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Abstract. In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber
evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-
boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are
bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each state
there are two transitions. For the intermediate state there is a transition from a Gibbsian regime to a non-Gibbsian regime where
some, but not all configurations are bad, and a second one to a regime where all configurations are bad.

For the plus and minus state, the two transitions are from a Gibbsian regime to a non-Gibbsian one and then back to a Gibbsian
regime again.

Résumé. Dans cet article, nous étudions les mesures homogènes de Gibbs sur un arbre de Cayley soumises à une évolution de
Glauber à une température infinie, et nous considérons leurs propriétés dites « non Gibbsiennes ». Nous montrons que l’ état
de Gibbs intermédiaire (c’est à dire pour un champ magnétique nul l’état de Gibbs correspondant à la condition au bord libre)
se comporte différemment des états de Gibbs « plus » et « moins ». Par exemple, lorsque le temps est assez grand, toutes les
configurations sont mauvaises pour l’état intermédiaire, tandis que la configuration « plus » n’est jamais mauvaise pour l’état
« plus ». De plus nous montrons que, pour chaque état, il y a deux transitions. Pour l’état intermédiaire il y a une première
transition d’un régime Gibbsien à un régime non-Gibbsien, où certaines configurations mais pas toutes sont mauvaises. Après cette
première transition, il y en a une seconde dans laquelle l’état intermédiaire passe à un régime où toutes les configurations sont
mauvaises.

Pour les états « plus » et « moins », il y a également deux transitions : une première d’un régime Gibbsien à un régime
non-Gibbsien, et une deuxième d’un régime non-Gibbsien à un régime Gibbsien.

MSC: 82C20; 82B20; 60K35

Keywords: Non-Gibbsianness; Ising models; Tree graphs; Cayley tree; Glauber dynamics

1. Introduction

In this paper we consider the Gibbsian properties of homogeneous low-temperature Ising Gibbs measures on trees,
subjected to an infinite-temperature Glauber evolution. This problem has been considered before on regular lattices
see e.g. [2,9,10,12,13,15–19,21], for Ising spins, n-vector and unbounded spins, and for various finite- or infinite-
temperature dynamics, of Glauber, Kawasaki, or diffusion type, and even for non-Markovian evolutions.

At high initial temperatures, or for sufficiently short times, standard methods can be used to prove Gibbsianness,
also in our situation. Thus the interesting case is to find out what happens for low initial temperatures. As usual (but
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see the mean-field analysis of [3]) low-temperature dynamics are beyond reach so far. For simplicity we will consider
infinite-temperature dynamics, but high-temperature evolutions are expected to behave qualitatively similarly.

In contrast to what happens on regular lattices such as Z
d , the Gibbsian properties of evolved Gibbs measures for

models on trees turn out to depend on which of the different Gibbs measures (plus or minus, versus intermediate)
one considers. In all cases there are two transition times: for the intermediate measure after the first transition time it
becomes non-Gibbsian in the familiar sense that some, but not all, configurations are “bad” (that is, they are points
of discontinuity), while it turns out that after a certain later time the evolved intermediate Gibbs measure becomes
“totally bad”; thereafter it has the surprising property that all spin configurations are discontinuity points.

This last property is something which will not happen for the other two extremal invariant Gibbs measures. For
those measures, although after a first transition time they also become non-Gibbsian, after the second transition time
they become Gibbsian again.

We will provide proofs for these results on the Cayley tree, and don’t aim for the greatest generality here, but we
will indicate why these results should be expected to hold more generally. We present our results both in zero and
non-zero external fields.

Our analysis illustrates (again) how different models on trees are as compared to models on regular (amenable)
lattices.

Non-Gibbsian properties of some other measures of statistical mechanical origin on trees have been considered
before [6,7,11]. For FK measures as well as fuzzy Potts models on trees, the possibility of having a positive-measure
set of “bad” discontinuity points was found, and for a particular renormalised Ising measure the set of bad points was
shown to have measure zero, while having a fractal dimension.

2. Background facts and notation

2.1. The Ising model on a Cayley tree

Let CT(d) be a Cayley tree for some d ≥ 1, that is the unique connected tree with |∂i| = d + 1 for all i ∈ CT(d). Let
Ω = {−1,+1}CT(d), endowed with the product topology. Elements in Ω are denoted by σ . A configuration σ assigns
to each vertex x ∈ CT(d) a spin value σ(x) = ±1. Denote by S the set of all finite subtrees of CT(d). For Λ ∈ S and
σ ∈ Ω we denote by σΛ the restriction of σ to Λ, while ΩΛ denotes the set of all such restrictions. Let Λ ∈ CT(d) be
any set, finite or infinite. We denote by EΛ its set of edges and by VΛ its set of vertices.

Let now Λ ∈ S, hence finite. We will consider the nearest-neighbour Ising model on the tree. The finite-volume
Gibbs measure on any finite subtree Λ for an Ising model in an inhomogeneous external field, given by fields hi at
sites i, boundary condition ω, at inverse temperature β , is defined by the following Boltzmann–Gibbs distribution:

μω
Λ(σΛ) = 1

Zω
Λ(β, {hi}i∈VΛ)

exp

{
β

∑
{i,j}∈EΛ

σiσj +
∑
i∈VΛ

hiσi +
∑
{i,j}

i∈VΛ,j∈VΛc

σiωi

}
. (1)

Infinite-volume Gibbs measures are defined by having their conditional probabilities of finite-volume configurations,
conditioned on the configurations outside the volume, of this Gibbsian form, see e.g. [5] and [20]. In equation form
we require that for all volumes Λ and configurations σΛ μ satisfies

μ(σΛ) =
∫

μω
Λ(σΛ)μ(dω). (2)

The infinite-volume Gibbs measures are parametrized by the external magnetic fields (in most of what follows we will
consider a homogeneous field h0), and by the inverse temperature β ≥ 0. This will lead us to consider finite-volume
Gibbs measures with this same homogeneous field plus a possibly different boundary field. We put β(1) = ∞ and, for
d > 1,

β(d) = arccothd = 1

2
ln

d + 1

d − 1
,

(3)

h(β,d) =
[
d arctanh

(
dw − 1

dw̄ − 1

)1/2

− arctanh

(
d − w̄

d − w

)1/2]
Iβ>β(d),
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where w = tanhβ = w̄−1.
It is known (see [5]), that if β > β(d) and |h0| ≤ h(β,d), then the system exibits a phase transition. Throughout

the paper we will assume |h0| < h(β,d), β > β(d), and d > 1, whenever the opposite is not indicated. This condition
ensures the existence of three homogeneous phases which, in accordance with Georgii, we denote μ−, μ�, μ+. The
plus and minus measures μ− and μ+ are obtainable via the standard procedure of taking plus and minus boundary
conditions and then taking the thermodynamic limit, but there exists also an intermediate measure μ� (which in the
case of zero external field can be obtained by imposing free boundary conditions). These phases are extremal in the
set of invariant infinite-volume Gibbs measures; μ+ and μ− are also extremal in the set of all infinite-volume Gibbs
measures, whereas μ� becomes non-extremal in this set below a certain temperature strictly smaller than the phase
transition temperature [1,8]; however, this second transition will not concern us here.

Let Γn be the Cayley tree with n generations and Γn−1 = Γn \ ∂Γn the (sub-)Cayley tree with n − 1 generations,
where ∂Γn stands for the inner boundary of Γn. It is a known result for the Ising model on trees that the marginal on
Γn−1 of the finite-volume Gibbs measure on Γn is a finite-volume Gibbs measure on Γn−1, with a possibly different
external magnetic field at the boundary. See the Appendix for how this works out in marginalizing infinite-volume
Gibbs measures by using boundary laws.

Marginalizing on Γn−1, that is to a tree of one generation less, leaves us with a finite-volume Gibbs measure on
Γn−1, parametrized by the following external fields:

i ∈ ∂Γn−1, hi = h0 + dϕ(hn),
(4)

i ∈ Γn−2, hi = h0,

where ϕ(x) = arctanh(tanhβ tanhx).
Thus, summarising, taking the marginal of an Ising model Gibbs measure on a tree with n generations with homo-

geneous boundary field hn results in an Ising model on an (n− 1)-generation tree with a homogeneous boundary field
hn−1. The map from hn to hn−1, (4), has three fixed points h+, h� and h−. (Equivalently, one could consider the map
from the magnetisation at generation n to the magnetisation at generation n − 1, which again has the corresponding
three fixed points m+,m� and m−.) Whereas h+ and h− are stable, h� is an unstable fixed point which implies that
weak positive boundary conditions will result in a plus state, once one is far enough from the boundary. In other
words, the phase transition is robust [14].

These three fixed points determine the three homogeneous extremal invariant infinite-tree Gibbs measures men-
tioned above.

2.2. Dynamics, non-Gibbsian measures, main questions

Let P (Ω, F ) be the set of all probability measures on Ω and G(β,h0) be the set of all Gibbs measures of the Ising
model with an inverse temperature β and external field h0. Let PI (B)(Ω,F) denote the set of all μ ∈ P (Ω, F ) which
are invariant under all the graph automorphisms (translations, rotations, reflections, etc.). Let μ ∈ GI (B)(β,h0), where
GI (B)(β,h0) = G(β,h0) ∩ PI (B)(Ω, F ).

We aim to study here the time-dependence of the Gibbsian property of the three Gibbs measure μ�, for � ∈
{+,−, �}, under an infinite-temperature Glauber dynamics. This is the stochastic evolution S(t) which is obtained
by having independent spin flips at each vertex at a certain given rate. In other words, we want to investigate whether
or not μ�S(t) =: μ̂ is a Gibbs measure at a given time t > 0.

By assumption the initial measure μ is a Gibbs measure. This immediately guarantees the non-nullness of the
measure μ�S(t) for all t (including t = 0). It will thus suffice to study whether the transformed measure is quasi-local
or not.

Define μ̂Λ(f |ω) = Eμ̂(f |FΛc)(ω) to be a realization of the corresponding conditional expectation for bounded f ,
finite Λ ⊂ S, ω ∈ Ω . We also use the notation μ̂Λ(f |ωW) = Eμ̂(f |FW)(ω) when we condition only on configurations
on a finite subset of sites W ⊂ Λc. With this notation we have e.g. μ̂Λ(f |ωΛ′\Λ) = ∫

μ̂Λ(f |ω)μ̂(dω(Λ′)c), for volumes
Λ′ ⊃ Λ where μ̂(dω(Λ′)c) denotes integration over the variables outside of Λ′.

The measure μ̂ is not quasilocal, if it is not consistent with any quasilocal specification. To prove this, it is enough to
find a single, non-removable, point of discontinuity (in the product topology) for a single μ̂Λ for a single (quasi)local
function f [4,20]. The definition of the non-quasilocality for the transformed measure can be refined, see in particular
[4]. The relevant definitions read as follows:
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Definition 2.1. The measure μ̂ is not quasilocal at η̄ ∈ Ω if there exists Λ0 ∈ S and f local (given that Ω0 is finite it
suffices to look for f local, with support Λ0) such that no realization of μ̂Λ0(f |·) is quasilocal at η̄.

In other words, any realization of μ̂Λ0(f |·) must exhibit an essential discontinuity at η̄; one that survives zero-
measure modifications. (Remember that conditional probabilities are only defined up to measure-zero sets.)

Definition 2.2. For a local function f as above, μ̂Λ0(f |·) is μ̂-essentially discontinuous at η̄, if there exists an ε > 0
such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ

|Λ′|<∞

∣∣μ̂Λ0

(
f |η̄Λ\Λ0ξ

1
Λ′\Λ

) − μ̂Λ0

(
f |η̄Λ\Λ0ξ

2
Λ′\Λ

)∣∣ > ε. (5)

If μ̂Λ0(f |·) is μ̂-essentially discontinuous at η̄, informally it means that there exists an ε > 0 such that for every
Λ ∈ S there exists Λ′ ⊃ Λ and configurations ξ1, ξ2, such that

∣∣μ̂Λ0

(
f |η̄Λ\Λ0ξ

1
Λ′\Λη

) − μ̂Λ0

(
f |η̄Λ\Λ0ξ

2
Λ′\Λη

)∣∣ > ε (6)

for η ∈ A, where A ∈ F(Λ′)c is of positive μ̂-measure.

Definition 2.3. μ̂Λ0(f |·) is strongly discontinuous at η̄, iff there exists an ε > 0 such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ

|Λ′|<∞

inf
η1,η2

Λ′′⊃Λ′
|Λ′′|<∞

∣∣μ̂Λ0

(
f |η̄Λ\Λ0ξ

1
Λ′\Λη1

Λ′′\Λ′
) − μ̂Λ0

(
f |η̄Λ\Λ0ξ

2
Λ′\Λη2

Λ′′\Λ′
)∣∣ > ε. (7)

Remark 2.4. Intuitively the difference is that whereas for μ̂-essential discontinuity one needs to estimate a difference
on two measurable sets of positive measure, for a strong discontinuity one needs an estimate of a difference on open
sets; however, because of the impossibility of conditioning on individual configurations, we get the somewhat unwieldy
definitions above.

A useful tool to study the question whether μ̂ stays Gibbs is to consider the joint two-time distribution ν on (σ, η),
where the initial spins σ are distributed according to μ, and the evolved spins η according to μ̂. This joint distribution
will be denoted by either ν or νt . It can be viewed as a Gibbs measure on {−1,+1} � with � = CT(d) ∪ CT(d)

consisting of two “layers” of CT(d). Formally, the Hamiltonian of νt is

Ht(σ, η) = Hμ(σ) − lnpt(σ, η), (8)

where pt (σ, η) is the transition kernel of the dynamics. We consider independent spin-flip dynamics, so

lnpt(σ, η) =
∑

x∈CT(d)

1

2
ln

1 + e−t

1 − e−t
σ (x)η(x). (9)

Let us denote

ht = 1

2
ln

1 + e−t

1 − e−t
. (10)

This approach to study the evolved measure as the marginal of a two-layer Gibbs measure was introduced in [18], and
has been applied repeatedly since.

Remark 2.5. Here we will find for μ�S(t), by making the choices ξ1 = +1, ξ2 = −1, that in any open neighborhood
of η̄ two positive-measure sets exist, on which the limits differ, however, in contrast to amenable graphs, these sets
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are not open (which allows different behaviour between different evolved Gibbs measures μ� and μ+ as regards
their Gibbsianness, something which is excluded on amenable graphs such as Z

d ). In other words we will show a
μ̂-essential, although non-strong, discontinuity.

As explained in the Appendix we have the representation of the conditional probabilities of the time-evolved
measure μt of the form

μ̂t (η0|ηΛ\0) =
∫

μ[ηΛ\0](dσ0)Pt (σ0, η0) (11)

with the perturbed η-dependent measure on spin configurations μ[ηΛ\0](dσ) ≡ μ[ηΛ\0, η0 = 0](dσ) whose finite-
volume marginals look like

μ[ηΛ′ ](σΛ′) = C exp

{
β

∑
(i,j)∈Λ′

σiσj +
∑

i∈Λ′\∂Λ′
hiσi +

∑
i∈∂Λ′

h̃iσi

}
, (12)

where

hi = h0 + ηih
t ,

(13)
h̃i = h0 + ηih

t + h�,

where the external fields at the boundaries are given in terms of h�. This value represents the fixed point of the
recursion relation with homogeneous field h0, (4), and is bijectively related with the starting measure μ�. More
generally, such a representation is always valid if the initial measure is a Markov chain on the tree. Markov chains can
be described by boundary laws, and conditional probabilities of infinite-temperature time evolutions, are, for finite-
volume conditionings, described by boundary laws obeying recursions which are local perturbations of those of the
initial measure, see the Appendix and [5].

In what follows we choose ξ1 = (+) and ξ2 = (−). With this notation, for non-Gibbsianness it is enough to prove
that, at η̄, there exists an ε > 0 such that, for all Λ, there exists Λ′ ⊃ Λ such that

∣∣μ[
η̄Λ\0, ξ

1
Λ′\Λ

]
(σ0) − μ

[
η̄Λ\0, ξ

2
Λ′\Λ

]
(σ0)

∣∣ > ε. (14)

2.3. Marginals and η-dependent fields, initial field h0 = 0

To prove the non-Gibbsianness of μ̂, we will have to consider the phase transition behaviour of the Gibbs measures
on the first layer in various external fields. These external fields are determined by the various conditionings, as well
as by the choice of the initial Gibbs measure.

Let k,m be integers with k < m, let us denote Λ′ = Γm and Λ = Γk . Consider first the case h0 = 0. Marginalizing
on Γm leaves us with a finite-volume Gibbs measure on Γm denoted by νh�

Γm
and parametrized by the following external

fields:

i ∈ ∂Γm, hi = ηih
t + dϕ

(
h�

)
,

(15)
i ∈ Γm−1, hi = ηih

t .

In order to apply the (marginalisation) procedure to the η-dependent finite-volume Gibbs measure νh�

Γm
on Γm we

need to identify the role played by η. It can be shown that taking the marginal on Γm−1 of the finite-volume Gibbs
measure on Γm (summing out the spin σ ∈ ∂Γm) gives us a finite-volume Gibbs measure on Γm−1 with an external
field at the boundary equal to

hi = ηih
t +

∑
l∼i

ϕ
(
ηlh

t
)
. (16)

Here the sum is over the nearest neighbors l ∈ Γm.
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Equation (16) tells us how the configurations η∂Γm will affect the field acting on i ∈ ∂Γm−1 after having taken a
one-generation marginal.

The configuration ηΓm\Γk
will govern the value of the fields at ∂Γk , when the marginal on Γk is taken. Let us see

how:

• ηΓm\Γk
= +:

i ∈ ∂Γm, h
(0)
i = ht + dϕ

(
h�

)
,

after summing out the mth generation we have
(17)

i ∈ ∂Γm−1, h
(1)
i = ht + dϕ

(
h

(0)
i

)
,

i ∈ ∂Γj , k < j < m − 1, h
(j)
i = ht + dϕ

(
h

(j−1)
i

)
,

• ηΓm\Γk
= −:

i ∈ ∂Γm, h
(0)
i = −ht + dϕ

(
h�

)
,

after summing out the mth generation we have
(18)

i ∈ ∂Γm−1, h
(1)
i = −ht + dϕ

(
h

(0)
i

)
,

i ∈ ∂Γj , k < j < m − 1, h
(j)
i = −ht + dϕ

(
h

(j−1)
i

)
.

Note that the above-chosen η-conditioning on the annulus makes the recursion homogeneous. Choosing m big enough
guarantees that the recursions (17), (18) approach their time-dependent fixed points; we denote them respectively by
H±

t , H
�
t and h±

t , h
�
t , see Fig. 1.

Assume that we start at time t = 0 with the measure μ�, then h� = h� = 0. It ensures that the recursions (17), (18)
will approach, respectively, H+

t > 0 and h−
t = −H+

t < 0. H+
t represents the biggest stable fixed point for the η = +

recursion (17), and h−
t the smallest stable fixed point for the η = − recursion (18). The fact that both recursions have

Fig. 1. Fixed points.1

1“Longum est iter per praecepta, breve et efficax per exempla” (Seneca).
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as a starting point the unstable fixed point h� = 0 guarantees that the plus conditioning will drag the field towards H+
t

and the minus one towards h−
t . This will not be the case for μ+ and μ− as we will see later.

The (ηΓm\Γk
= ±)-dependent marginals on Γk , of the measure on Γm, are finite-volume Gibbs measures

parametrized by the following fields: for the case (ηΓm\Γk
= +)

i ∈ ∂Γk, h
+,(0)
i = ηih

t + dϕ
(
H+

t

)
,

(19)
i ∈ Γk−1, h

(0)
i = ηih

t

and in the case (ηΓm\Γk
= −)

i ∈ ∂Γk, h
−,(0)
i = ηih

t + dϕ
(
h−

t

)
,

(20)
i ∈ Γk−1, h

(0)
i = ηih

t .

Remark 2.6. Notice that only the fields at ∂Γk depend on ηΓm\Γk
and not the ones acting on the interior. We emphasize

that the broadcasting is absorbed by the boundary and has no direct influence on the interior.

Now we investigate how the recursion relation h
(j)
i = ηih

t + ∑
l∼i ϕ(h

(j−1)
l ), obtaining by summing out genera-

tions in Γk , will depend on the fixed configurations ηΓm\Γk
= ±, namely on the fields H+

t , h−
t acting on the generation

∂Γk+1. We emphasize that the annulus configurations determine the starting point of the recursion. We will also show
how the aforementioned recursion relation can be bounded from below if we are coming from ηΓm\Γk

= +, and from
above for ηΓm\Γk

= −. Furthermore these bounds will turn out to be uniform with respect to ηΓk
and with respect to j

(number of iterations).

Lemma 2.7. Given the recursion relation h
(j)
i = ηih

t + ∑
l∼i ϕ(h

(j−1)
l ) we have: h

(j)
i ≥ h+

t > 0, for all i and j , if

h
(0)
i = H+

t ; and h
(j)
i ≤ H−

t = −h+
t , for all i and j , if h

(0)
i = h−

t . Here h+
t is the fixed point for the homogeneous

recursion h(j) = −ht + dϕ(h(j−1)) with h(0) = H+
t .

Proof. Fixed points of the discussed recursion relation are given in the picture (1). The proof follows by induction.
Take first the case h

(0)
i = H+

t . Naturally H+
t > h+

t , so h
(0)
i > h+

t for all i. If we now assume h
(j)
i > h+

t for all i, then

h
(j+1)
i = ηih

t + ∑
l∼i ϕ(h

(j)
l ) > −ht + dϕ(h+

t ) = h+
t . The case h

(0)
i = h−

t follows by symmetry; the corresponding
recursion relation will be bounded from above by H−

t . �

3. Results: Total badness of the evolved μ�; difference between different phases

Let t2 be defined by

ht2 = h(β,d). (21)

We remark that the monotonicity of the continuous function ht (10), together with the fact that h(β,d) > 0, assures
the existence of t2.

Theorem 3.1. If σ is distributed according to μ�, then after time t2 all configurations η are bad configurations (points
of essential discontinuity) for the transformed measure μ�S(t).

Remark 3.2. The main idea is as follows: If the plus configuration is bad (and by symmetry the same is true for
the minus configuration), then all configurations η̄ will be bad. This is because if minus boundary conditions give a
minus magnetisation for the conditioned σ -spin at the origin, and plus boundary conditions a positive one, the same
holds for all η̄ (due to FKG e.g.). So take η̄ to be plus. Choosing ξ to be plus in a large enough annulus Λ′ \ Λ

and integrating the outside with μ� will lead to an effective plus boundary condition at Λ. The reason is that the
positive magnetisation m+is an attractive fixed point for the recursive relation, and any positively magnetised field
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in Λ′ will lead into its domain of attraction. The same is true for the negative magnetisation. As there are different
magnetisations with plus and minus boundary conditions, even in the presence of a weak plus field (the field is plus
due the η̄ being plus), the choice of plus or minus in the annulus influences the expected magnetisation at the origin,
however big Λ is.

Proof of Theorem 3.1. The definition of t2, (21), will assure that we are in the phase-transition regime for the
transformed system (for t ≥ t2). Making use of Lemma 2.7, the value of ε we are after, in order to prove the essential
discontinuity, is given by ε = 2 tanh(h+

t ). This value corresponds to taking, for the measure coming from ηΓm\Γk
= +,

the smallest positive field along all the k − 1 iterations, namely h+
t . The field at the origin is given by h(k) = η0h

t +
(d + 1)ϕ(h(k−1)) and could be roughly bounded from below:

h(k) = η0h
t + (d + 1)ϕ

(
h(k−1)

) ≥ −ht + dϕ
(
h+

t

) = h+
t .

Thus the corresponding single-site measure is given by ν+(σ0) = eh
+
t σ0

eh
+
t +e−h

+
t

, so

μ
[
η̄Γk

(+)Γm\Γk

]
(σ0) ≥ tanh

(
h+

t

)
.

Analogously for the measure coming from ηΓm\Γk
= −, we take the biggest negative value along all the k − 1

iterations, that is H−
t = −h+

t , therefore ν−(σ0) = e−h
+
t σ0

eh
+
t +e−h

+
t

and

μ
[
η̄Γk

(−)Γm\Γk

]
(σ0) ≤ tanh

(−h+
t

)
.

For ε = 2 tanh(h+
t ) the inequality (14) holds. Let us notice that ε is chosen uniformly with respect to η, thanks to the

uniform bounds appearing in Lemma 2.7. This ensures the μ̂-essential discontinuity in any point. �

As we mentioned before, the previous argument does not hold for μ+ and μ−. We treat here only the μ+ case,
the μ− case is completely symmetrical. So, in case we start with the plus measure, even conditioning on a minus
configuration in the annulus, due to the plus influence from the boundary will lead to a measure on Γk that looks like
the plus measure in a negative field.

Lemma 3.3. Given the starting measure μ+, the fields acting on ∂Γm for the marginal measure on Γm, which are
given by h

(0)
i = ηih

t + dϕ(h+), i ∈ ∂Γm, satisfy the following inequality

ηih
t + dϕβ

(
h+)

> h
�
t (d,β) (22)

for all d > 1, β > β(d) and for all t ∈ [t2,∞).

Proof. Let t2 be as in (21). It suffices to show that dϕβ(h+(d,β)) > h
�
t (d,β) + ht in the aforementioned region

of parameters. First of all we note that the expression on the right-hand side is zero in the limit t ↑ ∞, and it is a
decreasing function of t . So in order to prove the lemma it is enough to show

dϕβ

(
h+(d,β)

)
> h

�
t2
(d,β) + ht2 . (23)

Using that h
�
t2
(d,β) is a fixed point for the (−) recursion at t = t2, we arrive at

dϕβ

(
h+(d,β)

)
> dϕβ

(
h

�
t2
(d,β)

)
. (24)

Note that h
�
t2
(d,β) = hc(d,β) > 0, where hc(d,β) is a tangent point to dϕ(x) such that dϕ′(hc(d,β)) = 1. We show

that h+ > hc(d,β). In fact we know that dϕ(h+) − h+ = 0. Using the mean-value theorem together with the fact that
dϕ(0) = 0, we write dϕ′(ξ)h+ − h+ = 0. It implies that ξ is such that dϕ′(ξ) = 1. Using then that dϕ′ is a decreasing
function it follows that the domain of ξ , namely (0, h+) has to contain hc(d,β); so h+ > hc(d,β). Using then the
monotonicity of the functions ϕβ the claim is proved. �
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Theorem 3.4. If σ is distributed according to μ+, then after time t2 all configurations η are good configurations for
the transformed measure μ+S(t).

Proof. Based on Lemma 3.3, choosing Γm big enough we make sure that the recursion relation coming from the fixed
“+”-annulus Γm \ Γk will approach its fixed value H+

t , so do we for the fixed “−”-annulus to approach its fixed value
h+

t . Then the magnetic fields for the finite-volume Gibbs measure on Γk are respectively given by

i ∈ ∂Γk, h
+,(0)
i = ηih

t + dϕ
(
H+

t

)
,

(25)
i ∈ Γk−1, h

(0)
i = ηih

t

and

i ∈ ∂Γk, h
−,(0)
i = ηih

t + dϕ
(
h+

t

)
,

(26)
i ∈ Γk−1, h

(0)
i = ηih

t .

Define �j = maxi (h
+,(j)
i − h

−,(j)
i ). This maximum is always positive, as an inductive argument shows. We are

about to prove that ∃δ ∈ (0,1) such that (1 − δ)�j ≥ �j+1; this is equivalent to say that limj↑∞ �j = 0:

�j+1 = max
i

(
h

+,(j+1)
i − h

−,(j+1)
i

) = max
i

[
1

d

∑
l∼i

(
dϕ

(
h

+,(j)
l

) − dϕ
(
h

−,(j)
l

))]

= max
i

[∑
l∼i

dϕ′(cl)

d

(
h

+,(j)
l − h

−,(j)
l

)] ≤ (1 − δ)max
i

[
1

d

∑
l∼i

(
h

+,(j)
l − h

−,(j)
l

)]

≤ (1 − δ)max
i

max
l∼i

((
h

+,(j)
l − h

−,(j)
l

)∑
l∼i

1

d

)
= (1 − δ)max

i
max
l∼i

(
h

+,(j)
l − h

−,(j)
l

)

= (1 − δ)�j . (27)

We used the mean-value theorem together with the fact that dϕ′(x) < 1 for x > hc(d,β). �

For σ distributed according to μ�, we will show the existence of an intermediate time interval, where some, but
not all, configurations are bad for μ̂. Theorem 3.9 will express this. We will show that the all plus and all minus
configurations are good for μ�S(t) at all times in (0, t2). Moreover we will impose a condition on the field ht (therefore
on t itself), such that it guarantees the existence of at least one bad configuration for μ�S(t).

We will find a t1, which is larger than the minimal value of time for which this condition is satisfied. This value
t1 will turn out to be strictly less than t2. This will guarantee that t1 is small enough so that the transformed measure,
conditioned on an all plus or all minus η will not exibit a phase transition.

Remark 3.5. Note that this implies that at the same time t2 the intermediate state has a transition to a totally non-
Gibbsian regime, where all spin configurations are discontinuity points, whereas the plus and minus state have a
transition to a Gibbsian regime, without discontinuity points.

Lemma 3.6. If σ is distributed according to μ� then for all t ∈ (0, t2) the η = + and η = − configurations are good
configurations for the transformed measure μ�S(t).

Proof. As was shown before, the recursions (17), (18) (related to the annuli) give us respectively H+
t and h−

t . Let
first η be the plus configuration. In this case h

+,(j)
i = H+

t for all i and j . In other words the field will stick to the

fixed point value along the iterations. Using an inductive argument we show that h
−,(j)
i = h−,(j); that’s to say that

it does not depend on i. Based on that, it is straightforward to get a monotonicity property for h−,(j), namely that
h−,(j+1) > h−,(j) for all j . Indeed h−,(j+1) = ht + dϕ(h−,(j)) > h−,(j). The last inequality follows from the fact that
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dϕ(x) > x − ht for all x ∈ [h−
t ,H+

t ), due to the chosen range of t . Recalling that for t ∈ (0, t2) the recursion relation
h−,(j+1) = ht + dϕ(h−,(j)) has only one fixed point, namely H+

t , the lemma is proven for η = +. The η = − case
follows by symmetry. �

Remark 3.7. The chosen range of times enables the existence of a unique fixed point for each of the recursions (17),
(18), independently of h�. This means that the fields we obtain at ∂Γk depend on the annuli, but they do not depend
on the exterior Γ c

m. For this reason Lemma 3.6 applies to σ ’s distributed according to μ+ and μ− too.

For the sake of clarity, let us recall that h+ indicates the positive stable fixed point for the recursion (4) with h0 = 0.

Lemma 3.8. Let t1 be given by

ht1 = h+ (28)

then t1 ∈ (0, t2).

Proof. Recalling Eq. (10), the fact that t1 lies in the interval (0, t2) is guaranteed by the truth of the inequality
h(d,β) < dϕ(h+), for β > β(d) and d > 1. Indeed

h(d,β) < d arctanh

(
w

(
d − w̄

d − w

)1/2)

= d arctanh
(
w tanh(hc)

) = dϕ(hc). (29)

Knowing that hc < h+, the monotonicity of the function ϕ concludes the proof. �

Define the “alternating” configuration ηA to be ηA
i = (−1)n for i ∈ ∂Γn and n ∈ N, i.e. all vertices at each genera-

tion have the same sign different from the sign of the previous and the next generations. Naturally the configuration for
which −ηA

i = (−1)n is also an “alternating” one. Let us call h
±,(j)
i the field at the vertex i ∈ ∂Γk−j after (j +1) appli-

cations of the recursion formula (16), starting respectively at H+
t or h−

t . The particular structure of the “alternating”
configuration makes the fields homogeneous at each generation; i.e., h

±,(j)
i = h±,(j), for all i ∈ ∂Γk−j .

Theorem 3.9. If σ is distributed according to μ�, and t1 is given by (28), then for all t ∈ [t1, t2) some, but not all,
configurations η are bad for the transformed measure μ�S(t).

Proof. Making use of Lemma 3.6, Lemma 3.8, to prove the theorem it is enough to find a particular configuration
η that will be bad for all t ∈ [t1, t2). The “alternating” configurations will be shown to be bad for all t ≥ t1, in other
words they transmit the influence of the annulus to the origin, no matter how “distant” the annulus and the origin
are. As remarked before, h

±,(j)
i associated to the ηA configurations depend only on j , and we call the corresponding

values h±,(j). Without loss of generality let us assume ηA
i = +, for i ∈ ∂Γk . By an inductive argument, based on the

hypothesis t ∈ [t1, t2) (which in terms of fields means ht ≤ h+), and on the particular structure of the configuration
ηA, we show that h+,(j) ≥ h+ and h−,(j) ≤ 0, for all j even, namely for those j which relate to generations at which
ηA is set to be +, and that h−,(j) ≤ −h+ and h+,(j) ≥ 0 for j odd. This will imply h+,(j) − h−,(j) ≥ h+ for all j .
Consider the case j even.

For j = 0 we have:

h+,(0) = H+
t ≥ h+, h−,(0) = ht + dϕ

(
h−

t

) ≤ 0.

Both inequalities hold, because H+
t is a decreasing function of t whose lower bound is given by h+.

Assuming the statement is true for j , let us see that it holds for j + 2. We focus first on h+,(j+2):

h+,(j+2) = ht + dϕ
(
h+,(j+1)

) = ht + dϕ
(−ht + dϕ

(
h+,(j)

))
, (30)
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where the second equality is justified by the particular structure of the alternating configuration. Using the assumption
h+,(j) ≥ h+ and the monotonicity of ϕ we arrive at

h+,(j+2) ≥ ht + dϕ
(−ht + dϕ

(
h+))

. (31)

The fact that 0 ≤ −ht + h+ ≤ h+ ensures that dϕ(−ht + h+) ≥ −ht + h+. This concludes the proof for h+,(j).
For h−,(j+2) we have

h−,(j+2) = ht + dϕ
(
h−,(j+1)

) = ht + dϕ
(−ht + dϕ

(
h−,(j)

))
. (32)

Using always the assumption h−,(j) ≤ 0, the monotonicity of ϕ, and the assumption ht ≤ h+, which guarantees
ht ≤ dϕ(ht ), we obtain

h−,(j+2) ≤ ht + dϕ
(−ht

) ≤ 0. (33)

The case j odd is analogous. �

Remark 3.10. The above result also applies to the evolved plus and minus measures. Indeed the alternating configu-
ration displays a strong discontinuity here, whereas the above analysis shows that for large times all configurations
display a μ�S(t)-essential but non-strong discontinuity. Whether the t1 used above is optimal in any sense is not
known. We conjecture that it may be for the intermediate state, but not for the plus or minus states.

4. Initial field h0 �= 0

Recall that |h0| < h(d,β), β > β(d) and d > 1; these conditions guarantee existence of three homogeneous phases
for the original measure; we denote them, even if not fully consistent with the notation we have been using so far, μ+

h0
,

μ−
h0

, and μ
�
h0

, just to emphasize their dependence on h0. We show that the previous results found for h0 = 0 will also
apply to the case h0 �= 0 but for different time values. Let t+(h0), t−(h0) be given by the following equations:

h0 + ht+ = h(d,β),
(34)

h0 − ht− = −h(d,β).

Call

t2(h0) = min
{
t+(h0), t−(h0)

}
,

(35)
t3(h0) = max

{
t+(h0), t−(h0)

}
.

Depending on the sign of the initial field, t+(h0) might be either bigger or smaller than t−(h0), as follows from (10).
Nevertheless the definitions of t2(h0), and t3(h0) will always assure t2(h0) < t3(h0) (e.g. for h0 < 0 the order is
t2(h0) = t+ < t− = t3(h0)).

The time t2(h0) indicates the time value for which the dynamic field ht , taken in the opposite direction to h0, will
first reach a value which guarantees phase transition for the conditioned transformed measure. The time t3(h0) refers
to the analogous value, but for ht taken with the same sign as h0.

Suppose w.l.o.g. that h0 < 0. Note that for h0 negative the magnetization corresponding to μ
�
h0

is positive, see [5],

Chapter 12. For t > t3(h0) there exist three fixed points for the (−)-recursion h(k+1) = h0 − ht + dϕ(h(k)), namely
two stable ones h−

t (h0), h+
t (h0), and an unstable h

�
t (h0). The existence of several fixed points makes the convergence

to them be dependent on the starting point. In particular the recursion will take us to h+
t (h0) iff the starting point,

h(k=0), lies to the right of the unstable one, that is when h(k=0) > h
�
t (h0); it will take us to h−

t (h0) iff h(k=0) < h
�
t (h0),

and will stick to h
�
t (h0) iff h(k=0) = h

�
t (h0).

Given that t3(h0) > t2(h0), the assumption t > t3(h0) ensures the existence of three fixed points also for the (+)-
recursion h(k+1) = h0 + ht + dϕ(h(k)); they are denoted by H±

t (h0), and H
�
t (h0).
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Assume that we start at time t = 0 with the measure μ
�
h0

, then the starting point for the (±)-recursions is h� =
h�(h0) > 0. However, for the chosen range of time, t > t3(h0), it can be shown that h�(h0) will always lie to the right
of H

�
t (h0) and always to the left of h

�
t (h0). So the next theorem reads:

Theorem 4.1. If σ is distributed according to μ
�
h0

, then after time t3(h0) all configurations η are bad configurations
for the transformed measure μ

�
h0

S(t).

Analogously to the analysis for h0 = 0, the former result will not hold for σ distributed according to μ±
h0

.
Two other results, obtained in the previous section, have equivalents for non-zero external field.

Lemma 4.2. If σ is distributed according to μ
�
h0

, then for all t ∈ (0, t2(h0)) the η = + and η = − configurations are
good configurations for the transformed measure μ

�
h0

S(t).

Theorem 4.3. If σ is distributed according to μ±
h0

, then after time t3(h0) all configurations η are good configurations

for the transformed measure μ±
h0

S(t).

Remark 4.4. It is worth remarking that the strict inequality t2(h0) < t3(h0), always holding for h0 �= 0, implies the
non-emptiness of the interval of times [t2(h0), t3(h0)). A similar result to the one given in Theorem 3.9 holds in the
case h0 �= 0, namely that for t ∈ [t2(h0), t3(h0)) some, but not all, configurations are bad. In fact, it can be shown, for
example in case h0 < 0, that the time t2(h0) corresponds to the time for which the plus configuration becomes bad,
while for all times t < t3(h0) the minus configuration will remain good. In case h0 > 0, as symmetry may suggest, the
time t2(h0) will be the threshold for the minus configuration to become bad, while the plus configuration will be good
till t = t3(h0).

Encouraged by the many analogies between the h0 = 0 case and the h0 �= 0 case, one might ask what one can say
about the (h0 �= 0)-equivalent of the time t1, (28). Pursuing the former, let us define the values of times t̂+, t̂− by the
following equalities:

ht̂+ = h0 + dϕ
(
h+(h0)

) − h�(h0),
(36)

−ht̂− = h0 + dϕ
(
h−(h0)

) − h�(h0)

and define further

t1(h0) = max{t̂+, t̂−}. (37)

Figure 2 helps to understand the role played by the different times so far defined.
It can be shown that t1(h0) < t3(h0) for |h0| < h(d,β). Nonetheless the relation between time t1(h0) and t2(h0) is

not so trivial as we will show. The next lemma formalizes that for all time t ≥ t1(h0) the “alternating” configurations
are bad for σ distributed according to μ

�
h0

.

Lemma 4.5. If σ is distributed according to μ
�
h0

, and t1(h0) is given by (37), then for all t > t1(h0) “alternating”
configurations are bad for the transformed measure μ

�
h0

S(t).

Proof. The proof follows the same route taken in the proof of Theorem 3.9 with some modifications on the bounds.
Nontheless we reckon it is instructive to sketch the main points at least for h0 < 0. For t > t1(h0) an inductive
argument leads to the following bounds:

for even j, h+,(j) ≥ h+(h0) and h−,(j) ≤ h�(h0),

for odd j, h+,(j) ≥ −h�(h0) and h−,(j) ≤ −h+(h0),

therefore h+,(j) − h−,(j) ≥ h+(h0) − h�(h0) for all j . �
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Fig. 2. Times.

The previous lemma together with Remark 4.4 shows that if σ is distributed according to μ
�
h0

, then for all t ∈
[t1(h0), t3(h0)) some, but not all, configurations are bad. There are then two different time intervals where some, but
not all, configurations are bad. We will not leave the reader wondering how these two intervals relate. We will show
the existence of a critical value hc

0 such that for |h0| > hc
0 we have [t1(h0), t3(h0)) ⊂ [t2(h0), t3(h0)), for |h0| < hc

0 the
inclusion is reversed, namely [t1(h0), t3(h0)) ⊃ [t2(h0), t3(h0)), and for |h0| = hc

0 the two intervals coincide.

Remark 4.6. In the small-field regime |h0| < hc
0 we have that the “alternating” configuration becomes bad before

the all plus and the all minus configurations. In that case, the dominant effect is that the alternating character of the
conditioning provides some cancellations, just as in the zero-field case.

In the other regimes we can just say what follows from t1(h0) < t3(h0), i.e. that the “alternating” configurations
become bad before the homogeneous configuration with all η’s aligned with h0, that is η = sign(h0). The impossi-
bility to state something more in the other regimes is due to the fact that t1(h0) is not a “sharp” threshold for the
“alternating” configurations to become bad. However, in this case having a “bad” configuration, one may need to
counteract the effect of the field, thus in a positive external field, the minus configuration becomes bad at an earlier
time than the alternating one.

To explore the latter inclusions we need to compare the values t1(h0) and t2(h0), or equivalently ht1(h0) and ht2(h0).
Consider the difference between the fields:

f (h0) := ht1(h0) − ht2(h0). (38)

Based on the definitions of the times, (37), (35) it turns out that the function f is even. So we might focus on its
behaviour only for negative values of the initial field h0. For such values of the field the function has the following
form:

f (h0) = h+(h0) − h�(h0) + h0 − h(d,β). (39)

First of all the limit values of f in the interval (−h(d,β),0) are given by

lim
h0↓−h(d,β)

f (h0) = −2h(d,β),

lim
h0↑0

f (h0) = h+ − h(d,β).
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Note that the second limit value is positive, as has been explained in the proof of Lemma 3.3, while the first one is
negative by the definition of h(d,β), and by (3). Taking now the derivative of f with respect to h0 we obtain

f ′(h0) = (
h+(h0)

)′ − (
h�(h0)

)′ + 1. (40)

Using the only thing we know about h+(h0), h�(h0), namely that they are fixed points for the recursion hk+1 =
h0 + dϕ(hk), the following equalities turn out to hold:

(
h+(h0)

)′ = 1

1 − dϕ′(h+(h0))
,

(
h�(h0)

)′ = 1

1 − dϕ′(h�(h0))
.

Because h�(h0) < hc(d,β) and h+(h0) > hc(d,β), the monotonicity of dϕ′ assures that f ′(h0) > 0 for all h0 ∈
(−h(d,β),0). Therefore the existence and uniqueness of hc

0 is guaranteed by an application of the intermediate-value
theorem. We point out that the function f is not differentiable in h0 = 0. Indeed, being f an even function and
limh0↑0 f ′(h0) > 0 clarify the discontinuity.

We would like to remark that the case h0 = 0 might be obtained from the previous analysis by taking the limit
h0 ↑ 0. Indeed limh0↑0 t1(h0) = t1, limh0↑0 t2(h0) = limh0↑0 t3(h0) = t2.

5. Conclusion and final remarks

We have shown that the Gibbs–non-Gibbs transition on trees has a number of different aspects, as compared to that
on regular lattices. In particular, we have shown that different evolved Gibbs measures can have different Gibbsian
properties. For the evolved intermediate state there are two transitions, one from being Gibbsian to being “standard
non-Gibbsian” (having some, but not all configurations bad) and a second transition to a “totally non-Gibbsian”
regime where all configurations are bad. Both these properties do not occur in the more familiar lattice and mean-field
situations.

For the plus and minus measure there are also two transitions, namely one after which the evolved measure becomes
non-Gibbsian, and some, but not all, configurations become discontinuity points and a second one after which the
measure becomes Gibbsian again; this is the behaviour which on the lattice occurs for an initial Gibbs measure in an
external field.

High-temperature dynamics should behave in a similar way as infinite-temperature dynamics, but although the
proofs probably will be messier, qualitatively we don’t expect anything new.

Although we have worked out the case of Cayley trees, we expect our results to hold for a much wider class of
trees. The instability of the fixed point h� for example corresponds with the phase transition being robust, which is
true in general for Ising models on trees [14]. Also, the property of plus boundary conditions in a not too strong minus
field inducing a positively magnetised state, which was used in the proof that the plus configuration was good for the
plus state holds quite generally. The choice of bad configuration in the intermediate regime may be somewhat tree-
dependent. Moreover, it seems problematical to identify a unique measure μ� in a field (on random Galton–Watson
trees for example).

Appendix: Boundary laws, beyond homogeneity

It is the purpose of this appendix to explain the relation between the notion of a boundary law as it is used in the
book by Georgii [5] and the one-sided simple recursions which are used in the paper. The notion of a boundary law is
necessary to describe all the extremal phases (or more generally, all Markov chains on trees).

To follow the notation used in Georgii, let us denote, for i ∼ j , by Qij (σi, σj ) = eβσiσj +giσi+gj σj the transition
matrix of the random field Ising model on the tree with Hamiltonian −β

∑
{i,j}∈E σiσj − ∑

i hiσi , where gi = hi/

(d + 1), so the local field at each site has been symmetrically distributed among the edges to its neighbors.
Every extremal Gibbs measure μ for the random field Ising model on the Cayley tree is a Markov chain on the

tree (Theorem 12.12 of Georgii). To define what it means to be a Markov chain on the tree, consider an oriented bond
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ij , draw this bond horizontally such that i lies to the left of j , and draw the tree embedded into the plane in such a
way that there is no intersection between the tree and the axis crossing the oriented bond ij in a perpendicular way.
A measure μ is a Markov chain on the tree if conditioning on the semi-infinite spin configurations extending from
i to the left (the past) is the same as conditioning on the spin configuration at the site i alone, and this holds for all
oriented bonds ij . Not all Markov chains are extremal Gibbs measures however, as the example of the free boundary
condition Gibbs measure of the Ising model in zero field at sufficiently low temperatures shows. The meaning and
importance of a boundary law lies in the following fact. A Markov chain on the tree always has a representation in
terms of a boundary law lij (a), a = ±, that is for the finite-volume marginals it holds

μ[h](σΛ∪∂+Λ) = 1

ZΛ(β,h)

∏
k∈∂+Λ

lkkΛ(σk)
∏

{ij}∩Λ�=∅

Qij (σi, σj ), (41)

where ∂+Λ denotes the outer boundary of Λ and kΛ is the unique nearest neighbor of k in Λ. A boundary law is a
function on oriented edges ij which depends on the possible spin values. From its appearance in the last formula we
see that, at any ij , it is defined only up to a multiplicative constant, not depending on the spin configuration a. Define

therefore qij = 1
2 log

lij (+)

lij (−)
in the Ising case. This quantity has the character of a local field at the site i and contains

the full information about the boundary law in the Ising case. More precisely qkkΛ has the meaning of a local field
acting on the spin σk which has to be added to the Hamiltonian with free boundary conditions in the volume Λ∪ ∂+Λ

if the site k is attached at the site kΛ.
Assuming the validity of the last formula for the finite-volume marginals one arrives at a Q-dependent consistency

(or recursion) relation that a boundary law has to satisfy. This recursion is formulated as (12.10) in Georgii; in the
case of the Ising model with site-dependent fields it translates equivalently into the recursion

qij =
∑

k∈∂+i\j

1

2
log

e2qki+β+gk+gi + e−β−gk+gi

e2qki−β+gk−gi + eβ−gk−gi
. (42)

Conversely, a function qij on all oriented bonds which is consistent in the sense of (42) defines a Markov chain by
formula (41) with the corresponding boundary law lij .

Note that (42) is a one-sided recursion which has no beginning and no end. It is interesting in the first step to look
at homogeneous solutions, i.e. solutions not depending on the bond ij , but there may be also many other solutions,
even in the case when the local magnetic field in the initial Hamiltonian is site-independent. In that case there can
be non-homogeneous solutions when there are more than one fixed points for the homogeneous recursion. Indeed, to
construct a non-homogeneous solution one picks a site j and looks to all oriented bonds ij pointing to it, and picks
values of qij not at the fixed point. Then one defines a boundary law by pre-images for qb’s for the oriented bonds b

going up to ij . In order to make sure that there are such pre-images under all orders of iterations, the value has to be
chosen such that it lies between a stable and an unstable fixed point.

To see the meaning of the boundary law in a more intuitive or physical way let us make explicit the difference to
the field which is already present in the original Hamiltonian. We look at the asymmetric quantity which is centred at
the local field for the first spin, namely fij = qij − gid and note that it satisfies the equation

fij =
∑

k∈∂+i\j
ϕβ(fki + hk) (43)

with ϕβ(t) = 1
2 log cosh(t+β)

cosh(t−β)
. With this variable we have

μ[h](σΛ∪∂+Λ) = 1

ZΛ(β,h)
e
∑

{ij }∩Λ�=∅
βσiσj +∑

i∈Λ∪∂+Λ hiσi+∑
k∈∂+Λ fkkΛ

σk . (44)

So the fij has the meaning of an additional boundary field at the site i acting on top of the local fields which are
present already in the Hamiltonian, when one computes the finite-volume marginals in a volume with a boundary site
i when i is attached via the site j to the inside of the volume.
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Now, let us enter in more detail the discussion on the dependence of boundary laws on a variation of local fields
entering in the Hamiltonian. Suppose that a boundary law l[h], not necessarily homogeneous, is given for the (not
necessarily but possibly homogeneous) Hamiltonian with a field h. Recall that, as we just explained, homogeneous
fields h may have very well inhomogeneous boundary laws. Let us consider the system now in the presence of a local
perturbation of the field h + �h, possibly site-dependent, but bounded, i.e. supk |�hk| < ∞. Any Gibbs measure
μ[h] gives rise to a Gibbs measure μ[h + �h] which is related by the formula involving the local perturbation of the
Hamiltonian of the form

μ[h + �h](ϕ(σ̃ )
) = μ[h](ϕ(σ̃ )e

∑
i �hi σ̃i )

μ[h](e∑
i �hi σ̃i )

, (45)

where it is understood that integration is over σ̃ . If the original Gibbs measure is actually a Markov chain described by
the boundary law lij ≡ lij [h], the perturbed measure is described by the boundary law lij [h + �h] which is obtained
by putting lij [h + �h] := lij [h] for oriented bonds ij in the outside of the region of the perturbation of the fields
which are pointing towards the perturbation region. When passing with the recursion through the perturbation region
of the local fields the lij ’s obtain a dependence on the size of the perturbations. Then the forward iteration is used to
obtain an assignment of l’s to all oriented bonds.

Summarizing we have the following lemma.

Lemma A.1. Suppose that h is an arbitrary external-field configuration, �h is an arbitrary finite-volume perturba-
tion of the external fields, and μ[h + �h] is the measure which results from a local perturbation of a Markov chain
μ[h] which is described by a boundary law l[h].

Then μ[h + �h] behaves in a quasilocal way (i.e. all expected values μ[h + �h](ϕ) on local spin functions ϕ are
quasilocal functions of �h) if and only if the boundary laws �h �→ lij [h + �h], depending on field perturbations
�hk’s for k in the past of the oriented bond ij , behave in a quasilocal way, and this holds for all oriented bonds ij .

Here a vertex k is said to be in the past of ij if the path from k to j passes through i. Quasilocality is meant in
the same way as it has been introduced in the context of finite-volume variations of spins, i.e. we say that l depends
quasilocally on a variation of fields iff

lim
Λ↑Zd

sup
Λ′:Λ′⊃Λ

sup
�h|Λ=�h′|Λ

∣∣l[�h|Λ′ ] − l[�h′|Λ′ ]∣∣ = 0, (46)

where the supremum is taken over perturbations �h|Λ′ ,�h′|Λ′ in the finite volume Λ′ which look the same on Λ.

Proof of Lemma A.1. The proof follows from the representation of the finite-volume Gibbs measures μ[h + �h] in
terms of the boundary laws lij [h + �h]. �

We note again that there is a one-to-one correspondence between simple directed field recursions with d neigh-
bours, as used in the paper, and boundary laws. So we obtain the following corollary, which is used extensively in the
paper.

Corollary

Suppose that h is a homogeneous external field, �h is an arbitrary finite-volume perturbation of external fields, and
μ[h + �h] is the measure which results from a local perturbation from either one of the homogeneous measures
μ[h], corresponding to the plus, the minus or the unstable fixed points. Then the measures μ[h + �h] behave in a
non-quasilocal way on the field perturbations �h if and only if the corresponding solutions of the one-sided simple
recursions for the effective fields behave in a non-quasilocal way.

Some non-homogeneous Gibbs measures

The discussion just given has consequences also for those Gibbs measures μ = μ(lb),Λ which are obtained by pasting
boundary laws lb for oriented bonds b of the form kkΛ for some fixed sub-tree Λ, so that (41) is true for the particular
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volume Λ. Then extend the boundary laws to have a prescription in the whole volume. Then the parameter region for
non-quasilocal behaviour of the resulting measure will be the union of the parameter regions of non-Gibbsianness of
the original measures taken over the b’s.

Connection to Gibbs vs. non-Gibbs under time evolution

Since the Gibbs properties of time-evolved Ising measures in infinite-temperature evolution can be expressed via
quasilocality properties of �h �→ μ[h + �h], for finite-volume �h, we are left with the investigation of the locality
properties of the boundary law iteration. A local variation of the image spins amounts to a local perturbation �h of
the local fields. Indeed, denoting the time-evolved measure by μ̂t (dη), starting from the measure μ(dσ), we have for
finite Λ � 0 the formula

μ̂t (η0|ηΛ\0) =
∫

μ(dσ)Pt (σ0, η0)e
ht

∑
i∈Λ\0 ηiσi∫

μ(dσ)eht

∑
i∈Λ\0 ηiσi

=:
∫

μ[ηΛ\0](dσ0)Pt (σ0, η0) (47)

with a measure μ[ηΛ\0](dσ ) of the form μ[h + �h] with a perturbation in the finite volume Λ\0. Finite-volume
marginals of this measure have a representation, according to Lemma A.1, of the form (41) with an η-dependent
transition matrix

Qij [η](σi, σj ) = ehtηi1i∈Λ\0/(d+1)+ht ηj 1j∈Λ\0/(d+1)Qij (σi, σj ),

where Qij (σi, σj ) is the transition matrix for the initial measure μ, and an ηΛ\0-dependent boundary law lij [ηΛ\0]
which obeys the locally modified iterations for the boundary law described below (45). Hence, non-Gibbsianness of
time-evolved measures is detected by non-quasilocality of the perturbed boundary laws lij [ηΛ\0].

A consequence of these remarks is that a time-evolved measure resulting from an initial Gibbs measure which is
constructed by pasting finitely many boundary laws lb as described above, will be non-Gibbsian at a parameter regime
which is the union of the non-Gibbsian parameter regimes of the time-evolved Markov chains corresponding to lb ,
over b.
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