in terms of meson operators by inverting the wave function equations. Similarly, for the
baryons, Q†AQ

†
BQ
†
C is replaced with B†ABC and then expressed in terms of baryon operators.

The wave functions of baryons and mesons are constructed from these annihilation and
creation operators, for instance,

|π〉 = 1√
2
(M †2

1 +M †6
5)|0〉, |N〉 = − 1√

3
(B†116 −B†152)|0〉.

1Note that |ψ〉 of [175] corresponds to −|J/ψ〉 here, not to |ψ〉 of [157] and of Eq. (A.7).
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Appendix B

D-matrices for open-charm sectors

In this appendix the coefficients DIJSC
ij appearing in Eq. (2.31) are shown for the various C

(charm), S (strangeness), I (isospin), and J (spin) sectors studied in this work (Tables B.1
- B.18). The D-matrices for the sectors with charm C = 1 and strangeness S = 0 can be
found in the Appendix B of Ref. [175]. The tables for the Ξc (C = 1, S = −1, I = 1/2,
J = 1/2) and for the Ξ∗c (C = 1, S = −1, I = 1/2, J = 3/2) have been divided into three
blocks each.
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Σ
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N
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Ξ
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D
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c ρ
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√
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∗
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Ξ
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∗

Ξ
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∗
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Ξ
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∗
Ξ
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∗
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√
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√
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√
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√
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√
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√
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1√3
−

2 √
23

2 √
23
−

5√6
2√3

Ξ
cc ρ

−
2√3

0
−
√

32
−

1√2
−

43
12

−
2√3
−

5
2 √

3
2 √

2
3
−

2 √
23

0
−

76
0
−
√

23
0

0
0

−
1√6

0
2√3

0
0

Λ
c D
∗

−
√

32
−

1
2 √

3
−
√

3
0

12
−

2
1

2 √
3
−
√

3
−
√

2
− √

23
0

2
−

1√6

√
2

0
−

1
1

0
0

0
2√3

√
23

Ξ
cc ω

0
0

−
12

1√6
−

2√3
1

2 √
3

23
52
−

2 √
23

2 √
2

3
0

7
2 √

3
0

√
23

0
0

0
1

3 √
2

0
−

23
0

0

Σ
c D

12
−

12
0

0
−

5
2 √

3
−
√

3
52

−
2
− √

23

√
2

0
7√3
−

1√2
5 √

23
0
−
√

3
√

3
0

0
0

2
√

2

Ξ
∗cc ρ

4 √
23

0
√

6
2

2 √
2

3
−
√

2
−

2 √
23
− √

23
−

1
13

5√3
0

√
23

0
−

23
0

0
0

2√3
0
−

4 √
23

0
0

Ξ
∗cc ω

0
0

√
2

−
2√3
−

2 √
23
− √

23
2 √

2
3

√
2

5√3
−

53
0
− √

23
0

2√3
0

0
0

−
23

0
4 √

2
3

0
0

Ξ
c D

s
0

1
1
− √

32
0

0
0

0
0

0
0

√
3
−

1√2
−
√

6
−

1√2
0
−
√

3
1√2

2
−

2
1
−
√

2

Σ
c D
∗
−

5
2 √

3
5

2 √
3
−
√

3
0

−
76

2
7

2 √
3

7√3

√
23
− √

23

√
3

−
1
63

5√6

√
23

0
2

−
2

0
0

0
−

7√3

√
23

Ξ
cc η
′

0
0

1√2
0

0
−

1√6
0
−

1√2
0

0
−

1√2
5√6

0
−

2√3
0
−

1√6
1√6

0
0

0
5

3 √
2

−
23

Σ
∗c D
∗

√
23
− √

23

√
6

0
−
√

23

√
2

√
23

5 √
23

−
23

2√3
−
√

6
√

23
−

2√3
−

2
63

0
√

2
−
√

2
0

0
0

√
23
−

8√3

Ξ
cc φ

0
0

0
1√3

0
0

0
0

0
0
−

1√2
0

0
0

0
−

5√6
1√6

53
0

2 √
2

3
−

7
3 √

2
−

23

Ξ
′c D

s
0

1√3
0

1√2
0

−
1

0
−
√

3
0

0
0

2
−

1√6

√
2
−

5√6
0

1
−

5√6
−

2√3
−

2√3

√
3

√
6

Ξ
c D
∗s

0
−

1√3
0

1√2
0

1
0

√
3

0
0
−
√

3
−

2
1√6
−
√

2
1√6

1
−

2
−

1√6
−

2√3
2√3

−
2√3
− √

23

Ω
cc K

∗
−

1√2
1√2

0
−

1√3
−

1√6
0

1
3 √

2
0

2√3
−

23
1√2

0
0

0
53
−

5√6
−

1√6
−

13
2 √

2
3

2 √
2

3
−

7
3 √

2
−

23

Ξ
∗cc φ

0
0

0
−

2 √
23

0
0

0
0

0
0

2
0

0
0

0
−

2√3
−

2√3
2 √

2
3

0
−

23
23
−

2 √
2

3

Ω
∗cc K

∗
2

−
2

0
2 √

23
2√3

0
−

23
0
−

4 √
23

4 √
2

3
−

2
0

0
0

2 √
2

3
−

2√3
2√3

2 √
2

3
−

23
−

83
23
−

2 √
2

3

Ξ
′c D
∗s

0
−

53
−

1
−

5√6
0

2√3
0

2
0

0
1
−

7√3
5

3 √
2

√
23
−

7
3 √

2

√
3
−

2√3
−

7
3 √

2
23

23
−

23
−
√

23

Ξ
∗c D
∗s

0
2 √

2
3

√
2

2√3
0

√
23

0
√

2
0

0
−
√

2
√

23
−

23
−

8√3
−

23

√
6
− √

23
−

23
−

2 √
2

3
−

2 √
2

3
−
√

23
−

1
03

T
ab

le
B

.13:
C

=
2,
S

=
0,
I

=
1/2,

J
=

1/2.



103

Ξ
∗cc π

Ξ
∗cc η

Ω
∗cc K

Ξ
cc ρ
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Ξ
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Table B.17: C = 3, S = 0, I = 0, J = 1/2.
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Table B.18: C = 3, S = 0, I = 0, J = 3/2.



Appendix C

D-matrices for hidden-charm sectors

In this appendix we show the D-matrices in the hidden-charm sector with total charm
C = 0 and strangeness S = 0, and isospin I = 1/2 and 3/2. There are three possible
values of spin for each case of isospin: J = 1/2, 3/2, 5/2.
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Table C.1: C = 0, S = 0, I = 1/2, J = 1/2.
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Table C.2: C = 0, S = 0, I = 1/2, J = 3/2.
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J = 5/2.

∆J/ψ Σ∗cD̄
∗

∆J/ψ 0 2
√

3

Σ∗cD̄
∗ 2

√
3 4

hline

Table C.4: C = 0, S = 0, I = 3/2,
J = 5/2.
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Table C.5: C = 0, S = 0, I = 3/2, J = 1/2.
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Table C.6: C = 0, S = 0, I = 3/2, J = 3/2.
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Al eeuwen probeert de mensheid te begrijpen hoe ons universum is opgebouwd. Wat
zijn de objecten die we om ons heen zien, en wat zijn de wetten van de natuur die de
structuur van deze objecten bepalen? Tegenwoordig geeft de natuurkunde antwoorden
op deze vragen. Er is al veel bekend over de structuur van de materie, maar er zijn nog
vele niet-beantwoorde vragen, niet-verklaarde fenomenen en ontdekte deeltjes die niet
begrepen zijn, of omgekeerd, deeltjes die worden voorspeld, maar nog niet zijn ontdekt.
Laten we beginnen met hoe we tegenwoordig materie beschrijven.

                                       elektron              proton 

 

           materie              atoom                  kern              neutron                quark 

  
 

 

 

 

 

Figure C.1: De bouwstenen van materie.

De zichtbare materie in het universum is opgebouwd uit atomen; elk atoom bestaat uit
een kern van protonen en neutronen, omgeven door een wolk van elektronen. Het proton
en neutron zijn voorbeelden van deeltjes die baryonen genoemd worden. Baryonen, samen
met mesonen, vormen een groep van deeltjes die hadronen genoemd worden. Het wordt
verondersteld dat veel van de bekende mesonen uit een quark-antiquarkpaar bestaan (qq̄,
q is een quark, q̄ is een antiquark), en dat veel baryonen uit drie quarks bestaan (qqq).
De quarks in hadronen worden aan elkaar “gelijmd” door uitwisseling van gluonen, een
dergelijke interactie wordt de sterke kernkracht genoemd. De theorie die de sterke inter-
actie beschrijft is de kwantumchromodynamica, in het Engels Quantum Chromodynamics
of QCD (uit het Grieks χρωµα, dat kleur betekent, een kwantumgetal dat de structuur
van de sterke wisselwerking definieert). De sterke kernkracht is één van de vier bekende
interacties in de natuur. De andere drie zijn de zwaartekracht, de elektromagnetische
interactie en zwakke kernkracht. Om de interacties van quarks in hadronen te beschrijven
worden de laatste drie interacties vaak verwaarloosd omdat zij veel zwakker zijn dan de
sterke kernkracht op de schaal van subatomaire deeltjes.
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Maar laten we terugkeren naar quarks. Vrije quarks zijn nooit waargenomen, vanwege
de manier waarop ze op elkaar inwerken. Wanneer men probeert een quark van een hadron
te scheiden, door de afstand tussen de quark en de rest van het systeem te vergroten, dan
wordt de sterkte van de samenbindende kracht tussen de quarks steeds groter en wordt
het onmogelijk om de quarks in het hadron te scheiden. Dit verschijnsel heet opsluiting of
“confinement”. Anderzijds, wanneer de afstand tussen quarks zeer klein is, gedragen ze
zich als vrije deeltjes. De interactiesterkte tussen quarks neigt dan naar nul en dit wordt
de asymptotische vrijheid genoemd. Bij hoge energie, in het regime van de asymptotis-
che vrijheid, kan de zogenaamde storingsrekening worden toegepast. Het idee is om de
interactie te ontwikkelen in termen van een kleine parameter, waarna men de termen van
de expansie die de grootste bijdrages leveren behoudt en de kleinste verwaarloost. Bij
lage energieën, wanneer confinement een cruciale rol speelt, blijkt de situatie lastiger om
te behandelen. Storingsrekening techniken kunnen hier niet worden toegepast. Het theo-
retische alternatief voor dit regime is rooster-QCD, een methode waarin de ruimte wordt
opgebouwd uit een rooster van punten, met quarkvelden gedefinieerd op roosterpunten, en
gluonen die worden gedefinieerd op de lijnen die deze plaatsen verbinden. Deze methode is
zeer succesvol in het beschrijven van de bestaande hadronen met de laagste massa’s, maar
vergt veel tijd en computerkracht. Gelukkig is er een andere werkwijze die kan worden
toegepast voor het oplossen van de problemen van elementaire deeltjes bij lage energieën.
Dit zijn effectieve veldentheorieën. De belangrijkste ideeën hier zijn dat ten eerste alleen
relevante deeltjes worden beschouwd, en, ten tweede, rekening wordt gehouden met de
symmetrieën van QCD. Laten we de eerste uitspraak uitleggen. Zoals hierboven vermeld
zijn quarks als gevolg van de confinement gebonden in hadronen. Daarom is het bij lage
energieën voldoende om slechts de interactie tussen hadronen te beschouwen, en is het niet
nodig om specifiek te kijken naar het gedrag van de afzonderlijke quarks. Natuurkundigen
zeggen dat in een dergelijke situatie de hadronen de relevante vrijheidsgraden zijn.
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Figure C.2: Weergave van een baryonresonantie die ontstaat uit een baryon en een meson,
en het opeenvolgende verval.

Dit nemen we ook aan in dit proefschrift. Wij beschouwen hadronen als onze relevante
vrijheidsgraden en we kijken naar de interacties tussen baryonen en mesonen. Wanneer
de interactie aantrekkend is, is er de mogelijkheid dat een deeltje ontstaat. Dit heet
een baryonresonantie. Deeltjes die op deze manier ontstaan worden ook wel moleculaire
toestanden genoemd. Deze deeltjes zijn meestal onstabiel en vervallen direct na hun
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ontstaan.
Het tweede idee achter het gebruik van effectieve veldentheorie is om rekening te houden

met de symmetrieën van QCD. De interactie van elementaire deeltjes is onderhevig aan
de symmetrieën in de natuur. Sommige symmetrien zijn niet exact, maar geven een goede
beschrijving van de natuur. Een voorbeeld van een dergelijke benaderende symmetrie is
chirale symmetrie. Chirale symmetrie betekent invariantie (onafhankelijkheid) van het
systeem onder de chirale transformaties, spiegeltransformaties (bijv. de linker- en de
rechterhand transformeren in elkaar onder een chirale transformatie). Voor elementaire
deeltjes betekent de chirale symmetrie dat quarks massaloos zijn. Chirale storingstheorie
is een model op basis van deze symmetrie en geeft goede resultaten, in overeenstemming
met de experimenten. Dit lijkt verrassend, omdat quarks wel degelijk massa hebben. Er
zijn zes typen quarks, ook wel smaken genoemd. In het Engels worden ze aangeduid als
up (u), down (d), strange (s), charm (c), bottom of beauty (b) en top of true (t). De eerste
drie zijn licht, en kunnen dus worden behandeld als massaloze deeltjes.1 De andere quarks,
vanaf de charm-quark, zijn veel zwaarder. Deze quarks worden beschreven met de zware-
quarksymmetrie. Er is de zwarequarksmaaksymmetrie en de zwarequarkspinsymmetrie,
beide zijn exact in de limiet van oneindig zware quarks. De zwarequarksmaaksymme-
trie stelt dat oneindig zware quarks van verschillende smaken zich op dezelfde manier
gedragen. De zwarequarkspinsymmetrie (verder ZQSS) stelt dat de spin van de zware
quark niet van belang is voor de interactie. De spin in dit geval is niet een beestje maar
een andere parameter (kwantumgetal) van de elementaire deeltjes. In analogie met de
klassieke mechanica kan de spin worden opgevat als een getal dat de rotatie van het
deeltje beschrijft.

In dit proefschrift bestuderen we baryonresonanties die vier smaken bevatten. Dit
betekent dat ze vier soorten quarks bevatten: drie lichte smaken (u, d, s), en een zware
smaak (c or b). We houden rekening met de ZQSS en het model dat we gebruiken
neemt de chirale symmetrie voor lichte quarks in acht. Daarnaast maken we gebruik
van andere benaderende symmetrieën van QCD, namelijk de smaaksymmetrie en de spin-
smaaksymmetrie. De smaaksymmetrie voor drie lichtste quarks heet SU(3) en betekent
dat de interactie niet afhankelijk van smaak is. Deze SU(3) symmetrie komt goed overeen
met het gemeten baryonspectrum. De SU(3) symmetrie stelt dat er een octet is van
baryonen (acht deeltjes) met spin 1/2 en ook een decuplet van baryonen (tien deeltjes)
met spin 3/2. Al deze deeltjes kunnen gëıdentificeerd worden met experimenteel bekende
baryonen. Een andere symmetrie van QCD is de isospinsymmetrie, in feite de smaaksym-
metrie voor u en d quarks. Deze symmetrie werd gëınspireerd door de gelijkenis tussen de
massa’s van het proton (uud) en het neutron (udd), respectievelijk mp = 938.3 MeV/c2

en mn = 939.6 MeV/c2. De spin-smaaksymmetrie combineert de smaaksymmetrie en de
spinsymmetrie – invariantie van het systeem van de rotaties van de spins van de quarks.
Het combineert dus het bovengenoemde octet van spin-1/2 en het decuplet van spin-3/2
baryonen.

Het is een gebruikelijke manier in de theoretische natuurkunde om een model eerst
symmetrisch te maken, en vervolgens deze symmetrie te breken. Op deze manier kan het
aantal onbekende parameters van de interactie worden verminderd. In dit proefschrift

1De massa’s van lichte quarks zijn aanzienlijk lichter dan de massa’s van nucleonen. Nucleonen krijgen
hun massa’s dankzij de grote bindingsenergie tussen quarks.
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gebruiken we een model dat de SU(6) spin-smaaksymmetrie bevat, een combinatie van
de SU(3) smaaksymmetrie en de spinsymmetrie, en dat ook de beperkingen die uit de
ZQSS komen omvat. Daarna breken we de symmetrie tot de isospinsymmetrie. Dit doen
we door het veranderen van de massa’s van de hadronen en andere fysische waarden van
het systeem. Op die manier bestudeerden we het resultaat van baryon-mesoninteracties,
moleculaire baryonresonanties, en ook vonden we hoe de ontdekte toestanden zijn ver-
bonden door verschillende symmetrieën. Bijvoorbeeld, dat baryonresonanties die door de
ZQSS zijn verbonden ongeveer gelijke massa’s hebben.

Met alle bovenstaande gegevens hebben we een aantal verschillende baryonresonanties
met zware quarks bestudeerd. We onderzochten baryonresonanties met charmgetal C = 1,
wat betekent dat ze één charm-quark bevatten (en de rest van drie quarks zijn licht, en ook
een lichte antiquark dat afkomstig is van een meson). Dus, de quarkinhoud van dergelijke
baryonresonanties is lllcl̄, waar l een lichte smaak aanduidt. Sommige gevonden bary-
onresonanties kunnen onmiddellijk gëıdentificeerd worden met de experimenteel bekende
toestanden. Baryonresonanties met charmgetal C = 2 (llccl̄) en met charmgetal C = 3
(lcccl̄) werden ook bestudeerd. Deze resonanties zijn nog niet in de experimenten gezien,
en vragen dus om meer experimentele data. Verder analyseerden we baryonresonanties
met verborgen charm. Dit betekent dat deze deeltjes mogelijk meerdere charm-quarks
bevatten en een charm-antiquark. In het bijzonder hebben we de toestanden bestudeerd
die één charm-quark bevatten, lllcc̄, zodat het totale charmgetal nul is. Dergelijke toes-
tanden zijn echter nog niet gezocht in de experimenten hoewel ze worden ook voorspeld
door andere theoretische modellen. Ten slotte hebben we ook baryonresonanties met een
bottom-quark onderzocht, lllbl̄. Dergelijk onderzoek werd gëınspireerd door de bevin-
dingen bij de Large Hadron Collider (LHC), “grote hadronenbotser”, bij de Europese
Organisatie voor Nucleair Onderzoek (CERN). Daar werden twee zware deeltjes met bot-
tomgetal gevonden, met ongeveer gelijke massa’s van 5912 MeV/c2 en 5920 MeV/c2. We
hebben deze deeltjes in ons model gereproduceerd en konden hun gelijke massa’s verklaren
door de ZQSS. Ook voorspelden we additionele bottombaryonresonanties.

Het is duidelijk dat de vergelijking van de resultaten van theoretische berekeningen
met de experimentele resultaten zeer belangrijk is. Niet alleen om te kunnen testen of
het theoretische model correct is, maar ook om waardes te vinden voor parameters in de
theorie. Voor de deeltjes die worden bestudeerd in dit proefschrift is het geplande PANDA
(Engels: anti-Proton ANnihilation at DArmstadt) experiment bij FAIR (Engels: Facility
for Antiproton and Ion Research) in Duitsland veelbelovend.
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