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Chapter 1

Introduction

1.1 Introduction

Modeling processes in diverse disciplines such as chemistry, computer science, arti-
ficial intelligence, economics, evolutionary computation, molecular biology, neuro-
science, physics, and sociology inevitably leads to system models consisting of the
interconnection of a large number of subsystems. In this thesis, such system models
will be referred to as complex systems. Studying complex systems requires investigat-
ing how the relationship between its parts gives rise to the collective behavior of the
system. Two classes of complex systems considered in this thesis are switched systems
and networks of dynamical agents.

Switched systems are dynamical systems composed of the interaction between a
finite number of subsystems and a logical rule orchestrating the switching between
these subsystems. Studying this class of systems is motivated by numerous appli-
cations in power systems, traffic control, the automotive industry, and control of
mechanical systems. In case the individual subsystems of a switched system have
linear dynamics, the system is called a switched linear system (SLS). Switched linear
systems have attracted a lot of attention in the last two decades; see e.g. [7], [8], [15],
[19], [48], [90]. A survey of recent results for SLS can be found in [51].

The second class of systems that we will consider in this thesis is networks
of dynamical systems, which, depending on the context, are also referred to as
multi-agent systems. These systems are composed of several agents that interact
according to a communication law to fulfill a certain task. The communication
law is typically given by a graph called the communication graph. The vertices
of the communication graph correspond to the agents, whereas the edges (or arcs)
determine the interconnection structure of the network. Consequently, the overall
behavior of the network is determined by two factors, namely the agents’ dynamics
and the underlying communication graph.

Distributed control of networks of dynamical agents has broad applications
in diverse areas including cooperative control of unmanned air vehicles (UAVs),
formation control, flocking, distributed sensor networks, and many more (see e.g.
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Figure 1.1: Schematic view of the content of the thesis: topics & system classes.

[81], [97], [27], [21]). Among numerous problems formulated and studied in the
context of networks and multi-agent systems, perhaps the most well known is the
consensus problem; see e.g. [72], [41], [80]. Consensus roughly means that the agents
agree on a certain quantity of interest. A notion closely related to consensus is the
so-called synchronization problem; see e.g. [43], [58], [88], [101], [2]. Synchronization
means that the states of the agents converge to a common trajectory. Designing
feedback protocols to achieve consensus/synchronziation has attracted attention of
many researchers in the last decade; see e.g. [79], [47], [83], [96], [95].

After having clarified the classes of systems that we will deal with, we will
now give a brief introduction to the problems we will study for these classes. An
overview is provided schematically in Figure 1.1. As can be seen from this figure,
model reduction constitutes one of the main themes of this thesis. Given a system
of high order dynamics, the model reduction problem amounts to finding simpler
lower order models for this system such that the reduced order models approximate
relatively well the behavior of the original model. Moreover, it is of interest to
preserve certain desired properties of the original model in the reduced order model.

Model reduction is among the classical problems in the field of systems and
control. Reduced order models facilitate the analysis, and thus provide a better
understanding of the behavior of the underlying system. Numerous model order
reduction techniques have been proposed in the last decades, and can be catego-
rized into two broad groups of balanced truncation schemes and moment matching
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based methods. The most well-known of these methods is Lyapunov balanced trun-
cation first introduced in [67], where the main idea is to transform the system to
an equivalent system representation in which the states which are easy (difficult)
to reach are also easy (difficult) to observe. Among other types of balancing, we
mention stochastic, bounded real, and positive real balancing; see [22], [74], [70].
Adopting Krylov subspace projection methods, used in numerical linear algebra (see
e.g. [87]) to obtain reduced order models has led to numerous moment matching
model reduction techniques; see e.g. [28], [32], [42].

In this thesis, model reduction techniques are established both for switched linear
systems and multi-agent systems. For switched linear systems we establish an
extended balanced truncation approach to obtain reduced order models. The idea is
to seek for conditions under which there exists a single state space transformation
that brings all subsystems (modes) of a given SLS in balanced coordinates. Moreover,
we derive sufficient conditions under which global uniform exponential stability of
the SLS is preserved in the reduced order model. Likewise, we propose conditions
for preservation of positive realness or bounded realness of the SLS.

For networks and multi-agent systems two different approaches for model re-
duction will be developed in this thesis, namely reducing the dynamic order of the
individual agents and reducing the size of the communication graph. In the first ap-
proach, bounded real balancing is adopted to reduce certain networks dynamics such
that stability or synchronization of the original system is preserved in the reduced
order model. In addition, we establish a priori model reduction error bounds to
compare the behavior of the original network to that of the reduced order model. It
should be noted that, in this technique, the interconnection structure of the network
remains unchanged in the order reduction process. In contrast to this first approach,
the focus of the second approach is the interconnection structure and, in particular,
the size of the underlying communication graph. For this purpose, a model reduction
technique is proposed in this thesis which is based on clustering the vertices (agents)
of the underlying communication graph by means of suitable graph partitions. An
inevitable challenge here is to preserve the spatial structure of the network. This
indeed has been taken into account in the proposed model reduction method, and
the reduced order models are again realized as multi-agent systems defined on a
new graph with a reduced number of vertices. We provide an explicit formula for
the H

2

-norm of the error system obtained by comparing the input-output behaviors
of the original model and the reduced order model for the case that the clusters are
chosen using “almost equitable partitions” of the graph.

Synchronization in networks of dynamical agents is another property that will be
studied in this thesis. Other than the synchronization preservation which has already
been pointed out as an issue in model reduction of networks, we will carry out syn-
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chronization analysis in a more focused manner as an individual topic. In particular,
we will deal with synchronization analysis for networks with arbitrary switching
topologies. We assume that the agents have general, yet identical, linear dynamics,
and the underlying communication topology may switch arbitrarily within a finite
set of admissible topologies. Then, small gain and passivity types of conditions will
be derived that guarantee stability or synchronization of the network. Note that this
indeed is the part where the underlying classes of systems we consider in this thesis
intersect as depicted in Figure 1.1.

It is true that one can adopt tools from classical control theory for the analysis
and design of networks of dynamical agents. However, to facilitate the design
and provide a better understanding of the network structure, studying the network
properties from a topological perspective has been carried out in many recent works;
see e.g. [56], [13], [106], [24]. Motivated by this, in the current dissertation we will
carry out (structural) controllability analysis and address the disturbance decoupling
problem for dynamical networks by establishing topological conditions. These
problems are introduced next.

The notions of weak and strong structural controllability have been introduced
and developed in [50] and [55] for ordinary linear systems. Recently, these properties
have been investigated for networks of dynamical agents both for the case of weak
(see [52]) and strong structural controllability (see [16]). One main advantage of
strong structural controllability is its robustness against perturbations in the coupling
strengths, which, unlike ordinary controllability analysis, leads to numerically stable
methods. In this thesis, with a rather different terminology, we investigate the prop-
erty of strong structural controllability for systems defined on a graph. The notion of
zero forcing sets will be adopted here, which is closely related to the minimum rank
problems of patterned matrices (see e.g. [4] and [37]). We will show that there is a
one-to-one correspondence between the set of leaders rendering the network control-
lable and zero forcing sets. We will use special subclasses of graphs, including path,
cycle, and complete graphs to illustrate the proposed results. This also provides a
link between the contribution of our work to that already established in the literature;
see e.g. [75], [69], [106].

Finally, the last problem we address in this thesis is disturbance decoupling of
dynamical networks. Roughly speaking, a system is disturbance decoupled if its
output is independent of disturbance signals affecting the states of the system. In
case the system is not disturbance decoupled, one may try to design a feedback
controller to render the closed loop system disturbanced decoupled. This design
problem is called the disturbance decoupling problem, and is well-known in the
context of linear systems and geometric control (see e.g. [94] and [102]). The notion
of controlled invariance subspace plays a central role in the disturbance decoupling
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problem. In fact, the solution of the disturbance decoupling problem is an immediate
application of the concept of controlled invariance; see e.g. [5], [103], and [91].

In this thesis, we consider the disturbance decoupling problem for networks
of dynamical agents. We are interested in topological conditions that imply the
disturbance decoupling of the network, and more generally guarantee the existence
of a state feedback rendering the network disturbance decoupled. In particular, we
will develop a class of graph partitions, which can be described as a “topological
translation” of controlled invariant subspaces in the context of dynamical networks.
Then, we will derive sufficient conditions in terms of graph partitions such that the
network is disturbance decoupled, as well as conditions guaranteeing solvability of
the disturbance decoupling problem.

1.2 Outline of the thesis

This thesis is organized as follows. In Chapter 2, an extended balanced truncation
scheme is established for model reduction of switched linear systems. In Chapter
3, we propose a method to reduce the dynamic order of agents in a network, while
stability or synchronization is preserved in the reduced order model. A second model
reduction technique for networks of dynamical agents is established in Chapter 4,
where agents are clustered by means of suitable graph partitions. Methods for sta-
bility and synchronization analysis of networks with arbitrary switching topologies
are developed in Chapter 5. Structural controllability of networks is linked to zero
forcing sets in Chapter 6. Finally, Chapter 7 studies disturbance decoupling problem
of networks from a topological prospective.

1.3 Origins of the chapters

Chapter 2 is based on [62] which has appeared as a full paper in IEEE Transactions
on Automatic Control. A brief version of this chapter has been presented at the
50

th IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC) in Orlando, USA [61]. Chapter 3 is essentially the same as [64] which has
been published in Systems and Control Letters. Chapter 4 is based on the paper [59],
which has been submitted for journal publication. The results provided in Chapter 5
have been partially presented at the 20

th International Symposium on Mathematical
Theory of Networks and Systems in Melbourne, Australia [63]. In addition, the
content of Chapter 5 has been submitted for journal publication [60]. Finally, Chapter
6 and Chapter 7 constitute two papers, [66] and [65], have both been submitted for
journal publication.
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1.4 Notation

Two types of notation will be used in this thesis, namely “local notation” and “global
notation”. Local notation refers to notation adopted in one or more chapters, and
will be defined explicitly in the corresponding chapters. Global notation refers to
notation that is used throughout the whole dissertation, and will be mostly used
without an explicit definition. In this section, we recap the most important global
notation used in this thesis.

Sets
The symbols N, R, and C denote the sets of natural numbers, real numbers, and
complex numbers, respectively. By Rn⇥m and Cn⇥m, we denote the spaces of all
n⇥m matrices with real and complex elements, respectively. For a set S, we denote
the cardinality of S by |S|.

Vectors and Matrices
For a vector v, we denote its ith element by v

i

. For a set of column vectors w
1

, w
2

, . . . , w
k

,
we define

col(w
1

, w
2

, . . . , w
k

) =

2

6664

w
1

w
2

...
w

n

3

7775
.

For a matrix A 2 Cn⇥m, we use A> and A⇤ to denote the transpose and conjugate
transpose of A, respectively. For a set of matrices A

1

, A
2

, . . . , A
N

, we define

blockdiag(A
1

, A
2

, . . . , A
n

) =

2

6664

A
1

0 · · · 0

0 A
2

· · · 0

...
...

. . .
...

0 0 · · · A
n

3

7775
,

and we use diag(A
1

, A
2

, . . . , A
n

) for the case where n = m = 1.
For a symmetric matrix M 2 Rn⇥n, we write M > 0 (M < 0) if M is positive

(negative) definite. Also we write as M > 0 (M 6 0) if M is positive (negative)
semi-definite.

The symbol 11
n

denotes the column vector of ones with n elements. The n⇥m

zero matrix is denoted by 0

n⇥m

, and I
n

denotes the identity matrix with n rows and
columns. We drop the indices and write 11, 0, and I whenever there is no confusion
regarding the dimension.
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Norms
The H

2

-norm of a strictly proper stable real rational matrix G is denoted by kGk
2

.
For a proper stable real rational matrix G, we denote its H1-norm by kGk1.

Mappings
Let f : U ! V be a linear mapping from the vector space U to the vector space V .
Then we denote the image of f by im f = {f(u) : u 2 U}, and denote the kernel of f
by ker f = {u 2 U : f(u) = 0}.





Chapter 2

A simultaneous balanced truncation approach
to model reduction of switched linear systems

2.1 Introduction

Seeking for simpler descriptions of highly complex or large scale systems has resulted
in the development of many different model reduction methods and techniques.
Models of lower complexity provide a simpler description, better understanding,
and easier analysis of the system. In addition, models of lower complexity make
computer simulations more tractable, and simplify controller design. Two important
issues in model reduction are to obtain good error bounds, and to preserve important
system properties like stability, positive realness, or bounded realness. To achieve
this, extensive research, and many approaches are reported in the literature on
model reduction of linear time-invariant finite-dimensional systems (for an extensive
overview of the literature, see [1]). One of the most well-known techniques is model
reduction by balanced truncation, first introduced in [68], and later appearing in
the control system literature in [67] and [76]. In this approach, first the system is
transformed into a balanced form, and next a reduced order model is obtained by
truncation. There are other types of balancing methods available in the literature.
Instances of those are stochastic and positive real balancing, proposed in [22], and
bounded real balancing, proposed in [74]. In addition, frequency weighted balancing
has been developed to approximate the system over a range of frequencies. In [25],
[49], [98] and [109], different schemes are proposed for frequency weighted balancing.
Another category of model reduction approaches is formed by Krylov based methods,
based on moment matching. Among the pioneering work in this direction, we refer
to [28], [32], and [42].

Despite the considerable research effort on model reduction for ordinary lin-
ear systems, developing methods for model reduction of systems with switching
dynamics has only been studied in very few papers up to now (see e.g. [29], [85], [9]).

A switched linear system, typically, involves switching between a number of
linear systems, called the modes of the switched linear system. Hence, to apply
balanced truncation techniques to a switched linear system, we may seek for a basis
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of the (common) state space such that the corresponding modes are all in balanced
form. A natural question that arises here is under what conditions such a basis exist.
In this chapter, necessary and sufficient conditions are derived for the existence of
such basis. The results obtained are not limited to a certain type of balancing, but
are applicable to different types such as Lyapunov, bounded real, and positive real
balancing.

It may happen that some state components of the switched linear system are
difficult to reach and observe in some of the modes yet easy to reach and observe
in others. In that case, deciding how to truncate the state variables and obtain a
reduced order model is not trivial. A solution to this problem is proposed in this
chapter. By averaging the diagonal gramians of the individual modes in the balanced
coordinates, a new diagonal matrix is obtained. This average balanced gramian can
be used to obtain a reduced order model. In the case of Lyapunov balancing, the
average balanced gramian assigns an overall degree of reachability and observability
to each state component. In this way, one can decide which state components should
be discarded in order to obtain a reduced order switched linear system.

Another interesting issue is, in case that the original switched linear system is
stable, how to ensure that the reduced order switched linear system retains this
stability. It is well-known that the existence of a common quadratic Lyapunov
function (CQLF) is a sufficient condition for global uniform exponential stability
of the switched linear system, see [48]. In this chapter we will establish conditions
under which the reduced order switched linear system inherits a CQLF from the
original switched linear system, thus preserving global uniform exponential stability.

Similarly, one may be interested in preserving positive realness or bounded
realness of the original switched linear system in the reduced order model after
applying simultaneous positive real or bounded real balanced truncation. Conditions
for preserving these properties are proposed in this chapter. The proposed conditions
are similar to those obtained for stability preserving yet with a different interpretation.

It turns out that, the higher the number of modes of the original switched linear
system, the more restrictive the proposed conditions are. Therefore, in addition to si-
multaneous balanced truncation, we develop a more general balanced truncation-like
scheme as well. Independent of the number of modes of the original switched linear
system, preserving desired properties like stability, positive realness or bounded
realness is then guaranteed upon the satisfaction of a single condition.

This chapter is organized as follows. In Section 2.2, some preliminaries and basic
material needed in this chapter are discussed. Section 2.3 is devoted to characterizing
all balancing transformations for a single linear system. It is shown how to obtain
all balancing transformations for a given pair of gramians, starting from a single
transformation that diagonalizes the product of these gramians. In Section 2.4, we
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solve the problem of simultaneous balancing, and give necessary and sufficient
conditions for the existence of a single balancing transformation for multiple pairs of
gramians. In Section 2.5 we apply our results on simultaneous balancing to model
reduction by balanced truncation of switched linear systems. We also address the
issues of preservation of stability, positive realness, and bounded realness. Since the
conditions for the existence of simultaneous balancing transformations can be rather
restrictive, in Section 2.6 we propose a truncation method that is generally applicable,
and, importantly, reduces to simultaneous balanced truncation if possible. Section
2.7 is devoted to a numerical example to illustrate the methods introduced in this
chapter. The chapter closes with conclusions in Section 2.8.

2.2 Preliminaries

In this section we will review some basic material on balancing and on simultaneous
diagonalization. Consider the finite dimensional, linear time-invariant system

ẋ = Ax+Bu,

y = Cx+Du,
(2.1)

where A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n, and D 2 Rp⇥m. Assume that the system is
internally stable, i.e., the matrix A has all its eigenvalues in the open left half plane.
Also assume (A,B) is controllable and (C,A) is observable. We shortly denote this
system by H = (A,B,C,D). Basically, balancing the system H means to find a non-
singular state space transformation T that diagonalizes appropriately chosen positive
definite matrices P and Q in a covariant and contravariant manner, respectively.
This means that P transforms to TPT> and Q transforms to T�>QT�1, and the
transformed matrices should be diagonal, or diagonal and equal. Important special
cases of balancing are classical Lyapunov balancing, bounded real (BR) balancing,
and positive real (PR) balancing. In Lyapunov balancing the matrices P and Q are
the reachability and observability gramian associated with the system H, while in
BR and PR balancing P and Q are the minimal real symmetric solutions of a pair
of algebraic Riccati equations, see Table 2.1. Also, one could do balancing based on
positive definite solutions of Lyapunov inequalities, instead of equations (see [23]),
or use alternative solutions, not necessarily minimal, of the Riccati equations in Table
2.1.

In this chapter, we will study the concept of balancing without referring to a
particular underlying system. Instead, we will start off with a given pair of positive
definite matrices, and study how to find a suitable transformation for this pair. Thus,
let P , Q be real symmetric positive definite n ⇥ n matrices. Then, the concepts of
essentially-balancing and balancing transformations are defined as follows.
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Type Equations

Lyapunov
AP + PA> +BB> = 0

A>Q+QA+ C>C = 0

Bounded Real
AP + PA> +BB> + (PC> +BD>)(I �DD>)�1(PC> +BD>)> = 0

A>Q+QA+ C>C + (QB + C>D)(I �D>D)�1(QB + C>D)> = 0

Positive Real
AP + PA> + (PC> �B)(D +D>)�1(PC> �B)> = 0

A>Q+QA+ (QB � C>)(D> +D)�1(QB � C>)> = 0

Table 2.1: Common types of balancing

Definition 2.2.1 Let T 2 Rn⇥n be nonsingular. We call T an essentially-balancing
transformation for (P,Q) if TPT> and T�>QT�1 are diagonal. In this case, we
say T essentially balances (P,Q). We call T a balancing transformation for (P,Q) if
TPT>

= T�>QT�1

= ⌃, where ⌃ is a diagonal matrix. In this case, we say T

balances (P,Q).

Note that essentially balancing transformations have been also referred to as
contragredient transformations in the literature (see [45]). It is well-known, see for
example [110], that for any pair of real symmetric positive definite matrices (P,Q)

there exists a balancing transformation. It is clear that the diagonal elements of the
matrix ⌃ in Definition 2.2.1 coincide with the square roots of the eigenvalues of
PQ. In the case of Lyapunov balancing, the diagonal elements of the corresponding
⌃ are the nonzero Hankel singular values (HSV) of the system. Similarly, in the
case of bounded real and positive real balancing, the diagonal elements of ⌃ are the
nonzero bounded real and positive real characteristic values, respectively (see [74],
[70], [77], [17], [36]). Next, we will address the issue of simultaneous diagonalization
of matrices.

Definition 2.2.2 Let M 2 Cn⇥n be diagonalizable. Then the nonsingular matrix
V 2 Cn⇥n is called a diagonalizing transformation for M if VMV �1 is diagonal. In this
case, we say V diagonalizes M . Two diagonalizable matrices X , Y 2 Cn⇥n are said to
be simultaneously diagonalizable if there exists a nonsingular matrix V 2 Cn⇥n such
that V XV �1 and V Y V �1 are both diagonal.

A necessary and sufficient condition for simultaneous diagonalizability of two
given matrices is well-known, and is stated in the following lemma [38]:
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Lemma 2.2.3 Let X , Y 2 Cn⇥n be diagonalizable matrices. Then X and Y are simultane-
ously diagonalizable if and only if they commute, i.e. XY = Y X .

The generalization of the above result to the case of three or more matrices is
straightforward. In fact, a finite set of diagonalizable matrices is simultaneously
diagonalizable if and only if each pair in the set commutes.

2.3 Balancing transformations for a pair of positive def-
inite matrices

In this section we will show how we can obtain all balancing transformations for
a given pair of real symmetric positive definite matrices (P,Q) by using a single
diagonalizing transformation of the product PQ. In the first part of this section
we will deal with the (generic) case that the eigenvalues of the product PQ are all
distinct. In the second part, we will extend our results to the general case of repeated
eigenvalues of PQ.

2.3.1 The distinct eigenvalue case

Let P and Q be real symmetric positive definite matrices and assume that the eigen-
values of PQ are all distinct. Let ˆT be a balancing transformation for the pair (P,Q),
and denote the corresponding diagonal matrix ⌃ by ⌃ = diag(�

1

,�
2

, . . . ,�
n

), where
�
i

6= �
j

(i 6= j). We note that the diagonal elements �
i

are not necessarily ordered in
a decreasing manner. Clearly, ˆT satisfies

ˆTPQ ˆT�1

= ⌃

2.

and hence the columns of ˆT�1 are eigenvectors of PQ corresponding to the distinct
eigenvalues �2

i

, i = 1, 2, ..., n. Since the eigenvalues of PQ are real, there exists
V 2 Rn⇥n that diagonalizes PQ. Now, it is easy to observe that ˆT can be written
as ˆT = I

P

D�1V where D 2 Rn⇥n is a nonsingular diagonal matrix and I
P

is a
permutation matrix. Clearly, the transformation T given by T = D�1V also balances
(P,Q). Therefore, we can always obtain a balancing transformation for (P,Q) by
scaling a diagonalizing transformation of PQ.

The following lemma states that there is a one-to-one correspondence between
diagonalizing transformations and essentially-balancing transformations.

Lemma 2.3.1 Let P and Q be real symmetric positive definite matrices. Assume that the
eigenvalues of PQ are all distinct. Then, the matrix V 2 Rn⇥n is an essentially-balancing
transformation for (P,Q) if and only if it is a diagonalizing transformation for PQ.
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Proof. First, assume that V is an essentially-balancing transformation for (P,Q).
Then, by definition, V PV > and V �>QV �1 are diagonal. Consequently, the product
V PV >V �>QV �1

= V PQV �1 is diagonal. Hence, V is a diagonalizing transforma-
tion for PQ.

Conversely, suppose V is a diagonalizing transformation for PQ. Then, by using
the distinct eigenvalue assumption, it follows from the introduction to this subsection
that there exists a nonsingular diagonal matrix D 2 Rn⇥n such that T = D�1V

balances (P,Q). Hence, by Definition 2.2.1, we have

D�1V PV >D�1

= ⌃ = DV �>QV �1D.

Consequently V PV > and V �>QV �1 are diagonal matrices, and V is, therefore,
an essentially-balancing transformation for (P,Q). ⌅

Based on the previous discussion and Lemma 2.3.1, the following theorem char-
acterizes balancing transformations for a given pair of positive definite matrices
(P,Q).

Theorem 2.3.2 Let P and Q be real symmetric positive definite matrices. Assume the
eigenvalues of PQ are all distinct. Let V 2 Rn⇥n be a diagonalizing transformation for PQ

with corresponding diagonal matrix ⌃

2. Then T is a balancing transformation for (P,Q)

with corresponding diagonal matrix ⌃ if and only if T = D�1V where D 2 Rn⇥n is a
diagonal matrix satisfying one, and, hence, all of the following equivalent equalities:

D4

= (V PV >
)(V Q�1V >

), (2.2)

D2

= (V PV >
)⌃

�1, (2.3)

D2

= ⌃(V Q�1V >
). (2.4)

Proof. First, we show that (2.2), (2.3), and (2.4) are equivalent. Clearly, we have

V PV >V �>QV �1

= ⌃

2. (2.5)

By Lemma 2.3.1, V is an essentially-balancing transformation for (P,Q); therefore,
V PV > and V �>QV �1 are diagonal. Hence, (2.5) yields (V PV >

)⌃

�1

= ⌃V Q�1V >.
Consequently, (2.3), and (2.4) are equivalent. In addition, their product results in (2.2).
So, it remains to show that (2.2) implies (2.3) or (2.4). By (2.5), (2.2) can be rewritten
as D4

= ⌃

2

(V Q�1V >
)

2. Hence, D2

= ⌃V Q�1V >. The last implication is due to the
fact that a positive definite matrix has a unique positive definite square root.
Now, let D 2 Rn⇥n be a diagonal matrix satisfying (2.2). By (2.2), we have

D�2V PV >
= D2V �>QV �1. (2.6)
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Since V PV > and V �>QV �1 are diagonal, (2.6) can be written as

D�1V PV >D�1

= DV �>QV �1D. (2.7)

Hence, T = D�1V is a balancing transformation for (P,Q). Clearly, the correspond-
ing diagonal matrix is ⌃.

To prove the converse, let T be a balancing transformation for (P,Q) with corre-
sponding diagonal matrix ⌃. Clearly, the columns of T�1 and V �1 are eigenvectors
of PQ. Hence, T can be written as T = D�1V for some nonsingular diagonal matrix
D 2 Rn⇥n. By Definition 2.2.1, we have

D�1V PV >D�1

= DV �>QV �1D. (2.8)

By Lemma 2.3.1, V PV > and V �>QV �1 are diagonal. Therefore, by changing the
order of multiplications in (2.8) we obtain

D�2V PV >
= D2V �>QV �1 (2.9)

which simplifies to (2.2). ⌅

The above theorem provides a straightforward method for computing balancing
transformations. Given real symmetric positive definite matrices P and Q, we com-
pute, firstly, a diagonalizing transformation for PQ. Obviously, this transformation
can be obtained directly from the eigenvectors of PQ. Then, as stated in the theorem,
a balancing transformation can be obtained by scaling the diagonalizing transforma-
tion, and the scaling matrix can be taken as any nonsingular real diagonal matrix
satisfying (2.2), (2.3), or (2.4). Note that computation of D is simple and merely
requires the multiplication of two diagonal matrices.

2.3.2 The case of possibly repeated eigenvalues

We will now deal with the general case that PQ may have repeated eigenvalues. The
following lemma is crucial for the proof of the subsequent results.

Lemma 2.3.3 Let V be a diagonalizing transformation for PQ with corresponding diagonal
matrix ⌃

2. Let T be a balancing transformation for (P,Q) with corresponding diagonal
matrix ⌃. Then, ⌃ commutes with V T�1, V PV >, and V Q�1V >.

Proof. Clearly we have TPQT�1

= ⌃

2 and V PQV �1

= ⌃

2. Hence, V T�1

⌃

2

=

⌃

2V T�1. Therefore, V T�1 commutes with ⌃

2. Thus, V T�1 and ⌃ also commute. In
addition, we have

TPT>
= ⌃ = T�>QT�1.
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Hence, TV �1V PV >V �>T>
= ⌃. Thus, V PV >

= V T�1

⌃(V T�1

)

>. Since ⌃

and V T�1 commute, we obtain ⌃

�1V PV >
= V T�1

(V T�1

)

>. Hence, ⌃�1V PV >

is symmetric, and ⌃ commutes with V PV >. In a a similar fashion, we obtain
⌃V Q�1V >

= V T�1

(V T�1

)

>. Consequently, ⌃ and V Q�1V > commute. ⌅

The following theorem now provides an extension to the repeated eigenvalue
case of Theorem 2.3.2:

Theorem 2.3.4 Let P and Q be real symmetric positive definite matrices. Let V 2 Rn⇥n be
a diagonalizing transformation for PQ with corresponding diagonal matrix ⌃

2. Then T is
a balancing transformation for (P,Q) with corresponding diagonal matrix ⌃ if and only if
T = �

�1V where � 2 Rn⇥n is a nonsingular matrix which commutes with ⌃, and satisfies
one, and, hence, all of the following equivalent equalities:

(��

>
)

2

= (V PV >
)(V Q�1V >

) (2.10)

��

>
= (V PV >

)⌃

�1 (2.11)

��

>
= ⌃(V Q�1V >

) (2.12)

Proof. First, we show that (2.10), (2.11), and (2.12) are equivalent. Clearly, we have

V PV >V �>QV �1

= ⌃

2. (2.13)

By Lemma 2.3.3, we obtain (V PV >
)⌃

�1

= ⌃V Q�1V >. Hence, (2.11), and (2.12)
are equivalent. In addition, the product of (2.11) and (2.12) results in (2.10). So, it
remains to show (2.10) implies (2.11) or (2.12). By (2.13), we can rewrite (2.10) as
(��

>
)

2

= ⌃

2

(V Q�1V >
)

2. Hence, we obtain ��

>
= ⌃V Q�1V >. Note that ��

>

and ⌃V Q�1V > are positive definite matrices.
Now, assume T is a balancing transformation for (P,Q). Clearly, we can write T

as T = �

�1V for a nonsingular matrix �. Hence,

�

�1V PV >
�

�>
= ⌃

which simplifies to (2.11) by Lemma 2.3.3. Moreover, � and ⌃ commute by Lemma
2.3.3.

To prove the converse, assume that the nonsingular matrix � satisfies ⌃� = �⌃,
(2.11), and, equivalently, (2.12). Clearly, �>, ��1, and �

�> also commute with ⌃.
Hence, we have

�⌃�

>
= V PV >

�

�>
⌃�

�1

= V �>QV �1
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Now, it is easy to observe that the transformation T given by T = �

�1V , balances
(P,Q) with corresponding diagonal matrix ⌃. ⌅

The above theorem is valid for any choice of diagonalizing transformation V ,
where repeated eigenvalues do not necessarily have to be grouped together on
the diagonal of ⌃. We will apply the statement of this theorem in this form in
our subsequent results on simultaneous balancing. If, however, we would restrict
ourselves to diagonalizing transformations V that do group together repreated
eigenvalues on the diagonal of ⌃, we obtain the following more specific result:

Corollary 2.3.5 Let P and Q be real symmetric positive definite matrices. Let V 2 Rn⇥n

be a diagonalizing transformation for PQ with corresponding diagonal matrix ⌃

2 such that

⌃ =

0

BBB@

�
1

I
m1 0 . . . 0

0 �
2

I
m2 . . . 0

...
...

. . .
...

0 0 . . . �
N

I
mN

1

CCCA
, (2.14)

with �
i

6= �
j

for i 6= j, and where m
i

is the algebraic multiplicity of �
i

, and I
mi is the identity

matrix of size m
i

, i = 1, 2, ..., N . Then T is a balancing transformation for (P,Q) with
corresponding diagonal matrix ⌃ if and only if T = �

�1V where � 2 Rn⇥n is a nonsingular
block-diagonal matrix with N square blocks of sizes m

1

,m
2

, ...,m
N

, respectively, and �

satisfies one, and, hence, all of the equivalent equalities (2.10), (2.11), and (2.12).

Proof. Obviously, an n⇥ n matrix � commutes with the diagonal matrix ⌃ in (2.14)
if and only if � is blockdiagonal with diagonal blocks of size m

i

⇥m
i

. Therefore, the
result of Theorem 2.3.4 simplifies to Corollary 2.3.5. ⌅

2.4 Simultaneous balancing for multiple pairs of posi-
tive definite matrices

In this section, we will study the question under what conditions multiple pairs of
real symmetric positive definite matrices can be simultaneously balanced by one and
the same transformation. We will start off by considering the problem for two pairs
of positive definite matrices (P

1

, Q
1

) and (P
2

, Q
2

).
Before stating and proving the main result of this section, we give the following

instrumental lemma:



18 2. A simultaneous balanced truncation method for switched linear systems

Lemma 2.4.1 Let M 2 Rn⇥n be a real symmetric positive definite matrix. Let LL> be a
Cholesky decomposition of M , that is, M = LL> where L 2 Rn⇥n is a lower triangular
matrix with positive diagonal entries. Let ⌃ be a real diagonal matrix. Then, M commutes
with ⌃ if and only if L commutes with ⌃.

Proof. The proof of the ‘if’ part is trivial. To prove the ‘only if’ part, assume that M
commutes with ⌃. Clearly, we have LL>

⌃ = ⌃LL>. Hence,

L>
⌃L�>

= L�1

⌃L. (2.15)

Now, since the left hand side of (2.15) is upper triangular and the right hand side is
lower triangular, they should be equal to a diagonal matrix. Clearly, this diagonal
matrix must be equal to ⌃. Hence, we have L�1

⌃L = ⌃ which yields ⌃L = L⌃. ⌅

The following theorem gives necessary and sufficient conditions for the existence
of a transformation T that simultaneously balances (P

1

, Q
1

) and (P
2

, Q
2

).

Theorem 2.4.2 Let (P
1

, Q
1

) and (P
2

, Q
2

) be pairs of real symmetric positive definite matri-
ces. There exists a transformation T that balances both (P

1

, Q
1

) and (P
2

, Q
2

) if and only if
the following two conditions hold:

i) P
1

Q
1

and P
2

Q
2

commute,

ii) P
1

Q
2

= P
2

Q
1

.

Proof. Assume T is a balancing transformation for both (P
1

, Q
1

) and (P
2

, Q
2

).
Clearly, T is a diagonalizing transformation for both P

1

Q
1

and P
2

Q
2

. Hence, by
Lemma 2.2.3, P

1

Q
1

and P
2

Q
2

commute. In addition, by Definition 2.2.1, we have

TP
1

T>
= T�>Q

1

T�1

TP
2

T>
= T�>Q

2

T�1.
(2.16)

Consequently, TP
1

Q
2

T�1

= TP
2

Q
1

T�1 which yields P
1

Q
2

= P
2

Q
1

.
Conversely, assume that the conditions i) and ii) hold. Since P

1

Q
1

and P
2

Q
2

commute, there exists a nonsingular matrix V that simultaneously diagonalizes P
1

Q
1

and P
2

Q
2

with corresponding diagonal matrices ⌃2

1

and ⌃

2

2

, respectively. Clearly, we
have

V P
1

Q
1

P
2

Q
2

V �1

= ⌃

2

1

⌃

2

2

. (2.17)

By condition ii), we have Q
2

P
1

= Q
1

P
2

. Hence, (2.17) can be rewritten as

V (P
1

Q
2

)

2V �1

= ⌃

2

1

⌃

2

2

.
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Consequently, we have (P
1

Q
2

)

2

= V �1

(⌃

1

⌃

2

)

2V . Now, since P
1

Q
2

has only positive
eigenvalues, we obtain P

1

Q
2

= V �1

⌃

1

⌃

2

V . Therefore,

V P
1

V >V �>Q
2

V �1

= ⌃

1

⌃

2

which, by Lemma 2.3.3, yields

V P
1

V >
⌃

�1

1

= ⌃

2

V Q�1

2

V >. (2.18)

Since (2.18) is a real symmetric positive definite matrix, it admits a Cholesky decom-
position

V P
1

V >
⌃

�1

1

= ⌃

2

V Q�1

2

V >
= ��

>,

(where � is a lower triangular matrix with positive diagonal entries). Now, again by
Lemma 2.3.3, the identical terms in (2.18) commute with both ⌃

1

and ⌃

2

. Hence, by
Lemma 2.4.1, � commutes with both ⌃

1

and ⌃

2

. Thus, by Theorem 2.3.4, T = �

�1V

simultaneously balances (P
1

, Q
1

) and (P
2

, Q
2

). ⌅

For the sake of simplicity, the above result and conditions have been stated for
two pairs of positive definite matrices (P

1

, Q
1

) and (P
2

, Q
2

). The generalization of
the results to k pairs of positive definite matrices, with k > 2 is straightforward, and
is stated in the following corollary.

Corollary 2.4.3 Let (P
1

, Q
1

), (P
2

, Q
2

), ..., (P
k

, Q
k

) be k pairs of real symmetric positive
definite matrices. There exists a transformation T that simultaneously balances (P

1

, Q
1

),
(P

2

, Q
2

),...,(P
k

, Q
k

) if and only if the following conditions hold:

i) P
i

Q
i

and P
j

Q
j

commute for all i, j = 1, 2, ..., k.

ii) P
i

Q
j

= P
j

Q
i

for all i, j = 1, 2, ..., k.

It is worth to mention that in the particular case where for each i the eigenvalues
of P

i

Q
i

are all distinct, the first condition of Corollary 2.4.3 by itself already implies
the existence of a simultaneous essentially-balancing transformation for the pairs
(P

i

, Q
i

), i = 1, 2, ..., k. This follows immediately from Lemma 2.3.1.

2.5 Model reduction of switched linear systems by si-
multaneous balanced truncation

2.5.1 Balanced truncation of switched linear systems

We will now apply our previous results to model reduction by balanced truncation
of switched linear systems. As indicated before, in the context of model reduction of
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linear systems, the matrices P and Q can be taken to be the solutions of the Lyapunov
equations, or the minimal solutions of the bounded real or positive real Riccati equa-
tions (see Table 2.1). Consequently, the results stated in the previous sections cover
different types of balancing of a single linear system, and, moreover, indicate the
possibility of simultaneous balancing for multiple linear systems. Thus, simultaneous
balancing, if possible, provides a straightforward approach to model reduction of
certain hybrid systems. Except from having the same state space dimension, no
assumption is needed regarding the relation of the individual modes of the hybrid
system.

In this section, we will first treat the P and Q matrices as reachability and ob-
servability gramians, thus applying our results to Lyapunov balanced truncation of
switched linear systems.

A typical switched linear system (SLS) is described by (see [48]):

ẋ = A
�

x+B
�

u,

y = C
�

x+D
�

u,
(2.19)

where � is a piecewise constant function of time, t, taking its value from the index
set K = {1, 2, ..., k}, and A

i

2 Rn⇥n, B
i

2 Rn⇥m, C
i

2 Rp⇥n, D
i

2 Rp⇥m for all
i 2 K. Let H

i

= (A
i

, B
i

, C
i

, D
i

) denote the ith mode of the given SLS. Assume that
H

i

is internally stable, controllable, and observable for every i. Let P
i

and Q
i

be the
reachability and observability gramians of H

i

, respectively. Now, if the conditions
of Corollary 2.4.3 hold for the pairs of gramians (P

1

, Q
1

), (P
2

, Q
2

), ..., (P
k

, Q
k

),
then there exists a single state space transformation T 2 Rn⇥n that simultaneously
balances all k modes of the given SLS. Consequently, by applying T to the individual
modes of (2.19) and truncating, reduced order modes can be obtained.

As mentioned in the introduction, it may occur that some states are relatively
difficult to reach and observe in some of the modes, yet easy to reach and observe in
others. In order to measure the degree of reachability and observability of each of the
state components of the overall SLS, we propose to take the average over all modes of
the corresponding Hankel singular values. More precisely:

Definition 2.5.1 Assume that simultaneous balancing of the modes of the SLS (2.19)
is possible, and let ⌃

1

, ⌃
2

, ..., ⌃
k

be the gramians of the modes of (2.19) after simul-
taneous balancing. Then we define the average balanced gramian, denoted by ⌃

av

,
as

⌃

av

=

1

k
(⌃

1

+ ⌃

2

+ ...+ ⌃

k

). (2.20)

Note that the average balanced gramian is unique up to permutation of its diago-
nal elements. Now, the diagonal matrix ⌃

av

indicates which states of the SLS are
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important and which are negligible, and can be used to obtain a reduced order SLS.
In fact, the ith diagonal element of ⌃

av

assigns an overall degree of reachability and
observability to the ith state component of the balanced representation. Suppose
that �̄

1

> �̄
2

> . . . > �̄
N

are the distinct diagonal elements of the average balanced
gramian, where �̄

i

appears m
i

times,
P

i

m
i

= n. Let 1 6 l 6 N be an integer. By
discarding the state components corresponding to the N� l smallest distinct diagonal
elements of ⌃

av

we can reduce the order by
P

N

i=l+1

m
i

and obtain a reduced order
SLS with state space dimension r =

P
l

i=1

m
i

. This leads to a reduced order SLS

˙x̄ =

¯A
�

x+

¯B
�

u,

ȳ =

¯C
�

x+

¯D
�

u,
(2.21)

with modes ¯H
i

= (

¯A
i

, ¯B
i

, ¯C
i

, ¯D
i

) (i = 1, 2 . . . k), where ¯A
i

2 Rr⇥r, ¯B
i

2 Rr⇥m,
¯C
i

2 Rp⇥r and ¯D
i

= D
i

.
In the particular case that for each i the product P

i

Q
i

has distinct eigenvalues,
equivalently mode H

i

has distinct Hankel singular values, it is a well-known fact
that the individual truncated modes ¯H

i

preserve stability of the original modes H
i

for all i = 1, 2, ..., k. In the case of repeated Hankel singular values, internal stability
of the truncated individual modes is only guaranteed if, for each mode, all state
components corresponding to a repeated, to be discarded, HSV are truncated in that
mode. Preservation of internal stability of the individual modes is in fact not the
kind of stability preservation that we are looking for in SLS. Instead, in Subsection
2.5.2 we will address the issue of preservation of global uniform exponential stability, of
the SLS.

Remark 2.5.2 If the individual modes of the given SLS are not of equal importance,
or if some information on the switching signal is available, the overall balanced
gramian can be defined as a weighted average of the gramians of the individual
modes in balanced coordinates. In this way one can take into account the importance
of the different modes by adjusting the weighting coefficients.

Of course, our results on simultaneous balancing can also be applied to positive real
and bounded real balancing, see [74], [17], [36]. The single linear system (2.1) with
p = m is positive real if and only if the linear matrix inequality (LMI)

✓
A>K +KA KB � C>

B>K � C �D �D>

◆
6 0 (2.22)

has a real symmetric positive definite solution K. It is well known that in that case the
LMI has extremal real symmetric solutions K

min

and K
max

, and 0 < K
min

6 K
max

.
In the context of PR balancing we take Q = K

min

and P = K�1

max

, and (2.1) is called
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PR balanced if P = Q is diagonal. If D +D> is invertible, then P and Q coincide
with the minimal solutions of the PR Riccati equations in Table 2.1.

For bounded real balancing the same holds. The system (2.1) is bounded real if
the LMI ✓

A>K +KA+ C>C KB + C>D

B>K +D> �I +D>D

◆
6 0 (2.23)

has a real symmetric positive definite solution K. In that case the LMI has extremal
real symmetric solutions K

min

and K
max

satisfying 0 < K
min

6 K
max

. Again we take
Q = K

min

and P = K�1

max

, and (2.1) is called BR balanced if P = Q is diagonal. If
I �D>D is invertible, then P and Q coincide with the minimal solutions of the BR
Riccati equations in Table 2.1.

Now, again consider the SLS (2.19) with modes H
i

= (A
i

, B
i

, C
i

, D
i

). Similar
as in the case of Lyapunov balancing, both in the PR and the BR case we denote
the diagonal matrices obtained after simultaneously (PR or BR) balancing the pairs
(P

i

, Q
i

) corresponding to the modes H
i

by ⌃

i

, and define the average balanced
gramian by (2.20).

In subsection 2.5.3 we will review the concepts of positive realness and bounded
realness of switched linear systems, and study the preservation of these properties
under simultaneous PR and BR balanced truncation of the individual modes of the
SLS.

2.5.2 Preservation of stability

As already observed in the previous subsection, suitable simultaneous balanced
truncation of the individual modes of a switched linear system yields a reduced order
switched linear system whose individual modes are internally stable. Of course, this
does not mean that the SLS itself is stable. In the present subsection we will obtain
conditions under which simultaneous balanced truncation preserves the stability of
the SLS.

The concept of stability that we will use here is that of global uniform exponential
stability. We call the SLS given by (2.19) globally uniformly exponentially stable if
there exist positive constants ↵ and � such that the solution x(t) of ẋ = A

�

x for any
initial state x(0) and any switching signal � satisfies kx(t)k 6 �e�↵tkx(0)k for all
t > 0 (see [48]). A sufficient condition for global uniform exponential stability of
an SLS is that the state matrices of the individual modes share a common quadratic
Lyapunov function (CQLF) (see [48]). That is, there exists a real symmetric positive
definite matrix X such that AT

i

X + XA
i

< 0 for all i = 1, 2, ..., k. Assuming that
the state matrices of the modes of the given SLS enjoy this property, we seek for
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conditions under which this property is preserved in the reduced order SLS. This
leads us to the following theorem.

Theorem 2.5.3 Consider the SLS (2.19) with modes H
i

= (A
i

, B
i

, C
i

, D
i

), i = 1, 2, . . . , k.
Assume that there exists X > 0 such that AT

i

X +XA
i

< 0 for all i = 1, 2, ..., k. Let P
i

and
Q

i

be the reachability and observability gramians, respectively, of the ith mode H
i

. Suppose
that the following conditions hold:

i) P
i

Q
i

and P
j

Q
j

commute for all i, j = 1, 2, ..., k.

ii) P
i

Q
j

= P
j

Q
i

for all i, j = 1, 2, ..., k.

iii) XP
i

Q
i

= Q
i

P
i

X for all i = 1, 2, ..., k.

Then there exists a state space transformation that simultaneously balances all modes H
i

for i = 1, 2, ..., k. Moreover, let �̄
1

> �̄
2

> . . . > �̄
N

be the distinct diagonal elements of
the average balanced gramian, where �̄

i

appears m
i

times. Then, for each positive integer
1 6 l 6 N , the truncated SLS of order r =

P
l

i=1

m
i

given by (2.21) is globally uniformly
exponentially stable.

Proof. By Corollary 2.4.3, simultaneous balancing is possible upon satisfaction of
conditions i) and ii). By condition iii) we have

X
1
2P

i

Q
i

X� 1
2
= X� 1

2Q
i

P
i

X
1
2 .

Hence, X 1
2P

i

Q
i

X� 1
2 is symmetric. In addition, condition i) implies that X 1

2P
i

Q
i

X� 1
2

and X
1
2P

j

Q
j

X� 1
2 commute for all i, j = 1, 2, ..., k. Therefore, there exists an orthogo-

nal matrix U which diagonalizes X 1
2P

i

Q
i

X� 1
2 , for all i = 1, 2, ..., k (see [38], p. 103).

Hence, UX
1
2 is a diagonalizing transformation for P

i

Q
i

, i = 1, 2, ..., k. Consequently,
based on the proof of Theorem 2.5.3, a simultaneous balancing transformation T can
be obtained as T = �

�1UX
1
2 for some nonsingular real matrix �. Without loss of

generality, we assume that the corresponding diagonal matrix ⌃

av

given by (2.20) is
in form of (2.14). Otherwise, we can multiply T by a permutation matrix from the
left to achieve so. Applying T to the individual modes of the given SLS, the state
matrices in the new coordinates are given by

˜A
i

= �

�1UX
1
2A

i

X� 1
2U>

� (2.24)

By our assumption regarding the CQLF, we have A>
i

X+XA
i

< 0 for all i = 1, 2, ..., k.
Hence, for all i we have

�

>UX� 1
2
(A>

i

X +XA
i

)X� 1
2U>

� < 0,
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which yields

�

>UX� 1
2A>

i

X
1
2U>

�+�

>UX
1
2A

i

X� 1
2U>

� < 0.

This can be rewritten as

�

>UX� 1
2A>

i

X
1
2U>

�

�>
�

>
�+�

>
��

�1UX
1
2A

i

X� 1
2U>

� < 0,

which, by (2.24), simplifies to

˜A>
i

�

>
�+�

>
�

˜A
i

< 0. (2.25)

Since T = �

�1V is a simultaneous balancing transformation, by Lemma 2.3.3 �

commutes with ⌃

i

for all i = 1, 2, ..., k. Hence, � commutes with ⌃

av

. Therefore,
�

> and �

>
� commute with ⌃

av

. Since ⌃

av

is in the form of (2.14), �>
� will have

a block-diagonal structure compatible with the multiplicities m
i

of the diagonal
elements of ⌃

av

. Clearly, any principal submatrix of the positive definite matrix
�

>
� is positive definite. Hence, the state matrices of the reduced order SLS (2.21)

share a CQLF. Consequently, the rth order reduced SLS model is globally uniformly
exponentially stable. ⌅

Note that in the above theorem, the first two conditions in Theorem 2.5.3 implies
the possibility of simultaneous balancing whereas the third condition guarantees the
existence of a CQLF for the reduced order model.

2.5.3 Preservation of passivity and contractivity

It is well known that PR or BR balanced truncation of a single linear system preserves
positive realness or bounded realness. As was the case with stability, this does
not mean that positive realness or bounded realness of a SLS is preserved under
simultaneous balanced truncation. In the present subsection we will address this
issue.

We first give a definition of dissipativity for switched linear systems. Consider
the SLS (2.19), and let s : Rm ⇥ Rp ! R be a given function. This function is called
the supply rate.

Definition 2.5.4 We call the SLS (2.19) dissipative with respect to supply rate s(u, y)

if there exists a non-negative function V : Rn ! R such that the dissipation inequality

V (x(t
1

))� V (x(t
0

)) 6
Z

t1

t0

s(u(t), y(t)) dt (2.26)
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holds for all t
0

6 t
1

, for all switching signals � and trajectories (x, u, y) which satisfy
the system equations. Any non-negative function V that satisfies (2.5.4) is called a
storage function.

Then, we call the SLS (2.19) positive real if p = m and if it is dissipative with respect
to the supply rate s = u>y. Similarly, we call the SLS (2.19) bounded real if it is
dissipative with respect to the supply rate s = u>u� y>y. It is easy to observe that
if the individual modes of the SLS possess a common quadratic storage function
(CQSF) for a given supply rate s, then the overall SLS is dissipative with respect to s.

By applying this fact to the special cases of positive realness and bounded realness,
we find that SLS (2.19) is positive real if there exists a real symmetric positive definite
matrix K such that the following LMI’s hold for all i = 1, 2, ..., k:

✓
A>

i

K +KA KB
i

� C>
i

B>
i

K � C
i

�D
i

�D>
i

◆
6 0 (2.27)

Similarly, the SLS (2.19) is bounded real if there exists a real symmetric positive
definite matrix K such that

✓
A>

i

K +KA
i

+ C>
i

C
i

KB
i

+ C>
i

D
i

B>
i

K +D>
i

C
i

�I +D>
i

D
i

◆
6 0 (2.28)

holds for all i = 1, 2, ..., k. In both cases, (2.27) and (2.28), we denote by K
i,min

and
K

i,max

the extremal real symmetric solutions to the ith LMI.
Assuming the original SLS is PR or BR, it is desirable to preserve these properties

in the reduced order SLS. The following theorem deals with this issue:

Theorem 2.5.5 Consider the SLS (2.19) with modes H
i

= (A
i

, B
i

, C
i

, D
i

), i = 1, 2, . . . , k.
Assume there exists K > 0 such that the LMI (2.27) (the LMI (2.28)) holds for all i =

1, 2, ..., k. Define Q
i

:= K
i,min

and P
i

:= K�1

i,max

. Suppose that the following conditions
hold:

i) P
i

Q
i

and P
j

Q
j

commute for all i, j = 1, 2, ..., k.

ii) P
i

Q
j

= P
j

Q
i

for all i, j = 1, 2, ..., k.

iii) KP
i

Q
i

= Q
i

P
i

K for all i = 1, 2, ..., k.

Then there exists a state space transformation that simultaneously PR balances (BR balances)
all modes H

i

for i = 1, 2, ..., k. Moreover, let �̄
1

> �̄
2

> . . . > �̄
N

be the distinct diagonal
elements of the average balanced gramian ⌃

av

, where �̄
i

appears m
i

times. Then, for each
positive integer 1 6 l 6 N , the truncated SLS of order r =

P
l

i=1

m
i

given by (2.21) is
positive real (bounded real).
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Proof. We only give the proof for the PR case, the BR case is similar. By Corollary
2.4.3, simultaneous balancing is possible if the first two conditions hold. Using
the third condition, and following a similar argument as in the proof of Theorem
2.5.3, a simultaneous balancing transformation is given by T = �

�1UK
1
2 for some

nonsingular real matrix � and an orthogonal matrix U . Again, without loss of
generality, we assume that the corresponding diagonal matrix ⌃

av

, given by (2.20),
is in the form (2.14). Applying T to the individual modes of the given SLS, the state
space representations of the modes in the new (balanced) coordinates are given by

˜H
i

= (

˜A
i

, ˜B
i

, ˜C
i

, ˜D
i

)

where

˜A
i

= �

�1UK
1
2A

i

K� 1
2U>

�

˜B
i

= �

�1UK
1
2B

i

˜C
i

= C
i

K� 1
2U>

�, ˜D
i

= D
i

(2.29)

for i = 1, 2, ..., k. By assumption, there exists a single positive definite matrix K such
that for all i = 1, 2, ..., k

✓
A>

i

K +KA
i

KB
i

� C>
i

B>
i

K � C
i

�D
i

�D>
i

◆
6 0. (2.30)

Hence,
 

�

>UK� 1
2

0

0 I
m

!✓
A>

i

K +KA
i

KB
i

� C>
i

B>
i

K � C
i

�D
i

�D>
i

◆

 
K� 1

2U>
� 0

0 I
m

!
6 0 (2.31)

for all i = 1, 2, ..., k.
Using (2.29), the inequality (2.31) simplifies to

✓
˜A>
i

�

>
�+�

>
�A

i

�

>
�

˜B
i

� ˜C>
i

˜B>
i

�

>
�� ˜C

i

� ˜D
i

� ˜D>
i

◆
6 0. (2.32)

Let ¯A
i

2 Rr⇥r, ¯B
i

2 Rr⇥m, ¯C
i

2 Rm⇥r, ¯D
i

2 Rm⇥m, and ¯

� 2 Rr⇥r be the matrices
obtained by truncating ˜A

i

, ˜B
i

, ˜C
i

, ˜D
i

, and � respectively. Since this truncation is done
based on ⌃

av

, �>
� has a block diagonal structure with respect to the multiplicities

of the diagonal elements of ⌃
av

(see the proof of Theorem 2.5.3). Hence, the modes
of the reduced order SLS, ¯H

i

= (

¯A
i

, ¯B
i

, ¯C
i

, ¯D
i

), satisfy
✓

¯A>
i

¯

�

>
¯

�+

¯

�

>
¯

�A
i

¯

�

>
¯

�

¯B
i

� ¯C>
i

¯B>
i

¯

�

>
¯

�� ¯C
i

� ¯D
i

� ¯D>
i

◆
6 0 (2.33)
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for all i = 1, 2, ..., k, due to the fact that (2.33) is a principal submatrix of (2.32).
Therefore, the rth order reduced SLS model is positive real. ⌅

Remark 2.5.6 For each i, let P
i

and Q
i

be defined as in Theorems 2.5.3 (Theorem
2.5.5). It can be proven that if there exists at least one ` 2 {1, 2, . . . , k} such that P

`

Q
`

has distinct eigenvalues, then the k constraints involved in the third condition of
Theorem 2.5.3 (Theorem 2.5.5) can be replaced by the single constraint XP

`

Q
`

=

Q
`

P
`

X (KP
`

Q
`

= Q
`

P
`

K). In fact, this new condition guarantees that the gramian
X (the gramian K) will be diagonal in the balanced coordinates, which suffices to
ensure preservation of GUES (positive/bounded realness).

2.6 Model reduction of SLS by minimizing an overall
cost function

As discussed in the previous section, if certain conditions are satisfied, the technique
of simultaneous balanced truncation can be applied to switched linear systems (see
Theorem 2.5.3 and 2.5.5). Although conceptually attractive as a model reduction
method, in general the conditions are rather restrictive. In many cases, like electrical
circuits with certain switching topologies, the state matrices of the different modes
are not completely arbitrary, and satisfy certain conditions to comply with Kirchhoff’s
laws. This may decrease the restrictiveness of the obtained conditions in practice.

On the other hand, the number of conditions stated in Theorem 2.5.3 depends on
the number of modes of the original SLS. Clearly, increasing the number of modes
makes it harder for all conditions to be satisfied. This motivates us to propose a more
general model reduction approach for the case where simultaneous balancing cannot
be achieved.

It is well-known that the problem of finding a balancing transformation for a
single linear system can be given a variational interpretation, and can be formulated
as finding a nonsingular matrix T such that the following cost function is minimized
(see [1]):

f(T ) = trace[TPT>
+ T�>QT�1

] (2.34)

In a SLS with k modes, thus, we deal with minimizing the following k cost functions
with respect to T .

f
i

(T ) = trace[TP
i

T>
+ T�>Q

i

T�1

] (2.35)

Clearly, if and only if the conditions of Corollary 2.4.3 hold, simultaneous balancing
is possible, and there exists a transformation T which simultaneously minimizes
f
i

for all i = 1, 2, ..., k. Otherwise, simultaneous balancing is not possible, and
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we should seek for a single transformation that makes the above k cost functions
simultaneously as small as possible. For this, we propose to introduce a single overall
cost function. Since the essence of “trace” is summation, a natural choice for this
overall cost function is the sum or, equivalently, the average of the cost functions of
the individual modes. Hence, we define an overall cost function f

av

as

f
av

(

˜T ) =
1

k

kX

i=1

trace[

˜TP
i

˜T>
+

˜T�>Q
i

˜T�1

] (2.36)

It is interesting to note that in the case of balancing for a single linear system, we
seek for a basis so that the sum of the eigenvalues of the positive definite matrices P
and Q takes its minimum value (see (2.34)), while in the case of balancing for SLS we
seek for a basis in which the sum of the sum of the eigenvalues of P

i

and Q
i

over all
modes is minimal (see (2.36)). Hence, minimizing the proposed overall cost function
provides a natural extension of classical balancing to the case of SLS.

The cost function (2.36) can be restated as

f
av

(

˜T ) = trace[

˜TP
av

˜T>
+

˜T�>Q
av

˜T�1

] (2.37)

where

P
av

=

1

k

kX

i=1

P
i

and Q
av

=

1

k

kX

i=1

Q
i

. (2.38)

Therefore, the transformation ˜T which minimizes the proposed overall cost function
is exactly the one which balances the pair (P

av

, Q
av

) of average gramians. Conse-
quently, ˜T can be conveniently computed by the use of Corollary 2.3.5 with respect
to (P

av

, Q
av

).
By applying ˜T to the individual modes and truncating, a reduced order model

can be obtained. Clearly, after the transformation ˜T , the new state space descriptions
of the individual modes are not necessarily balanced, but are expected to be relatively
close to being balanced. It is of course desirable that in case where simultaneous
balancing is possible, minimizing the proposed cost function yields a transformation
that simultaneously balances all modes. This important issue is addressed in the
following Proposition:

Proposition 2.6.1 Let (P
1

, Q
1

), (P
2

, Q
2

), ..., (P
k

, Q
k

) be k pairs of positive definite matri-
ces. Assume that there exists a simultaneous balancing transformation for these k pairs.
Assume that the product P

av

Q
av

of the average gramians (2.38) has all distinct eigenvalues.
Then any balancing transformation ˜T for (P

av

, Q
av

), with corresponding diagonal matrix ˜

⌃,
simultaneously balances (P

i

, Q
i

) for all i = 1, 2, ..., k. Moreover,

˜

⌃ =

1

k
(⌃

1

+ ⌃

2

+ ...+ ⌃

k

) (2.39)
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where ⌃
i

is the corresponding diagonal matrix obtained after applying ˜T to (P
i

, Q
i

).

Proof. Let T be a simultaneously balancing transformation for (P
i

, Q
i

), i = 1, 2, ..., k.

Clearly, we have
TP

i

T>
= T�>Q

i

T�1

= �

i

(2.40)

for certain diagonal matrices �
i

, i = 1, 2, ..., k. Hence,

TP
av

T>
= T�>Q

av

T�1

=

1

k
(�

1

+ �

2

+ ...+ �

k

).

Consequently, the transformation T balances (P
av

, Q
av

). Obviously, T is also a
diagonalizing transformation for P

av

Q
av

. Thus, by Theorem 2.3.2, it is easily verified
that ˜T can be written as ˜T = I

P

ST for some permutation matrix I
P

and a sign matrix
S (note that, in fact, the diagonal matrix D in equation (2.2) of Theorem 2.3.2 satisfies
D4

= I ; hence, D is obtained as a sign matrix in this case). Now, multiplying (2.40)
from the left by I

P

S and from the right by SI>
P

, we obtain

˜TP
i

˜T>
=

˜T�>Q
i

˜T�1

= ⌃

i

(2.41)

where ⌃

i

= I
P

�

i

I>
P

, i = 1, 2, ..., k. Therefore ˜T simultaneously balances (P
i

, Q
i

) for
all i = 1, 2, ..., k. By (2.41), we obtain

˜TP
av

˜T>
=

˜T�>Q
av

˜T�1

=

1

k
(⌃

1

+ ⌃

2

+ ...+ ⌃

k

).

Therefore, ˜⌃ is given by

˜

⌃ =

1

k
(⌃

1

+ ⌃

2

+ ...+ ⌃

k

).

⌅

By Proposition 2.6.1, balancing and truncation based on the average gramians
contains the simultaneous balancing problem as a special case. In fact, in case that
simultaneous balancing is possible, the transformation which balances (P

av

, Q
av

)

also balances (P
i

, Q
i

) for all i = 1, 2, ..., k. Moreover in that case, the diagonal matrix
˜

⌃ obtained by balancing (P
av

, Q
av

) is equal to the average balanced gramian ⌃

av

defined in (2.20).
The state space transformation ˜T obtained in this way can be used for model

reduction of switched linear systems. After applying the transformation ˜T , the new
state space descriptions of the individual modes are not necessarily balanced, but are,
in a sense, relatively close to being balanced. Then, the truncation decision is carried
out on the basis of the eigenvalues of the product P

av

Q
av

, and a reduced order SLS
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model is obtained. Of course, the question remains whether this method preserves
the properties of the original SLS in the reduced order model. Indeed, the following
theorem gives a sufficient condition for preserving the property of global uniform
exponential stability:

Theorem 2.6.2 Consider the switched linear system (2.19) with modes H
i

= (A
i

, B
i

, C
i

, D
i

),
i = 1, 2, . . . , k. Assume that there exists X > 0 such that A>

i

X +XA
i

< 0 for all i. Let
˜T be a balancing transformation for (P

av

, Q
av

) with corresponding diagonal matrix ˜

⌃ of
the form (2.14). Then for each positive integer 1 6 l 6 N the truncated SLS of order
r =

P
l

i=1

m
i

given by (2.21) is globally uniformly exponentially stable if

XP
av

Q
av

= Q
av

P
av

X. (2.42)

Proof. The proof is analogous to that of Theorem 2.5.3. By (2.42) we have

X
1
2P

av

Q
av

X� 1
2
= X� 1

2Q
av

P
av

X
1
2 .

Hence, X 1
2P

av

Q
av

X� 1
2 is a symmetric matrix. Thus, there exists an orthogonal matrix

U such that UX
1
2P

av

Q
av

X� 1
2U>

=

˜

⌃

2. Since UX
1
2 is a diagonalizing transformation

for P
av

Q
av

, by Theorem 2.3.4 ˜T can be written as ˜T = �

�1UX
1
2 for some nonsingular

real matrix �. Applying ˜T to the individual subsystems of the given SLS, the state
matrices in the new coordinates are given by

˜A
i

= �

�1UX
1
2A

i

X� 1
2U>

�. (2.43)

By a similar argument as in the proof of Theorem 2.5.3, we obtain

˜A>
i

�

>
�+�

>
�

˜A
i

< 0.

Hence the rth order reduced order SLS is globally uniformly exponentially stable. ⌅

According to Theorem 2.6.2, regardless of the number of modes in the original
SLS, the reduced order SLS model preserves globally uniform exponentially stability
upon a satisfaction of the single condition (2.42).

The analogue of the result of Theorem 2.6.2 holds in the case of positive real and
bounded real balancing. We state the result without proof:

Corollary 2.6.3 Consider the SLS (2.19) with modes H
i

= (A
i

, B
i

, C
i

, D
i

), i = 1, 2, . . . , k.
Assume that there exists K > 0 such that the LMI (2.27) (the LMI (2.28)) holds for all i.
Define Q

i

:= K
i,min

and P
i

:= K�1

i,max

. Let ˜T be a balancing transformation for (P
av

, Q
av

)

with corresponding diagonal matrix ˜

⌃ of the form (2.14). Then for each positive integer
1 6 l 6 N the truncated SLS of order r =

P
l

i=1

m
i

given by (2.21) is positive real (bounded
real) if

KP
av

Q
av

= Q
av

P
av

K. (2.44)
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Remark 2.6.4 Instead of taking the average cost function (2.36), we can, more gener-
ally take a weighted average

f
wav

(

˜T ) =

kX

i=0

↵
i

f
i

(

˜T ) (2.45)

where the ↵
i

’s are scalars satisfying 0 6 ↵
i

6 1 , and
P

k

i=1

↵
i

= 1. Clearly, this
simplifies to

f
wav

(

˜T ) = trace[

˜T ˜P ˜T>
+

˜T�>
˜Q ˜T�1

] (2.46)

where P
wav

=

kX

i=1

↵
i

P
i

and Q
wav

=

kX

i=1

↵
i

Q
i

. Hence, in this case, a minimizing ˜T is a

balancing transformation for (P
wav

, Q
wav

) where P
wav

and Q
wav

are corresponding
weighted averages of the gramians. For example, in case that the individual modes
are not of equal importance, or some information regarding the switching signal is
available, an appropriate overall cost function can be chosen by manipulating the
values of ↵

i

’s. In addition it might be possible to tune the parameters ↵
i

in such a
way that the condition (2.42) is satisfied.

2.7 Numerical example

In this section we will apply the results of this chapter to a concrete example. We
will first work out an example of a switched linear system with two modes in which
simultaneous balancing is possible. Next, we will modify the SLS so that it no longer
allows simultaneous balancing. Then we will apply the method of Section 2.6 and
transform the modes of the system using a balancing transformation for the average
gramians.

Consider the bimodal SLS

ẋ = A
�

x+B
�

u, y = C
�

x, (2.47)

where � is piecewise constant, taking its values in {1, 2}, and where the state equa-
tions of the modes are given by

A
1

=

0

@
�2.3333 �3.6667 �2.0000

3.3667 �7.1167 �7.8500

0.8778 �4.1278 �5.5500

1

A , A
2

= A
1

+ �I

B
1

=

0

@
4.1391 �2.5590 1.2327

2.6502 3.8428 1.2327

1.7454 �0.4251 1.2327

1

A
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B
2

=

0

@
4.8423 1.1084 1.5569

2.8071 �4.5756 1.5569

2.5056 �0.7863 1.5569

1

A

C
1

=

0

@
1.2280 0.6693 �1.3123

�1.0617 1.0617 1.0461

�0.7121 0.7121 2.1362

1

A

C
2

=

0

@
0.8747 0.7836 �0.3377

1.3770 �1.3770 �2.2192

�0.8354 0.8354 2.5062

1

A

where � 2 R. We now distinguish between two cases.

Case 1: � = 0.75

Our aim is to derive a reduced order model for the given SLS. Let P
1

, P
2

and Q
1

,
Q

2

denote the reachability and observability gramians of the first and second mode,
respectively. We compute

P
1

=

0

@
4.4001 �0.4000 1.9000

�0.4000 2.0000 �0.5000

1.9000 �0.5000 1.1000

1

A

P
2

=

0

@
5.4001 �0.0001 2.5000

�0.0001 2.6999 �0.1999

2.5000 �0.1999 1.6000

1

A

Q
1

=

0

@
0.5222 0.0777 �0.7000

0.0777 0.2222 �0.2000

�0.7000 �0.2000 1.1999

1

A

Q
2

=

0

@
0.6666 0.0667 �0.9667

0.0667 0.3000 �0.1333

�0.9667 �0.1333 1.8000

1

A .

Computation shows that the following conditions hold:

(P
1

Q
1

)(P
2

Q
2

) = (P
2

Q
2

)(P
1

Q
1

) (2.48)

P
1

Q
2

= P
2

Q
1

(2.49)

Therefore, by Theorem 2.4.2, there exists a transformation T that simultaneously
balances (P

1

, Q
1

) and (P
2

, Q
2

). By computing eigenvectors, a diagonalizing transfor-
mation V for P

1

Q
1

and P
2

Q
2

is computed as

V =

0

@
0.5774 �0.5774 �1.7321

�0.9428 �0.4714 1.4143

0.8164 �0.8166 0.0002

1

A ,
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Consequently, a simultaneous balancing transformation T can be obtained as T =

D�1V where D = diag(�1.7321,�1.4143, 2.4494) is obtained by solving the equa-
tion (2.2). The corresponding diagonal matrices obtained by applying the simul-
taneous balancing transformation T to (P

1

, Q
1

) and (P
2

, Q
2

) are obtained as ⌃

1

=

diag(0.3000, 0.9000, 0.8000) and ⌃

2

= diag(0.7000, 1.1000, 0.8999), respectively. Hence,
the average balanced gramian is computed as ⌃

av

= diag(0.5000, 1.000, 0.8500) by
(2.20). Note that the smallest diagonal element 0.5000 corresponds to the first state
component x

1

of the transformed SLS.
Computation shows that the state matrices A

1

and A
2

commute, and they, there-
fore, share a common quadratic Lyapunov function (see [48]). Hence, the given SLS
is globally uniformly exponentially stable. Our intention is to compute a simultane-
ously balanced truncation of the SLS that preserves stability. For this, we should seek
for a CQLF for A

1

and A
2

such that the constraints of Theorem 2.5.3 are satisfied. It
can be verified computationally that the positive definite matrix X given by

X =

0

@
0.1279 0.0388 �0.1800

0.0388 0.0446 �0.0700

�0.1800 �0.0700 0.2900

1

A

satisfies the constraints:

A>
1

X +XA
1

< 0,

A>
2

X +XA
2

< 0,

XP
1

Q
1

= Q
1

P
1

X,

Note that we do not need to check the constraint XP
2

Q
2

= Q
2

P
2

X in view of Remark
2.5.6. Therefore, by Theorem 2.5.3, the reduced SLS model obtained by applying the
state space transformation T to the individual modes and discarding the first state
component x

1

will be globally uniformly exponentially stable. The resulting second
order SLS is computed as

˙x̄ =

¯A
�

x+

¯B
�

u, ȳ =

¯C
�

x, (2.50)

where
¯A
1

=

✓
�2.0001 �0.3334

�0.7501 �3.0000

◆
, ¯A

2

=

¯A
1

+ 0.75I,

¯B
1

=

✓
1.8974 0.0002 0.0000

0.4961 �2.1340 �0.0000

◆

¯B
2

=

✓
1.6583 �0.0002 �0.0000

0.6782 1.8947 �0.0000

◆
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¯C
1

=

0

@
1.8974 0.4742

0.0002 �2.1390

0.0000 �0.0001

1

A

¯C
2

=

0

@
1.6584 0.6279

�0.0002 1.9118

0.0000 �0.0000

1

A .

It can be computed that ⇤ = diag(0.25, 0.11) satisfies ¯A>
i

⇤ + ⇤

¯A
i

< 0 for i = 1, 2.
Hence, as expected, global uniform exponential stability is preserved in the reduced
order SLS.

A step input is applied to the first and second input channel of the original and
reduced order SLS model for two different switching signals taking values 1 or 2,
randomly. For simplicity, switching between the two subsystems takes place at
integer instances of time. The corresponding outputs of the original SLS and those of
the reduced order SLS model are sketched in Figure 2.1.
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Figure 2.1: Method of simultaneous balanced truncation: step responses of the original SLS

(solid line) and reduced order SLS (dotted line) from first input to first output, and second

input to second output for switching signal �1 = {2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1} (above)

and switching signal �2 = {1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2} (below)

Case 2: � = �1
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After computing the reachability and observability gramians ˆP
1

, ˆP
2

and ˆQ
1

, ˆQ
2

of
the first and second mode, it can be be checked that ˆP

1

ˆQ
1

and ˆP
2

ˆQ
2

do not commute
and, hence, a simultaneous balancing transformation does not exist. Therefore, we
apply the approach developed in Section 2.6.

The average reachability and observability gramians P
av

and Q
av

are computed
to be

P
av

=

0

@
3.6658 �0.0201 1.5647

�0.0201 1.8619 �0.0691

1.5647 �0.0691 0.8741

1

A

Q
av

=

0

@
0.4263 0.0122 �0.5772

0.0122 0.1874 �0.0321

�0.5772 �0.0321 1.0200

1

A .

A balancing transformation for (P
av

, Q
av

), denoted by ˜T , is computed as

˜T =

0

@
0.7175 0.0698 �0.7567

0.0139 �0.5467 0.1572

�0.4081 0.1169 1.2491

1

A .

The corresponding diagonal matrix ˜

⌃ is obtained as ˜

⌃ = diag(0.7029, 0.5979, 0.3863).
Note that the state component corresponding to the smallest diagonal element is x

3

.
As noted earlier, A

1

and A
2

commute and, therefore, share a CQLF, x>Xx. To
guarantee preservation of global uniform exponential stability in the reduced order
model, we should look for a positive definite matrix X which satisfies the following
constraints:

A>
1

X +XA
1

< 0,

A>
2

X +XA
2

< 0,

XP
av

Q
av

= Q
av

P
av

X.

It is easy to verify that X = P�1

av

satisfies the above constraints and, hence, based on
Theorem 2.6.2, the reduced order SLS model obtained by applying the state space
transformation ˜T to the individual modes and discarding the third state component
x
3

is globally uniform exponentially stable. The corresponding second order SLS
model is computed as

˙x̄ =

¯A
�

x+

¯B
�

u, ȳ =

¯C
�

x, (2.51)

where
¯A
1

=

✓
�2.8846 �0.3463

�0.6022 �5.2693

◆
, ¯A

2

=

¯A
1

� I,
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¯B
1

=

✓
1.8337 �1.2462 0.0376

�1.1172 �2.2033 �0.4631

◆

¯B
2

=

✓
1.7739 1.0710 0.0475

�1.0738 2.3934 �0.5849

◆

¯C
1

=

0

@
1.8318 �0.9521

�1.2495 �2.0295

0.0932 �0.8888

1

A

and

¯C
2

=

0

@
1.7657 �1.0098

1.0607 2.3482

0.1095 �1.0426

1

A .
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Figure 2.2: Method of minimizing the overall cost function: step responses of the original SLS

(solid line) and reduced order SLS (dotted line) from first input to first output, and second

input to second output for switching signal �1 = {2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1} (above)

and switching signal �2 = {1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2} (below)

A step input is applied to the first and second input channel of the original and
reduced order SLS model for two different switching signals taking values 1 or 2,
randomly. For simplicity, switching between the two subsystems takes place at
integer instances of time. The corresponding outputs of the original SLS and those of
the reduced order SLS model are sketched in Figure 2.2.
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2.8 Conclusions

In this chapter, a generalization of the balanced truncation scheme is investigated
for model reduction of switched linear systems. Characterizations of all balancing
transformations for a single linear system are given. Clearly, making multiple linear
systems balanced in general is not possible with a single state space transformation.
Hence, necessary and sufficient conditions for simultaneous balancing of multiple
linear systems are derived. These conditions do not depend on the particular type of
balancing, and are in terms of commutativity of products of the gramians. The results
obtained are applied to balanced truncation of switched linear systems. We then
address the issue of preservation of stability under simultaneous balanced truncation
of switched linear systems. Starting from the assumption that the original SLS has a
common quadratic Lyapunov function, we establish conditions under which global
uniform exponential stability of the SLS is preserved after simultaneous balanced
truncation. In a similar way, the proposed conditions, with a different interpretation,
are adopted for positive real and bounded real balancing. It is shown that positive
realness and bounded realness of the SLS are preserved in the reduced order SLS if
these conditions are satisfied.

To overcome the restrictiveness of the derived conditions, a more general balanced
truncation scheme for SLS is developed based on minimizing an overall cost function.
This more general approach involves balancing the average gramians rather than si-
multaneously balancing all the gramians corresponding to the individual modes, and,
hence, the required conditions to guarantee stability, positive realness, or bounded
realness are less restrictive. In case that a simultaneous balancing transformation
does exist, our more general scheme reduces to the simultaneous balanced truncation
scheme studied before in this chapter. The proposed methods are illustrated by
means of an extended numerical example.





Chapter 3

Stability and synchronization preserving model
reduction of multi-agent systems

3.1 Introduction

The problems of consensus, coordination, and synchronization of multi-agent systems
have received compelling attention in the last decade. A multi-agent system is a
collection of systems (agents) that interact to fulfil a certain task. The behavior of a
multi-agent system, hence, is determined by both the dynamics of the agents and the
communication topology of the network which specifies admissible communication
among the agents.

An important issue in the context of multi-agent system is consensus. Consensus
roughly means that the agents agree on a certain quantity of interest. The focus of
pioneering works in this direction has been on communication constraints concerning
connectivity, time-varying topologies and time delays (see e.g. [27], [41], [73], [79]).
Consequently, the dynamics of the individual agents has been somewhat ignored as
the focus has been mainly on the case of simple or double integrators.

In the last few years, however, attention has shifted to analysis and design of
multi-agent systems with general linear dynamics. One of the most popular frame-
works that have emerged in this direction studies multi-agent systems which are
composed of several copies of interacting identical linear input-output subsystems.
In this rather general framework, the term “consensus” has been replaced by “syn-
chronization” in order to put emphasis on the dynamics of the agents. In the context
of synchronization, similar to consensus, the goal of communication is to achieve
a common solution of the individual agents’ dynamics. Among the numerous in-
stances of available research in this direction, we refer to [47], [83], or [96]. In this
chapter, similarly, we consider a network of agents with general, yet identical, linear
dynamics, and we assume that partial information of the agents is transmitted via
network communication. Thus, the structure we consider here also captures the case
where the agents are coupled through a general static state-feedback or through an
output-feedback protocol.

In the context of linear time-invariant systems, the complexity of a system is in
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general measured by its dynamic order, i.e., the number of state components in a state
space representation of the system. Trying to reduce the complexity of models has
led to the development of various model reduction techniques over the last decades.
Perhaps the most well-known of these is Lyapunov balanced truncation (see [67],
[68], [76]). In this approach, first the system is transformed into a so-called balanced
form, and next a reduced order model is obtained by truncation. Other types of
balancing include stochastic, bounded real, and positive real balancing (see [22], [74],
[70]).

Since the multi-agent systems we consider here are composed of several linear
time-invariant systems interconnected by a time-independent topology, they can be
represented, as a whole, by a finite-dimensional linear time-invariant system. The
dynamic order of such a representation for a network with p agents is in general
p times that of the individual agents. As a result, the complexity of the network
model will be reduced substantially by reducing the dynamic order of the agents,
especially in large-scale networks. This motivates us to exploit available model
reduction techniques to obtain a, simpler, lower order model for the network which
approximates the behavior of the original one.

A critical issue in model reduction is preservation of qualitative properties of the
original model in the reduced order model. For instance, stability, contractivity and
passivity are preserved in the reduced order model obtained by Lyapunov balancing,
bounded real and positive real balancing, respectively. In this chapter, we consider,
separately, stability of the network and synchronization of the network as desired
qualitative properties to be preserved in the reduced order network. Preservation of
synchronization is particularly challenging as agents typically have integrators and
unstable dynamics in the context of networks and multi-agent systems.

There are several factors which make this problem non-trivial and challenging,
such as:

1. Although a multi-agent system as a whole can be represented as a finite-
dimensional linear time-invariant system, this representation, however, has
a certain structure imposed by the network communication topology. This
structure, of course, must be preserved in the reduced order network, and,
therefore, we deal with a kind of structure preserving model reduction problem.
Besides, recall that the multi-agent systems we consider here are composed of
linear agents which are identical. Thus, a direct application of available model
reduction techniques may introduce heterogeneity into the network which
adds to the complexity of the model, despite the fact that the dynamic order of
the network might have been reduced.

2. Most of the well-established model reduction techniques rely on the assump-



3.2. Preliminaries 41

tion of stability of the system. However, as mentioned, agents typically have
integrators and unstable dynamics in the context of synchronization. There-
fore, in this case, popular model reduction methods like Lyapunov balancing,
bounded real, or positive real balancing are not directly applicable to the dy-
namics of the individual agents. Moreover, for linear time-invariant systems,
closeness of the reduced order model and the original one can be estimated by
the difference in H1-norm of the corresponding transfer matrices. However,
this is not readily applicable to the individual agents of the network due to the
presence of possible unstable dynamics, which hinders measuring how well
the reduced order network approximates the original one.

The structure of the chapter is as follows. In Section 3.2, some notations and basic
material needed in the sequel are provided. In Section 3.3, a stability preserving
model reduction scheme for multi-agent systems is proposed. A synchronization
preserving model reduction approach is established in Section 3.4, and is applied to
a numerical example in Section 3.5. The chapter ends with conclusions in Section 3.6.

3.2 Preliminaries

3.2.1 Multi-agent systems

Let G = (V,E) be an undirected (unweighted) graph where V = {1, 2, . . . , p} is
the vertex set and E is the edge set. An edge is a two-element subset of V . A
diffusively coupled multi-agent system consists of a collection of identical linear
input/state/output systems given by

ẋ
i

(t) = Ax
i

(t) +Bu
i

(t)

y
i

(t) = Cx
i

(t),
(3.1a)

together with the diffusive coupling rule

u
i

(t) = �
X

{i,j}2E

(y
i

(t)� y
j

(t)), (3.1b)

where i 2 {1, 2, . . . , p}, x
i

2 Rn is the state of agent i, and u
i

2 Rm is the diffusive
coupling term. Throughout this chapter, it is assumed that the state space representa-
tion (3.1a) is minimal. Let L denote the Laplacian matrix corresponding to the graph
G = (V,E). Then, the multi-agent system (3.1) can be written in compact form as

ẋ(t) = Ax(t) (3.2)
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where x = col(x
1

, x
2

, . . . , x
p

), A = I
p

⌦A� L⌦BC, and “⌦” denotes the Kronecker
product.

Note that the Laplacian matrix has always an eigenvalue at zero, and the multi-
plicity of this zero eigenvalue is associated with the connectedness of G. In particular,
G = (V,E) is connected if and only if the multiplicity of the zero eigenvalue of
the Laplacian matrix is 1 (see e.g. [56, p.27]). In Section 3.3, we do not assume the
connectedness of G, while in Section 3.4 the graph G is assumed to be connected.

Next to the Laplacian matrix, we will use another matrix associated with the
graph G, the so-called incedence matrix of a graph. After the edges are labeled and
oriented arbitrarily, the incidence matrix of G, denoted by R, is defined as (see [56,
p.21]):

R
ij

=

8
>><

>>:

1 if vertex i is the head of edge j

�1 if vertex i is the tail of edge j

0 otherwise

(3.3)

for i = 1, 2, . . . , p and j = 1, 2, . . . , q, where p and q are the total number of vertices
and edges, respectively. The relationship between the incidence matrix and the
Laplacian matrix is captured by the following equality:

L = RR>. (3.4)

3.2.2 Model reduction

In this subsection, we review some basic material and facts on model reduction by
balanced truncation. Consider the finite dimensional, linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du,
(3.5)

where A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rw⇥n, and D 2 Rw⇥m. Assume that the matrix A

is Hurwitz, and the state space representation (3.5) is minimal. We shortly denote
this system by �(A,B,C,D), and we use the notation �(A,B,C) for the case where
D = 0. In general, the model reduction by balanced truncation consists of two major
steps, namely balancing and truncation. Balancing is, basically, finding a nonsingular
state space transformation T that diagonalizes appropriately chosen positive definite
matrices P and Q in a covariant and contravariant manner, respectively. This means
that P transforms to TPT> and Q transforms to T�>QT�1, and the transformed
matrices should be diagonal and equal. Notable types of balancing are Lyapunov bal-
ancing, bounded real (BR) balancing, and positive real (PR) balancing. In Lyapunov
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balancing the matrices P and Q are chosen to be the reachability and observability
gramians, which are obtained from the following Lyapunov equations:

A>Q+QA+ C>C = 0

AP + PA>
+BB>

= 0.

A reduced order model can be obtained by balancing the pair of positive definite
matrices (P,Q), and truncating the state components which are of least importance;
in other words, the states which are relatively difficult to reach and observe. Let G
and G

r

denote the transfer matrices of the original and the reduced order model,
respectively. Then the model reduction error given by kG�G

r

k1 is bounded from
above by twice the sum of the neglected Hankel singular values (HSV). For details,
we refer to [1].

Instead of using the Lyapunov equations above, one can also work with solutions
of Lyapunov inequalities, and obtain a reduced order model based on the so-called
generalized gramians. More precisely, let Q

g

and P
g

be positive definite solutions of
the inequalities

A>Q
g

+Q
g

A+ C>C 6 0 (3.6a)

AP
g

+ P
g

A>
+BB> 6 0. (3.6b)

Then, similar to ordinary Lyapunov balancing, a reduced order model can be obtained
by balancing the pair of positive definite matrices (P

g

, Q
g

) and truncating based on
the so-called generalized Hankel singular values (GHSV) which are the square roots
of the eigenvalues of the product P

g

Q
g

. Then, similarly, the corresponding model
reduction error bound is twice the sum of the neglected GHSV. For details see [23,
Sec. 4.7].

As mentioned before, after applying balancing transformations, the relevant
gramians are equal and diagonal. In case that the state transformation only makes
the gramians diagonal, but not necessarily equal, we say that the system is essentially
balanced. It is easy to observe that, with the same truncation decision, the reduced
order model obtained from balancing is equal to the one obtained from essentially
balancing; that is, the transfer matrix of the reduced order model (from u to y) will
be the same in both cases.

Let G denote the transfer matrix from u to y in system (3.5), i.e.

G(s) = C(sI �A)

�1B +D.

Then we call the linear system (3.5) bounded real if

G>
(�j!)G(j!) 6 I, 8! 2 R. (3.7)
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We call the system (3.5) strictly bounded real if the above inequality is strict. Under the
assumption that I�D>D is nonsingular, strict bounded realness of � is equivalent to
the H1-norm of G being strictly less than 1. If I�D>D > 0, then (3.5) is bounded real
if and only if there exists a real symmetric matrix K satisfying the Riccati equation

A>K +KA+ C>C + (KB + C>D)(I �D>D)

�1

(KB + C>D)

>
= 0. (3.8)

In fact in that case, all real symmetric solutions of (3.8) are positive definite and any
real symmetric solution K lies between two extremal solutions K

m

and K
M

, that is
0 < K

m

6 K 6 K
M

. Bounded real balancing involves balancing the pair of positive
definite matrices (K�1

M

,K
m

), and truncating based on the so-called bounded real
characteristic values which are the square root of the eigenvalues of the product
K�1

M

K
m

. The error bound for Lyapunov balancing also holds for BR model reduction
by considering neglected bounded real characteristic values instead of neglected
HSV. Moreover, minimality, stability, and strict bounded realness are preserved in
the reduced order model (see [34], [70], [74]) for more details).

3.3 Stability preserving model reduction

In this section, we assume that agents have stable internal dynamics and network
(3.2) is stable. Then, we reduce the dynamic order of the agents such that stability is
preserved in the reduced order network.

3.3.1 Stability of the network

First, we analyze the stability of network (3.2). As the Laplacian matrix L is symmet-
ric, there exists an orthogonal matrix U such that U>LU = ⇤, where ⇤ is a diagonal
matrix having the eigenvalues of L as diagonal elements, and the columns of U are
corresponding eigenvectors of L. Since L is positive semi-definite, and its row sums
are zero, we can assume, without loss of generality, that

⇤ = diag(�
1

,�
2

, . . . ,�
p

) (3.9a)

with
0 = �

1

6 �
2

6 . . . 6 �
p

(3.9b)

and the first column of U is the normalized vector of ones. By applying the state
space transformation x̃ = (U> ⌦ I)x to (3.2), we obtain

˙x̃(t) = (I ⌦A� ⇤⌦BC)x̃(t). (3.10)
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Observe that

I ⌦A� ⇤⌦BC = blockdiag(A� �
1

BC,A� �
2

BC, . . . , A� �
p

BC). (3.11)

Hence, the linear system (3.2) is stable if and only if A� �
i

BC is Hurwitz for each
i = 1, 2, . . . , p.

The above necessary and sufficient stability condition cannot be directly applied
to our model reduction framework. Besides, it requires information on the exact
location of all eigenvalues of the Laplacian matrix which in some cases may not be
available. Instead, we are interested in deducing stability of (3.2) by a small gain
type of argument. Note that internal stability of the agents, i.e. A being Hurwitz, is
necessary for stability of network (3.2). Assuming A to be Hurwitz and denoting
the transfer matrix from u

i

to y
i

by G, we seek for a condition on the H1-norm of G
under which the network (3.2) is stable. This brings us to the following lemma.

Lemma 3.3.1 Assume that A is Hurwitz. Let G denote the transfer matrix from u
i

to y
i

in
(3.1), i.e. G(s) = C(sI �A)

�1B. Then, the network (3.2) is stable if

�
p

kGk1 < 1 (3.12)

Proof. Assume that (3.12) holds. Then there exists a positive definite solution X > 0

to the inequality (see [111])

A>X +XA+ C>C + �2

p

XBB>X < 0. (3.13)

For any ↵ 2 {�
1

,�
2

, . . . ,�
p

}, we have

(A� ↵BC)

>X +X(A� ↵BC) = A>X +XA� ↵(C>B>X +XBC)

= A>X +XA+ C>C + ↵2XBB>X

� (↵XB + C>
)(↵B>X + C)

< (↵2 � �2

p

)XBB>X � (↵XB + C>
)(↵B>X + C)

where (3.13) is used to obtain the last inequality. Hence, (A�↵BC)

>X+X(A�↵BC)

is negative definite for all ↵ 2 {�
1

,�
2

, . . . ,�
p

}. Consequently, A� �
i

BC is Hurwitz
for each i = 1, 2, . . . , p and the network (3.2) is stable. ⌅

Remark 3.3.2 The value of �
p

plays a crucial role in feasibility of the condition (3.12).
Clearly, this condition tends to be more restrictive as the size of the network increases.
Besides, the value of �

p

is bounded from below by the maximal degree of the vertices
plus 1 (see [33]). Consequently, (3.12) is more likely to be satisfied in graphs like path
or cycle graphs rather than star or complete graphs.
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3.3.2 Model reduction

The result of Lemma 3.3.1 can be used to obtain a model reduction technique which
preserves stability of the multi-agent system (3.1). Let �(A,B,C) denote the linear
system (3.1a) representing the dynamics of the individual agents. Assume that A is
Hurwitz and the small gain condition (3.12) holds. Then, clearly, the linear system
�(A,�

p

B,C) is strictly bounded real. Therefore, bounded real balancing can be
applied based on the Riccati equation

A>K +KA+ C>C + �2

p

KBB>K = 0. (3.14)

Let K
m

and K
M

denote the minimal and maximal real symmetric solutions
of (3.14), respectively. Then, 0 < K

m

6 K
M

. In balanced coordinates we have,
K

m

= K�1

M

= ⌃ where

⌃ = diag{�
1

I
s1 ,�2

I
s2 , . . . ,�N

I
sN } (3.15)

with distinct bounded real characteristic values �
i

ordered in a decreasing manner.
Consequently, for each positive integer 1 6 k < N , one can obtain a reduced
order model �

r

(

¯A,�
p

¯B, ¯C) of order r =

P
k

i=1

s
i

by truncating the state components
corresponding to the (N � k) smallest distinct characteristic values. Then, obviously,
the reduced agents’ model �

r

(

¯A, ¯B, ¯C) can be retrieved from �

r

. This results in the
following reduced order network:

˙x̄(t) = ¯Ax̄(t) (3.16)

where ¯A = I
p

⌦ ¯A � L ⌦ ¯B ¯C and x̄ = col(x̄
1

, x̄
2

, . . . , x̄
p

) with x̄
i

2 Rr being the
reduced state component of agent i for i = 1, 2, . . . , p. The reduced order network
obtained in this way is stable as stated in the following theorem.

Theorem 3.3.3 Consider the multi-agent system (3.1), and assume that the small gain
condition (3.12) holds. Let K

m

and K
M

denote the minimal and maximal real symmetric
solutions of the Riccati equation (3.14). Then, for each positive integer 1 6 k < N ,
the reduced order network (3.16) of order pr with r =

P
k

i=1

s
i

, obtained by balancing
(K�1

M

,K
m

) and truncating according to (3.15) is stable.

Proof. As observed earlier, balancing (K�1

M

,K
m

) in (3.14) corresponds to BR balanc-
ing of �(A,�

p

B,C). Therefore, the reduced order dynamics �
r

(

¯A,�
p

¯B, ¯C) is stable
and strictly bounded real. Therefore, �

p

kG
r

k1 < 1 where G
r

(s) = C(sI � A)

�1B.
Hence, the reduced network (3.16) is stable by Lemma 3.3.1. ⌅
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3.3.3 Error bounds

Assuming that stability of the original network holds due to the small gain condition
(3.12), the model reduction scheme established in the previous subsection obtains
reduced order dynamics for the agents in such a way that stability of the network
is preserved in the reduced model (3.16). Moreover, one can show that the reduced
order agent dynamics is close to the original one by establishing error bounds as
follows.

As observed earlier, balancing the pair (K�1

M

,K
m

) in Riccati equation (3.14) is
equivalent to bounded real balancing with respect to the linear system �(A,�

p

B,C).
Hence, a model reduction error bound for the individual agents is obtained as

kG�G
r

k1 6 2

�
p

NX

i=r+1

�
i

(3.17)

where G and G
r

are the transfer matrices corresponding to �(A,B,C) and �

r

(

¯A, ¯B, ¯C),
respectively. Note that to write (3.17), we have assumed that �

p

is nonzero, meaning
that the graph has at least one edge. Obviously, the model reduction problem for the
case where �

p

= 0 is not of current interest as it boils down to the ordinary model
reduction problem of finite-dimensional linear time-invariant systems.

3.4 Synchronization preserving model reduction

3.4.1 Synchronization of the network

A synchronized network has the property that the state trajectories of the coupled
agents converge to a common trajectory. More precisely, we have the following
definition.

Definition 3.4.1 The multi-agent system (3.2) is synchronized if every solution of (3.2)
satisfies lim

t!1
(x

j

(t)� x
k

(t)) = 0 for all j, k = 1, 2, . . . , p.

Thus, different from network stability, network synchronization requires that the
differences of the states of the agents converge to zero as time runs off to infinity.

In contrast with the previous section, here agents are allowed to, and typically
have, unstable dynamics. Therefore, throughout this section we assume that the
underlying graph G is connected which is necessary for achieving synchronization
in case of unstable agents’ dynamics (see [47], [27]).

Let the state disagreement vector z be defined as

z(t) = (R> ⌦ I
n

)x(t) (3.18)
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where z = col(z
1

, z
2

, . . . , z
p�1

) and R is the incidence matrix of the graph. Then it is
easy to observe that the network (3.2) is synchronized if and only if lim

t!1
z(t) = 0 for

any solution x of (3.2). Consequently, the network (3.2) is synchronized if and only
if the system (3.2) with output variable z is output stable. Necessary and sufficient
conditions for synchronization have already been investigated in the literature (see
e.g. [47], [84]). These conditions and the corresponding proofs are recapped in the
following lemma for later use.

Lemma 3.4.2 Assume that the graph G = (V,E) is connected, and let the eigenvalues of
the Laplacian matrix be given by (3.9b). Then the network (3.2) is synchronized if and only
if A� �

i

BC is Hurwitz for each i = 2, 3, . . . , p.

Proof. The Laplacian matrix L admits the spectral decomposition U>LU = ⇤ where
⇤ is given by (3.9a) and U is an orthogonal matrix with its first column being the
normalized vector of ones. By applying the state space transformation x̃ = (U>⌦ I)x

to system (3.2) with output equation (3.18), we obtain

˙x̃(t) = (I
p

⌦A� ⇤⌦BC)x̃(t) (3.19a)

z(t) = (R>U ⌦ I
n

)x(t) (3.19b)

Observe that

I
p

⌦A� ⇤⌦BC = blockdiag(A,A� �
2

BC, . . . , A� �
p

BC) (3.20)

and R>U ⌦ I
n

can be decomposed as

R>U ⌦ I
n

=

⇥
0 R>

˜U ⌦ I
n

⇤
(3.21)

where ˜U is the matrix obtained by deleting the first column of U , and 0 is a zero
matrix with n columns. For any initial state x̃(0) = x

0

, the output of the system (3.19)
is obtained as

z(t) = (R>U ⌦ I
n

)e(I⌦A�⇤⌦BC)tx
0

which, by using (3.20) and (3.21), can be rewritten as

z(t) =
⇥
0 R>

˜U ⌦ I
n

⇤
blockdiag(eAt, e(A��2BC)t, . . . , e(A��pBC)t

)x
0

.

Since R is the incidence matrix associated with a connected graph, the matrix R>
˜U ⌦

I
n

has full column rank. Thus, the output variable z converges to zero for any x
0

if
and only if A� �

i

BC is Hurwitz for each i = 2, 3, . . . , p. ⌅
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3.4.2 Model reduction

Starting from a synchronized network, our aim here is to derive a reduced order
model for the network such that synchronization is preserved in this reduced order
model. Recall that the model reduction technique proposed in the previous section
uses the scaled dynamics of the agents �(A,�

p

B,C) to obtain a lower order network
(3.16). In the context of synchronization, however, the individual agents’ dynamics is
not necessarily stable. Therefore, usual balancing methods like Lyapunov balancing
and BR balancing cannot be applied directly to the original agents’ dynamics in this
case. The idea, here, is to use stable dynamics present in a synchronized network; in
particular, A� �

i

BC with i = 2, 3, . . . , p (see Lemma 3.4.2). In terms of these dynam-
ics, small gain type of conditions can also be derived to guarantee synchronization of
(3.2) as stated in the following lemma.

Lemma 3.4.3 Let the eigenvalues of the Laplacian matrix be given by (3.9b). Then the
network (3.2) is synchronized if there exists an index ` 2 {2, 3, . . . , p} such that A� �

`

BC

is Hurwitz and
�kH

`

k1 < 1 (3.22)

where
H

`

(s) = C(sI �A+ �
`

BC)

�1B

and
� = max(�

`

� �
2

,�
p

� �
`

). (3.23)

Proof. Suppose that (3.22) holds. Then there exists a positive definite matrix X which
satisfies the Riccati inequality (see [111])

(A� �BC)

>X +X(A� �BC) + C>C + �2XBB>X < 0 (3.24)

where the index ` is dropped for notational convenience. For each i = 2, 3, . . . , p, we
have

(A� �
i

BC)

>X +X(A� �
i

BC)

= (A� �BC)

>X +X(A� �BC)� (�
i

� �)(C>B>X +XBC)

= (A� �BC)

>X +X(A� �BC) + C>C + �2XBB>X

+ ((�
i

� �)2 � �2)XBB>X � ((�
i

� �)XB + C>
)((�

i

� �)B>X + C).

(3.25)

Now, the right hand side is negative definite due to (3.23) and (3.24). Therefore
A � �

i

BC is Hurwitz for each i = 2, 3, . . . , p, and the network is synchronized by
Lemma 3.4.2. ⌅
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Remark 3.4.4 As mentioned before, in the context of synchronization, agents typi-
cally have unstable dynamics, i.e. A is not Hurwitz. Based on the proof of Lemma
3.4.3, it can be shown that in this case, the condition (3.22) is satisfied only if 2�

`

> �
p

.

To see this, suppose (3.22) holds, and consider (3.25) where �
i

is replaced by zero.
Then, since A is not Hurwitz, the right hand side of (3.25) cannot be negative definite.
This results in �

`

> � which yields 2�
`

> �
p

. Consequently, searching for �
`

in
Lemma 3.4.3 can be restricted, in this generic case, to the interval �p

2

< �
`

6 �
p

.

Remark 3.4.5 The feasibility of the condition (3.22) depends both on the dynamics
of the agents and the magnitude of �. Hence, for given agent dynamics, the so-called
Laplacian spread of a graph, given by �

p

� �
2

, plays a crucial role in feasibility
of (3.22). Consequently, the condition (3.22) is expected to be more restrictive for
graphs with a large Laplacian spread like star graphs, and to be less restrictive as
the underlying graph tends to a complete graph. For details regarding the Laplacian
spread of a graph see [26] and [105].

The theorem above can be used for model reduction purposes. Starting from the
assumption that the condition (3.22) holds for the original network, implying that
the original network is synchronized, we obtain a reduced order model such that
synchronization is preserved in the reduced model. This is illustrated next.

Assume that synchronization of network (3.2) is verified by condition (3.22). In
addition, suppose that � 6= 0, i.e. the underlying communication topology does not
corresponds to a complete graph. Model reduction for the case � = 0 is rather trivial
and will be discussed later (see Remark 3.4.9). As before, let �

`

be denoted shortly by
�. Choose � > 0 such that

�kC(sI �A+ �BC)

�1Bk1 < � < 1 (3.26)

Then there exists a positive definite matrix K satisfying the Riccati equation

(A� �BC)

>K +K(A� �BC) + C>C + (

�

�
)

2KBB>K = 0. (3.27)

Observe that �(A��BC, �

�

B,C) is strictly bounded real for any choice of � satisfying
(3.26). Let K

m

and K
M

denote the minimal and maximal real symmetric solutions of
(3.27). Then BR balancing can be applied using the pair of positive definite matrices
(K�1

M

,K
m

) in order to obtain a reduced order model �
r

from the original dynamics
�. Obviously, the reduced order dynamics of the agents, �

r

(

¯A, ¯B, ¯C), can be then
retrieved from �

r

. Consequently, a reduced order network is obtained which can
be written again as in (3.16). Moreover, synchronization is preserved in the reduced
order model as stated in the following theorem.
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Theorem 3.4.6 Consider the network (3.2), and assume that the condition (3.22) holds.
Let K

m

and K
M

denote the minimal and maximal real symmetric solutions of the Riccati
equation (3.27). Then, for each positive integer 1 6 k < N , the reduced order network (3.16)
of order pr with r =

P
k

i=1

s
i

, obtained by balancing (K�1

M

,K
m

) and truncating according
to (3.15) is synchronized.

Proof. Following the discussion preceding the theorem, if (3.22) holds then the linear
system �(A� �BC, �

�

B,C) is strictly bounded real for any � satisfying (3.26). There-
fore, due to the properties of BR balancing, the reduced system �

r

(

¯A� � ¯B ¯C, �

�

¯B, ¯C)

obtained by balancing (K�1

M

,K
m

) and truncating is stable and bounded real. Then,
since � < 1, we have

k�C(sI � ¯A+ � ¯B ¯C)

�1Bk1 < 1

and the reduced order network (3.16) is synchronized by Lemma 3.4.3. ⌅

3.4.3 Error bound

Assuming that the small gain condition (3.22) holds, the model reduction scenario
proposed in the previous section obtains a reduced order network which preserves
synchronization. Here, we show that the reduced order network also gives a good
approximation of the behavior of the original network.

As mentioned earlier, in the context of synchronization agents typically have
unstable dynamics, which makes it difficult to compare the output of the original
dynamics of the agent to that of the reduced one. However, as observed, not the
agent’s state components but their difference plays a crucial role in synchronization.
Therefore, to establish model reduction error bounds we look at the differences of
the outputs of the agents, and we do so for each pair of agents which communicate
with each other. More precisely, we define the output disagreement vector as

⇠(t) = (R> ⌦ I
n

)y(t)

where y(t) = col(y
1

, y
2

, . . . , y
p

) and R is the incidence matrix. This can be rewritten
as

⇠(t) = (R> ⌦ C)x(t) (3.28)

Furthermore, as the network (3.2) is an autonomous system, we also need to intro-
duce an auxiliary input in order to be able to compare the input-output behavior of
the original network to that of the reduced order model. Hence, we add a disturbance
term d

i

in the diffusively coupled feedback law (3.1b). That is, we replace (3.1b) by

ũ
i

(t) = �
X

{i,j}2E

(y
i

(t)� y
j

(t)) + d
i

(t) (3.29)
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Consequently, we obtain the compact form

ẋ(t) = Ax(t) + (I
p

⌦B)d(t)

⇠(t) = (R> ⌦ C)x(t)
(3.30)

where d = col(d
1

, d
2

, . . . , d
p

) and A = I
p

⌦ A � L ⌦ BC. Then, for the reduced rth

order dynamics we have

˙x̄(t) = ¯Ax̄(t) + (I
p

⌦ ¯B)d(t)

⇠(t) = (R> ⌦ ¯C)x̄(t)
(3.31)

with x̄
i

2 Rr, x̄ = col(x̄
1

, x̄
2

, . . . , x̄
p

) and ¯A = I
p

⌦ ¯A� L⌦ ¯B ¯C.
Now, let T and T

r

denote the transfer matrices from d to ⇠ in (3.30) and (3.31),
respectively. Then kT � T

r

k1 measures the model reduction error, and we have the
following result.

Theorem 3.4.7 Consider the network (3.2) and assume that there exist an ` and a nonzero �
such that the condition (3.22) holds. Let � be a parameter satisfying (3.26). Let K

m

and K
M

denote the minimal and maximal real symmetric solutions of the Riccati equation (3.27). Let
(3.31) represent the reduced order network obtained by balancing (K�1

M

,K
m

) and truncating
according to (3.15). Then, we have the following model reduction error bound:

kT � T
r

k1 6 2�
p

�
p

�(1� �2

)

NX

i=r+1

�
i

, (3.32)

where the �
i

s are the diagonal elements of ⌃ in (3.15).

Proof. The Laplacian matrix L admits the following spectral decomposition

U>LU = ⇤ (3.33)

where ⇤ is given by (3.9), and the first column of U is the normalized vector of ones.
By applying the state space transformation x̃ = (U> ⌦ I

n

)x to (3.30) we obtain

˙x̃(t) = (I
p

⌦A� ⇤⌦BC)x̃(t) + (U> ⌦B)d(t)

⇠(t) = (R>U ⌦ C)x̃(t).
(3.34)

Observe that

I
p

⌦A� ⇤⌦BC = blockdiag(A,A� �
2

BC, . . . , A� �
p

BC),

and R>U ⌦ C is of the form

R>U ⌦ C =

⇥
0 R>

˜U ⌦ C
⇤
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where ˜U is the matrix obtained by deleting the first column of U , and 0 is a zero
matrix with n columns. Let x̃ be partitioned accordingly as x̃ = col(x̃

1

, x̃
2

) where
x̃
1

2 Rn. Then, the network equation (3.34) simplifies to

˙x̃
2

(t) = (I
p�1

⌦A� ˜

⇤⌦BC)x̃
2

(t) + (

˜U> ⌦B)d(t)

⇠(t) = (R>
˜U ⌦ C)x̃

2

(t).
(3.35)

where ˜

⇤ = diag(�
2

, . . . ,�
p

). Note that x̃
1

does not appear in the above as it corres-
ponds to unobservable state variables.

Analogously, for the reduced order network (3.31) we obtain the following state
space representation:

˙x̂
2

(t) = (I
p�1

⌦ ¯A� ˜

⇤⌦ ¯B ¯C)x̂
2

(t) + (

˜U> ⌦ ¯B)d(t)

⇠(t) = (R>
˜U ⌦ ¯C)x̂

2

(t).
(3.36)

Clearly, the transfer matrix from d to ⇠ in (3.35) is equal to that of (3.30), i.e. to T,

and the transfer matrix from d to ⇠ in (3.36) is equal to that of (3.31), i.e. to T
r

.
Now, we write the Lyapunov inequalities (3.6) for system (3.35) as

(I
p�1

⌦A� ˜

⇤⌦BC)

>Q
g

+Q
g

(I
p�1

⌦A� ˜

⇤⌦BC) + (R>
˜U ⌦C)

>
(R>

˜U ⌦C) 6 0

(I
p�1

⌦A� ˜

⇤⌦BC)P
g

+ P
g

(I
p�1

⌦A� ˜

⇤⌦BC)

>
+ (

˜U> ⌦B)(

˜U> ⌦B)

> 6 0

which simplifies to

(I
p�1

⌦A� ˜

⇤⌦BC)

>Q
g

+Q
g

(I
p�1

⌦A� ˜

⇤⌦BC) +

˜

⇤⌦ C>C 6 0 (3.38a)

(I
p�1

⌦A� ˜

⇤⌦BC)P
g

+ P
g

(I
p�1

⌦A� ˜

⇤⌦BC)

>
+ I

p�1

⌦BB> 6 0 (3.38b)

Note that equality (3.4) and the fact that ˜U>L ˜U =

˜

⇤ are used to write (3.38a). Now,
assume that there exist an ` and a nonzero � such that (3.22) holds. Let again �

`

be
denoted shortly by �, and recall that K

m

and K
M

are the minimal and maximal real
symmetric solutions of (3.27), respectively. Then we claim that

Q
g

=

�
p

1� �2

(I ⌦K
m

) (3.39a)

and
P
g

=

�2

�2(1� �2

)

(I ⌦K�1

M

) (3.39b)

satisfy the Lyapunov inequalities (3.38a) and (3.38b), respectively.
It is easy to observe that Q

g

given by (3.39a) satisfies (3.38a) if and only if

(A� �
i

BC)

>K
m

+K
m

(A� �
i

BC) +

�
i

(1� �2

)

�
p

C>C 6 0
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for each i = 2, 3, . . . , p. We have

(A� �iBC)>Km +Km(A� �iBC) +
�i(1� �2)

�p
C>C

= (A� �BC)>Km +Km(A� �BC)� (�i � �)(C>B>Km +KmBC) +
�i(1� �2)

�p
C>C

= � �2

�2
KmBB>Km � (1� �i(1� �2)

�p
)C>C � (�i � �)(C>B>Km +KmBC)

= �
h
KmB C

i " �2

�2 I (�i � �)I

(�i � �)I (1� �i(1��2)
�p

)I

#"
B>Km

C

#

where (3.27) is used to derive the second equality. Therefore, Q
g

given by (3.39a)
satisfies (3.38a) if "

�

2

�

2 �
i

� �

�
i

� � 1� �i(1��

2
)

�p

#
> 0 (3.40)

for i = 2, 3, . . . , p. This holds if and only if

�
i

(1� �2

)

�
p

+

�2

�2
(�

i

� �)2 6 1. (3.41)

Recall that, by definition, � = max(�
p

� �,�� �
2

). Hence, the first term on the left
hand side of (3.41) is not greater than (1 � �2

), and the second term is not greater
than �2. Therefore, Q

g

given by (3.39a) satisfies Lyapunov inequalities (3.38a).
Now, we will show that P

g

given by (3.39b) satisfies (3.38b). Clearly this holds if
and only if

(A� �
i

BC)K�1

M

+K�1

M

(A� �
i

BC)

>
+

�2(1� �2

)

�2

BB> 6 0 (3.42)

for each i = 2, 3, . . . , p. By multiplying (3.42) from the left and right by K
M

, we
obtain

(A� �
i

BC)

>K
M

+K
M

(A� �
i

BC) +

�2(1� �2

)

�2

K
M

BB>K
M

6 0. (3.43)

We have

(A� �iBC)>KM +KM (A� �iBC) +
�2(1� �2)

�2
KMBB>KM

= (A� �BC)>KM +KM (A� �BC)� (�i � �)(C>B>KM +KMBC)

+
�2(1� �2)

�2
KMBB>KM

= �C>C � �2KMBB>KM � (�i � �)(C>B>KM +KMBC)

= �
h
KMB C>

i " �2I (�i � �)I

(�i � �)I I

#"
B>KM

C

#
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where (3.27) is used to derive the second equality. Therefore, P
g

given by (3.39b)
satisfies (3.38b) if 

�2 �
i

� �

�
i

� � 1

�
> 0 (3.44)

for each i = 2, 3, . . . , p. This holds if and only if

� > |�
i

� �|

which is true by the definition of �. Hence, P
g

given by (3.39b) satisfies Lyapunov
inequalities (3.38b). Consequently, P

g

and Q
g

are generalized gramians for system
(3.35).

Now, in the balanced coordinates, we have K
m

= K�1

M

= ⌃ where ⌃ is given by
(3.15). Hence, after balancing, P

g

and Q
g

are obtained as

P
g

=

�2

�2(1� �2

)

(I ⌦ ⌃)

and
Q

g

=

�
p

1� �2

(I ⌦ ⌃).

Thus, both P
g

and Q
g

will become diagonal after balancing (K�1

M

,K
m

). There-
fore, balancing (K�1

M

,K
m

) yields essentially balancing of the generalized gramians
(P

g

, Q
g

) of the network, see Subsection 3.2.2. Note that the generalized Hankel sin-
gular values are the square roots of the eigenvalues of the product P

g

Q
g

which in

this case are the diagonal elements of the matrix �

p
�p

�(1��

2
)

⌃. This establishes the model
reduction error bound (3.32). ⌅

Remark 3.4.8 Recall that the parameter � is chosen such that (3.26) holds. Obviously,
different choices of � lead to different reduced order models. Although the error
bound proposed in Theorem 3.4.7 is not optimal in any norm, heuristically, one can
choose � such that the guaranteed error bound in (3.32) is as small as possible. Note
that the singular values �

i

also depend on �.

Remark 3.4.9 In case where the communication topology corresponds to a complete
graph, reducing dynamics from d to ⇠ in (3.30) boils down to an ordinary model
reduction problem of a linear system (see e.g. [56, p.28] for the Laplacian spectrum
of complete graphs). In particular, (3.35) can be written as

˙x̃
2

(t) = (I
p�1

⌦ (A� pBC))x̃
2

+ (

˜U ⌦B)d(t)

⇠(t) = (R>
˜U ⌦ C)x̃

2

(t).



56 3. Stability and synchronization preserving model reduction

Note that for a complete graph we have �
2

= �
3

= . . . = �
p

= p. Then, one can write
the corresponding Lyapunov equations as

(I
p�1

⌦ (A� pBC))

>Q+Q(I
p�1

⌦ (A� pBC)) + pI
p�1

⌦ C>C = 0

(I
p�1

⌦ (A� pBC))P + P (I
p�1

⌦ (A� pBC))

>
+ I

p�1

⌦BB>
= 0,

which is simplified to

(A� pBC)

>Q+Q(A� pBC) + pC>C = 0

(A� pBC)P + P (A� pBC) +BB>
= 0.

Consequently, one can apply Lyapunov balanced truncation to the stable linear
system �(A� pBC,B,

p
pC), and obtain a reduced order network.

3.5 Numerical example

Here, we apply the proposed synchronization preserving model reduction approach
established in the previous section to a numerical example. Consider the spacecraft
formation problem studied in [47]. The dynamics of the individual agents is given by


ṙ
i

r̈
i

�
=


0 I

3

A
1

A
2

� 
r
i

ṙ
i

�
+


0

I
3

�
u
i

(3.45)

with

A
1

=

2

4
0 0 0

0 3⇥ 10�6 0

0 0 �10�6

3

5 A
2

=

2

4
0 2⇥ 10�3 0

�2⇥ 10�3 0 0

0 0 0

3

5

where r
i

2 R3 is the position vector of the ith agent (satellite). Let A denote the overall
state matrix in (3.45). Suppose that state information of the agents is transmitted over
the network through the static state feedback C given by [47, Ex. 4]

C =

2

4
0.6596 �0.0013 0 1.9789 0 0

0.0013 0.6596 0 0 1.9789 0

0 0 0.6596 0 0 1.9789

3

5 ,

and the agents communicate according to the communication topology given by
Figure 3.1. Then, the network equations can be written in compact as

ẋ = (I
4

⌦A� L⌦BC)x (3.46)
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1

2 3

4

Figure 3.1: Communication topology

where x = col(r
1

, ṙ
1

, r
2

, ṙ
2

, r
3

, ṙ
3

, r
4

, ṙ
4

), B = col(0, I
3

), and the Laplacian matrix is
given by

L =

2

6664

3 �1 �1 �1

�1 2 �1 0

�1 �1 2 0

�1 0 0 1

3

7775
. (3.47)

The eigenvalues of the Laplacian matrix (3.47) are �
1

= 0, �
2

= 1, �
3

= 3, and
�
4

= 4. Observe that

(�
4

� �
2

)kC(sI �A+ �
4

BC)

�1Bk1 = 0.7746 < 1,

and, hence, (3.46) is synchronized by Lemma 3.4.3.
Now let � = 0.8, which clearly satisfies (3.26). Let again K

m

and K
M

be the
minimal and maximal real symmetric solutions of the corresponding Riccati (3.27).
Then a balancing transformation for (K�1

M

,K
m

) is computed as

T =

2

66666664

0.2194 �0.0006 0.0000 0.7300 �0.0002 0.0000

�0.0006 �0.2194 0.0000 0.0002 �0.7300 0.0000

0.0000 0.0000 0.2194 0.0000 0.0000 0.7300

�0.2194 �0.0006 0.0000 0.0718 0.0003 0.0000

�0.0006 0.2194 0.0000 0.0003 �0.0718 0.0000

0.0000 0.0000 �0.2194 0.0000 0.0000 0.0718

3

77777775

, (3.48)

and the corresponding diagonal matrix ⌃ is obtained as

⌃ =


0.7827I3 0

0 0.1927I3

�

Note that the only admissible truncation is to discard three state components. Now,
by truncating the three state components corresponding to the smallest diagonal
elements of ⌃, the reduced order dynamics of the agents �

r

(

¯A, ¯B, ¯C) is obtained as

¯A =

2

4
0.2736 �0.0012 0.0000

0.0012 0.2736 0.0000

0.0000 0.0000 0.2736

3

5 ,
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¯B =

2

4
0.7300 �0.0002 0.0000

�0.0002 �0.7300 0.0000

0.0000 0.0000 0.7300

3

5 ,

and

¯C =

2

4
2.7374 �0.0010 0.0000

�0.0010 �2.7374 0.0000

0.0000 0.0000 2.7374

3

5 .

Consequently, the corresponding reduced order network can be represented as

˙x̄(t) = (I
4

⌦ ¯A� L⌦ ¯B ¯C)x̄(t). (3.49)

It is easy to verify that ¯A � �
i

¯B ¯C is Hurwitz for each i 2 {2, 3, 4}, and, hence, the
reduced order network is synchronized by Lemma 3.4.2. Alternatively, one can verify
that

(�
4

� �
2

)k ¯C(sI � ¯A+ �
4

¯B ¯C)

�1

¯Bk1 = 0.7766 < 1,

which implies that (3.49) is synchronized by Lemma 3.4.3. Note that, in fact, while the
static feedback C synchronizes the original agents’ dynamics, the truncated matrix ¯C

synchronizes the reduced order dynamics of the agents.
Now, to compare the behavior of the reduced order network to the original one,

as in Subsection 3.4.3, we introduce auxiliary inputs and outputs to obtain the forms
(3.30) and (3.31) for the original and the reduced order network, respectively. Note
that in this example we have p = 4, n = 6, r = 3, ⇠ 2 R12, and the incidence matrix of
the graph can be given as

R =

2

664

1 1 1 0

�1 0 0 1

0 �1 0 �1

0 0 �1 0

3

775 .

Now, we apply step disturbances to some, randomly chosen, channels of (3.30)
and (3.31). In particular, for each i = 1, 2, . . . , 12, we consider a disturbance d

i

=

↵
i

11(t) where 11(t) is the unit step function and ↵
i

is some nonnegative integer
indicating the amplitude of the step disturbance d

i

. Clearly, the value of ↵
i

is set to
zero whenever the ith channel is not affected by the disturbance. For two different
choices of ↵

i

s, the output responses of (3.30) and (3.31), i.e. ⇠ variables, are compared
in Figures 3.2 and 3.3. It is also worth to compute the actual model reduction error
and the proposed error bound which corresponds to the left and right hand side of
(3.32), respectively. In this case, the actual model reduction error is obtained as 0.1587
and the error bound is computed as 0.5674.
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Figure 3.2: Network model order reduction of Example 1: responses to the step disturbances

corresponding to ↵i = [1 0 0 0 0 1 1 0 0 0 1 0]i; original network (solid line) and reduced

order network (dashed dotted line); ⇠1, ⇠2, ⇠3 (top left), ⇠4, ⇠5, ⇠6 (top right), ⇠7, ⇠8, ⇠9(down

left), ⇠10, ⇠11, ⇠12 (down right).

3.6 Conclusions

In this chapter, we have studied the problem of model order reduction for multi-agent
systems. The identical agents are assumed to be general finite dimensional linear
time-invariant systems. Small gain types of condition were derived to guarantee
stability and synchronization of networks. It was observed that these conditions
depend both on the communication topology and dynamics of the agents. Two
different scenarios for model reduction of multi-agent systems were considered. First,
assuming that the agents have stable internal dynamics, and the overall network
is stable, a stability preserving model reduction approach was established. Conse-
quently, model reduction error bounds on the dynamics of the individual agents were
obtained. In the second scheme, we started off by the assumption that the original
network is synchronized and a certain small gain condition holds. Then, a synchro-
nization preserving model reduction technique was proposed by using bounded real
balancing of some network dynamics. After adding appropriate auxiliary inputs
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Figure 3.3: Network model order reduction of Example 1: responses to the step disturbances

corresponding to ↵i = [2 0 3 3 0 0 1 3 0 3 0 1]i; original network (solid line) and reduced

order network (dashed dotted line); ⇠1, ⇠2, ⇠3 (top left), ⇠4, ⇠5, ⇠6 (top right), ⇠7, ⇠8, ⇠9(down

left), ⇠10, ⇠11, ⇠12 (down right).

and outputs to the initial network representation, the behavior of the original and
the reduced order network were compared by establishing model reduction error
bounds. The proposed model reduction scheme was applied to a numerical example.
The simulation results shows that the reduced order network gives a good approxi-
mation of the original one, providing that the neglected bounded real characteristic
values are relatively small.



Chapter 4

A projection based approximation of multi-agent
systems by using graph partitions

4.1 Introduction

Multi-agent systems and distributed control of networks of dynamic agents have
received compelling attention in the last decade. In particular, reaching an agreement
among agents in a network has been widely studied in terms of consensus and
synchronization (see e.g. [41], [73], [79], [47], [83], [95]). Among numerous research
directions in this area we mention formation control, flocking, placement of mobile
sensors, and controllability analysis of networks; see e.g. [27], [71], [21], [20], [78],
[107].

In order to analyze or control a large-scale system, model reduction techniques are
highly advantageous. Clearly, lower order models admit easier analysis and provide
a better understanding of the system behavior. Various model reduction techniques,
such as balanced truncation, Hankel-norm approximation and Krylov projection are
available in the literature; see e.g. [1]. Naively, one may think of exploiting these
model reduction techniques to deal with analysis or control of large-scale networks.
However, a major drawback here is that the spatial structure of the network may
collapse by direct application of classical model reduction tools. Of course, related to
this issue, structure preserving model reduction techniques have been established in
the literature. In particular, preservation of the Langrangian structure, the second-
order structure, and the interconnection structure of several subsystems have been
studied in [44], [46], and [82]. Nevertheless, multi-agent systems and dynamical
networks have their own structural characteristics and this motivates us to study
the model reduction problem for this class of systems in a more focused manner.
Obviously, the key structure needed to be preserved in the reduced order model is
the network topology. Some recent work in this direction is [40] and [39], where a
clustering based algorithm was proposed for asymptotically stable networks.

In the present chapter we consider multi-agent systems defined on weighted
undirected graphs, and we propose a projection based technique to obtain reduced
order models for these systems. The projection used is formulated in terms of the
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characteristic matrix of a graph partition. The reduction procedure preserves the
spatial structure of the network, meaning that the reduced order model is realized as
a new multi-agent system. The communication graph of the reduced order multi-
agent system is weighted, symmetric and directed, and has a reduced number of
nodes.

In the previous chapter, a model reduction scheme was established in which
the dynamic order of the agents is reduced, but the communication graph remains
unchanged. As a counterpart of Chapter 3, in the present chapter we consider single
integrator dynamics with a consensus type of protocol, and we aim at reducing the
size of the underlying communication graph. It should be noted that the Laplacian
matrix of the communication graph serves as the state matrix in the model of a typical
multi-agent system with a consensus based feedback protocol. Thus, inevitably, the
system is not asymptotically stable, and hence most of the aforementioned existing
result do not directly apply to this case. Another issue which is relevant here is the
preservation of consensus in the reduced order model. As we will observe, clustering
the agents does not jeopardize the consensus property of the original multi-agent
system.

An important challenge is to compare the behavior of the reduced and original
network. In this chapter, we will establish an explicit expression for the model
reduction error in the sense of the H

2

-norm and with respect to an appropriate choice
of inputs and outputs of the network. In particular, we work with a leader-follower
set up, meaning that some agents, often called leaders, may receive an external
command, a disturbance, or a reference signal. Moreover, as outputs we consider
the differences among the states of the communicating agents, as these differences
play a crucial role in the context of distributed control. The expression provided for
the associated model reduction error is simple, easy to compute, and can be derived
directly from the graph partition involved in obtaining the reduced order model.

The structure of the chapter is as follows. In Section 4.2, we review some basic no-
tions and preliminaries that are needed in the sequel. The proposed model reduction
scheme is discussed in Section 4.3. The input-output behaviors of the reduced order
and the original multi-agent system are compared in Section 4.4. Finally, Section 4.5
concludes the chapter.

4.2 Preliminaries

In this section, we will provide some preliminaries and basic material needed in the
sequel. In particular, we will discuss some basic notions from graph theory, describe
the model used in this chapter for multi-agent systems, and finally recap the notion
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of Petrov-Galerkin projection.

4.2.1 Graph theory

In this chapter we consider both weighted undirected graphs and weighted directed
graphs. A weighted undirected graph is a triple G = (V,E,A) where V = {1, 2, . . . , n}
is the vertex set, E is the edge set, and A = [a

ij

] is the adjacency matrix, with
nonnegative elements a

ij

called the weights. The edge set of G is a set of unordered
pairs {i, j} of distinct vertices of G. Similarly, a weighted directed graph is a triple
G = (V,E,A) where V = {1, 2, . . . , n} is the vertex set, E is the arc set, and A = [a

ij

]

is the adjacency matrix with nonnegative elements a
ij

, again called the weights.
The arc set of G is a set of ordered pairs (i, j) of distinct vertices of G. For an arc
(i, j) 2 E, we say i is the tail, and j is the head of the arc. In this chapter we consider
simple graphs meaning that self-loops and multiple edges (multiple arcs in the same
direction) between one particular pair of vertices are not permitted. We have a

ij

> 0

whenever there is an edge between i and j (an arc from j to i). Clearly, a
ij

= a
ji

for undirected graphs. A directed graph is called symmetric if whenever (i, j) is an
arc also (j, i) is. We note that for symmetric directed graphs the weights a

ij

and
a
ji

can be distinct. Clearly any weighted undirected graph can be identified with a
symmetric directed graph in which the weights satisfy a

ij

= a
ji

.
Both for undirected and directed graphs the degree matrix of G is the diagonal

matrix, denoted by D = diag(d
1

, d
2

, . . . , d
n

), with

d
i

=

nX

j=1

a
ij

.

The Laplacian matrix of G is defined as L = D�A. For directed graphs, the incidence
matrix of G, denoted by R = [r

ij

], is defined as

r
ij

=

8
>><

>>:

1 if vertex i is the head of arc j

�1 if vertex i is the tail of arc j

0 otherwise

(4.1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , k, where k is the total number of arcs. In order
to obtain an incidence matrix for a given undirected graph, we first assign an ar-
bitrary orientation to each of the edges and next take the incidence matrix of the
corresponding directed graph (see [56, p.21]). Corresponding to the incidence matrix
R, let

W = diag(w
1

, w
2

, . . . , w
k

) (4.2)
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be a k ⇥ k matrix such that w
j

indicates the weight associated to the edge (arc) j, for
each j = 1, 2, . . . , k. For undirected graphs, the relationship between the incidence
matrix and the Laplacian matrix is then captured by the following equality:

L = RWR>. (4.3)

4.2.2 Multi-agent systems

Let G = (V,E,A) be a weighted undirected graph where V = {1, 2, . . . , n}. Let
V
L

= {v
1

, v
2

, . . . , v
m

} be a subset of V , and let V
F

= V \ V
L

. By a leader-follower
multi-agent system, we mean the following dynamical system:

ẋ
i

=

(
z
i

if i 2 V
F

z
i

+ u
`

if i 2 V
L

(4.4)

where x
i

2 R denotes the state of agent i, u
`

2 R is the external input applied to
agent i = v

`

, and z
i

2 R is the coupling variable for the agent i which is given by

z
i

=

nX

j=1

a
ij

(x
j

� x
i

). (4.5)

Let x = col(x
1

, x
2

, . . . , x
n

), u = col(u
1

, u
2

, . . . , u
m

), and the matrix M 2 Rn⇥m be
defined as

M
i`

=

⇢
1 if i = v

`

0 otherwise.
(4.6)

Then we can write the above leader-follower linearly diffusively coupled multi-agent
system associated with the graph G in a compact form as

ẋ = �Lx+Mu, (4.7)

where L is the Laplacian matrix of G, and M is given by (4.6).

4.2.3 Petrov-Galerkin projections

Consider the input/state/output system

ẋ = Ax+Bu,

y = Cx,
(4.8)

where x = Rn is the state, u 2 Rm is the input, and y = Rp is the output of the system.
Let W,V 2 Rn⇥r such that W>V = I . By using the projection � = VW>, a reduced
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order model (projected model) is obtained as

˙x̂ = W>AVx̂+W>Bu

y = CVx̂
(4.9)

where x̂ 2 Rr denotes the state of the reduced model. This projection is called
a Petrov-Galerkin projection. Note that � defines a projection onto the image of
V and along the kernel of W>. In case that W is equal to V, the projection � is
orthogonal and is called a Galerkin projection. The Petrov-Galerkin projection is
a rather general reduction framework meaning that many of the model reduction
techniques including Krylov based and truncation methods essentially use this
projection with appropriate choice of matrices V and W. In particular, depending
on the application, one can choose the matrix V, and consequently W, to preserve
stability, passivity, or to match certain moments and Markov parameters (see [1] for
more details).

4.3 Projection by graph partitions

It is not hard to see that a direct application of Petrov-Galerkin projection will, in
general, destroy the spatial structure of the network. In particular, the relationship
between the reduced order network and the original one is not transparent, the
structure of the Laplacian matrix may be lost, and the reduced order model may not
be in the form of a leader-follower multi-agent system as given by (4.7). Therefore,
we propose to use graph partitions in order to preserve the structure of the network
in the reduced order model. First, we need to recap the notions of cells and graph
partitions.

Let V = {1, 2, . . . , n} be the vertex set of a graph G. We call any nonempty subset
of V a cell of V . We call a collection of cells, given by ⇡ = {C

1

, C
2

, . . . , C
r

}, a partition
of V if [

i

C
i

= V and C
i

\C
j

= ? whenever i 6= j. With a little abuse of notation, we
say ⇡ is a partition of G = (V,E), or shortly G, meaning that ⇡ is a partition of V . We
say i is a cellmate of j in ⇡ if i and j belong to the same cell of ⇡. For a cell C ✓ V , the
characteristic vector of C is defined as the n-dimensional column vector p(C) with

p
i

(C) =

(
1 if i 2 C,

0 otherwise.
(4.10)

For a partition ⇡ = {C
1

, C
2

, . . . , C
r

}, we define the characteristic matrix of ⇡ as

P (⇡) =
⇥
p(C

1

) p(C
2

) · · · p(C
r

)

⇤
. (4.11)
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Figure 4.1: G = (V,E,A)

Example 4.3.1 As an example, consider the graph G depicted in Figure 4.1.
Then,

⇡ = {{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} (4.12)

is a partition of V = {1, 2, . . . , 10}, and its characteristic matrix is given by

P (⇡) =

2

664

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1

3

775

>

. (4.13)

⇤

Now, consider again in general the multi-agent system (4.7) with associated
graph G = (V,E,A). Let ⇡ = {C

1

, C
2

, . . . , C
r

} be a partition of V , and P (⇡) be the
characteristic matrix of ⇡. Recall the Petrov-Galerkin projection discussed in Section
4.2.3. We propose the following choices for the matrices V and W:

W = P (⇡)(P>
(⇡)P (⇡))�1 (4.14a)

V = P (⇡). (4.14b)

Note that the columns of P (⇡) are orthogonal, thus the matrix P>
(⇡)P (⇡) is a

diagonal matrix. Moreover, its ith diagonal element is equal to the number of vertices
in cell C

i

of ⇡. Hence, P>
(⇡)P (⇡) is invertible. Also note that W>V = I , and the

projection ⇧ = VW> is orthogonal since imV = (kerW>
)

?. Then, by applying the
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Petrov-Galerkin projection to (4.7), with the choices of V and W given by (4.14), we
obtain the reduced order system

˙x̂ = �ˆLx̂+

ˆMu, (4.15)

where x̂ 2 Rr is the state of the reduced order model, and the matrices ˆL and ˆM are
given by

ˆL = (P>P )

�1P>LP, (4.16)
ˆM = (P>P )

�1P>M, (4.17)

where P (⇡) is denoted shortly by P .
Next, we show that the reduced model (4.15) is associated with a leader-follower

multi-agent system defined on a graph, in a similar form as (4.7). First, observe that
ˆM has a similar structure as M . More precisely, each column of ˆM contains exactly

one nonzero-element, indicating a leader. The only difference is that the non-zero
elements do not need to be 1 anymore. This can be interpreted by saying that input
signals are now weighted.

It is easy to observe that the matrix ˆL is equal to the Laplacian matrix of a weighted
directed graph, say ˆG = (

ˆV , ˆE, ˆA). In fact, as a consequence of the aforementioned
projection, the underlying graph G is mapped to the graph ˆG. In particular, each cell
of ⇡ in G is mapped to a vertex in ˆG. Hence, the number of vertices in ˆG is equal
to the cardinality of ⇡, i.e. the number of cells in ⇡. Moreover, there is an arc from
vertex p to vertex q in ˆG if and only if there exist i 2 C

p

and j 2 C
q

with p 6= q such
that {i, j} 2 E. Therefore, ˆG is a symmetric directed graph, i.e. (i, j) 2 ˆE , (j, i) 2 ˆE.
For the relationship between the matrices A and ˆA = [â

pq

], we have

â
pq

=

1

|C
p

|
X

i2Cp,j2Cq

a
ij

, (4.18)

for p 6= q, where |.| denotes the cardinality of a set. Observe that the row sums of
ˆL are indeed zero as P (⇡)11 = 11 and L11 = 0, where 11 denotes the vector of ones
of appropriate dimension. Note that the matrix ˆL is not necessarily symmetric, as
the number of vertices may differ from cell to cell in ⇡. However, ˆL is similar to the
symmetric matrix (P>P )

� 1
2P>LP (P>P )

1
2 , thus ˆL inherits nice properties of L, like

diagonalizability and having real eigenvalues.
As observed, the reduced order model (4.15) is associated with a new multi-agent

system where the diffusive coupling rule is defined based on the graph ˆG. The
idea behind the proposed projection is that the partition ⇡ clusters some vertices
(agents) together, and these vertices are mapped to a single vertex in the reduced
order (projected) model. In addition, note that the components of the reduced state x̂

approximate the averages of the states of the agents that are cellmates in ⇡. In case
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the agents that are cellmates in ⇡ have a “similar” interconnection to the rest of the
network, then this approximation tends to be exact. We will clarify what we mean by
“similar” in the next section.

Example 4.3.2 We will now return to our example in Figure 4.1. Suppose that agents
(vertices) 1 and 7 are leaders. Then the multi-agent system associated with the graph
G is given by:

ẋ = �Lx+Mu (4.19)

where

L =

2

666666664

5 0 0 0 0 �5 0 0 0 0

0 5 0 0 �3 �2 0 0 0 0

0 0 6 �1 �2 �3 0 0 0 0

0 0 �1 6 �5 0 0 0 0 0

0 �3 �2 �5 25 �2 �6 �7 0 0

�5 �2 �3 0 �2 25 �6 �7 0 0

0 0 0 0 �6 �6 15 �1 �1 �1

0 0 0 0 �7 �7 �1 15 0 0

0 0 0 0 0 0 �1 0 1 0

0 0 0 0 0 0 �1 0 0 1

3

777777775

, M =

2

666666664

1 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

3

777777775

.

Let P (⇡), given by (4.13), be denoted in short by P . Then, the reduced order
model obtained by clustering the agents according to ⇡, given by (4.12), is given by

˙x̂ = �ˆLx̂+

ˆMu, (4.20)

where ˆL and ˆM are computed as

ˆL = (P>P )

�1P>LP =

2

664

5 �5 0 0 0
�10 23 �6 �7 0
0 �12 15 �1 �2
0 �14 �1 15 0
0 0 �1 0 1

3

775 , ˆM = (P>P )

�1P>M =

2

664

0.25 0
0 0
0 1
0 0
0 0

3

775.

The graph ˆG associated with the reduced order system (4.20) is shown in Figure 4.2.
Observe that ˆG has 5 vertices, each of which corresponds to a cell in ⇡. For

instance, vertex 1 in ˆG corresponds to the cell C
1

= {1, 2, 3, 4}, and vertex 2 corre-
sponds to the cell C

2

= {5, 6}. Then the arcs (1, 2) and (2, 1) of ˆG account for the
coupling between C

1

and C
2

in the graph G given by Figure 4.1. In particular, the
weight associated to the arc (2, 1) 2 ˆE is indeed equal to the average of the weights
of the edges {i, j} 2 E with i 2 C

1

and j 2 C
2

, as given by (4.18). Observe that
the input weights indicated by ˆM depend on the cardinality of the cells in ⇡. For
instance, x̂

1

receives one fourth of u
1

in the reduced order model (4.20). This value
indeed indicates the average of the input signals received by the agents in C

1

. ⇤
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Figure 4.2: Ĝ = (V̂ , Ê, Â)

Before proceeding, we point out another useful relationship between the Lapla-
cian matrices L and ˆL. We need to recap the notion of interlacing first. Let X be a
real symmetric n ⇥ n matrix, and let �

1

,�
2

, . . . ,�
n

denote the eigenvalues of X in
an increasing order. Also let Y be a real symmetric m ⇥ m matrix, where m 6 n.
Moreover, let µ

1

, µ
2

, . . . , µ
m

denote the eigenvalues of Y in an increasing order. Then
we say that the eigenvalues of Y interlace the eigenvalues of X if

�
i

6 µ
i

6 �
n�m+i

(4.21)

for each i = 1, 2, . . . ,m.
The eigenvalues of ˆL, given by (4.16), interlace the eigenvalues of L as stated in

the following lemma.

Lemma 4.3.3 Let L be a symmetric matrix, and let ˆL be given by (4.16) for a given partition
⇡. Then the eigenvalues of ˆL interlace the eigenvalues of L.

Proof. Recall that P>P is a diagonal matrix with strictly positive diagonal elements.
Clearly, the matrix ˆL is similar to the matrix F>LF for F = P (P>P )

� 1
2 . Now, noting

that F>F = I , the result immediately follows by [30, Thm. 9.5.1]. ⌅

Next, we discuss consensus and convergence rate preservation in the reduced
order model. Roughly speaking, consensus means that the agents agree on a certain
quantity of interest. Consensus is defined in the absence of the external input, thus
we deal with the following multi-agent system:

ẋ
i

=

nX

j=1

a
ij

(x
j

� x
i

). (4.22)

We say that the multi-agent system (4.22) reaches consensus if for any arbitrary initial
condition we have:

lim

t!1
x
i

(t)� x
j

(t) = 0 for all i, j 2 V (4.23)
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Now, suppose that the original multi-agent system reaches consensus, and hence
(4.23) holds. Then, consensus is preserved in the reduced order system:

Theorem 4.3.4 Consider the multi-agent system (4.7) with u = 0, i.e.

ẋ = �Lx, (4.24)

and suppose that consensus is reached for this system. For any given partition ⇡, the reduced
order multi-agent system

˙x̂ = �ˆLx̂ (4.25)

also reaches consensus, where ˆL is given by (4.16).

Proof. Clearly, as the multi-agent system (4.24) reaches consensus, zero is a simple
eigenvalue of the Laplacian matrix L. In addition, note that ˆL11 = 0. By Lemma 4.3.3,
we conclude that zero is also a simple eigenvalue of ˆL, and the rest of the eigenvalues
are real and strictly positive. This implies that the reduced order model (4.25) reaches
consensus. ⌅

Note that, because of the interlacing property provided in Lemma 4.3.3, the rate
of convergence in the reduced order model is at least as fast as that of the original
model.

4.4 Input-output approximation of multi-agent systems

We have observed that by applying an appropriate projection to the original multi-
agent system defined on G, we obtain a reduced-order model that represents a multi-
agent system defined on a new graph ˆG. Moreover, consensus and the convergence
rate are preserved by this model reduction. In this section, we discuss appropriate
choices of partitions such that the behavior, in particular the input-output behavior,
of the reduced and the original multi-agent system are “close” in a certain sense.
Without loss of generality, assume that graph G is connected. Obviously, in case
G is not connected, one can apply the proposed model reduction technique on
disconnected components of G, individually.

We first include some output variables in system (4.7). Note that in the context
of distributed control, differences of the states of the agents play a crucial role. In
fact, these differences reflect the disagreement among the agents, and the network
reaches consensus if this disagreement vanishes as time evolves. Observe that the
differences of the states of communicating agents are embedded in the incidence
matrix. Therefore, we choose the output variables as

y = W
1
2R>x, (4.26)
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where W is given by (4.2). Hence, the disagreement in the states of a pair of agents
is reflected in the output variables (4.26) in accordance with the weight of the edge
connecting those agents (vertices). Furthermore note that, as G is connected, the
multi-agent system (4.7) reaches consensus if and only if lim

t!1 y(t) = 0 for all
initial states x(0). It is also worth mentioning that, by (4.3), we have kyk2 = x>Lx =

1

2

P
i,j

a
ij

(x
i

� x
j

)

2 which is a measure of group disagreement (see e.g. [73]).
Consequently, we obtain the following input/state/output model for the original

multi-agent system defined on the graph G:

ẋ = �Lx+Mu, (4.27a)

y = W
1
2R>x, (4.27b)

where x 2 Rn, L is the Laplacian, and R is the incidence matrix of G. Now, let again
⇡ be a partition of G. Then, the input/state/output model for the reduced order
(projected) model is obtained as

˙x̂ = �ˆLx̂+

ˆMu, (4.28a)

y = W
1
2 ˆR>x̂, (4.28b)

where x̂ 2 Rr with r 6 n, ˆL is given by (4.16), ˆM is given by (4.17), and ˆR = P>R.
Recall that ˆL is the Laplacian matrix of the weighted symmetric directed graph

ˆG. It is worth mentioning that the matrix ˆR is related to the incidence matrix of the
graph ˆG, which we denote by R0. Indeed, it can be shown that each column of ˆR

is either equal to zero or is equal to a column of R0. Note that the zero columns of
ˆR indeed correspond to the difference of the states of cellmate agents, which are
approximated to be identical in deriving the reduced order model.

Clearly, different choices of graph partitions lead to different reduced order
models, and one may think of choosing an appropriate partition to approximate the
behavior of the original multi-agent system relatively well. Note that we have two
trivial partitions here, one is taking each vertex (agent) as a singleton and the other
one is ⇡ = {V }. In the first case, no order reduction occurs and the corresponding
model reduction error is zero. In the latter case, the network topology is neglected,
and the reduced model is a single agent with a zero transfer matrix from u to y. Thus,
these two trivial partitions indicate the finest and the coarsest approximation by
graph partitions. Clearly, similar to model reduction in ordinary linear systems, this
leads to a compromise between the order of the reduced model and the accuracy of
the approximation.

Recall that the dynamics of the individual nodes are the same. So, an appropriate
partitioning (clustering) decision solely depends on the graph topology. Hence, in
order to achieve a better approximation, it is expected that the agents (vertices) that
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are connected to the rest of the network in a “similar” fashion should be clustered in
one cell. In order to formalize this heuristic idea, in what follows we distinguish a
class of partitions, namely almost equitable partitions, from other partitions. An easily
computable model reduction error in the sense of the H

2

-norm will be provided for
this class of partitions. The notion of almost equitability is recapped next.

Let G = (V,E) be an unweighted undirected graph. For a given cell C ✓ V , we
write N(i, C) = {j 2 C | {i, j} 2 E}. Note that N(i, C) indicates the number of
neighbors vertex i has in cell C. We call a partition ⇡ = {C

1

, C
2

, . . . , C
r

} an almost
equitable partition (AEP) of G if for each p, q 2 {1, 2, · · · , r} with p 6= q there exists an
integer d

pq

such that |N(i, C
q

)| = d
pq

for all i 2 C
p

.
An almost equitable partition, say ⇡, has the key property that imP (⇡) is L-

invariant (see e.g. [107, Lem. 2]). Note that we call a subspace X ✓ Rn A-invariant if
AX ✓ X where A : Rn ! Rn. To incorporate the case of weighted graphs, the notion
of almost equitability can be extended as follows.

Let G = (V,E,A) be a weighted undirected graph. Recall that a
ij

indicates the
weight associated to the edge {i, j}. We call a partition ⇡ = {C

1

, C
2

, . . . , C
r

} an almost
equitable partition (AEP) of G if for each p, q 2 {1, 2, · · · , r} with p 6= q there exists an
integer d

pq

such that
P

j2N(i,Cq)
a
ij

= d
pq

for all i 2 C
p

.
As an example consider the graph G in Figure 4.1. It is easy to verify that ⇡ given

by (4.12) is an AEP of G.
Note that the definition of almost equitability for weighted graphs includes

the case of unweighted graphs as a special case. In fact, for unweighted graphs,
a
ij

= 1 whenever {i, j} 2 E. Hence, the quantity
P

j2N(i,Cq)
a
ij

coincides with
the cardinality of N(i, C

q

). Moreover, the L-invariance property remains valid for
weighted graphs, as stated in the following lemma.

Lemma 4.4.1 Let ⇡ be a partition of a weighted undirected graph G, and let L denote the
Laplacian matrix of G. Then ⇡ is almost equitable if and only if imP (⇡) is L-invariant, i.e.

L imP (⇡) ✓ imP (⇡) (4.29)

Proof. The proof is analogous to that of [14, Prop. 1]. ⌅

Now, assume that ⇡ = {C
1

, C
2

, . . . , C
r

} is an AEP of a weighted undirected
graph G, and suppose that the reduced order model (4.28) is obtained from (4.27) by
choosing the partition ⇡. Moreover, recall that V

L

= {v
1

, v
2

, . . . , v
m

}, and for each i =

{1, 2, . . . ,m}, let k
i

be an integer such that v
i

2 C
ki . Then, the (normalized) model

reduction error involved in obtaining the reduced order model (4.28) is provided in
the following theorem.
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Theorem 4.4.2 Let G be a weighted undirected graph, and assume G is connected. Let
⇡ = {C

1

, C
2

, . . . , C
r

} be an almost equitable partition of G. Suppose that the reduced order
multi-agent system (4.28) is obtained from (4.27) by choosing the partition ⇡. Also, let S and
ˆS denote the transfer matrices from u to y in (4.27) and (4.28), respectively. Then, we have

kS � ˆSk2
2

kSk2
2

=

P
m

i=1

(1� 1

|Cki
| )

m(1� 1

n

)

, (4.30)

where n is the total number of vertices (agents) in G and the k
i

s are defined as before.

Proof. Note that the columns of P (⇡) form an orthogonal set of vectors in Rn. We
complete this set to an orthogonal basis for Rn. In particular, we construct a matrix T

as T =

⇥
P Q

⇤
, where P (⇡) is denoted in short by P , and Q is an n⇥ (n� k) matrix

such that the columns of T are orthogonal. Observe that we have

P>Q = 0. (4.31)

Now, we apply the state space transformation x = T x̃ to system (4.27). Consequently,
we obtain the following input/state/output system:


˙x̃
1

˙x̃
2

�
= �


(P>P )

�1P>LP (P>P )

�1P>LQ

(Q>Q)

�1Q>LP (Q>Q)

�1Q>LQ

� 
x̃
1

x̃
2

�
+


(P>P )

�1P>M

(Q>Q)

�1Q>M

�
u (4.32a)

y =

h
W

1
2R>P W

1
2R>Q

i x̃
1

x̃
2

�
(4.32b)

Clearly, the transfer matrices from u to y in (4.27) and (4.32) are identical. Moreover,
observe that the reduced order model (4.28) is the system obtained by truncating the
state components x̃

2

in (4.32). Since ⇡ is an AEP of G, imP is L-invariant by Lemma
4.4.1. Thus, there exists a matrix X such that LP = PX . Hence, we obtain

Q>LP = 0. (4.33)

Therefore, the transfer matrices S and ˆS of the original system (4.27) and its reduced
order model (4.28), respectively, are related by:

S(s) = ˆS(s) +�(s), (4.34)

where
�(s) = W

1
2R>Q(sI + (Q>Q)

�1Q>LQ)

�1

(Q>Q)

�1Q>M. (4.35)

By using (4.3) and (4.33), we have ˆS>
(�s)�(s) = 0. Hence, we have

kSk2
2

= k ˆSk2
2

+ k�k2
2

. (4.36)
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Now, let the matrices X
1

2 Rn⇥n and Y
1

2 Rr⇥r be defined as:

X
1

=

Z 1

0

e�LtLe�Ltdt, (4.37)

Y
1

=

Z 1

0

e�
ˆ

L

>
tP>LPe�

ˆ

Ltdt, (4.38)

where
ˆL = (P>P )

�1P>LP.

Of course, one should address the issue of convergence of these improper integrals.
Since the original model reaches consensus we have e�LtLe�Lt ! 0 as t ! 1. Hence,
since the components of e�LtLe�Lt are products of polynomials and exponentials,
the integral defining X

1

exists. Similarly, by Theorem 4.3.4 the reduced order model
(4.25) also reaches consensus and therefore the integral defining Y

1

exists as well.
Let L = U⇤U> be a spectral decomposition of the Laplacian, where

⇤ = diag(�
1

,�
2

, . . . ,�
n

)

with 0 = �
1

< �
2

6 �
3

6 . . . 6 �
n

are the eigenvalues of L and U is an orthogonal
matrix. Note that �

2

> 0, due to the connectedness of G. Moreover, the first column
of the matrix U is equal to the normalized vector of ones, i.e. 1p

n

11. Thus X
1

is
computed as

X
1

=

Z 1

0

e�LtLe�Ltdt =

Z 1

0

Le�2Ltdt

= �1

2

e�2Lt |1
0

dt = �1

2

Ue�2⇤tU> |1
0

=

1

2

I
n

� 1

2n
1111

>. (4.39)

In addition, with T given as above, we have

T>X
1

T =

Z 1

0

T>e�LtLe�LtTdt

=

Z 1

0

e�(T

�1
LT )

>
tT>LTe�T

�1
LTtdt

=

Z 1

0

e
�
"
L̂> 0
0 ⇤

#
t


P>LP 0

0 ⇤

�
e
�
"
L̂ 0
0 ⇤

#
t

dt,

where we have used (4.33) to derive the last equality, and where “ ⇤ ” denotes values
that are not of interest. Hence, we obtain that

T>X
1

T =


Y
1

0

0 ⇤

�
.
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This yields, Y
1

= P>X
1

P . Therefore, by (4.39), Y
1

is computed as

Y
1

=

1

2

P>P � 1

2n
P>

1111

>P.

Next we compute the values kSk2
2

and k ˆSk2
2

. By (4.3), it is easily seen that

kSk2
2

= traceM>X
1

M.

Hence, by (4.39), kSk2
2

is computed as

kSk2
2

= traceM>X
1

M =

1

2

traceM>
(I

n

� 1

n
1111

>
)M

=

1

2

traceMM>
(I

n

� 1

n
1111

>
).

Note that MM> is a diagonal matrix, where the diagonal elements are either zero or
1. In particular, the ith diagonal element is equal to 1 if i 2 V

L

, and is equal to zero
otherwise. Thus, we conclude that

kSk2
2

=

m

2

(1� 1

n
), (4.40)

where m is the cardinality of V
L

as before. Moreover, we have

k ˆSk2
2

= traceM>P (P>P )

�1Y
1

(P>P )

�1P>M

=

1

2

traceM>P (P>P )

�1

(P>P � 1

n
P>

1111

>P )(P>P )

�1P>M

=

1

2

traceMM>
(P (P>P )

�1P> � 1

n
P (P>P )

�1P>
1111

>P (P>P )

�1P>
).

It is easy to verify that P (P>P )

�1P>
11 = 11. Hence, we obtain that

k ˆSk2
2

=

1

2

traceMM>
(P (P>P )

�1P> � 1

n
1111

>
) (4.41)

Recall the diagonal structure of MM>. Also recall that v
i

2 C
ki for each v

i

2 V
L

.
Then it is straightforward to check that (4.41) yields

k ˆSk2
2

=

1

2

mX

i=1

1

|C
ki |

� m

2n
. (4.42)

Therefore, by (4.36) and (4.40) we obtain that

k�k2
2

=

m

2

(1� 1

n
)� 1

2

mX

i=1

1

|C
ki |

+

m

2n
=

1

2

mX

i=1

(1� 1

|C
ki |

). (4.43)
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This together with (4.40) completes the proof. ⌅

Theorem 4.4.2 provides a simple and easily computable expression for the model
reduction error in case ⇡ is an AEP of G. Depending on the structure of ⇡, the
normalized model reduction error (4.30) takes a value between 0 and 1. Moreover, for
a given multi-agent system, this value is determined by the population, i.e. cardinality,
of those cells of ⇡ containing the leaders. Clearly, the less populated these cells are, the
less model reduction error we have. An interesting case is when all the leaders appear
as singleton in ⇡. Then, the corresponding model reduction error is zero by (4.30).
Indeed, this case is a special almost equitable partition, which is studied in the context
of controllability of multi-agent systems (see e.g. [54], [107]). In particular, if ⇡⇤ is
an AEP with each leader appearing as a singleton, then imP (⇡⇤

) is an upper bound
for the controllable subspace of (4.7) (see [107, Thm. 3]). Therefore, the proposed
model reduction technique in the case of ⇡ = ⇡⇤, indeed corresponds to removing
uncontrollable modes. Thus, the input-output behavior remains unchanged, which
is in accordance with the model reduction error being zero in (4.30).

Example 4.4.3 As an example, consider again the multi-agent system (4.19) corre-
sponding to the graph G given in Figure 4.1, and the reduced order model (4.20)
obtained from the partition ⇡ given by (4.12). For system (4.19), include output
variables as in (4.27b). The output equations for the reduced order system (4.20) are
given in (4.28b). Recall that ⇡ is an AEP of G. Also recall that the leader set is {1, 7}
in this case. Clearly, we have 1 2 C

1

= {1, 2, 3, 4} and 7 2 C
3

= {7}. For an arbitrary
partition ⇡, let ⌅(⇡) denote the corresponding normalized model reduction error
given by the left hand side of (4.30). Then, by Theorem 4.4.2, the normalized model
reduction error ⌅(⇡) in our example is computed as:

⌅(⇡) =
(1� 1

|C1| ) + (1� 1

|C3| )

10(1� 1

2

)

= 0.15.

Remark 4.4.4 As mentioned in Subsection 4.3, the reduced order model (4.15) ap-
proximates the dynamics of the average of the states of the agents that are cellmates
in ⇡. By (4.32a) and (4.33), it can be observed that this approximation is exact in case
⇡ is an almost equitable partition of G. That is, (4.15) indeed describes the dynamics
of the average of the states of cellmates agents.

Previously, we have established an explicit formula for the model reduction error
in case clustering is performed with respect to an almost equitable partition. Of
course we are also interested in computing or estimating the errors associated with
arbitrary partitions of the graph.
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In order to attack this issue, we will first compare the model reduction error
corresponding to an almost equitable partition, say ⇡

0

, to that of an arbitrary, not
necessarily almost equitable, partition, say ⇡. We restrict our attention to the case
in which the partitions ⇡ and ⇡

0

are comparable in the sense that one is finer than the
other.

Given two partitions ⇡
1

and ⇡
2

of the graph G, we call ⇡
1

finer than ⇡
2

if each cell
of ⇡

1

is a subset of some cell of ⇡
2

and we write ⇡
1

6 ⇡
2

. Alternatively, ⇡
2

is called
coarser than ⇡

1

. It is immediate that

⇡
1

6 ⇡
2

() imP (⇡
2

) ✓ imP (⇡
1

). (4.44)

Now, we have the following result.

Theorem 4.4.5 Let ⇡
0

be an almost equitable partition of G. Then for every partition ⇡ that
is coarser than ⇡

0

we have
⌅(⇡

0

) 6 ⌅(⇡).

Proof. Suppose that ⇡ is a partition of G and ⇡ > ⇡
0

. Let S
0

and ˜S denote the transfer
matrices from u to y in the reduced order model (4.28) corresponding to the partitions
⇡
0

and ⇡, respectively. Also let S denote the transfer matrix from u to y in (4.27), as
before. Then, clearly, it suffices to show that

kS � ˜Sk2
2

> kS � S
0

k2
2

. (4.45)

We have

kS � ˜Sk2
2

= kS � S
0

+ S
0

� ˜Sk2
2

= kS � S
0

k2
2

+ kS
0

� ˜Sk2
2

+ 2hS � S
0

, S
0

� ˜Si
> kS � S

0

k2
2

+ 2hS � S
0

, S
0

i � 2hS � S
0

, ˜Si,

where hS
1

, S
2

i =
R1
�1 trace S>

1

(�i!)S
2

(i!)d! is the inner product in H
2

.
Since ⇡

0

is an AEP of G, by Lemma 4.4.1 we have

L imP (⇡
0

) ✓ imP (⇡
0

). (4.46)

In addition, as ⇡ > ⇡
0

, the subspace inclusion imP (⇡) ✓ imP (⇡
0

) holds. Hence,
by (4.46), we obtain that L imP (⇡) ✓ L imP (⇡

0

) ✓ imP (⇡
0

). Therefore, there exist
matrices X and Y such that

LP (⇡
0

) = P (⇡
0

)X (4.47)

and
LP (⇡) = P (⇡

0

)Y. (4.48)
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Now, recall that S(s) � S
0

(s) = �(s) where � is given by (4.35). Then, by
using (4.3), (4.31), (4.47), and (4.48), it is easy to verify that hS � S

0

, S
0

i = 0 and
hS � S

0

, ˜Si = 0. Hence, (4.45) holds which completes the proof. ⌅

As a consequence of the above, if, starting from a given AEP, we choose an
arbitrary partition that is coarser than this AEP and perform reduction based upon
the latter, then the error will be at least as big as the error associated with the AEP.

Using the previous result, we are now able to estimate a lower bound for the
error associated with an arbitrary, not necessarily AEP, partition. let ⇡ be an arbitrary
partition of G. Consider the set

⇧

AEP

(⇡) = {⇡
0

| ⇡
0

is an AEP of G and ⇡
0

6 ⇡ }

of all almost equitable partitions of G that are finer than ⇡. This set can be shown to
contain a unique maximal element (see [107]), which we will call the maximal almost
equitable partition finer than ⇡, and that will be denoted by ⇡⇤

AEP

(⇡). It follows from
Theorem 4.4.5 that a lower bound on the error associated with the given partition
⇡ is given by the error associated with the maximal almost equitable partition finer
than ⇡:

⌅(⇡⇤
AEP

(⇡)) 6 ⌅(⇡)

An algorithm to actually compute ⇡⇤
AEP

(⇡) for a given partition ⇡ was given in [107].
Note that ⌅(⇡⇤

AEP

(⇡)) can then be computed using Theorem 4.4.2.

4.5 Conclusions

In this chapter, by means of graph partitions we have established a projection based
model reduction method for multi-agent systems defined on a graph. Reduced
order models are obtained by clustering the vertices (agents) of the underlying
communication graph in accordance with suitable graph partitions. In particular,
the states of the vertices that are clustered together are approximated to be identical
in deriving the reduced order models. As observed, the spatial structure of the
network is preserved in this reduction process, and the reduced order models are
realized as multi-agent systems defined on a new graph of smaller size. We have
shown that if the original multi-agent system reaches consensus, then so does the
reduced order model. As observed the underlying intuitive idea is to cluster together
the vertices (agents) which are connected to the rest of the network in a similar
fashion. This heuristic idea is formally formulated in terms of almost equitable
partitions. Corresponding to an almost equitable partition, an explicit formula for
the H

2

-norm of the error system has been provided. The proposed formula is simple,
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easy to compute, and can be derived directly from the graph partition involved in
the reduction procedure. We also have shown that the error obtained by taking an
arbitrary partition of the graph is at least as big as the one obtained by using the
maximal almost equitable partition finer than the given partition. We have adopted a
running example for illustration of the proposed results.





Chapter 5

Stability and synchronization analysis of multi-
agent systems with arbitrary switching topologies

5.1 Introduction

The distributed control of multi-agent systems has gained a lot of attention during
the last decade. In particular, the consensus problem has been widely investigated for
networks of agents. Consensus roughly means that the agents of a network reach an
agreement on the state components’ values. The pioneering work in this direction has
been carried out in [73], [27, 41] and [79] for the case where the agents have simple
dynamics, like single or double integrators. . An excellent review can be found in
[72]. Results on consensus for the case where the agents have general, yet identical,
linear dynamics with time-independent communication topology are reported in
some recent papers (see e.g. [47], [96], [53]).

Despite the extensive amount of research available in the context of consensus
and synchronization of multi-agent systems, relatively few works have considered
network of agents with general linear dynamics together with a time-dependent
communication topology. This situation is considered in [83] and [84] where con-
sensus protocols are proposed for possibly time-varying communication structures.
However, in these papers, the agents are not allowed to have exponentially unstable
dynamics. Assuming nonzero dwell time for the switching among possible commu-
nication graphs, the consensus problem for multi-agent systems with general linear
dynamics is studied in [99]. Sufficient conditions for achieving synchronization via
fast switching are established in [89].

In this chapter, we consider a network of agents with general, but identical,
linear dynamics, and the communication topology may switch within a finite set
of admissible topologies. We allow switching to be arbitrary, meaning that the
switching may occur at arbitrary time instances. Our aim is to analyze the stability
and synchronization of such networks for the case where the output information
of the agents is transmitted via network communication. For stability analysis,
assuming the dynamics of the agents to be stable, we derive small gain type of
conditions guaranteeing overall stability of the network as the agents communicate
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with respect to a time-dependent topology.
Conditions verifying the synchronization of networks with time-independent

topologies are obtained in the literature mostly by applying a certain state space
transformation to obtain an appropriate decomposition of the overall network. These
conditions depend on the agent dynamics together with the nontrivial Laplacian
eigenvalues (see e.g [47, 84]). However, the same technique cannot be adopted
directly for the case of networks with switching topologies unless the admissible
topologies satisfy certain constraints like commutativity or simultaneous triangular-
izability of the corresponding Laplacian matrices (see [108]).

Summarizing, we want to highlight the following points which together make
the contribution of the present chapter novel compared to earlier references.

• We consider general linear dynamics for the agents, thus the agents are allowed
to have high order or unstable dynamics.

• The underlying communication topology is time-dependent and may switch
within a finite set of undirected graphs.

• No a priori relationship among the underlying communication graphs is as-
sumed.

• The switching is arbitrary, meaning that no restriction on the rate of the switch-
ing signal is imposed.

In the present chapter, the synchronization problem of the network is, firstly,
viewed as an output stability problem (see [102, sec. 4.4.] or [94, exc. 4.10]). Then, by
performing a suitable decomposition, the synchronization problem boils down to
asymptotic stability of certain subsystems of the network. Consequently, given the
agents’ dynamics, a coupling rule, and a set of admissible topologies, we derive con-
ditions under which synchronization is guaranteed. We show that synchronization
under arbitrary switching is achieved if a certain pair of linear matrix inequalities
(LMI) admits a solution. The LMI conditions obtained are easy to check and, similar
to the case of time-independent topologies, they depend only on the agents’ dynam-
ics and the nontrivial Laplacian eigenvalues. Next, solvability of the proposed LMI
is discussed. It is observed that necessary and sufficient conditions for solvability
of the proposed LMI are available for the special case of single-input single-output
dynamics. In addition, for the case of multi-input multi-output, conditions in terms
of small gain and passivity of certain subsystems of the networks are derived which
guarantee the existence of a solution for the proposed LMI, and, thus synchronization
of the network.
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In case the overall information on the relative states of the neighboring agents are
not available, observer- based protocols achieving synchronization are proposed in
the literature (see e.g. [47], [83], [84]), which use only the relative output information
of the adjacent agents. We show that the proposed conditions for synchronization
analysis carry over to the case of these observer-based protocols.

The chapter is organized as follows. First, in Section 5.2, we introduce some
notation and review some basic definitions. Stability analysis of networks with
fixed and switching topologies is carried out in Section 5.3. In Section 5.4, first
synchronization of networks with a fixed topology is revisited. The results are then
extended to the case of switching topologies, and small gain and passivity types of
conditions are proposed. Synchronization analysis for the case of observer-based
protocols are also provided at the end of this section. Finally, Section 5.5 is dedicated
to conclusions.

5.2 Preliminaries

For i = 1, 2, . . . , N , let G
i

= (V,E
i

) be a simple undirected (unweighted) graph with
vertex set V = {1, 2, . . . , p} and edge set E

i

where an edge is a two-element subset of
V . Corresponding to this set of graphs, a diffusively coupled multi-agent system

ẋ
j

(t) = Ax
j

(t) +Bu
j

(t) (5.1a)

y
j

(t) = Cx
j

(t) (5.1b)

together with the diffusive coupling rule

u
j

(t) =
X

{i,j}2E�(t)

(y
i

(t)� y
j

(t)), (5.1c)

where j 2 V , x
j

2 Rn is the state of agent j, u
j

2 Rm is the diffusive coupling term,
and � : R+ ! {1, 2, . . . , N} is a right-continuous piecewise constant function.

Throughout this chapter it is assumed that (A,B) is stabilizable. This is a neces-
sary condition for stability or synchronization of the multi-agent system (5.1), even
in the special case of a time-independent topology, i.e. N = 1. We introduce the
following nomenclature for later use. For each i = 1, 2, . . . , N , let L

i

denote the
Laplacian matrix corresponding to the graph G

i

= (V,E
i

). The eigenvalues of L
i

are
denoted by 0 = �i

1

6 �i

2

6 · · · 6 �i

p

. We define

� = min{�i

j

| i 2 {1, 2, . . . , N}, j 2 {2, 3, . . . , p}} (5.2a)

and
� = max{�i

j

| i 2 {1, 2, . . . , N}, j 2 {2, 3, . . . , p}}. (5.2b)
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Note that �i

1

= 0 for i = 1, 2, . . . , N are excluded in the above definitions.
The multi-agent system (5.1) can be written in a compact form as

ẋ(t) = A
�(t)

x(t), (5.3)

where x = col(x
1

, . . . , x
p

), and A
�(t)

= I
p

⌦A� L
�(t)

⌦BC, where “⌦” denotes the
Kronecker product. The following basic properties of the Kronecker product are
frequently used in the sequel: A⌦ (B +C) = A⌦B +A⌦C, (A⌦B)

>
= A> ⌦B>,

(A⌦B)(C ⌦D) = (AC)⌦ (BD).
We call an absolutely continuous function x a solution of (5.3) if there exists a

switching signal � such that (5.3) is satisfied for almost all t > 0. We call the switched
linear system (5.3) globally uniformly exponentially stable (GUES) if there exist
positive constants ↵ and � such that for any solution x of (5.3) we have kx(t)k 6
�e�↵tkx(0)k for all t > 0.

Remark 5.2.1 A sufficient condition for GUES is the existence of a common quadratic
Lyapunov function (CQLF), i.e. the existence of a positive definite matrix X such
that A>

i

X +XA
i

< 0 for all i = 1, 2, ..., N . (see e.g. [48]).

5.3 Stability analysis of networks

5.3.1 Fixed topology

First, consider the special case of the network (5.1) where N = 1. In this case, the
edge set, namely E, is time independent, and the network state space representation
is given by

ẋ(t) = (I ⌦A� L⌦BC)x(t), (5.4)

where x = col(x
1

, . . . , x
p

) and L is the Laplacian matrix corresponding to G = (V,E).
Since the Laplacian matrix L is symmetric, it can be diagonalized as

U>LU = ⇤, (5.5)

where ⇤ is a diagonal matrix given by

⇤ = diag(�
1

,�
2

, . . . ,�
p

) (5.6)

with 0 = �
1

6 �
2

6 · · · 6 �
p

, and U is an orthogonal matrix with the first column
being the normalized vector of ones.

Applying the state space transformation x̃ = (U> ⌦ I)x, we obtain

˙x̃(t) = (I ⌦A� ⇤⌦BC)x̃(t). (5.7)
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Note that

I ⌦A� ⇤⌦BC = blockdiag(A� �
1

BC,A� �
2

BC, . . . , A� �
p

BC). (5.8)

Hence, the linear system (5.4) is asymptotically stable if and only if A � �
j

BC is
Hurwitz for all j = 1, 2, . . . , p. Obviously, since �

1

= 0, a necessary condition is that
A is Hurwitz.

5.3.2 Switching topology

Here, we are interested in deducing the GUES of (5.3) by a small gain type of ar-
gument. Clearly, a necessary condition for GUES of (5.3) is that each agent in (5.1)
has a stable internal dynamics, i.e. A is Hurwitz. Let H denote the transfer matrix
from u

j

to y
j

. We seek for a condition on the H1-norm of H under which the overall
network given by (5.3) is GUES as the agents interact with each other based on (5.1c).
This leads us to the following theorem.

Theorem 5.3.1 Consider the network (5.3). Assume that the matrix A is Hurwitz. Let H
denote the transfer matrix from u

j

to y
j

in (5.1), i.e. H(s) = C(sI � A)

�1B. Then, the
network (5.3) is GUES if

�kHk1 < 1 (5.9)

where � is given by (5.2b).

Proof. Suppose that (5.9) holds. Then there exists a positive definite solution K > 0

to the Riccati inequality (see [111])

A>K +KA+ C>C + �
2

KBB>K < 0. (5.10)

We claim that I
p

⌦ K generates a common quadratic Lyapunov function for the
matrices (I

p

⌦A� L
i

⌦BC), that is

(I
p

⌦A� L
i

⌦BC)

>
(I

p

⌦K) + (I
p

⌦K)(I
p

⌦A� L
i

⌦BC) < 0 (5.11)

for all i = 1, 2, . . . , N . To see this, let L
i

be diagonalized as U>
i

L
i

U
i

= ⇤

i

, where U
i

is an orthogonal matrix, and ⇤

i

= diag(�i

1

,�i

2

, . . . ,�i

p

) with 0 = �i

1

6 �i

2

6 · · · 6 �i

p

.
By using I

p

⌦K = (U
i

⌦ I
n

)(I
p

⌦K)(U>
i

⌦ I
n

), multiplying (5.11) from the left and
right by U>

i

⌦ I
n

and U
i

⌦ I
n

, respectively, we see that (5.11) holds if and only if

(I
p

⌦A� ⇤

i

⌦BC)

>
(I

p

⌦K) + (I
p

⌦K)(I
p

⌦A� ⇤

i

⌦BC) < 0 (5.12)

for all i = 1, 2, . . . , N . Therefore, it suffices to show that

(A� �i

j

BC)

>K +K(A� �i

j

BC) < 0 (5.13)
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for all i = 1, 2, . . . , N and j = 1, 2, . . . , p. Clearly, the LMI (5.13) is satisfied for all i
and j if

(A� ↵BC)

>K +K(A� ↵BC) < 0

holds for all ↵ 2 [0,�]. Note that

(A� ↵BC)

>K +K(A� ↵BC) = A>K +KA� ↵(C>B>K +KBC)

= A>K +KA+ C>C + ↵2KBB>K � (↵KB + C>
)(↵B>K + C).

(5.14)

It follows from (5.10) that the right hand side of (5.14) is negative definite for all
↵ 2 [0,�]. Consequently, I

p

⌦K generates a common quadratic Lyapunov function
for the matrices I

p

⌦A� L
i

⌦BC, i = 1, 2, . . . , N , hence the network (5.3) is GUES.
⌅

Remark 5.3.2 The result of Theorem 5.3.1 can also be deduced from a result available
in the context of switched linear systems (see [48, p.48]) by reformulating the stability
problem of network (5.3). However, here, we prefer providing the proof above as it
is insightful for the results presented later in this chapter.

5.4 Network synchronization

Here, we discuss the so-called synchronization problem for networks which is the
main focus of this chapter. A synchronized network has the property that the state
trajectories of the coupled agents converge to a common trajectory. More precisely,
we have the following definition.

Definition 5.4.1 The multi-agent system (5.3) is synchronized if every solution of (5.3)
satisfies lim

t!1
(x

j

(t)� x
k

(t)) = 0 for all j, k = 1, 2, . . . , p.

Note that sometimes we say the network is synchronized under an arbitrary switching
topology meaning that the network is synchronized in the sense of Definition 5.4.1.

Observe that network synchronization requires that the differences of the agents’
state components converge to zero, which can be viewed as output stability (see [102,
sec. 4.4.] or [94, exc. 4.10]). Let z

j

= x
j

� x
j+1

for each j = 1, 2, . . . , p� 1. Then, we
have the compact form

z(t) = (Q⌦ I
n

)x(t) (5.15)
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where z = col(z
1

, z
2

, . . . , z
p�1

) and Q is the (p� 1)⇥ p matrix given by

Q =

0

BBBBBB@

1 �1 0 · · · 0 0

0 1 �1 · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...
0 0 0 . . . 1 �1

1

CCCCCCA
. (5.16)

Clearly, the network (5.3) is synchronized if and only if lim

t!1
z(t) = 0 for any

solution x of (5.3). Consequently, the network (5.3) is synchronized if and only if
the system (5.3) with output variable z is output stable. Unfortunately, the output
stability problem for switched linear systems is far more complicated than that for
linear time-invariant systems. Therefore, to facilitate the derivation of the results for
the case of networks with switching topologies, we suggest to use the structure of
the network and the properties of the Laplacian matrix to convert the output stability
problem into an internal stability problem. First, we discuss the synchronization
analysis for the case where the topology of the network is fixed. Then, we extend the
results to the case of networks with switching topologies.

5.4.1 Synchronization with respect to a fixed topology

Consider the network (5.4) together with the output given by (5.15). We will apply a
state space transformation such that the state x is transformed to z̃ = col(z, x

p

). In
order to do this, define ˜Q to be the p⇥ p matrix given by

˜Q =

✓
Q

e>
p

◆
(5.17)

with e
p

the pth standard basis vector for Rp, i.e. e
p

= (0, 0, . . . , 1)>, and where Q is
given by (5.16). Note that ˜Q is nonsingular. Then, on the one hand we indeed have
z̃ = col(z, x

p

) = (

˜Q⌦ I
n

)x(t). On the other hand, the transformed dynamics of (5.4)
is given by

˙z̃(t) = (I
p

⌦A� ˜QL ˜Q�1 ⌦BC)z̃(t).

It is easy to observe that ˜Q�1 is an upper triangular matrix where the entries on
and above its diagonal are all equal to 1. As the row sums of L are zero, the matrix
˜QL ˜Q�1 can be partitioned as

˜QL ˜Q�1

=

✓
˜L 0

⇤ 0

◆
(5.18)
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where ˜L is a (p � 1) ⇥ (p � 1) matrix, and “*” denotes the values which are not of
interest to us. It follows from the structure of (5.18) that the dynamics of the state
components z

1

, z
2

, . . . , z
p�1

are not affected by that of x
p

, and we have

ż(t) = (I
p�1

⌦A� ˜L⌦BC)z(t). (5.19)

Therefore, synchronization of (5.4) is equivalent to asymptotic stability of the linear
time-invariant system (5.19).

Remark 5.4.2 In fact, the proposed state space transformation brings the linear sys-
tem (5.4) together with the output equation (5.15) into Kalman canonical form (see
[35, p. 149]). Consequently, the synchronization analysis can be carried out by ver-
ifying the internal stability of the observable part of the system, which is given by
(5.19).

The structure of (5.18) reveals the intimate relationship between the matrices L
and ˜L as stated in the following lemma.

Lemma 5.4.3 Let L, U , ⇤, Q, ˜Q, and ˜L be as defined before. Let the product QU be
partitioned as

QU =

�
0

(p�1)⇥1

˜U
�
. (5.20)

Then the matrix ˜L admits a spectral decomposition ˜L =

˜U ˜

⇤

˜U�1 where ˜

⇤ is the diagonal
matrix obtained by deleting the first row and column of ⇤. Moreover, ˜U ˜U>

= QQ>.

Proof. Since the first column of U is the normalized vector of ones, we have

˜QU =

 
0

(p�1)⇥1

˜U
1p
p

⇤

!
(5.21)

Therefore, we obtain

˜QL ˜Q�1

=

˜QU⇤U>
˜Q�1

=

 
0

˜U
1p
p

⇤

!✓
0 0

0

˜

⇤

◆ 
0

˜U
1p
p

⇤

!�1

where ⇤ is partitioned as blockdiag(0, ˜⇤). Hence, we have

˜QL ˜Q�1

=

✓
˜U ˜

⇤

˜U�1

0

⇤ 0

◆
. (5.22)

Comparing the right hand side of (5.22) to that of (5.18), we obtain ˜L =

˜U ˜

⇤

˜U�1

which corresponds to a spectral decomposition of ˜L. The rest follows from

QQ>
= QUU>Q>

=

�
0

˜U
�✓

0

˜U>

◆
=

˜U ˜U>.
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⌅

According to (5.19), the network (5.4) is synchronized if and only if (I
p�1

⌦A�
˜L⌦BC) is Hurwitz. By applying the similarity transformation ˜U�1⌦I

n

to the matrix
(I

p�1

⌦A� ˜L⌦BC), we obtain

(

˜U�1 ⌦ I
n

)(I
p�1

⌦A� ˜L⌦BC)(

˜U ⌦ I
n

) = I
p�1

⌦A� ˜

⇤⌦BC. (5.23)

Therefore, the network (5.4) is synchronized if and only if A��
j

BC is Hurwitz for all
j = 2, 3, . . . , p. This is in accordance with the result presented in [47] and [84], in case
the underlying graph is connected. Obviously, in case the graph is not connected, �

2

is zero and the matrix A has to be Hurwitz for synchronization.

5.4.2 Switching topology

In this subsection, we carry out the synchronization analysis for the switching topol-
ogy case (5.3). To further motivate the problem, we provide an example showing
that maintaining connectivity and/or synchronization of the individual modes does
not imply synchronization of the network (5.3).

Example 5.4.4 Consider the agents’ dynamics in (5.1) is given by

A =

0

BBBBBB@

0 0.6619 �0.2194 0.4494 0.2791 0.4553 0
0 �0.1762 1 0 0 0 0
0 0 �0.4775 0.7807 0.4849 0.7909 0
0 0 0 �0.6957 0.3125 0.5097 0
0 0 0 0 �1.52 0.3166 0
0 0 0 0 0 �3.5 1.936
0 0 0 0 0 �1.936 �3.5

1

CCCCCCA
,

B =
�
0 0 0 0 0 0 9.155

�>
,

C =
�
0.2018 0.3328 �0.1103 0.2259 0.1403 0.2289 0

�
.

Suppose that N = 2 in (5.1) and the corresponding communication graphs G
1

and G
2

are as depicted in Figure 5.1 and Figure 5.2, respectively.
Let L

1

and L
2

denote the Laplacian matrices of G
1

and G
2

respectively. The
eigenvalues of L

1

are 0, 1, 3, and the eigenvalues of L
2

are 0, 3, 3. It is easy to verify
that the matrices A�BC and A�3BC are both Hurwitz. Therefore, synchronization is
achieved with respect to the individual modes, i.e. the network (5.3) is synchronized
for �(t) = 1, t > 0, and also for the case where �(t) = 2, t > 0. Now, suppose that the
switching signal is chosen as the 2T -period signal:

�(t) =

(
1 b t

T

c is odd
2 b t

T

c is even
(5.24)
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Figure 5.1: Communication graph G1
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Figure 5.2: Communication graph G2
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Figure 5.3: The value of (x2)1 � (x3)1 in Example 5.4.4 depicted over time for the switching

signal � given by (5.24) with T = 1, and initial states x1(0) = [2 2 2 2 2 2 2]>, x2(0) =

[�1 � 1 � 1 � 1 � 1 � 1 � 1]> , x3(0) = [1 1 1 1 1 1 1]>.

where bxc denotes the biggest integer k such that k 6 x. Then, one can verify that
the network (5.3) may not be synchronized for sufficiently small T . In Figure 5.3, the
value of (x

2

)

1

�(x
3

)

1

is depicted over time for T = 1 and a given initial state x
0

. Here,
(x

i

)

j

denotes the jth component of x
i

. As can be seen from this figure, the value of
(x

2

)

1

� (x
3

)

1

does not converge to zero, thus the network is not synchronized.
Note that the communication graphs G

1

and G
2

are both connected. Moreover,
the network is synchronized for constant switching signals, which corresponds to
the fixed topology case. However, as observed above the network is not synchro-
nized for the particular choice of the switching signal � given by (5.24). Therefore,
synchronization analysis for the switching topology case (5.3) requires additional
effort, and cannot be deduced solely based on the connectivity of the underlying
communication graphs or synchronization of the individual modes.

As observed in the previous subsection, similar to [84] and [47], the synchroniza-
tion analysis in the case where the network communication is time-independent, is
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essentially based on a suitable state space transformation of the system (5.4). As also
pointed out in [108], the main challenge in extending the available results to the arbi-
trary switching topology case is that the aforementioned state space transformation
depends directly on the Laplacian, in particular on the Laplacian eigenvectors; hence,
in the time-dependent case where the Laplacian matrix switches as time evolves,
the spectral decomposition (5.5) and transformed equations (like (5.7) or (5.23)) are
not valid in the same coordinate frame. An idea to overcome this difficulty is to
impose constraints like commutativity or simultaneous triangularizability on the
Laplacian matrices of underlying communication graphs. The latter one is assumed
in [108] and synchronization analysis for a more general coupling configuration, with
possibly directed communication graphs, is carried out. Here, we do not make any
assumptions on the relationship among the corresponding Laplacian matrices of
the communication graphs. To overcome the technical challenge discussed above,
we use the decomposition proposed in the previous subsection, along with some
properties of the Laplacian L and the matrix ˜L which are partially summarized in
Lemma 5.4.3. This is discussed in detail next.

Clearly, one can mimic the approach illustrated in the previous subsection and
obtain

˜QL
i

˜Q�1

=

✓
˜L
i

0

⇤ 0

◆
(5.25)

where ˜L
i

is a (p� 1)⇥ (p� 1) matrix for each i = 1, 2, . . . , N . Then, (5.19) turns into

ż(t) = (I
p�1

⌦A� ˜L
�(t)

⌦BC)z(t). (5.26)

Therefore, following the discussion in the previous subsection, it is easy to observe
that synchronization analysis of the network (5.3) boils down to stability analysis
of the switched linear system (5.26). Consequently, synchronization analysis of (5.3)
can be carried out by dwell time, average dwell time, or Lyapunov based arguments
available in the context of switched linear systems. In this chapter, however, we will
investigate the existence of a CQLF as we are interested in synchronization under
an arbitrary switching topology. Observe that existence of a CQLF for the SLS (5.26)
implies GUES of (5.26) which results in synchronization of the network (5.3).

From (5.26) it readily follows that (5.3) is synchronized if there exists a CQLF
for the state matrices I

p�1

⌦ A � ˜L
i

⌦ BC where i = 1, 2, . . . , N . Similar to the
fixed topology case, it would be desirable to relate synchronization of (5.3) to the
dynamics of the agents and the Laplacian eigenvalues, more specifically to the
matrices A � �i

j

BC where i = 1, 2, . . . , N and j = 2, 3, . . . , p. This brings us to the
following theorem.
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Theorem 5.4.5 Let � and � be defined as in (5.2). Then, the network (5.3) is synchronized
if there exists a positive definite matrix X satisfying both of the following linear matrix
inequalities:

(A� �BC)

>X +X(A� �BC) < 0 (5.27a)

(A� �BC)

>X +X(A� �BC) < 0. (5.27b)

Proof. Assume that there exists X > 0 such that (5.27) holds. Then we have

(A� �i

j

BC)

>X +X(A� �i

j

BC) < 0 (5.28)

for all j = 2, 3, . . . , p and i = 1, 2, . . . , N . Here, we have used the fact that A� �i

j

BC

can be written as a convex combination of the matrices A� �BC and A� �BC for
any j = 2, 3, . . . , p and i = 1, 2, . . . , N . The LMIs (5.28) can be rewritten as

(I
p�1

⌦A� ˜

⇤

i

⌦BC)

>
(I

p�1

⌦X) + (I
p�1

⌦X)(I
p�1

⌦A� ˜

⇤

i

⌦BC) < 0, (5.29)

where ˜

⇤

i

= diag{�i

2

,�i

3

, . . . ,�i

p

} for each i = 1, 2, . . . , N . By Lemma 5.4.3, there exist
diagonalizing transformations ˜U

i

such that ˜L
i

=

˜U
i

˜

⇤

i

˜U�1

i

for i = 1, 2, . . . , N . Clearly,
the LMIs (5.29) can be restated as

(I
p�1

⌦A� ˜

⇤

i

⌦BC)

>
(

˜U>
i

⌦ I
n

)(

˜U�>
i

⌦ I
n

)(I
p�1

⌦X)+

(I
p�1

⌦X)(

˜U�1

i

⌦ I
n

)(

˜U
i

⌦ I
n

)(I
p�1

⌦A� ˜

⇤

i

⌦BC) < 0 (5.30)

for i = 1, 2, . . . , N . Multiplying (5.30) from the left and right by (

˜U�>
i

⌦ I
n

) and
(

˜U�1

i

⌦ I
n

), respectively, we obtain

(I
p�1

⌦A�˜L
i

⌦BC)

>
(

˜U�>
i

˜U�1

i

⌦X)+(

˜U�>
i

˜U�1

i

⌦X)(I
p�1

⌦A�˜L
i

⌦BC) < 0. (5.31)

Now, by Lemma 5.4.3, the product ˜U
i

˜U>
i

is independent of i for i = 1, 2, . . . , N , and
is equal to QQ>, where Q is given by (5.16). Therefore, the quadratic function W

defined by W (z) = z>((QQ>
)

�1 ⌦ X)z serves as a CQLF for the switched linear
system (5.26). Hence, (5.26) is GUES, and the network (5.3) is synchronized. ⌅

Clearly, solvability of the LMIs (5.27) is equivalent to the existence of a CQLF
for the pair of matrices A� �BC and A� �BC. In general, there are conditions to
guarantee the existence of a CQLF based on commutativity, simultaneous triangu-
larizability, and solvable Lie algebras (see [48], [51]). However, these conservative
conditions involve direct constraints on the matrices A and BC, namely A and BC

must commute or at least be simultaneously triangularizable. A subtle point is that
these conditions are basically for an SLS with arbitrary given modes whereas in our
case certain structures and system properties are present in the network dynamics.
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Thus, we can take advantage of these available structures and properties to derive
sensible conditions guaranteeing network synchronization.

First, consider the special case of single-input single output (SISO), i.e. m = 1 in
(5.1). In this case, the difference of the matrices A� �BC and A� �BC is equal to
(�� �)BC which is of rank 1. Hence, the result of [86, Thm. 4] gives a necessary and
sufficient condition for solvability of the LMIs (5.27), in the SISO case. This result
leads to the following corollary.

Corollary 5.4.6 Consider the multi-agent system (5.1), and assume that m = 1. Let � and
� be defined as in (5.2). Let A

1

= A� �BC and A
2

= A� �BC. Then, the network (5.3)
is synchronized if the matrices A

1

and A
2

are both Hurwitz, and A
1

+ ⌘A�1

2

is nonsingular
for all ⌘ 2 [0,+1).

Example 5.4.7 Consider the multi-agent system composed of a group of N harmonic
oscillators described by

A =

✓
0 1

�1 0

◆
, B =

✓
0

1

◆
, C =

�
0 1

�
. (5.32)

Suppose that the communication graph switches, arbitrarily, among a given set of
graphs G

i

= (V,E
i

) with i = 1, 2, . . . , N . Obviously, according to the Subsection
5.4.1, synchronization is achieved only if the matrices A � �BC and A � �BC are
both Hurwitz, which results in the condition � > 0. This means that G

i

must be
connected for each i = 1, 2, . . . , N . Now, to ensure synchronization by Corollary 5.4.6,
it remains to check whether the matrix (A� �BC) + ⌘(A� �BC)

�1 is nonsingular
for all ⌘ 2 [0,+1). This matrix is computed as

✓
⌘� 1� ⌘

�1 + ⌘ �

◆
,

which is nonsingular for any nonnegative ⌘ if � > 0. Therefore, as long as connectivity
is preserved switching does not jeopardize the synchronization of the network with
harmonic oscillators given by (5.32).

Next, we return to the multi-input multi-output case. As observed earlier, the
network dynamics associated with A� �i

j

BC for i = 1, 2, . . . , N and j = 1, 2, . . . , p

plays a crucial role in synchronization of the network. We will now show that the
solvability of the LMIs (5.27) is guaranteed by imposing certain structural properties,
namely bounded realness and passivity, to this dynamics.

First, small gain conditions are provided to guarantee the solvability of (5.27),
thus synchronization of the network (5.3).
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Theorem 5.4.8 Let � and � be defined as in (5.2). The network (5.3) is synchronized if there
exists at least one pair of indices (k, `) with k 2 {1, 2, . . . , N} and ` 2 {2, 3, . . . , p} such
that A� �k

`

BC is Hurwitz and

max{�k

`

� �,�� �k

`

}kHk

`

k1 < 1 (5.33)

where
Hk

`

(s) = C(sI �A+ �k

`

BC)

�1B.

Proof. Suppose that (5.33) holds. For simplicity, denote max{�k

`

� �,� � �k

`

} by d

and �k

`

by �. Then there exists a positive definite matrix K which satisfies the Riccati
inequality (see [111])

(A� �BC)

>K +K(A� �BC) + C>C + d2KBB>K < 0. (5.34)

We claim that the matrix K > 0 in (5.34) satisfies

(A� ↵BC)

>K +K(A� ↵BC) < 0 (5.35)

both for ↵ = � and ↵ = �, and, therefore, the network (5.3) is synchronized based on
Theorem 5.4.5. Indeed, we have

(A� ↵BC)

>K +K(A� ↵BC) =

(A� �BC)

>K +K(A� �BC)� (↵� �)(C>B>K +KBC) =

(A� �BC)

>K +K(A� �BC) + C>C + d2KBB>K +

((↵� �)2 � d2)KBB>K � ((↵� �)KB + C>
)((↵� �)B>K + C). (5.36)

Now, by (5.34), the right hand side of (5.36) is negative definite. Clearly this holds
both for ↵ = � and ↵ = � since d = max{�� �,�� �}. ⌅

Remark 5.4.9 According to the results in Subsection 5.4.1 and considering the special
case of constant switching signals, the network (5.3) is synchronized only if the matrix
A� �i

j

BC is Hurwitz for each i = 1, 2, . . . , N and j = 2, 3, . . . , p. Therefore, there is
no conservatism involved in the Hurwitzness condition provided in Theorem 5.4.8.

For the analysis and design of protocols that achieve synchronization, assump-
tions on Lyapunov stability or passivity of the agents’ dynamic have been made
in the literature (see e.g. [83], [84]). Next, we show that synchronization can be
guaranteed by imposing passivity conditions on certain network dynamics, namely
(A� �BC,B,C). Note that, in this case, the matrix A is allowed to have eigenvalues
in the right half plane, whereas A� �BC is required to be Hurwitz which is indeed



5.4. Network synchronization 95

a necessary condition for synchronization of (5.3). The notion we use here is strict
passivity. Consider the finite-dimensional linear time-invariant system

ẇ = Aw +Bv (5.37a)

z = Cw +Dv. (5.37b)

We will denote this system by ⌃(A,B,C,D). We call the system (5.37) strictly passive
if there exist ✏ > 0 and X > 0 such that

✓
A>X +XA+ ✏X XB � C>

B>X � C �(D +D>
)

◆
6 0. (5.38)

For relations of the above definition to other types of passivity, positive realness, and
strict positive realness we refer to [100]. Now, we have the following result.

Theorem 5.4.10 Assume that � 6= �. Then, the network (5.3) is synchronized if the linear
system

⌃(A� �BC,B,C,
1

�� �
I
m

)

is strictly passive.

Proof. Suppose ⌃(A� �BC,B,C, 1

���

I
m

) is strictly passive. Then, using an appro-
priate Schur complement, by (5.38) we have

(A� �BC)

>X +X(A� �BC) +

1

2

(�� �)(XB � C>
)(XB � C>

)

> < 0 (5.39)

Therefore, we obtain

(A� �BC)

>X +X(A� �BC) + (�� �)(C>B>X +XBC)

+

1

2

(�� �)(XB � C>
)(XB � C>

)

> < 0

which can be rewritten as

(A� �BC)

>X +X(A� �BC) +

1

2

(�� �)(XB + C>
)(XB + C>

)

> < 0. (5.40)

Consequently, since both (5.39) and (5.40) hold, the network (5.3) is synchronized by
Theorem 5.4.5. ⌅

Remark 5.4.11 Note that the case � = � is not of our interest since it corresponds to
a fixed topology network associated with a complete graph. Obviously, in this case,
synchronization is achieved if and only if A� �BC is Hurwitz.
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Remark 5.4.12 Let ⌃
↵

= ⌃(A� �BC,B,C,↵I
m

). It can be verified from (5.38) that
if ⌃

↵

is strictly passive, then so is ⌃
�

for any � > ↵. Hence, by Theorem 5.4.10, the
network (5.3) is synchronized if ⌃

↵

is strictly passive for some ↵ 2 [0, 1

���

].

Remark 5.4.13 The condition proposed in Theorem 5.4.10 can be useful also for the
special case of network (5.4) where the topology is time-independent. While the
available necessary and sufficient conditions (see Subsection 5.4.1) need information
on all eigenvalues of the Laplacian matrix, the proposed passivity condition merely
requires knowledge of the (nontrivial) extremal eigenvalues. Moreover, one can also
use lower/upper bounds for these extremal Laplacian eigenvalues (see e.g. [30]) to
conclude synchronization of network (5.3) from Theorem 5.4.10. In fact, it is easy to
observe that, both in Theorem 5.4.8 and Theorem 5.4.10, the values of � and � can be
replaced by lower and upper bounds, say µ and µ, respectively; i.e. µ 6 � and � 6 µ.
Besides, as it is clear from Remark 5.4.12, the information on � is included to obtain
less restrictive condition in Theorem 5.4.10. Indeed, strict passivity of ⌃

0

in Remark
5.4.12 does not depend on �.

As an example to show how the result of Theorem 5.4.10 can be employed, next we
design a protocol to achieve synchronization of (5.3). Consider again the diffusively
coupled multi-agent system

ẋ
j

= Ax
j

+Bu
j

,

j = 1, 2, . . . , p, together with the static protocol

u
j

= K
X

{i,j}2E�(t)

(x
i

� x
j

), (5.41)

for some matrix K which will be determined later. For each i = 1, 2, . . . , N , assume
that G

i

= (V,E
i

) is connected. Assume that (A,B) is stabilizable . Then, obviously,
there exists a positive definite matrix P satisfying the Riccati inequality

A>P + PA� 2�PBB>P < 0. (5.42)

Observe that
✓
(A� �BK)

>X +X(A� �BK) + ✏X XB �K>

B>X �K 0

◆
6 0 (5.43)

for the choices K = B>P , X = P , and a sufficiency small ✏. In other words, the
system ⌃(A� �BK,B,K, 0) is strictly passive. Thus, it follows from Theorem 5.4.10
and Remark 5.4.12 that the protocol (5.41) with K = B>P achieves synchronization.

Note that two assumptions are made to derive the proposed protocol. First, the
pair (A,B) is assumed to be stabilizable. This assumption is obviously necessary for
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synchronization. In addition, the underlying graphs corresponding to the network
(5.3) are assumed to be connected. This is also necessary for the case where the agents
have exponentially unstable dynamics as we allow arbitrary switching.

5.4.3 Synchronization with respect to observer-based protocols

Recall that in the multi-agent system (5.1), the output information of the agents is
transmitted through the network. Hence, the result obtained in the previous section,
inherently, can be used to analyze the synchronization of the agents for a given static
state feedback protocol in the form of (5.41). However, as the overall information
on relative states of the neighboring agents is not always available, observer-based
protocols are proposed in the literature (see e.g. [47], [83], [84]), which use only the
relative output information of the adjacent agents. Here, we employ the observer
based protocol proposed in [47], which is originally for multi-agent systems with a
fixed topology, to multi-agent systems with switching topologies, and we show that,
interestingly, the result of the previous section carries over to this case.

Consider the observer based protocol:

v̇
j

(t) = (A+BK)v
j

(t) +GC
X

{i,j}2E�(t)

(v
i

(t)� v
j

(t))� (x
i

(t)� x
j

(t))

u
j

(t) = Kv
j

(t)

Attaching this protocol to the agents (5.1) results in

˙⇠
j

(t) = A⇠
j

(t)�
NX

i=1

(L
�(t)

)

ij

H⇠
j

(5.44)

where

⇠
j

=

✓
x
j

v
j

◆
, A =

✓
A BK

0 A+BK

◆
, H =

✓
0 0

�GC GC

◆
,

j 2 V , v
j

is the state of the observer protocol, K is the feedback gain, and G is the
observer gain. Note that the matrix H can be written as H = BC, where

B =

✓
0

G

◆
, C =

�
�C C

�
.

Hence, the multi-agent system (5.44) can be written in compact form as

˙⇠(t) = (I
p

⌦A� L
�(t)

⌦BC)⇠(t) (5.45)

where ⇠ = col(⇠
1

, ⇠
2

, . . . , ⇠
p

). This coincides with the network representation (5.3),
where the matrices A, B, and C are replaced by A, B, and C, respectively. Therefore,
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the proposed results in the previous subsections can also be applied to the case of
observer-based protocols. In particular, regarding the key result of Theorem 5.4.5, we
obtain that the network (5.45) achieves synchronization under an arbitrary switching
topology if there exists a CQLF for the pair of matrices A � �BC and A � �BC.
These matrices are computed as follows:

A� �BC =

✓
A BK

�GC A+BK � �GC

◆
, A� �BC =

✓
A BK

�GC A+BK � �GC

◆
.

Now, we apply the similarity the transformation T =

✓
I �I

0 I

◆
to obtain

T (A� �BC)T�1

=

✓
A� �GC 0

�GC A+BK

◆

and

T (A� �BC)T�1

=

✓
A� �GC 0

�GC A+BK

◆
.

As the existence of a CQLF is invariant under similarity transformation, (5.45) is
synchronized if there exists a CQLF for the pair of matrices T (A � �BC)T�1 and
T (A� �BC)T�1. Observe that these matrices are in a block triangular form. Hence,
according to [18, Thm. 5.1], they share a CQLF if and only if A + BK is Hurwitz
and the pair of matrices A� �GC and A� �GC share a CQLF. This brings us to the
following proposition.

Proposition 5.4.14 Let � and � be defined as in (5.2). Then, the network (5.45) is synchro-
nized if A+BK is Hurwitz and there exists a positive definite matrix X satisfying both of
the following linear matrix inequalities:

(A� �GC)

>X +X(A� �GC) < 0

(A� �GC)

>X +X(A� �GC) < 0.

The proposition above can be exploited to design a feedback gain K and an
observer gain G such that the network (5.45) is synchronized under an arbitrary
switching topology. The assumptions required are stabilizability of (A,B), detectabil-
ity of (C,A), and connectedness of L

i

for i = 1, 2, . . . , N . As mentioned before, the
connectedness assumption is required as we consider arbitrary switching and the
agents are allowed to have unstable dynamics. Now, choose K such that A + BK

is Hurwitz. Also choose G = QC> where Q is a positive definite matrix satisfying
the Riccati inequality AQ+QA> � 2�QC>CQ < 0. Clearly, these choices of K and
G satisfy the conditions of Proposition 5.4.14 with X = Q�1. This, together with
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Proposition 5.4.14, extend the result of [47] to the the case of networks with arbi-
trary (undirected) switching topologies. Finally note that, similarly, one can modify
the results of Theorems 5.4.8 and 5.4.10 to incorporate the case of observer-based
protocols.

5.5 Conclusions

In this chapter, we have studied stability and synchronization of networks with
arbitrary switching topologies. The agents of the network are assumed to have
identical, but general linear dynamics, and the underlying communication topology
may switch arbitrarily within a finite set of admissible topologies. For the case that
the individual dynamics of the agents is stable, a small gain condition to guarantee
the stability of the overall network is proposed. By viewing synchronization as an
output stability problem, network synchronization is revisited for the case where
the topology is fixed. By using a particular choice of decomposition of the overall
network dynamics, the output stability problem is translated to an internal stability
problem. Consequently, conditions in terms of existence of a common quadratic Lya-
punov function guaranteeing synchronization of networks under arbitrary switching
topologies are derived. These conditions require that a certain pair of LMI should
have a solution. The solvability of this pair of LMI is discussed for both SISO and
MIMO cases. Sufficient conditions for synchronization are established in terms of
bounded realness and passivity of certain network dynamics. The proposed con-
ditions depend on the agents dynamics and the (nontrivial) extremal eigenvalues
of the Laplacian matrices. The results established are extended to also incorporate
the case of observer-based protocols. It is explained how static feedback protocols
as well as observer-based protocols guaranteeing synchronization can be designed
based on the proposed conditions.





Chapter 6

Zero forcing sets and controllability of systems
defined on graphs

The study of networks of dynamical systems became one of the most popular themes
within systems and control theory in the last two decades. Roughly speaking, net-
works of dynamical systems can be seen as dynamical systems that inherit certain
structural properties from the topology of a graph that captures the network struc-
ture. Across many scientific disciplines, one encounters such systems in a variety of
applications. Typical examples include biological, chemical, social, power grid, and
robotic networks (see e.g. [57, Ch. 1]). The research on numerous aspects of these
kind of systems have already resulted in a vast literature that still keeps growing.

One line of research in this fast growing literature is devoted to the controllability
analysis of linear input/state systems of the form

ẋ = Xx+ Uu

where x 2 Rn is the state and u 2 Rm is the input with the distinguishing feature that
the matrix X is associated with a given graph and the matrix U encodes the vertices
(often called leaders) through which external inputs are applied.

Up to our knowledge, [92] is the first paper which addressed controllability
problem within this framework when X is the Laplacian matrix of an undirected
graph. This early paper was followed by a number of papers dealing with different
aspects of controllability when X is the Laplacian matrix (see e.g.[78], [24], [106])
and when X is the adjacency matrix (see e.g. [31]). On the one hand, controllability
was investigated from a graph topology perspective in [78], [24], [54], [12], [106],
[104], [31] which established necessary/sufficient conditions for controllability as
well as lower and/or upper bounds on the controllable subspace. These conditions
are based on graph theoretical tools such as graph symmetry [78], (almost) equitable
partitions [78], [24], [54], [106], walks of a graph [31], distance partitions [106], or
pseudo monotonically increasing sequences [104]. On the other hand, the minimum
number of leaders that render the system controllable, with X being the Laplacian
matrix of a simple undirected graph, was explored for several classes of graphs such
as path graphs [78], [75], cycle graphs [75], [106], complete graphs [78], [106], and
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circulant graphs [69] which all provide also a leader selection procedure.
Another thread in the study of controllability of systems defined by a graph was

centered around structural controllability. Structural controllability deals with a
family of pairs (X,U) rather than a particular instance and asks whether the family
contains a controllable pair (weak structural controllability [52]) or all members of
the family are controllable (strong structural controllability [16]). In the latter case,
the authors of [16] have established necessary and sufficient conditions for strong
structural controllability in terms of constrained matchings over the bipartite graph
representation of the network.

In this chapter, we deal with a family of X matrices carrying the structure of a
directed graph G. This family is called the qualitative class of G, and we investigate
the controllability of the network with respect to this qualitative class, under a fixed
set of vertices (leaders). Note that essentially this is the same as studying strong
structural controllability, but we carry out controllability analysis through the notion
of zero forcing sets, similar to [10], rather than through the constrained matching
which has been treated in [16].

The notions of zero forcing sets and zero forcing number have an intimate rela-
tionship with minimum rank problems of patterned matrices, and have been well
studied in the literature (see e.g. [4] and [37]). Moreover, in these papers and the ref-
erences therein, lower/upper bounds for the zero forcing number has been provided,
and also the exact value has been obtained for some special classes of graphs, either
directly or in terms of some graph parameters such as path cover number. Note
that computing the zero forcing number as well as finding a minimal zero forcing
set for a general loop directed graph is an NP-hard problem (see [93, Thm. 2.6]).
Utilizing the notion of zero forcing sets for controllability analysis of networks has
been carried out recently in [10], where controllability of networks with quantum and
linear dynamics is studied. As a side result, for the case where the underlying graph
is undirected and all off-diagonal elements of X have the same sign, a sufficient
condition for controllability of a network with linear dynamics is provided in terms
of zero forcing sets.

In this chapter, for the case where the underlying graph is directed, we establish a
one-to-one correspondence between the set of leaders rendering the network con-
trollable and zero forcing sets. Consequently, we obtain that the minimum number
of leaders required to render the network controllable, with respect to the whole
qualitative class, is indeed equal to the zero forcing number of the underlying graph.
Note that in some applications extra assumptions and constraints such as symmetry
may be present on the entries of the matrix X . Hence, in these cases, one may be
interested in some subsets of the qualitative class of G rather than the whole class.
This will be addressed through the notion of sufficiently rich subclasses, and we
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explore how the results established in this chapter boils down or can be applied to
certain qualitative subclasses. Then, we study the controllability problem for some
special classes of graphs, namely path, cycle, and complete graphs. In addition,
we establish a connection between the existing results on the minimum number of
leaders in these cases where the matrix X is the Laplacian matrix, and the results
proposed in this manuscript.

An advantage of the proposed results of this chapter is that one can deduce
conclusions on the minimum number of leaders for controllability as well as how to
choose such leaders in particular cases, by utilizing the existing results in graph theory
regarding the zero forcing sets of graphs. For instance, in case where the underlying
graph has a structure of a (directed) tree, we conclude that the minimum number of
leaders rendering the network controllable, for all matrices in the qualitative class,
is equal to the corresponding path cover number of the graph. Moreover, initial
vertices in a minimal path cover can be selected as the choice of leaders in this case.
Likewise, one can draw similar conclusions for other classes of graphs for which
the zero forcing sets has been already studied in the literature. Finally, thanks to the
result of the present chapter, the problem of verifying whether a given set of leaders
render the network controllable, for all matrices in the qualitative class, boils down
to checking whether this leader set constitutes a zero forcing set or not.

The organization of the chapter is as follows. In Section 6.1, the problem at hand
is mathematically formulated, and is motivated by establishing connection to the
existing results in the literature. In Section 6.2, zero forcing sets, zero forcing number,
and the involved notions are recapped. The main result of this chapter is reported in
Section 6.3, where a necessary and sufficient condition for controllability of networks
is established in terms of zero forcing sets. In addition, controllability of the network
with respect to qualitative subclasses is studied in this section, and finally some
special cases are provided for further illustration of the proposed results. The chapter
ends with concluding remarks in Section 6.4.

6.1 Problem formulation and motivation

For a given simple directed graph G, the vertex set of G is a nonempty set and is
denoted by V (G). The arc set of G, denoted by E(G), is a subset of V ⇥ V , and
(i, i) /2 E for all i 2 V (G). The cardinality of a given set V is denoted by |V |. Also we
use |G| to denote in short the cardinality of V (G). We say vertex j is an out-neighbor
of vertex i if (i, j) 2 E. The family of matrices described by G is called qualitative
class of G, and is given by
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Q(G) = {X 2 R|G|⇥|G|
: for i 6= j, X

ij

6= 0 , (j, i) 2 E(G)}. (6.1)

For V = {1, 2, . . . , n} and V
L

= {v
1

, v
2

, . . . , v
m

} ✓ V , we define the n⇥m matrix
U(V ;V

L

) = [U
ij

] by:

U
ij

=

(
1 if i = v

j

0 otherwise.
(6.2)

By a leader/follower system defined on a graph G, we mean a finite-dimensional
linear input/state system of the form

ẋ(t) = Xx(t) + Uu(t) (6.3)

in continuous-time and
x(t+ 1) = Xx(t) + Uu(t) (6.4)

in discrete-time where x 2 R|G| is the state, u 2 Rm is the input, X 2 Q(G), and
U = U(V (G);V

L

) for some given leader set V
L

✓ V (G).

Systems of the form (6.3) or (6.4) where X 2 Q(G) for a given graph G are
encountered in various contexts. Examples include the cases where X is adjacency
[31], (in-degree or out-degree) Laplacian [57], normalized Laplacian [3], etc. matrices
associated to a graph.

In this chapter, we deal with the controllability of the systems of the form (6.3)
or (6.4). With a slight abuse of notation, we sometimes write (X;V

L

) is controllable
meaning that (X,U) is controllable. For a given graph G and a leader set V

L

we say
(G;V

L

) is controllable if the pair (X;V
L

) is controllable for all X 2 Q(G).
In particular, we are interested in determining the set of leaders rendering systems

of the form (6.3) controllable. For a given graph G and a matrix X 2 Q(G), we denote
the minimum number of leaders rendering the system (6.3) controllable by `

min

(X),
that is

`
min

(X) = min

VL✓V (G)

{|V
L

| : (X;V
L

) is controllable}.

For a given graph G, we denote the minimum number of leaders rendering all
systems of the form (6.3) controllable by `

min

(G), that is

`
min

(G) = min

VL✓V (G)

{|V
L

| : (G;V
L

) is controllable}. (6.5)

Controllability of systems of the form (6.3) has been studied in the literature
from different angles. In what follows, we give an account of the existing re-
sults/approaches in the literature.
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One particular line of research within the context of controllability has been
devoted to systems of the form

ẋ(t) = �Lx(t) + Uu(t) (6.6)

where L is the Laplacian matrix of an undirected graph. This line of research has
been initiated by [92] and further developed by [78]. Within this framework, the two
main themes were graph theoretical characterization of controllability properties in
terms of certain graph partitions [54], [24], [106] and (minimum) leader selection for
rendering a system of the form (6.6) controllable for particular classes of undirected
graphs [106], [75], [69].

The work on the leader selection led to a number of interesting results by ex-
ploiting the structure of the Laplacian matrices for several graph classes. It has been
shown in [78] that `

min

(L) = 1 for path graphs. In this case, one can choose one of
the two terminal vertices as the leader. By [106], `

min

(L) = 2 for undirected cycle
graphs and any two neighbours can be chosen as leaders. The paper [75] further
studied cycle graphs and has proved that any two leaders would render the system
controllable in case the number of all vertices is a prime number. For an undirected
complete graph with n vertices, we know from [106], [78] that `

min

(L) = n� 1 and
any choice of n � 1 leaders would render the system controllable. Another rather
specific class of undirected graphs that has been studied within the same context
is distance regular graphs. In [106], it was shown that `

min

(L) 6 n � d where n is
the number of vertices and d is the diameter of the graph. The paper [106] provided
also a recipe to select n� d leaders that render the system controllable. In case the
underlying graph is a circulant graph, the authors of [69] proved that `

min

(L) is equal
to the maximum algebraic multiplicity of Laplacian eigenvalues.

Another particular class of systems that has been studied in the context of the
controllability is given by

ẋ(t) = Ax(t) + Uu(t) (6.7)

where A is the adjacency matrix of an undirected graph, see e.g. [31]. The same class
of systems was studied in [52] from the weak structural controllability viewpoint.

In this chapter, we will mainly deal with the controllability of families of systems
given by (6.3) where X 2 Q(G) for a graph G and provide results concerning `

min

(G)

rather than `
min

(X) for a specific choice of X 2 Q(G). However, our treatment, as
a side result, will reveal that the aforementioned existing results on the number of
minimum leaders are not intrinsic to the Laplacian but hold for any matrix within
the corresponding qualitative class given by the underlying graph.
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6.2 Zero forcing sets

First, we review the notion of zero forcing sets together with the involved notations
and terminology which will be used in the sequel. For more details see e.g. [37].

Let G be a given graph, where each vertex is colored either white or black. Con-
sider the following coloring rule:

G# : If u is a black vertex and exactly one out-neighbor v of u is white, then change
the color of v to black.

Following terminology will be used when we apply the color-change rule above
to a graph G:

– When the color-change rule is applied to u 2 V (G) to change the color of
v 2 V (G), we say u forces or infects v, and write u ! v.

– Given a coloring set C ✓ V (G), i.e. C indexes the initially black vertices of G,
the derived set of C is denoted by D(C), and is the set of black vertices obtained
by applying the color-change rule until no more changes are possible.

– The set Z ✓ V (G) is a zero forcing set (ZFS) for G if D(Z) = V (G).

– The zero forcing number Z(G) is the minimum of |Z| over all zero forcing sets
Z ✓ V (G). A set Z is called a minimal zero forcing set if |Z| = Z(G).

Figures 6.1 and 6.2 illustrate the zero forcing set and the notions defined above.
First, consider the graph depicted in Figure 6.1 where the vertex 1 is initially colored
black. Then, by the color-change rule it is clear that 1 ! 2. Consequently, 2 ! 3, and
3 ! 4. Therefore, the derived set of {1} is equal to {1, 2, 3, 4}, and thus {1} is not a
zero forcing set. Now, suppose that we choose {1, 5} to be the initially colored black
vertices as shown in Figure 6.2. Then by applying the color-change rule, we conclude
that this set is a zero forcing set. Moreover, note that no singleton set constitutes a
zero forcing set in this case, thus the zero forcing number is indeed equal to 2.

6.3 Zero forcing sets and controllability

In this section, we characterize a set of leaders which renders (G;V
L

) controllable
for a given graph G. Clearly, a pair (X,U) is controllable if and only if the matrix⇥
X � �I U

⇤
has full row rank for all � 2 C. Here, we deal with a family of ma-

trices based on a given graph G, and thus we should consider whether the matrix⇥
X � �I U

⇤
has full row rank for all X 2 Q(G) and � 2 C. It turns out that this

property does not depend on the parameter � due to the structure of the matrix
family Q(G).
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Figure 6.1: An example for the coloring rule
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Figure 6.2: An example for the zero forcing set

Lemma 6.3.1 Let G be a graph and V
L

✓ V (G). Then, (G;V
L

) is controllable if and only if
the matrix

⇥
X U

⇤
has full row rank for all X 2 Q(G) where U = U(V ;V

L

) given by (6.2).

Proof. Clearly, (G;V
L

) is controllable if and only if the matrix
⇥
X � �I U

⇤
has full

row rank for all X 2 Q(G) and all � 2 C. Hence, the “only if” part follows trivially.
Now, suppose that

⇥
X U

⇤
has full row rank for all X 2 Q(G). Let � 2 C and

z 2 C|G| be such that z⇤
⇥
X � �I U

⇤
= 0 for some X 2 Q(G). Let z = p + jq for

real vectors p and q where j is the imaginary number. Define x 2 R|G| as x = p+ ↵q

where ↵ is a real number. Choose ↵ such that

↵ /2 {�p
i

q
i

: q
i

6= 0; i = 1, 2, . . . , |G|} (6.8)
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where p
i

and q
i

denote the ith element of p and q, respectively. Then one can show
that x

i

= 0 if and only if z
i

= 0. In fact, if z
i

= 0 then obviously x
i

= 0. In addition,
if x

i

= 0 then we obtain p
i

+ ↵q
i

= 0, which yields q
i

= 0 by (6.8). Hence, we have
p
i

= 0, and thus z
i

= 0.
Next, we claim that the following implication holds:

x
i

= 0 ) (x>X)

i

= 0. (6.9)

To prove this claim, suppose that x
i

= 0. Then, we have z
i

= 0. Since z⇤X = �z⇤, we
obtain (z⇤X)

i

= 0. Hence, (p>X)

i

= 0 = (q>X)

i

. Consequently, ((p> + ↵q>)X)

i

=

(x>X)

i

= 0.
Now, we define the diagonal matrix D = diag(d

1

, d
2

, . . . , d
n

) with

d
i

=

(
0 if x

i

= 0

(x

>
X)i

xi
otherwise.

(6.10)

By using (6.9), it holds that x>X = x>D. Besides, z⇤U = 0 results in p>U =

0 = q>U which yields x>U = 0. Now, choose ˆX = X �D. Clearly, ˆX 2 Q(G) and
x>

ˆX = 0. Then due to full row rank assumption of
h
ˆX U

i
we obtain x = 0, thus

z = 0. Therefore,
⇥
X � �I U

⇤
has full row rank, and the result follows. ⌅

Next, we explore the relationship between zero forcing sets and controllability of
(G;V

L

). First we show that the process of coloring/infecting vertices, according to
the change-color rule, does not affect the controllability. This issue is addressed in
the following lemma.

Lemma 6.3.2 Let G be a graph and C be a (coloring) set. Suppose that v ! w where v 2 C

and w /2 C. Then (G;C) is controllable if and only if (G;C [ {w}) is controllable.

Proof. The “only if” part is trivial. Now, let C 0
:= C[{w} and suppose that (G;C 0

) is
controllable. Hence, (X,U) is controllable for all X 2 Q(G) where U = U(V (G);C 0

)

is given by (6.2). Without loss of generality, we can assume that

(X,U) =

⇣
2

664

x
11

x
12

x
13

x
14

x
21

x
22

x
23

x
24

X
31

X
32

X
33

X
34

X
41

X
42

X
43

X
44

3

775 ,

2

664

1 0 0

0 1 0

0 0 I

0 0 0

3

775
⌘

(6.11)

is controllable for all X 2 Q(G), where the first row corresponds to the vertex w, the
second corresponds to v, the third row block corresponds to the vertices indexed by
C \{v}, and the last row block corresponds to remaining white vertices, i.e. V (G)\C 0.



6.3. Zero forcing sets and controllability 109

By Lemma 6.3.1, we know that
⇥
X U

⇤
has full row rank, which implies that the

last row block of X in (6.11) has full row rank. Since v ! w, we have x
12

6= 0 and
X

42

= 0. Therefore, the submatrix

x
11

x
12

x
13

x
14

X
41

X
42

X
43

X
44

�
(6.12)

has full row rank. Consequently, the pair

⇣
2

664

x
11

x
12

x
13

x
14

x
21

x
22

x
23

x
24

X
31

X
32

X
33

X
34

X
41

X
42

X
43

X
44

3

775 ,

2

664

0 0 0

0 1 0

0 0 I

0 0 0

3

775
⌘

(6.13)

is controllable, and hence (G;C) is controllable. ⌅

Roughly speaking, this lemma states that controllability is invariant under in-
fection. As such, we can obtain the following corollary by repeated application of
Lemma 6.3.2.

Corollary 6.3.3 Let G be a graph and a C be a coloring set. Then, (G;C) is controllable if
and only if (G;D(C)) is controllable.

Next, we state one of the main results of this chapter based on the above auxiliary
lemmas.

Theorem 6.3.4 Let G be a graph and V
L

✓ V (G). Then, (G;V
L

) is controllable if and only
if V

L

is a zero forcing set.

Proof. If V
L

is a zero forcing set, then D(V
L

) = V (G) by definition. Hence, it follows
from Corollary 6.3.3 that controllability of (G;V

L

) is equivalent to that of (G;V (G)).
Since (G;V (G)) is trivially controllable, so is (G;V

L

). To prove the converse, suppose
that (G;V

L

) is controllable, but V
L

is not a zero forcing set. Then, we have D(V
L

) 6=
V (G). We also know that (G;D(V

L

)) is controllable by Corollary 6.3.3. Without
loss of generality, we can assume that V

L

= {1, 2, ...,m} and D(V
L

) = V
L

[ {m +

1,m+ 2, . . . ,m+ r} where m+ r < |G|. Since (G;D(V
L

)) is controllable, it follows
from Lemma 6.3.1 that the matrix

⇥
X U

⇤
has full row rank for all X 2 Q(G) where

U = U(V ;D(V
L

)) = col(I
m+r

, 0). Hence, the matrix

X

11

X
12

I
m+r

X
21

X
22

0

�
(6.14)
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has full row rank for all X 2 Q(G) where X
11

2 R(m+r)⇥(m+r), X
12

2 R(m+r)⇥k,
X

21

2 Rk⇥(m+r), and X
22

2 Rk⇥k with k = |G|�(m+r) constitute the corresponding
partitioning of the matrix X .

Now, we distinguish two cases. First, suppose that there exists a column of X
21

with exactly one nonzero element. This implies that there is a vertex, say v 2 D(V
L

),
which has exactly one (white) out-neighbor, say w /2 D(V

L

). Consequently, v can
infect w, and we reach a contradiction. On the other hand, suppose that there does not
exist a column of X

21

with exactly one nonzero element. Then, clearly the nonzero
elements of X

21

can be chosen such that we have 11

>X
21

= 0, where 11 denotes the
vector of ones with an appropriate dimension. In addition, note that the diagonal
elements of X can be chosen arbitrarily due to the the definition of Q(G), and thus
can be assigned such that 11>X

22

= 0. Therefore, we obtain that

⇥
0

>
m+r

11

>⇤

X

11

X
12

I
m+r

X
21

X
22

0

�
= 0,

for some X in Q(G), and again we reach a contradiction. ⌅

Theorem 6.3.4 establishes a one-to-one correspondence between leader sets render-
ing systems of the form (6.3) controllable and zero forcing sets of the corresponding
graphs. An immediate consequence of this result yields the following result on the
minimum number of leaders required for controllability.

Corollary 6.3.5 Let G be a given graph. Then, `
min

(G) = Z(G).

6.3.1 Sufficiently rich qualitative subclasses

So far, we have investigated controllability of systems given by (6.3) where the
matrices X belongs to the family Q(G) which is described by the graph G. In many
examples, one encounters matrices of X carrying more structure than that imposed
by Q(G). For instance, consider a graph G

1

for which E(G
1

) is symmetric, i.e.
(v, w) 2 E(G

1

) if and only if (w, v) 2 E(G
1

) and the matrices X belonging to

Q
s

(G
1

) = {X 2 Q(G
1

) : X = X>} ✓ Q(G
1

). (6.15)

Note that undirected graphs can be identified with directed graphs having symmetric
arc sets. As such, the class Q

s

(G
1

) naturally appears whenever the underlying graph
structure is induced by an undirected graph as in the systems of the form (6.6) and
(6.7)

In what follows, we focus on controllability with respect to subclasses of Q(G).
For a graph G, (leader) set V

L

✓ V (G), and a qualitative subclass Q0
(G) ✓ Q(G), we

say V
L

controls Q0
(G) if (X;V

L

) is controllable for all X 2 Q0
(G).
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If V
L

is a zero a forcing set for the graph G, then V
L

controls Q(G) by Theorem 6.3.4.
Consequently, such a V

L

controls Q0
(G) for any Q0

(G) ✓ Q(G). However, the converse
is not true in general. For instance, consider G

1

= (V
1

, E
1

) where V
1

= {1, 2, 3, 4} and
E

1

= {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. Let V
L

= {2} and take the Laplacian
matrix of G

1

, denoted by L
1

, as the qualitative subclass in this case. Then, by [75],
(L

1

;V
L

) is controllable whereas obviously V
L

is not a zero forcing set.
Therefore, we conclude that V

L

is not necessarily a zero forcing set for G even
though it controls Q0

(G) for some nonempty Q0
(G) ✓ Q(G). Next, we investigate

under what conditions, controlling Q0
(G) ✓ Q(G) by V

L

, implies that V
L

also controls
Q(G), or equivalently, V

L

is a zero forcing set. For this purpose, the following notion
is needed.

Definition 6.3.6 Let Q0
(G) be a non-empty subset of Q(G). We say that Q0

(G) is a
sufficiently rich subclass of Q(G) if the following implication holds:

z 2 R|G|, X 2 Q(G), z>X = 0 =) 9X 0 2 Q0
(G) such that z>X 0

= 0. (6.16)

Now, we have the following result.

Theorem 6.3.7 Let G be a graph and V
L

✓ V (G) be a (leader) set. Suppose that Q0 ✓ Q(G)

is a sufficiently rich subclass of Q(G). Then the following statements are equivalent:

1. The set V
L

is a zero forcing set.

2. The set V
L

controls Q(G).

3. The set V
L

controls Q0
(G).

Proof. The first two statements are equivalent by Theorem 6.3.4. Besides, the second
statement trivially implies the third one. Hence, it suffices to show that statement 3
implies 2. Suppose that statement 3 holds. In view of Lemma 6.3.1, it suffices to show
that the matrix

⇥
X U

⇤
has full row rank for all X 2 Q(G), where U is given by (6.2).

Now suppose that x> ⇥X U
⇤
= 0 for some x 2 R|G| and X 2 Q(G). Since Q0

(G) is a
sufficiently rich subclass of Q(G), there exists X 0 2 Q0

(G) such that x> ⇥X 0 U
⇤
= 0.

This results in x = 0 due to the assumption that V
L

controls Q0
(G). Consequently, the

matrix
⇥
X U

⇤
has full row rank for all X 2 Q(G). Thus, V

L

also controls Q(G). ⌅

By Theorem 6.3.7, controlling sufficiently rich subclasses is equivalent to control-
ling the corresponding qualitative classes, which can be further characterized by zero
forcing sets. Next, we focus on two notable subclasses of Q(G

1

). Bare in mind that
E(G

1

) is symmetric. The first subclass we consider here is Q
s

(G
1

) given by (6.15).
This subclass is a sufficiently rich subclass of Q(G

1

) as stated next.
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Proposition 6.3.8 The set Q
s

(G
1

) is a sufficiently rich subclass of Q(G
1

).

Proof. Assume that there exists z 2 R|G1| such that z>X = 0 for some X 2 Q(G
1

).
We distinguish two cases. First, suppose that z

i

6= 0 for each i = 1, 2, . . . , |G
1

|. Define
the matrix X 0 as X 0

=

ˆX + D where ˆX 2 Q
s

(G
1

) and D is a real diagonal matrix.
Obviously, we have X 0 2 Q

s

(G
1

) for any choices of X 0 and D. Then, since z
i

6= 0 for
each i, one can choose D such that z>X 0

= 0. Next, consider the case where z
i

= 0 for
some i. Without loss of generality, the vector z can be then partitioned as z = [ẑ 0]

>

such that the vector ẑ does not contain any zero element. Correspondingly, let the
matrix X be partitioned as

X =


X

11

X
12

X
21

X
22

�
.

Hence, we have ẑ>X
11

= 0 and ẑ>X
12

= 0 by the assumption. Now, choose a matrix
ˆX 2 Q

s

(G
1

) and let

ˆX =

"
ˆX
11

ˆX
12

ˆX>
12

ˆX
22

#
.

Let D be a real diagonal matrix such that ẑ>( ˆX
11

+D) = 0. Note that such D exists
as ẑ

i

6= 0 for each i. Then, we construct a matrix X 0 as

X 0
=

"
ˆX
11

+D X
12

X>
12

ˆX
22

#
.

Clearly, we have X 0 2 Q
s

(G
1

). Moreover, it holds that z>X 0
= 0, and thus Q

s

(G
1

) is
a sufficiently rich subclass of Q(G

1

). ⌅

Now, we consider a second subclass of Q(G
1

) by imposing an additional con-
straint to Q

s

(G
1

). More precisely, let Q�
s

(G
1

) ✓ Q
s

(G
1

) ✓ Q(G
1

) be defined as

Q�
s

(G
1

) = {X 2 Q
s

(G
1

) : for i 6= j, X
ij

< 0 whenever X
ij

6= 0} (6.17)

Note that ordinary Laplacian matrices and adjacency matrices are among the special
cases of this subclass. Structural controllability with respect to this subclass has been
studied in [10]. In particular, it has been shown that the set V

L

controls Q�
s

(G
1

) if V
L

is a zero forcing set. However, the converse does not hold as pointed out by [10, Ex.
4.3]. The following proposition shows that indeed Q�

s

(G
1

) is not a sufficiently rich
subclass, except for some pathological cases.

Proposition 6.3.9 Assume that the graph G
1

has a vertex with at least two (out) neighbors.
Then, the set Q�

s

(G
1

) is not a sufficiently rich subclass of Q(G
1

).
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Proof. Let k be a vertex of G
1

with at least two (out) neighbors. Define z 2 R|G1| as

z
i

=

(
1 if i 6= k,

0 otherwise.

Note that (z>X 0
)

k

is a negative number for any X 0 2 Q�
s

(G
1

). Hence, z>X 0 6= 0

for any X 0 2 Q�
s

(G
1

). Therefore, to conclude that Q�
s

(G
1

) is not sufficiently rich, it
suffices to show that z>X = 0 for some X 2 Q(G

1

). It is easy to see that one can
choose a matrix X 2 Q(G

1

) such that (z>X)

i

= 0 for each i 6= k. Also note that, by
the assumption, the matrix X has at least two nonzero off-diagonal elements in its
kth column. Hence, these (two or more) nonzero elements can be further chosen such
that we have (z>X)

k

= 0, and thus z>X = 0. This completes the proof. ⌅

6.3.2 Special cases

Next, we study some special cases to demonstrate how the proposed results can be
used in particular applications.

As we mentioned earlier, controllability of systems of the form (6.6) has been
extensively studied in the literature. In particular, minimum number of leaders
that render the system (6.6) controllable was investigated for some special classes of
undirected graphs. To apply our results to the special case of undirected graphs, we
identify an undirected graph H by a corresponding directed graph G whose arc set is
symmetric. As an example, three undirected graphs together with the corresponding
directed graphs are depicted in Figure 6.3. For an undirected graph H , we denote
the corresponding directed graph by ✓(H). Note that, clearly, the Laplacian matrix L

of H belongs to the qualitative class Q(✓(H)).
In case of an undirected path graph P

n

with n vertices, it has been shown in
[78] that `

min

(L) = 1. For an undirected cycle graph C
n

, it has been shown in [106,
Thm. 3] that `

min

(L) = 2 , and any two neighbors can be chosen as leaders. For an
undirected complete graph K

n

with n vertices, we have `
min

(L) = n � 1, and any
n � 1 vertices can be chosen as leaders (see [106, Thm. 4]). By looking at Figure
6.3, it is easy to verify that `

min

(L) coincides with the zero forcing number in these
three cases, i.e. path, cycle, and complete graphs. Note that the set {1} or {3} is a
minimal ZFS for the path graph in Figure 6.3. Moreover, any two neighboring vertices
constitutes a minimal zero forcing set for the cycle graph, and any three out of the
four vertices forms a minimal ZFS for the complete graph in Figure 6.3. Obviously,
this is not limited to the depicted examples, and holds true for any undirected path,
cycle, or complete graphs. Therefore, we obtain that Z(✓(P

n

)) = 1, Z(✓(C
n

)) = 2,
and Z(✓(K

n

)) = n� 1. Then, by Corollary 6.3.5, we conclude that the existing results
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1 2 3 4 1 2 3 4

1

2

3

45

1

2

3

45

1 2

34

1 2

34

Figure 6.3: Undirected graphs and the associated symmetric directed graphs: path, cycle and

complete graphs

for the minimum number of leaders rendering the system (6.6) controllable, carries
over unchanged to the class of systems whose dynamics is given by (6.3).That is, we
have `

min

(X) = 1 for any X 2 Q(✓(P
n

)), `
min

(X) = 2 for any X 2 Q(✓(C
n

)), and
`
min

(X) = n� 1 for any X 2 Q(✓(K
n

)).
It is worth mentioning that one should not conjecture based on the aforemen-

tioned special cases that `
min

(L) is equal to the zero forcing number for any graph.
As a counter example, consider a 6-regular circulant graph with 10 vertices. It follows
directly from [69, Thm. III.1] that `

min

(L) = 2, whereas it is easy to observe that no
pair of vertices results in a zero forcing set.

After the discussion of undirected graph classes for which `
min

(L) has been
characterized in the literature, we turn our attention to a class of directed graphs,
namely directed trees (ditrees). We use the symbol T to denote a ditree to avoid
possible confusion with the general case. The notions of a path, the path cover
number, and a minimal path cover are required before stating the result for this case
(see e.g. [37]) for more details on these notions).

Definition 6.3.10 A path P in G is an ordered set of distinct vertices (v
1

, v
2

, . . . , v
k

)

of G such that (v
i

, v
i+1

) 2 E(G) for each i = 1, 2, . . . , k� 1. The vertex v
1

is called the
initial point of P and v

k

is the final point of P . The path cover number of G, denoted
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by P (G), is the minimum number of vertex disjoint paths occurring as induced
subgraphs of G that cover all the vertices of G; such a set of paths realizing P (G) is
called a minimal path cover.

Now, we have the following result in case of tree structures.

Proposition 6.3.11 Let T be a ditree. Then, we have `
min

(T ) = P (T ). Moreover, the initial
points of the vertex disjoint paths realizing a minimal path cover form a minimal zero forcing
set.

Proof. The result follows directly by applying Theorem 6.3.4 and Corollary 6.3.5,
together with [37, Thm. 3.5] and the proof provided therein. ⌅

6.4 Conclusion

Controllability of systems defined on graphs has been discussed in this chapter. We
have considered the problem of controllability of the network for a family of matrices
carrying the structure of an underlying directed graph. This family of matrices is
called the qualitative class, and as observed, there is a one-to-one correspondence
between the set of leaders rendering the network controllable for all matrices in the
qualitative class and zero forcing sets. We have also dealt with the case where one is
interested in some subset of this qualitative class, through the notion of sufficiently
rich subclasses. To further illustrate the proposed results, special cases including
path, cycle, and complete graphs are discussed. In addition, we have shown how
the proposed results of the present chapter together with the existing results on
the zero forcing sets lead to a minimal leader selection scheme in particular cases,
such as graphs with a tree structure. Based on the results of the present chapter,
our knowledge about (minimal) leader selection for controllability of a network is
intimately related to the knowledge we have for zero forcing sets (number). Indeed,
for each class of graphs whose zero forcing number has been known or will be
established later on, we immediately obtain the minimum number of leaders for
controllability, and, in principle, a minimal leader selection scheme.





Chapter 7

Disturbance decoupling problem for multi-agent
systems: A graph topological approach

Analysis and design of multi-agent systems and networks of dynamical agents
have turned to an extremely popular research target in the last decade. Studying
consensus/synchronization and designing feedback protocols to achieve consen-
sus/synchronization have perhaps been the most popular framework in this direction;
see e.g. [72], [41], [79], [47], [83], [95].

An important issue in studying networks of dynamical agents is to deduce certain
network properties from the “network topology” which is typically given in terms
of the so-called “communication graph” of the network. For instance, it is well-
known that connectivity of the communication graph plays a crucial role in the
consensus problem (see e.g. [72]). Recently, studying other network properties from
a topological perspective has attracted the attention of many researchers see e.g. [56],
[13], [78], [24]. A notable instance is controllability analysis; see e.g. [107], [24], [52],
[78], [75], [69]. In this framework, agents are labeled as leaders and followers. Leaders
are agents through which external input signals are injected to the network, and
the rest of the agents are called followers. Then, controllability analysis amounts to
investigate the possibility of deriving the states of the agents to arbitrary values by
appropriate input signals applied to the leaders. Graph partitions, and in particular
“almost equitable partitions”, has been proven to be a useful tool in controllability
analysis; see e.g. [107]. These partitions can be considered as a topological translation
of L�invariant subspaces, with L denoting the Laplacian matrix of the network
communication graph; see e.g. [14], [107].

As a step forward to investigate network properties from a topological perspec-
tive, in this chapter, we study the “disturbance decoupling problem” of diffusively
coupled leader-follower networks, where each vertex has single integrator dynamics
and some agents are affected by disturbance signals. Roughly speaking, for a classical
linear system with inputs and outputs, the disturbance decoupling problem (DDP)
amounts to find a feedback (typically, state feedback) such that the output of the
closed-loop system is not affected by disturbance signals acting on the states of the
system, see e.g. [94]. If such a feedback exists, then we say the DDP for the system is
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solvable.
Our contribution comes from but goes beyond the disturbance decoupling solu-

tion in the geometric approach for linear systems. The geometric approach to linear
system synthesis was inaugurated by the recognition of controlled invariant sub-
spaces, due independently to Basile and Marro [6] and to Wohnam and Morse [103].
Disturbance decoupling problem is in fact an immediate application of the controlled
invariance property, see e.g.[5, 91]. To the authors’ best knowledge, the current
manuscript is the first attempt to study the disturbance decoupling problem for
networks of dynamical agents from a topological perspective. Studying network
properties such as controllability and DDP from a topological perspective provides
valuable insights into the structure/behaviour of the network, and it will facilitate
the design.

In this chapter, we introduce a new class of partitions almost equitability with
respect to a cell in order to provide an appropriate topological translation for con-
trolled invariant subspaces in the context of dynamical networks. Then, by using this
extended notion of almost equitability, we derive sufficient (topological) conditions
for the network to be disturbance decoupled. More precisely, we consider both
open loop and closed loop disturbance decoupling problem. In the first case, we
investigate if the network is already disturbance decoupled without applying input
signals to the leaders. In the latter case, we consider the solvability of the DDP for
the network that amounts to find (if possible) a state feedback controller rendering
the network disturbance decoupled. In particular, we establish sufficient topological
conditions guaranteeing the network to be disturbance decoupled (open loop) as well
as conditions guaranteeing the solvability of DDP (closed loop). Both in the closed
loop as well as the open loop case, algorithms to verify the proposed conditions
are provided. A crucial point in the context of distributed control is to exploit the
relative (local) information of the states of the agents rather than absolute (global)
information of the states. As desired, it will be observed that in case the DDP for the
network is solvable then the controller rendering the network disturbance decoupled
is indeed using relative information of the states of the agents.

The structure of this chapter is as follows. In Section 7.1, some preliminary
materials are provided, and the open loop and closed loop disturbance decoupling
problems for multi-agent systems are formulated. In Section 7.2, the notion of almost
equitability with respect to a cell is proposed and characterized in terms of controlled
invariant subspaces. In Section 7.3, we establish sufficient conditions guaranteeing
the network to be disturbance decoupled as well as conditions guaranteeing the
solvability of DDP. Algorithms to verify the proposed topological conditions are
proposed in Section 7.4. To illustrate the proposed results, a numerical example is
provided in Section 7.5. Finally, the chapter ends with a summary in Section 7.6.
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7.1 Diffusively coupled multi-agent systems and dis-
turbance decoupling

7.1.1 Leader-follower diffusively coupled multi-agent systems with
disturbance

In this chapter, we consider a multi-agent system consisting of n > 1 agents la-
beled by the set V = {1, 2, . . . , n}. We assign three subsets of V as follows: VL =

{`
1

, `
2

, . . . , `
m

} where m 6 n, VF = V \ VL and VD = {w
1

, w
2

, . . . , w
r

} where r 6 n.
We associate the dynamics

ẋ
i

(t) =

⇢
z
i

(t) + u
k

(t) + d
l

(t) if i = w
l

2 VD

z
i

(t) + u
k

(t) otherwise
(7.1)

to each agent i = `
k

2 VL, and

ẋ
i

(t) =

⇢
z
i

(t) + d
l

(t) if i = w
l

2 VD

z
i

(t) otherwise
(7.2)

to each agent i 2 VF, where x
i

2 R represents the state of agent i 2 V , z
i

indicates the
coupling variable of agent i 2 V , u

k

2 R is an external control input signal received
by agent i = `

k

2 VL, and d
l

2 R is taken as an external disturbance signal influencing
agent i = w

l

2 VD.
Considering the roles of the defined subsets of V , we refer to VL as the leader set,

V
F

as the follower set, and V
D

as the disturbance set. Correspondingly, we say i is a
leader if i 2 V

L

, and i is a follower if i 2 V
F

.
We consider a simple (unweighted) directed graph G = (V,E), where V is the

vertex set and E ✓ V ⇥ V is the arc set of G. For two distinct vertices i, j 2 V , we
have (i, j) 2 E if there is an arc from i to j with i being the tail and j being the head
of the arc. Then i is said to be a neighbor of j. The coupling variable z

i

admits the
following diffusive coupling rule:

z
i

(t) = �
X

(j,i)2E

(x
i

(t)� x
j

(t)). (7.3)

By defining x(t) = col(x
1

(t), x
2

(t), · · · , x
n

(t)), u(t) = col(u
1

(t), u
2

(t), · · · , u
m

(t))

and d(t) = col(d
1

(t), d
2

(t), · · · , d
r

(t)), we write the above leader-follower diffusively
coupled multi-agent system (7.1), (7.2) and (7.3) into a compact form as follows:

ẋ(t) = �Lx(t) +Mu(t) + Sd(t) (7.4)
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where L is the in-degree Laplacian of the simple directed graph G (see e.g. [56, p.26]),
the matrix M 2 Rn⇥m is defined by

M
ik

=

⇢
1 if i = `

k

0 otherwise
(7.5)

and the matrix S 2 Rn⇥l is defined by

S
il

=

⇢
1 if i = w

l

0 otherwise.
(7.6)

Next we consider another simple directed graph ˜G = (V, ˜E) and define the output
y(t) of the system (7.4) as follows:

y(t) = R>x(t) (7.7)

where R is the incidence matrix of ˜G (see e.g. [56, p.23]). The output variables
(7.7) capture the differences between the state components of certain pairs of agents
determined by the arc set ˜E of ˜G. In particular, an arc from i to j in ˜G corresponds to
the output variable x

i

� x
j

in (7.7).
In this chapter, we study the so-called disturbance decoupling problem for multi-

agent system (7.4) by establishing graph topological conditions. Roughly speaking,
our aim is to investigate the effect of the disturbance signal d on the output y, given
by (7.7). For a formal description of the problem and discussing the proposed results,
we first review the disturbance decoupling problem and its solution for ordinary
linear systems.

7.1.2 Review: disturbance decoupling problem of linear systems

Consider the linear system

ẋ(t) = Ax(t) + Ed(t) (7.8a)

y(t) = Cx(t) (7.8b)

where x 2 Rn is the state, d 2 Rr is the disturbance, y 2 Rq is the output, and all
involved matrices are of appropriate sizes. We denote the state trajectory of the
system (7.8) for the initial state x(0) = x

0

and the disturbance d by xx0,d and the
corresponding output trajectory by yx0,d. We quote the following definition for later
use.

Definition 7.1.1 The linear system (7.8) is said to be disturbance decoupled if yx0,d1
(t) =

yx0,d2
(t) for all x

0

2 Rn, all locally-integrable disturbances d
1

, d
2

, and all t 2 R. Due
to linearity, this is equivalent to the condition y0,d1

(t) = y0,d2
(t) for all locally-

integrable disturbances d
1

, d
2

, and all t 2 R.
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In what follows, we quickly review the geometric approach for DDP. For more
details, we refer to [94] and [102].

Let hA | imEi denote the controllable subspace corresponding to the matrix pair
(A,E), that is hA | imEi = imE+A imE+ · · ·+An�1

imE. As it is well-known, the
subspace hA | imEi is the smallest A-invariant subspace that contains imE. Note
that we call a subspace V ✓ Rn A-invariant if AV ✓ V where A : Rn ! Rn. For
the matrix pair, (A,C), the unobservable subspace is denoted by hkerC | Ai, that is
hkerC | Ai = kerC \ A�1

kerC \ · · · \ A�n+1

kerC. Here, for a given subspace X,
A�1X denotes the subspace {x : Ax 2 X}. It is well-known that the unobservable
subspace hkerC | Ai is the largest A-invariant subspace that is contained in kerC.

Necessary and sufficient conditions for the system (7.8) to be disturbance decou-
pled is well-known and are recapped in the following lemma.

Lemma 7.1.2 The following conditions are equivalent.

1. The system (7.8) is disturbance decoupled.

2. There exists an A-invariant subspace V such that imE ✓ V ✓ kerC.

3. The inclusion imE ✓ hkerC | Ai holds.

4. The inclusion hA | imEi ✓ kerC holds

Note that the equivalence between the first three statements is quite standard and
can be, for instance, found in [94, Ch. 4]. The forth statement immediately follows
from the first two and will be employed in the context of multi-agent systems later.

Now, suppose that the linear system (7.8) is not disturbance decoupled. Then,
one may think of applying control inputs to manipulate the system dynamics such
that the closed loop system will be disturbance decoupled. This is discussed next.

Consider the linear system

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (7.9a)

y(t) = Cx(t) (7.9b)

where u 2 Rm is the input and B 2 Rn⇥m. The disturbance decoupling problem by
state feedback is defined as follows.

Definition 7.1.3 The disturbance decoupling problem by state feedback for the system
(7.9) amounts to finding a state feedback of the form u = Kx such that the resulting
closed loop system

ẋ(t) = (A+BK)x(t) + Ed(t) (7.10a)

y(t) = Cx(t) (7.10b)
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is disturbance decoupled. Moreover, if such a state feedback exists, then we say the
disturbance decoupling problem for system (7.9) is solvable.

Necessary and sufficient conditions for solvability of disturbance decoupling
problem are among the classical results of the geometric approach. In order to state
these classical results, we need to review a few more notions of geometric approach.
We say a subspace V ✓ Rn is controlled invariant for the pair (A,B) if there exists K
such that (A+BK)V ✓ V. Moreover, we have

V is controlled invariant for (A,B) , AV ✓ V+ imB (7.11)

For the pair (A,B), we denote the set of all controlled invariant subspaces which are
contained in kerC by V (A,B,C). Let V⇤

(A,B,C) denote the maximal element of the
set V (A,B,C) with respect to the partial order induced by the subspace inclusion,
that is V ✓ V⇤

(A,B,C) for all V 2 V (A,B,C). The existence and uniqueness of
such an element immediately follow from finite-dimensionality. It is well-known
that V⇤

(A,B,C) 2 V (A,B,C). Now, the following lemma states the necessary and
sufficient condition for the solvability of the disturbance decoupling problem for
system (7.10).

Lemma 7.1.4 Considering the system (7.10), the following statements are equivalent:

1. The disturbance decoupling problem for system (7.10) is solvable.

2. There exists a controlled invariant subspace V for the pair (A,B) such that imE ✓
V ✓ kerC.

3. The inclusion imE ✓ V⇤
(A,B,C) holds.

7.1.3 Disturbance decoupling problem of diffusively coupled multi-
agent system

In this subsection, we formally state the disturbance decoupling problem for multi-
agent systems, which we will study in this chapter. Now, recall the multi-agent
system (7.4) together with the output (7.7). Similar to Subsection 7.1.2, we first
consider the open loop case where no external control input is applied to the agents.
Consequently, we propose the following problem.

Problem 7.1.5 Consider the input/state/output system given by

ẋ(t) = �Lx(t) + Sd(t) (7.12a)

y(t) = R>x(t) (7.12b)
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where the matrices L, S, and R are defined as before. Under what (topological)
conditions the system (7.12) is disturbanced decoupled?

This problem together with the proposed solutions will be discussed in details in
Subsections 7.3.1 and 7.4.1. In case the system (7.12) is not disturbanced decoupled,
similar to the idea in Subsection 7.1.2, we investigate the possibility of rendering
the system disturbance decoupled by choosing some agents as leaders and apply
appropriate inputs to these agents. This leads us to the following problem.

Problem 7.1.6 Consider the input/state/output system given by

ẋ(t) = �Lx(t) +Mu(t) + Sd(t) (7.13a)

y(t) = R>x(t) (7.13b)

where the matrices L,M , S, and R are defined as before. Under what (topological)
conditions the disturbance decoupling problem for system (7.13) is solvable in the
sense of Definition 7.1.3?

The corresponding results and discussions for Problem 7.1.6 are provided in
Subsections 7.3.2 and 7.4.2.

7.2 Graph partitions and almost equitability with res-
pect to a cell

Before discussing solutions for the aforementioned problems, in this section we
review some notions from graph theory, including graph partitions and, in particular,
almost equitable partitions. Moreover, for our purpose, we define an extended
version of almost equitability, and that is almost equitability with respect to a cell.
This notion together with the results established in this section, provides the main
foundation for the subsequent results which will be developed in Section 7.3.

Let G = (V,E) be a simple (unweighted) directed graph where V = {1, 2, . . . , n},
E ✓ V ⇥ V , and (i, i) /2 E. By L(G), we denote the in-degree Laplacian of G (see [56,
p. 26]). We simply use L to denote the Laplacian matrix when the underlying graph
is clear from the context.

We call any subset of V a cell of V . We call a collection of cells, given by ⇢ =

{C
1

, C
2

, . . . , C
k

}, a partial partition of V if C
i

\ C
j

= ? whenever i 6= j. In addition,
we call ⇢ a partition of V if it is a partial partition and [

i

C
i

= V . In some occasions, to
clarify the underlying graph we say ⇢ is a (partial) partition of G = (V,E), or shortly
G, meaning that ⇢ is a (partial) partition of V .
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For a cell C ✓ V , we define the characteristic vector of C as

p
i

(C) =

(
1 if i 2 C

0 otherwise.
(7.14)

For a partial partition ⇢ = {C
1

, C
2

, . . . , C
k

}, we define the characteristic matrix of ⇡ as

P (⇢) =
⇥
p(C

1

) p(C
2

) · · · p(C
k

)

⇤
. (7.15)

Finally, the notion of partial ordering for partitions is defined as follows. We say
that a partition ⇡

1

is finer than another partition ⇡
2

, or alternatively ⇡
2

is coarser than
⇡
1

, if each cell of ⇡
1

is a subset of some cell of ⇡
2

and we write ⇡
1

6 ⇡
2

. Also we
write as ⇡

1

⇥ ⇡
2

meaning that ⇡
1

is not finer than ⇡
2

. It is a direct consequence of the
definition that

⇡
1

6 ⇡
2

() imP (⇡
2

) ✓ imP (⇡
1

). (7.16)

7.2.1 Almost equitable partitions

Here, we adopt the notion of almost equitability (see e.g. [14]) for directed graphs.
For a given cell C ✓ V , we write

N(j, C) = {i 2 C : (i, j) 2 E}.

We call a partition ⇡ = {C
1

, C
2

, . . . , C
k

} an almost equitable partition (AEP) of G if for
each i, j 2 {1, 2, · · · , k} with i 6= j there exists an integer d

ij

such that |N(v, C
j

)| = d
ij

for all v 2 C
i

.

Example 7.2.1 Consider the graph H depicted in Figure 7.1. It is easy to verify that
the partition ⇡ given by

⇡ = {{1, 2}, {7, 8}, {4, 6}, {3}, {5}} (7.17)

is an almost equitable partition of H .

For a given matrix A, we denote its (i, j)th element by A
ij

. Then, associated to an
almost equitable partition ⇡ = {C

1

, C
2

, . . . , C
k

}, we define the matrix L
⇡

as:

(L
⇡

)

ij

=

(
�d

ij

if i 6= j

s
i

otherwise
(7.18)

where s
i

=

P
j 6=i

d
ij

.
For undirected graphs, characterization of almost equitable partitions in terms

of invariant subspaces has been provided in [106]. In particular, it is shown that a
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1
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8
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3

5

Figure 7.1: A simple directed graph H

partition is almost equitable if and only if the image of its characteristic matrix is
L-invariant. This result can be extended to the case of directed graphs as stated in
the following lemma.

Lemma 7.2.2 A partition ⇡ = {C
1

, C
2

, . . . , C
k

} is an AEP of G if and only if imP (⇡) is
L-invariant.

Proof. First, we prove the “only if” part. Assume that ⇡ is an AEP of G, and let L
⇡

be defined as in (7.18). We claim that

LP (⇡) = P (⇡)L
⇡

, (7.19)

and, hence imP (⇡) is L-invariant. First, we show that

(LP (⇡))
rj

= (P (⇡)L
⇡

)

rj

(7.20)

for r = {1, 2, . . . , n}, j = {1, 2, . . . , k}, and r /2 C
j

. Clearly, the left hand side is equal
to �|N(r, C

j

)|. Now, since ⇡ is an AEP, we have �|N(r, C
j

)| = �d
ij

where i is such
that r 2 C

i

. The right hand side of (7.20) is equal to (L
⇡

)

ij

which is again equal to
�d

ij

by definition. Hence, it remains to show that the equality (7.20) also holds for
the remaining n elements indicated by r 2 C

j

. To show this, obviously, it suffices
to prove that the row sums of the matrix LP (⇡) is equal to that of P (⇡)L

⇡

. Let 11
k

denote the vector of ones with the length k. Then by multiplying the left hand side of
(7.19) by 11

k

, we obtain that LP (⇡)11
k

= L11
n

= 0. Similarly, for the right hand side
we have P (⇡)L

⇡

11

k

= 0 as the row sums of L
⇡

is zero. Therefore, (7.19) holds, and
thus imP (⇡) is L-invariant.
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Conversely, assume that imP (⇡) is L-invariant. Then, for each j = 1, 2, . . . , k, we
have

Lp(C
j

) 2 imP (⇡) (7.21)

as p(C
j

) is contained in the image of P (⇡). Observe that the qth element of Lp(C
j

)

is equal to |N(q, C
j

)| for each q /2 C
j

. Hence, based on (7.21), for any q
1

, q
2

2 C
i

, we
have |N(q

1

, C
j

)| = |N(q
2

, C
j

)| for all j 6= i. Consequently, ⇡ is an AEP of G. ⌅

Note that, if ⇡ is an AEP, then based on the proof of Lemma 7.2.2 we have

LP (⇡) = P (⇡)X (7.22)

for X = L
⇡

where L
⇡

is given by (7.18). Moreover, L
⇡

is the unique solution of (7.22)
as P (⇡) has full column rank.

7.2.2 Almost equitability with respect to a cell

Next, we define almost equitability with respect to a given cell as follows. Given a
cell C and a partition ⇡ = {C

1

, C
2

, . . . , C
k

}, we call ⇡ an AEP with respect to C if for
each i, j 2 {1, 2, · · · , k} with i 6= j there exists an integer d

ij

such that |N(v, c
j

)| = d
ij

for all v 2 C
i

\C.
Observe that if ⇡ is an AEP, then the number of neighbors that a vertex in C

i

has in C
j

is independent of the choice of the vertex in C
i

, for all i, j 2 {1, 2, · · · , k}
with i 6= j. The notion of almost equatability with respect to a cell C is obtained by
exempting the nodes in C from satisfying neighborhood constraints of the ordinary
almost equitability. Clearly, ⇡ is an AEP of G if and only if it is an AEP with respect
to the empty cell. Moreover, if ⇡ is an AEP of G, then it is an AEP with respect to any
arbitrary cell of V .

Example 7.2.3 Consider the graph G given by Figure 7.2, and let the partition ⇡ be
given by (7.17). Then it is easy to observe that ⇡ is an almost equitable partition of G
with respect to C = {2}.

Note that if ⇡ is an almost equitable partition with respect to C, then, similar to
ordinary almost equitable partitions, we can define the matrix L

⇡

as in (7.18). In
this case we use the notation LC

⇡

to distinguish with the case of ordinary almost
equitability.

Our aim, here, is to characterize the property of almost equitability with respect to
a cell. To state this characterization, we need some additional notation and auxiliary
results.
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Figure 7.2: A simple directed graph G

For a given matrix M 2 Rm⇥m, let M↵ with ↵ ✓ {1, 2, · · · ,m} denote the subma-
trix of M obtained by collecting the rows of M indexed by ↵. Then, the following
result holds.

Lemma 7.2.4 A partition ⇡ is an AEP with respect to cell C if and only if

L↵

imP (⇡) ✓ imP↵

(⇡) (7.23)

where ↵ = V \C.

Proof. The proof is analogous to that of Lemma 7.2.2 by restricting the rows of L and
P to those which are indexed by ↵. ⌅

Note that, if ⇡ is an AEP with respect to C, we have

L↵P (⇡) = P↵

(⇡)LC

⇡

(7.24)

where ↵ = V \C, and LC

⇡

is given by (7.18) with d
i

s obtained from the definition of
almost equitability with respect to C. Now, we have the following characterization
for almost equitability with respect to a cell.

Theorem 7.2.5 Let C = {`
1

, `
2

, . . . , `
m

} be a cell of V and ⇡ = {C
1

, C
2

, . . . , C
k

} be a
partition of G. Then the following statements are equivalent:

1. The partition ⇡ is an AEP of G with respect to C.
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2. L imP (⇡) ✓ imP (⇡) + imP (⇢) where ⇢ = {{`
1

}, {`
2

}, . . . , {`
m

}}.

3. There exists a simple (unweighted) directed graph H = (V, F ) obtained from G =

(V,E) by adding some non-existing or removing some existing arcs from a vertex in V

to a vertex in C such that ⇡ is an almost equitable partition of H .

Proof.
First we show that the first two statements are equivalent. It is easy to observe

that the second statement is equivalent to:


L
↵̄

L↵

�
imP (⇡) ✓ im


P ↵̄

(⇡)

P↵

(⇡)

�
+ im


I
m

0

�
, (7.25)

where ↵ = V \C and ↵̄ = C. This holds if and only if

L↵

imP (⇡) ✓ imP↵

(⇡)

which is equivalent to almost equitability of ⇡ with respect to C by Lemma 7.2.4.
Now, by assuming that the first two statements hold, we prove the third statement

as follows. Since ⇡ is an AEP with respect to C, the equality (7.24) holds. Let the
matrices X and Y be defined as X = LC

⇡

and Y = L↵̄P (⇡)� P ↵̄

(⇡)LC

⇡

. Then, clearly,
we have 

L↵̄

L↵

�
P (⇡) =


P ↵̄

(⇡)

P↵

(⇡)

�
X +


I
m

0

�
Y.

Now, for each i = {1, 2, · · · ,m}, let r
i

be an integer such that `
i

2 C
ri . Then, it is

easy to observe that the matrix Y is obtained as

Y
ij

= �|N(`
i

, C
j

)|� (LC

⇡

)

rij (7.26)

for each i 2 {1, 2, . . . ,m}, j = {1, 2, . . . , k}, and j 6= r
i

. The remaining m elements of
Y are such that Y 11 = 0. By (7.18), the equality (7.26) can be rewritten as

Y
ij

= �|N(`
i

, C
j

)|+ d
rij (7.27)

where d
rij are obtained from the definition of almost equitability with respect to C.

Now, we construct the graph H = (V, F ) by adding some non-existing arcs
or removing some existing arcs of G as follows. For each i 2 {1, 2, · · · ,m} and
j = {1, 2, · · · , k}, we add a total number of Y

ij

arcs from some available nodes in C
j

to `
i

if Y
ij

> 0. Note that multiple arcs between two vertices is not allowed. This
is always possible since d

rij 6 |C
j

|, and hence Y
ij

6 |C
j

|� |N(`
i

, C
j

)|. Similarly, if
Y
ij

< 0, we remove a total number of |Y
ij

| existing arcs which are from some nodes
in C

j

to `
i

. This is also always implementable, as �Y
ij

6 |N(`, C
j

)|. Denoting the arc
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set obtained in this way by F , it is easy to observe that the partition ⇡ is an AEP of
H = (V, F ) by construction.

It remains to show that the third statement implies either of the other two. Assume
that there exists a simple graph H = (V, F ) obtained from G = (V,E) by adding
some non-existing or removing some existing arcs from some vertices in V to vertices
in C such that ⇡ is an almost equitable partition of H . Let L(H) denote the Laplacian
matrix of H . Then, by Lemma 7.2.2, we have

L(H)P (⇡) = P (⇡)X (7.28)

for some matrix X . Hence, L↵

(H)P (⇡) = P↵

(⇡)X for ↵ = V \C. Now, since the head
of all arcs which are added or removed from G are all in C, we have L↵

(H) = L↵

(G).
Consequently, ⇡ is an AEP of G with respect to C by Lemma 7.2.4. ⌅

Example 7.2.6 As mentioned in Example 7.2.3, the partition ⇡ given by (7.17) is an
almost equitable partition of G with respect to C, where C = {2} and the graph G

is given by Figure 7.2. Moreover, as pointed out in Example 7.2.1, ⇡ is an AEP of
the graph H given by Figure 7.2. Now, observe that graph H is obtained from G

by removing the arc from vertex 8 to 2, and adding an arc from vertex 3 to 2. This
indeed corresponds to the equivalence between the first and the third statement of
Theorem 7.2.5.

7.3 Disturbance decoupling of diffusively coupled multi-
agent systems

In this section, we propose solutions for Problems 7.1.5 and 7.1.6. We assume without
loss of generality that leaders are not affected by the disturbance signals, i.e. V

L

\V
D

=

?. Indeed, it is easy to show that if V
L

\ V
D

is nonempty then one can redefine the
leader set as V 0

L

= V
L

\ (V
L

\ V
D

), and solve the DDP with respect to the leader set
V 0
L

. Recall that V
D

= {w
1

, w
2

, . . . , w
r

}. Now, let the partition ⇡
S

of V be defined as

⇡
S

= {{w
1

}, {w
2

}, . . . , {w
r

}, V \ V
D

}. (7.29)

Obviously, we have
imS ✓ imP (⇡

S

). (7.30)

Moreover, it is easy to observe that there exists a partition of G, say ⇡
R

such that

imP (⇡
R

) = kerR>. (7.31)

Then, the following result holds.
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Lemma 7.3.1 The multi-agent system (7.12) is disturbance decoupled only if ⇡
R

6 ⇡
S

.
Similarly, the disturbance decoupling problem for system (7.13) is solvable only if ⇡

R

6 ⇡
S

holds.

Proof. Suppose that the system (7.12) is disturbanced decoupled, or the DDP for
system (7.13) is solvable. Then by Lemmas 7.1.2 and 7.1.4, it follows that imS ✓
kerR>

= imP (⇡
R

). Hence, by (7.29) and the structure of S in (7.6), we obtain that
⇡
R

6 ⇡
S

. ⌅

Next, we discuss the open loop and the closed loop disturbance decoupling, and
establish sufficient conditions for Problems 7.1.5 and 7.1.6.

7.3.1 Open loop disturbance decoupling

The following theorem gives a sufficient (topological) condition for multi-agent
system (7.12) to be disturbance decoupled.

Theorem 7.3.2 Let ⇡
S

and ⇡
R

be given by (7.29) and (7.31), respectively. Then the multi-
agent system (7.12) is disturbance decoupled if there exists a partition ⇡ such that both of the
following conditions hold:

1. ⇡ is an AEP of G

2. ⇡
R

6 ⇡ 6 ⇡
S

Proof. Suppose that conditions 1 and 2 hold. Then, by Lemma 7.2.2 and (7.16), we
obtain that imP (⇡) is L-invariant and imS ✓ imP (⇡) ✓ kerR>. Hence, it follows
from Lemma 7.1.2 that (7.12) is disturbance decoupled. ⌅

Based on Theorem 7.3.2, the DDP for (7.12) is solvable if there exists an almost
equitable partition which is finer than ⇡

S

and coarser than ⇡
R

. In principle, this
requires searching for all almost equitable partitions of G to find one which satisfy
the partial ordering constraint of Theorem 7.3.2. However, similar to the idea of
largest/smallest invariant subspaces for ordinary linear systems (see Subsection
7.1.2), one may try to find a partition, say ⇡⇤, which is extremal in certain sense. Then,
providing that such a partition exists and can be efficiently computed, disturbance
decoupling of (7.12) can be guaranteed upon a satisfaction of a single and easily
verifiable condition. This will be addressed in details in Subsection 7.4.1.



7.3. Disturbance decoupling of multi-agent systems 131

7.3.2 Closed loop disturbance decoupling

Now suppose that the DDP is not solvable for (7.12). Then, similar to the case of
general linear systems in Subsection 7.1.2, one may try to make the system (7.12)
disturbance decoupled by using a control input. Indeed this brings us to Problem
7.1.6.

Recall the notion of controlled invariant subspaces in Subsection 7.1.2. As we
are dealing with graph topological conditions, we are not interested in all subspaces
but only those which can be written as an image of a partition. As observed in
the previous subsection, almost equitable partitions corresponds to L-invariant
subspaces. Now, the following Lemma establishes the relationship between almost
equitability with respect to a cell and controlled invariance of the pair (L,M).

Lemma 7.3.3 For a given graph G, let V
L

, M , and L be defined as before. Let ⇡ be a partition
of G. Then imP (⇡) is controlled invariant for the pair (L,M) if and only if ⇡ is an almost
equitable partition with respect to V

L

.

Proof. Recall that V
L

= {`
1

, `
2

, . . . , `
m

}. Note that imM = imP (⇢) where

⇢ = {{`
1

}, {`
2

}, . . . , {`
m

}}.

The result now immediately follows by using (7.11) together with Theorem 7.2.5. ⌅

Now we are at the position to apply the results of Section 7.2.2 to disturbance
decoupling problem of multi-agent system (7.13). This is discussed in the following
theorem.

Theorem 7.3.4 Let V
L

, ⇡
R

, and ⇡
S

be defined as before. Then the disturbance decoupling
problem for multi-agent system (7.13) is solvable if there exists a partition ⇡ of G such that
both of the following conditions hold:

1. ⇡ is almost equitable with respect to V
L

2. ⇡
R

6 ⇡ 6 ⇡
S

Proof. Suppose that the conditions 1 and 2 hold. Then, by Lemma 7.3.3, imP (⇡) is
controlled invariant for the pair (L,M). Moreover, we have imP (⇡

S

) ✓ imP (⇡) ✓
imP (⇡

R

). Hence, by (7.30) and (7.31), we obtain that imS ✓ imP (⇡) ✓ kerR>.
Consequently, the DDP for system (7.13) is solvable by Lemma 7.1.4. ⌅

Suppose that the conditions of Theorem 7.3.4 hold, and hence the DDP for system
(7.13) is solvable. This means that there exists a state feedback u(t) = Kx(t) such
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that the resulting closed loop system is disturbance decoupled. To see the structure
of the controller, note that ⇡ is an AEP of G = (V,E) with respect to the leader
set V

L

. Hence, ⇡ is an AEP of H = (V, F ) where H is obtained from G by adding
or removing arcs from vertices in V to vertices in V

L

, as discussed in the proof of
Theorem 7.2.5. These adding and removing of the arcs are indeed associated with the
state feedback controller which makes the system (7.13) disturbance decoupled. In
particular, it is easy to observe that adding an arc from a vertex in V , say i, to a vertex
in V

L

, say `
k

, corresponds to the control signal x
i

(t)� x
`k(t) which is to be applied to

the leader vertex `
k

. Similarly, removing an arc from i to `
k

corresponds to the term
x
`k(t)� x

i

(t) in the control signal. Consequently, the controller can be expressed as

u
k

(t) =
X

(j,`k)2F\E

(x
j

(t)� x
`k(t))�

X

(j,`k)2E\F

(x
j

(t)� x
`k(t)) (7.32)

for each k = {1, 2, . . . ,m}. This shows that, as demanded in the context of distributed
control, the controller only uses the relative information of the states of the agents
to achieve disturbance decoupling for system (7.13). Observe that, by applying the
controller (7.32) to system (7.13), we obtain the following input/state/output system:

ẋ(t) = �L(H)x(t) + Sd(t) (7.33a)

y(t) = R>x(t), (7.33b)

where L(H) denotes the Laplacian matrix of the graph H = (V, F ). The system
(7.33) is indeed disturbance decoupled by Theorem 7.3.2, as ⇡ is an AEP of H and
⇡
R

6 ⇡ 6 ⇡
S

. This is in accordance with the fact that the DDP for system (7.13) is
solvable.

Note that Theorem 7.3.4 provides a sufficient condition in terms of graph topo-
logical conditions for the multi-agent system (7.13) to be disturbance decoupled.
However, in principle, one needs to perform an exhaustive search to find a promising
partition satisfying the required constraints. To avoid this, in Subsection 7.4.2, we
propose an efficient algorithm to verify the conditions provided in Theorem 7.3.4.

Remark 7.3.5 It is worth mentioning that, in general, one should not expect necessary
and sufficient conditions in terms of graph partitions either for the multi-agent system
(7.12) to be disturbance decoupled or for the DDP of (7.13) to be solvable. The reason
is that not all the subspaces can be written in terms of the image of the characteristic
matrix of a partition. In fact, the lack of necessary and sufficient conditions here, are
mainly associated with the gap between the image of the characteristic matrices of
partitions and arbitrary subspaces.
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7.4 Algorithms

7.4.1 An algorithm for open loop disturbance decoupling

Let ⇧ denote the set of all partitions of V . With the partial order “6”, the set ⇧
becomes a complete lattice [11], meaning that every subset of ⇧ has both its greatest
lower bound and least upper bound within ⇧. We use _⇧0 to denote the least upper
bound of a subset ⇧0 2 ⇧. By definition, _⇧0 has the following property:

_⇧0 > ⇡, for all ⇡ 2 ⇧

0 (7.34a)

9⇡̃ 2 ⇧ s.t. ⇡ 6 ⇡̃ for all ⇡ 2 ⇧

0
=) _⇧0 6 ⇡̃. (7.34b)

Let ⇧AEP denote the set of all almost equitable partitions of G. For a given partition
⇡
0

of G, we define
⇧AEP(⇡0

) = {⇡ 2 ⇧AEP : ⇡ 6 ⇡
0

}. (7.35)

Then, the following result holds.

Lemma 7.4.1 Let ⇡
R

and ⇡
S

be given as before. Then the following two statements are
equivalent.

1. There exists a partition ⇡ 2 ⇧AEP such that ⇡
R

6 ⇡ 6 ⇡
S

2. ⇡
R

6 _⇧AEP(⇡S

)

Proof. Suppose that the first statement holds. Then, ⇡ 2 ⇧AEP(⇡S

). Hence, by
definition, ⇡ 6 _⇧AEP(⇡S

) which yields ⇡
R

6 _⇧AEP(⇡S

).
Conversely, suppose that the second statement holds. Then, obviously ⇡

R

6
_⇧AEP(⇡S

) 6 ⇡
S

. Besides, it is shown in [106] that _⇧AEP(⇡0

) 2 ⇧AEP(⇡0

) for any
given partition ⇡

0

. Therefore, _⇧AEP(⇡S

) serves as a partition satisfying the condi-
tions in Statement 1 of the lemma. ⌅

By Lemma 7.4.1 and Theorem 7.3.2, we obtain the following result.

Corollary 7.4.2 The multi-agent system (7.12) is disturbance decoupled if

⇡
R

6 _⇧AEP(⇡S

). (7.36)

As observed, verification of the conditions provided in Theorem 7.3.2 boils down
to the computation of _⇧AEP(⇡S

). An algorithm to compute this bound is provided
in [106]. However, here we use a rather different terminology and techniques which
will be extended in the next subsection to the case of almost equitability with respect
to a cell. First, we define some new notions and notation.
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Let ⇡ = {C
1

, C
2

, . . . , C
k

} be a partition of V . Then we call i a cellmate of j in ⇡, if i
and j belong to the same cell of ⇡. In this case, we say i and j are cellmates in ⇡ and
we write as i

⇡⌘ j. Note that by definition, i is a cellmate of itself.
Next, for a given partition ⇡, we define the notion of a friend as follows. Let

v, w 2 V . Then we say v is a friend of w in ⇡, and we write as v
⇡⇠ w if both of the

following hold:

1. v
⇡⌘ w; in particular let v, w 2 C

j

.

2. |N(v, C
i

)| = |N(w,C
i

)| for each i = 1, 2, . . . , k with i 6= j.

We simply say v is a friend of w whenever the underlying partition is clear from the
context. Obviously, v is a friend of w if and only if w is a friend of v in ⇡. Hence, we
sometimes say v and w are friends in ⇡.

Lemma 7.4.3 Let v, w 2 V and ⇡
0

be a partition of V . Then, the following implication
holds:

v
⇡0⇠ w =) v

⇡⇠ w for all ⇡ > ⇡
0

Proof. Let ⇡ = {C
1

, C
2

, . . . , C
k

} and ⇡ > ⇡
0

. Also let ⇡
0

be written as

⇡
0

= {C1

1

, . . . , Cr1
1

, C1

2

, . . . , Cr2
2

, . . . , C1

k

, . . . , Crk
k

},

where
P

k

i=1

r
i

= |⇡
0

| and [ri
j=1

Cj

i

= C
i

for each i = 1, 2, . . . , k. Now suppose that
v

⇡0⇠ w. Then clearly v and w are cellmates in ⇡
0

, and thus in ⇡ > ⇡
0

. Without loss
of generality assume that v, w 2 C1

1

, and hence v, w 2 C
1

. Since v
⇡0⇠ w, we have

|N(v, Cj

q

)| = |N(w,Cj

q

)| for each q = 2, 3, . . . , k and j = 1, 2, . . . , r
q

. Then, for each q

we have

|N(v, C
q

)| =
rqX

j=1

|N(v, Cj

q

)| =
rqX

j=1

|N(w,Cj

q

)| = |N(w,C
q

)|.

Therefore, v and w are friends in ⇡. ⌅

It is easy to observe that friendship in ⇡ defines an equivalence relation. The
corresponding equivalent classes are given by

[i] = {j 2 V : i
⇡⇠ j} (7.37)

for each i 2 V . Let F(⇡) denote the set of all (friendship) equivalent classes for a
given partition ⇡, that is

F(⇡) = {[i] : i 2 V }. (7.38)

Note that obviously F(⇡) constitutes a partition of V . Then we have the following
Lemma.
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Lemma 7.4.4 Let ⇡
1

and ⇡
2

be two partitions of V . Then, we have:

⇡
1

6 ⇡
2

=) F(⇡
1

) 6 F(⇡
2

).

Proof. Suppose that i and j are cellmates in F(⇡
1

). Hence, i ⇡1⇠ j. Then, by Lemma
7.4.3 we have i

⇡2⇠ j which implies that i and j are cellmates in F(⇡
2

). Therefore, we
conclude that F(⇡

1

) 6 F(⇡
2

). ⌅

Note that clearly F(⇡) 6 ⇡. Moreover, the equality F(⇡) = ⇡ holds whenever ⇡ is
an AEP of V , as stated in the following lemma.

Lemma 7.4.5 Let ⇡ be a partition of V , and F(⇡) be given by (7.38). Then we have F(⇡) = ⇡

if and only if ⇡ is an almost equitable partition of V .

Proof. Suppose that ⇡ = {C
1

, C
2

, . . . , C
k

} is an AEP of V . Let r
i

be an integer such
that i 2 C

ri for each i 2 V . Then, by definition of almost equitability and (7.37), it is
easy to observe that [i] = C

ri for each i 2 V . Hence, we have F(⇡) = ⇡. The “only if”
part is also straightforward from the definition of almost equitability and the notion
of a friend. ⌅

Observe that, based on Lemma 7.4.5, an almost equitable partition can be char-
acterized as a partition in which cellmates vertices are friends. This will be used
to develop a simple algorithm to compute _⇧AEP(⇡0

). We first prove the following
crucial result.

Lemma 7.4.6 Let ⇡
0

be a partition of V . Then _⇧AEP(⇡0

) = _⇧AEP(F(⇡0

)).

Proof. Clearly F(⇡
0

) 6 ⇡
0

, and we have ⇧AEP(F(⇡0

)) ✓ ⇧AEP(⇡0

). Hence, we obtain
that

_⇧AEP(F(⇡0

)) 6 _⇧AEP(⇡0

). (7.39)

Now, let ⇡ 2 ⇧AEP(⇡0

). Then ⇡ is an AEP of V and ⇡ 6 ⇡
0

. So, by Lemma
7.4.4 we obtain that F(⇡) 6 F(⇡

0

). This is simplified to ⇡ 6 F(⇡
0

) by Lemma 7.4.6.
Therefore, ⇡ 2 ⇧AEP(F(⇡0

)). Hence, by definition, ⇡ 6 _⇧AEP(F(⇡0

)). As this holds
for any ⇡ 2 ⇧AEP(⇡0

), the partition _⇧AEP(F(⇡0

)) serves as an upper bound for the
set ⇧AEP(⇡0

). Consequently, by (7.34b), we obtain that

_⇧AEP(⇡0

) 6 _⇧AEP(F(⇡0

)).

This together with (7.39) completes the proof. ⌅
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Roughly speaking, Lemma 7.4.6 implies that _⇧AEP(⇡0

) is invariant under the act
of F. Thanks to this result, ⇧AEP(⇡0

) can be computed as follows. Given an initial
partition ⇡

0

, construct a sequence of partitions as:

⇡
i+1

= F(⇡
i

) (7.40)

where i takes its value from the set {0, 1, 2, . . .}. This sequence converges to _⇧AEP(⇡0

)

as stated in the following theorem.

Theorem 7.4.7 Let ⇡
0

be a partition of V , and n = |V |. Consider the sequence given by
(7.40). Then there exits j 2 {0, 1, . . . , n� 1} such that

⇡
i

= _⇧AEP(⇡0

)

for all i > j.

Proof. By definition, we have F(⇡) 6 ⇡ for any given partition ⇡ of V . Clearly, if
F(⇡) 6 ⇡ but F(⇡) 6= ⇡, then |F(⇡)| > |⇡|. Besides, we know that |F(⇡)| 6 |V | = n.
Therefore, there exists j 2 {0, 1, . . . , n�1} such that F(⇡

j

) = ⇡
j

. Then, clearly, ⇡
i

= ⇡
j

for all i > j. Hence, it remains to show that ⇡
j

= _⇧AEP(⇡0

).
Since ⇡

j

= F(⇡
j

), the partition ⇡
j

is an AEP of V by Lemma 7.4.5. Thus, clearly
⇡
j

= _⇧AEP(⇡j

). Then, by (7.40) and a repetitive use of Lemma 7.4.6, we obtain that
_⇧AEP(⇡j

) = _⇧AEP(⇡0

). This completes the proof. ⌅

7.4.2 An algorithm for closed loop disturbance decoupling

In this subsection, we aim to extend the ideas provided in the previous subsection to
almost equitability with respect to a cell. Our ultimate goal is to propose an efficient
algorithm to verify the conditions provided in Theorem 7.3.4. Again an idea here
would be to try to compute an extremal partition, and derive a similar result to that of
Corollary 7.4.2. However, unfortunately, one can show that the semi-lattice structure
of (7.35) is lost when ordinary almost equitability is replaced by almost equitability
with respect to a cell. Therefore, additional treatments are needed for extending the
result of the previous subsection to the case of almost equitability with respect to a
cell.

We make one additional assumption here on the structure of ⇡
R

. In particular,
we assume that each cell of ⇡

R

contains at least one follower, i.e. one vertex in V
F

.
Before proceeding any further, some new notions need to be defined.

We first extend the notion of partial ordering to partial partitions. Let ⇡
1

=

{C
1

, C
2

, . . . , C
r

} and ⇡
2

= {C 0
1

, C 0
2

, . . . , C 0
r

0} be partial partitions of V . Then we say
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⇡
1

is finer than ⇡
2

, or equivalently ⇡
2

is coarser than ⇡
1

, if each cell of ⇡
1

is a subset
of a cell of ⇡

2

, and [
i

C
i

= [
i

C 0
i

. In this case, we write as ⇡
1

6 ⇡
2

.
Let ⇡ = {C

1

, C
2

, . . . , C
k

} be a partition of V , and V
1

✓ V . By ⇡|
V1 , we denote the

restriction of ⇡ to V
1

which is defined as

⇡|
V1 = {C

1

\ V
1

, C
2

\ V
1

, . . . , C
k

\ V
1

}.

Note that ⇡|
V1 is a partial partition of V .

Now, let ⇡0
= {C

1

, C
2

, . . . , C
r

} with [
i

C
i

= V 0 ✓ V be a partial partition of V .
Also let ⇡ be a partition of V . Then we call ⇡ an extension of ⇡0 to V if ⇡|

V

0
= ⇡0. For a

given partial partition ⇡0 of V , we define the set ⌦ as

⌦(⇡0
) = {⇡ 2 ⇧ : ⇡|

V

0
= ⇡0}. (7.41)

In fact, ⌦ collects all extensions of ⇡0 to V .
Recall the notion of a friend discussed in Subsection 7.4.1. It is easy to see that the

result of Lemma 7.4.4 is extended as follows.

Lemma 7.4.8 Let ⇡
1

and ⇡
2

be two partitions of V . Also let V 0 ✓ V . Then, we have:

⇡
1

|
V

0 6 ⇡
2

|
V

0
=) F(⇡

1

)|
V

0 6 F(⇡
2

)|
V

0 .

Proof. The proof is analogous to that of Lemma 7.4.4. ⌅

We observed in the previous subsection that an AEP, say ⇡, is a partition where
vertices that are cellmates in ⇡ are also friends in ⇡. By definition, it is easy to observe
that an almost equitable partition with respect to a cell C can be characterized in a
similar way by restricting this friendship requirement to the vertices that are cellmates
in ⇡|

(V \C)

. This brings us to the following lemma, which we state without a proof.

Lemma 7.4.9 Let ⇡ be a partition of V and C be a cell of V . Then ⇡ is an AEP with respect
to C if and only if F(⇡)|

V

0
= ⇡|

V

0 where V 0
= V \ C.

Recall that V
L

= {`
1

, `
2

, . . . , `
m

}. For each j = {1, 2, . . . ,m}, let r
j

be an integer
such that `

j

2 C
rj . In addition, assume that each cell of ⇡

R

= {C
1

, C
2

, . . . , C
k

}
contains at least one follower, i.e. C

i

\ V
F

6= ? for each i = {1, 2, . . . , k}. Now, for
each i, choose q

i

2 C
i

\ V
F

. Then, we construct a sequence of partitions as stated in
Algorithm 1.
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Algorithm 1
1: Set ⇡

0

= ⇡
S

and i = 0.
2: Compute F(⇡

i

)

3: Compute ⇡0
= F(⇡

i

)|
VF

4: Choose ⇡
i+1

2 ⌦(⇡0
) such that `

j

⇡i+1⌘ q
(rj)

for each j = {1, 2, . . . ,m}
5: Set i = i+ 1, and return to Step 2

Some illustrations and clarifications are needed here. First note that, after choos-
ing q

i

s, the partition ⇡
i+1

in Step 4 of the algorithm is obtained in a unique way.
Moreover, the proposed sequence converges to a partition, say ⇡⇤, after a finite
number of steps. Besides, ⇡⇤ is almost equitable with respect to V

L

, as stated in the
following lemma.

Lemma 7.4.10 Consider the sequence given by algorithm (1). Then, there exists an integer
t < n = |V | such that ⇡

i

= ⇡
t

for all i > t. Moreover, ⇡
t

is an almost equitable partition
with respect to V

L

.

Proof. First, observe that

⇡
i+1

|
VF = F(⇡

i

)|
VF 6 ⇡

i

|
VF (7.42)

for each i in Algorithm 1. Now, as cardinality of ⇡
i

|
VF is no more than that of V ,

there exists a positive integer t < n such that ⇡
t+1

|
VF = F(⇡

t

)|
VF = ⇡

t

|
VF . Then,

since `
j

⇡i+1⌘ q
(rj)

, for each i and j, we conclude that ⇡
t+1

= ⇡
t

, and consequently
the proposed sequence converges to ⇡

t

. Moreover, by Lemma 7.4.9, F(⇡
t

)|
VF = ⇡

t

|
VF

implies that ⇡
t

is almost equitable with respect to V
L

. ⌅

Now, the following theorem states the main result of this subsection.

Theorem 7.4.11 Let ⇡
R

= {C
1

, C
2

, . . . , C
k

}. Assume that C
i

\ V
F

6= ?, for each i 2
{1, 2, . . . , k}. Let ⇡⇤ denote the partition to which the sequence in Algorithm 1 converges.
Then the following two statements are equivalent.

1. There exists a partition ⇡ of V such that ⇡ is almost equitable with respect to V
L

and
⇡
R

6 ⇡ 6 ⇡
S

.

2. ⇡
R

6 ⇡⇤ 6 ⇡
S

.

Proof. Suppose that the first statement holds. By (7.42), we obtain that F(⇡⇤
)|
VF 6

⇡
S

|
VF . Now, let V

D

= {w
1

, w
2

, . . . , w
r

} and ⇡
S

be given by (7.29), as before. Recall
that V

D

\ V
L

= ?. Since ⇡
R

6 ⇡
S

, we have {w
j

} 2 ⇡
R

for each j = {1, 2, . . . , r}.
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Then, based on Algorithm 1, it is easy to observe that {w
j

} 2 ⇡
i

for each i and j.
Therefore, by the structure of ⇡

S

, it follows that ⇡⇤ 6 ⇡
S

. Besides, ⇡⇤ is an AEP of G
with respect to V

L

by Lemma 7.4.10. Hence, it remains to show that ⇡
R

6 ⇡⇤.
Clearly, as ⇡

R

6 ⇡, it suffices to show that ⇡ 6 ⇡⇤. Since ⇡ 6 ⇡
0

= ⇡
S

, we have
⇡|

VF 6 ⇡
0

|
VF . As ⇡ is almost equitable with respect to V

L

, by Lemma 7.4.9 and
Lemma (7.4.6), it follows that ⇡|

VF 6 F(⇡
0

)|
VF . This yields ⇡|

VF 6 ⇡
1

|
VF by (7.42).

By repeating this argument, we obtain that

⇡|
VF 6 ⇡⇤|

VF . (7.43)

Now, suppose that v, w 2 V are cellmates in ⇡. To prove ⇡ 6 ⇡⇤, we need to show
that v and w are also cellmates in ⇡⇤. For that, we distinguish three cases. First,
suppose that v, w 2 V

F

. Then, by (7.43) it follows that v and w are also cellmates in
⇡⇤. Next, suppose that v 2 V

F

and w = `
j

2 V
L

. By Algorithm 1, `
j

and q
(rj)

are
cellmates in ⇡

i

for each i, where q
(rj)

is defined as before. Thus,

`
j

⇡

⇤

⌘ q
(rj)

. (7.44)

By definition `
j

⇡R⌘ q
(rj)

, and hence `
j

⇡⌘ q
(rj)

as ⇡
R

6 ⇡. Then, since v and `
j

are
cellmates in ⇡, we obtain that v

⇡⌘ q
(rj)

. Therefore, as v, q
(rj)

2 V
F

, by (7.43) it follows

that v
⇡

⇤

⌘ q
(rj)

. Hence, by (7.44) we have v
⇡

⇤

⌘ `
j

. For the third case, suppose that
i, j 2 V

L

. Since C
i

\ V
F

6= ? and ⇡
R

6 ⇡, there exists q 2 V
F

such that v
⇡⌘ q

⇡⌘ w.
Then, by the result of the previous case it follows that v

⇡

⇤

⌘ q
⇡

⇤

⌘ w. Therefore,
summarizing the results of the aforementioned three cases, we conclude that ⇡ 6 ⇡⇤.

Conversely, suppose that the second statement holds. Then, by Lemma 7.4.10, ⇡⇤

is almost equitable with respect to V
L

, and thus the first statement holds true. ⌅

Note that Theorem 7.4.11 obviates the need to search for a partition satisfying the
conditions of Theorem 7.3.4. Indeed, by using the same notations and assumptions
as in Theorem 7.4.11, we have the following corollary.

Corollary 7.4.12 The disturbance decoupling problem for system (7.13) is solvable if ⇡
R

6
⇡⇤ 6 ⇡

S

.

7.5 Numerical example

To illustrate the proposed results, consider the multi-agent system (7.4) with the
communication graph G as shown in Figure 7.3 (left). For this system, let black
vertices denote the leaders, i.e. VL = {2}. Also let the square vertices correspond
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to the agents affected by disturbance signals, i.e. V
D

= {3, 5}. We are interested in
decoupling the outputs x

1

(t)� x
2

(t) and x
4

(t)� x
6

(t) from the disturbance. Hence,
the output variables in this case is given by y = R>x where

R>
=


1 �1 0 0 0 0 0 0

0 0 0 1 0 �1 0 0

�

and x 2 R8. Then ⇡
R

and ⇡
S

are given by:

1

4

6

7

8

1

4

6

7

8

2

2

3 3

5 5

Figure 7.3: The simple directed graph G (left) and H (right) of a diffusively coupled multi-

agent system

⇡
R

= {{1, 2}, {3}, {4, 6}, {5}, {7}, {8}}
⇡
S

= {{1, 2, 4, 6, 7, 8}, {3}, {5}}

Next, we compute _⇧AEP(⇡S

) by Theorem 7.4.7. The sequence (7.40) is obtained as:

⇡
0

= ⇡
S

⇡
1

= {{1, 7, 8}, {4, 6}, {2}, {3}, {5}}
⇡
2

= {{1}, {7, 8}, {4, 6}, {2}, {3}, {5}}

and ⇡
i

= ⇡
2

for all i > 2. Hence, by Theorem 7.4.7 we obtain that _⇧AEP(⇡S

) = ⇡
2

.
Now since ⇡

R

⇥ ⇡
2

, the disturbance decoupling of the open loop system (7.12)
is not guaranteed by Corollary 7.4.2. Next, we consider solvability of the distur-
bance decoupling problem for this system by verifying the proposed (topological)
conditions.

We construct a sequence by following the steps of Algorithm 1. Let ⇡
0

= ⇡
S

.
Then, F(⇡

0

) is computed as F(⇡
0

) = {{1, 7, 8}, {4, 6}, {2}, {3}, {5}}, and hence

F(⇡
0

)|
VF = {{1, 7, 8}, {4, 6}, {3}, {5}}.
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Therefore, ⇡
1

is obtained as

⇡
1

= {{1, 2, 7, 8}, {4, 6}, {3}, {5}}.

Similarly, ⇡
2

is computed as

⇡
2

= {{1, 2}, {7, 8}, {4, 6}, {3}, {5}}, (7.45)

and it can be verified that ⇡
i

= ⇡
2

for i > 2. Now, since ⇡
R

6 ⇡
2

6 ⇡
S

, the disturbance
decoupling problem in this case is solvable by Corollary 7.4.12.

Note that indeed ⇡
2

given by (7.45) is an almost equitable partition of G with
respect to V

L

. In addition, based on Theorem 7.2.5, and as observed in Example
(7.2.6), the partition ⇡

2

becomes almost equitable in a graph H by removing the arc
from vertex 8 to 2, and adding an arc from 3 to 2. The graph H is depicted in Figure
7.3 (right). Note that, except from the different symbols/coloring of the vertices, the
graphs G and H in Figure 7.3 are the same as those depicted in Figures 7.2 and 7.1,
respectively. Consequently, by (7.32), the state feedback which renders the system
disturbance decoupled is given by

u(t) = (x
3

(t)� x
2

(t))� (x
8

(t)� x
2

(t)) = x
3

(t)� x
8

(t).

7.6 Conclusions

We have studied the disturbance decoupling problem for multi-agent systems. By
extending the notion of almost equitability to almost equitability with respect to a cell,
an appropriate topological translation for controlled invariant subspaces is provided.
We have considered disturbance decoupling of both the open loop and the closed loop
system. In the open loop case, we have established sufficient conditions ensuring the
system is disturbance decoupled with no input applied to the leaders. In the case of
closed loop, we have derived sufficient conditions guaranteeing the solvability of the
disturbance decoupling problem. In case the DDP is solvable, an admissible controller
rendering the system disturbance decoupled has been provided. As desired, this
controller uses the relative information of the states of the agents. The proposed
sufficient conditions are in terms of existence of certain almost equitable partitions
with respect to a cell containing leaders. Algorithm verifying these conditions have
been developed in this chapter. It is worth mentioning that the lack of necessary
and sufficient conditions here is associated with the gap between the image of
characteristic matrices of partitions and arbitrary subspaces.





Chapter 8

Conclusions

8.1 Contributions

The main contributions of this thesis can be summarized as follows:

• Necessary and sufficient conditions have been derived for simultaneous bal-
ancing of the subsystems of a switched linear system. Consequently, a model
reduction technique based on simultaneous balancing has been established.
Sufficient conditions have been proposed under which global uniform exponen-
tial stability, passivity, or contractivity of the SLS is preserved in the reduced
order models. In case simultaneous balancing is not possible, an extended
balanced truncation scheme has been established that is based on balancing the
average gramians of the system.

• A model reduction method has been established for networks of dynamical
agents that aims at reducing the dynamic order of the agents. Preservation of
stability as well as preservation of synchronization in the reduced order models
has been addressed in the proposed method. The behaviors of the original and
the reduced order network have been compared by establishing a priori model
reduction error bounds.

• By means of suitable graph partitions, we have established a projection based
model reduction method for multi-agent systems defined on a graph. The spa-
tial structure of the network is preserved in the proposed reduction technique,
and reduced order models are realized as multi-agent systems defined on a new
graph of smaller size. For almost equitable partitions, an explicit formula for
the H

2

-norm of the error system has been obtained. We have also shown that
the error obtained by taking an arbitrary partition of the graph is bounded from
below by the one obtained by using the maximal almost equitable partition
finer than the given partition.

• Stability and synchronization of networks with general linear dynamics and
arbitrary switching topologies have been studied. A small gain condition has
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been derived under which the stability of the overall network is guaranteed.
By using an appropriate decomposition of the overall network dynamics, suf-
ficient conditions guaranteeing synchronization of networks under arbitrary
switching topologies have been established. The proposed conditions solely
depend on the agents dynamics and the (nontrivial) extremal eigenvalues of
the Laplacian matrices. The results established have also been extended to the
case of observer-based protocols.

• We have considered the problem of controllability of the network for a family of
matrices carrying the structure of an underlying directed graph. A one-to-one
correspondence between the set of leaders rendering the network (structurally)
controllable and zero forcing sets has been established. We have shown how
our proposed results together with the existing results on zero forcing sets lead
to a minimal leader selection scheme in particular cases.

• The disturbance decoupling problem for networks of dynamical agents has
been studied from a topological perspective. A class of graph partitions, namely
almost equitable partitions with respect to a cell, has been developed that
provide a topological characterization for controlled invariant subspaces. We
have established sufficient (topological) conditions under which the network is
disturbance decoupled, as well as conditions guaranteeing the solvability of
the disturbance decoupling problem for the network.

8.2 Further research topics

The following points can be considered for carrying forward the work of this thesis.

• It is of interest to establish a priori model reduction error bound to compare
the input-output behavior of the original switched linear system to that of the
reduced order models.

• For networks of dynamical agents, a relevant issue is to extend the proposed
model reduction techniques to the case of directed graphs.

• We have proposed a model reduction technique based on clustering the agents
by means of appropriate graph partitions. In view of the derived formula for
the H

2

-norm of the error system, it is of interest to characterize an optimal
partition, i.e. a partition leading to the least model reduction error compared to
all partitions with the same number of cells.
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• By exploiting the notion of zero forcing sets and the results established in
this thesis, an open problem is to obtain a leader selection scheme with a
minimum number of leaders to achieve (structural) controllability for more
general subclasses of graphs than those already investigated in this thesis (path,
cycle, complete, (di)trees).

• As we have dealt with structural controllability and disturbance decoupling of
networks, we believe that it is an interesting line of research to study certain
properties of networks from a topological prospective. This will lead to nu-
merically stable methods, will provide a better understanding of the network
behavior, and will facilitates the design.
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Summary

This thesis addresses several problems related to model reduction and control of
complex systems. Two classes of complex systems considered in this thesis are
switched systems and networks of dynamical agents. The problems studied in this
thesis can be summarized as follows.

First, an extended balanced truncation method is established for model reduction
of switched linear systems (SLS). The idea is to seek for conditions under which there
exists a single state space transformation that brings all subsystems (modes) of a
given SLS in balanced coordinates. Moreover, we derive sufficient conditions under
which global uniform exponential stability of the SLS is preserved in the reduced
order model. Similarly, we propose conditions for preservation of positive realness
or bounded realness of the SLS.

Second, we propose a method to reduce the dynamic order of agents in a network,
while stability or synchronization is preserved in the reduced order model. In
this model reduction process, the interconnection structure of the network remains
unchanged whereas the dynamic order of the agents is reduced. In addition, we
establish a priori model reduction error bounds to compare the behavior of the
original network to that of the reduced order model.

Third, in contrast to the previous model order reduction method, we aim at
reducing the size of the underlying communication graph of the network. For this
purpose, vertices (agents) of the network communication are clustered by means of
suitable graph partitions. We also provide an explicit formula for the H

2

-norm of
the error system obtained by comparing the input-output behaviors of the original
model and the reduced order model for the case that the clusters are chosen using
the so-called almost equitable partitions of the graph.

As a forth problem, we carry out stability and synchronization analysis for net-
works where agents have general, yet identical, linear dynamics and the underlying
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communication topology may switch arbitrarily within a finite set of admissible
topologies. The primary conditions established are in terms of a pair of Lyapunov
strict inequalities. Following these conditions, small gain and passivity types of
conditions are proposed under which synchronization is guaranteed.

Fifth, we investigate the property of strong structural controllability for systems
defined on a graph. In particular, it is shown that there is a one-to-one correspondence
between the set of leaders rendering the network controllable and the so-called zero
forcing sets. Special subclasses of graphs including path, cycle, and complete graphs
are exploited to illustrate the proposed results.

Finally, the disturbance decoupling problem for networks of dynamical agents is
studied from a graph topological perspective. A class of graph partitions is devel-
oped in this thesis that can be described as a “topological translation” of controlled
invariant subspaces in the context of dynamical networks. Then, sufficient conditions
are derived in terms of this class of partitions such that the network is disturbance de-
coupled. Likewise, topological conditions guaranteeing solvability of the disturbance
decoupling problem are established.



Samenvatting

Dit proefschrift behandelt een aantal vraagstukken gerelateerd aan modelreduc-
tie en regeling van twee soorten complexe systemen: ‘switched linear systems’ en
netwerken van dynamische agenten. De volgende problemen worden in dit proef-
schrift bestudeerd.

Eerst geven we een uitgebreide, gebalanceerde afkappingsmethode voor modelre-
ductie van ‘switched linear systems’ (SLS). Hiervoor zoeken we naar voorwaarden
waaronder er n transformatie van de toestandsruimte bestaat die alle subsystemen
(modi) van een gegeven SLS in gebalanceerde coördinaten brengt. Verder leiden we
voldoende voorwaarden af waaronder globale uniforme exponentile stabiliteit van
een SLS behouden blijft in het gereduceerde orde model. Eveneens geven we voor-
waarden voor het behoud van de eigenschappen van het positief reëel of begrensd
reëel zijn van een SLS.

Vervolgens introduceren we een methode om de dynamische orde van agenten
in een netwerk te reduceren, waarbij stabiliteit of synchronisatie behouden blijft in
het gereduceerde orde model. In dit proces van modelreductie blijven de onder-
linge verbindingen in het netwerk onveranderd, terwijl de dynamische orde van
de agenten wordt gereduceerd. Tevens vinden we ‘a priori’ foutgrenzen voor de
modelreductie, zodat we het gedrag van het originele netwerk kunnen vergelijken
met dat van het gereduceerde model.

Het derde probleem richt zich, in tegenstelling tot de vorige modelreductiemeth-
ode, op het reduceren van de omvang van de onderliggende communicatiegraaf van
het netwerk. Hiervoor worden de knopen van de communicatiegraaf, de agenten,
geclusterd door middel van een geschikte graafpartitie. In het geval dat de clusters
zijn gekozen met behulp van de zogenaamde bijna billijke partities van de graaf,
geven we een expliciete formule voor de H

2

-norm van het afwijkingssysteem, welke
het ingang-uitgangsgedrag van het originele systeem vergelijkt met dat van het
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gereduceerde model.
Als vierde probleem analyseren we de stabiliteit en synchronisatie van netwerken

waarbij de agenten een algemene, maar identieke, lineaire dynamica hebben en
de onderliggende communicatietopologie willekeurig mag schakelen tussen een
eindig aantal toegestane topologieën. Eerst vinden we voldoende voorwaarden in
termen van een tweetal strikte Lyapunov ongelijkheden. Daarna leiden we hieruit
voldoende voorwaarden voor synchronisatie af in termen van passiviteit en kleine
versterkingsfactor.

De sterk structurele regelbaarheid van systemen die op een graaf gedefinieerd
zijn, is het vijfde onderwerp van dit proefschrift. In het bijzonder tonen we aan dat
er een een-op-eenrelatie is tussen de verzameling van leiders die ervoor zorgen dat
het netwerk regelbaar is en de zogenaamde ‘zero-forcing’ verzamelingen. Enkele
speciale deelverzamelingen van grafen, waaronder paden, cykels en de volledige
graaf, worden gebruikt om de resultaten te illustreren.

Tenslotte bestuderen we het probleem van storingsontkoppeling voor netwerken
van dynamische agenten vanuit een graaftopologisch perspectief. In dit proefschrift
ontwikkelen we een klasse van graafpartities die gezien kan worden als een topolo-
gische vertaling van regelbare, invariante deelruimten in het kader van dynamische
netwerken. Vervolgens vinden we voldoende voorwaarden, in termen van deze
klasse van partities, waaronder het netwerk storingsontkoppeld is. Eveneens geven
we topologische voorwaarden voor de oplosbaarheid van het storingsontkoppel-
ingsprobleem.


