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Chapter 1
Introduction1

With absolute magnitudes ranging from MV ∼ −9 to ∼ −13.5 and central surface
brightness between µ0,V ∼ 22.5 − 27 mag arcsec−2, the “dwarf spheroidals” (dSph) are
the faintest and lowest surface brightness galaxies known to date, beaten only by the
relatively recently discovered ultra-faint dwarf galaxies (UFDs).

Although of dull appearance (see Fig. 1.1 for an example), dSph reveal an unexpect-
edly complex stellar populations mix (for a recent review see Tolstoy et al. 2009) what
makes them very useful laboratories for understanding star formation and chemical en-
richment processes at the faint end of the galaxy luminosity function. In terms of their
internal dynamics, they might well be key in constraining the nature of dark matter.
Even though the very first measurement of the line-of-sight velocity dispersion of a dSph
was based on just 3 carbon stars in Draco (Aaronson 1983), it already hinted at a dynam-
ical mass-to-light ratio about one order of magnitude larger than for globular clusters.
Subsequent works have confirmed this result using larger samples that included red giant
stars (e.g. Armandroff & Da Costa 1986; Aaronson & Olszewski 1987; Hargreaves et al.
1994a,b). If in dynamical equilibrium, dSph have the highest mass-to-light ratios known
to date, with M/L ∼ 100s M�/L�.

The primary focus of this Thesis is the development of orbit-based dynamical models
for nearby dSph, with the goal of determining their mass content, dark matter density
profile and internal orbital structure. In this Introduction, we put this work into context.
In Sec. 1.1 we describe the latest observational surveys on the kinematics of dSph, place
these systems in a cosmological setting and briefly discuss why most of these systems may
be considered to be in dynamical equilibrium. In Sec. 1.2 we review the methods used
to model the internal dynamics of spheroidal systems and their application to the dSph
satellites of the Milky Way. Sec. 1.3 briefly summarizes our own findings as presented
in the various Chapters of this Thesis. We end with a discussion on possible future
developments in Sec. 1.4.

1 Based on “Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky
Way” by Giuseppina Battaglia, Amina Helmi and Maarten Breddels, submitted to New Astronomy
Reviews.
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Figure 1.1: Optical image of the nearby (∼ 80 kpc) dSph galaxy Sculptor, with its an
almost featureless nearly spherical appearance. Credit: David Malin, Anglo-Australian
Observatory.

1.1 Dwarf spheroidal galaxies

1.1.1 Surveys around the Milky Way
Determining the mass content of a system requires observations of the kinematics of
suitable tracers. Since dSphs are devoid of a neutral interstellar medium, the only tracers
available are stars. Because of their distance, to-date all measurements of their internal
kinematics are based on line-of-sight velocities, as it is unfeasible to obtain accurate
proper motions of individual stars in these galaxies with current facilities. The stars
accessible for spectroscopic observations with current facilities are resolved for systems
within the Local Group, since there is no crowding because of the low surface brightness
of these galaxies. In this introduction, we concentrate on the dwarf galaxies satellites
of the Milky Way (MW, hereafter. We refer the reader to Walker 2012, for a nice and
comprehensive historical excursus on the growing kinematic samples for MW dSphs).

The first attempt to go beyond the determination of a global l.o.s. velocity dispersion
of a dSph was made by Mateo et al. (1991) using a 2.5m telescope. These authors
measured the kinematics of ∼ 30 stars in the Fornax dSph, in the center and in a field
located at about two core radii. This first l.o.s. velocity dispersion “profile” turned out to
be approximately flat, and this led the authors to suggest that it could be due to a dark
halo spatially more extended than the visible matter. These results opened a whole line
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of investigation to measure l.o.s. velocity dispersion profiles of dSph around the Milky
Way, and to use these to determine their dark matter (hereafter, DM) distribution, orbital
structure and dynamical state.

The samples of l.o.s. velocities collected in the 90s contained few dozens of individual
members per dSph (e.g. Mateo et al. 1991; Hargreaves et al. 1994a,b; Olszewski et al.
1996; Queloz et al. 1995; Mateo et al. 1998). An increase in sample size became possible
with multi-object spectrographs such as the KPNO/4m Hydra multi-fiber positioner (100
members in Draco and Ursa Minor, Armandroff et al. 1995), and the AF2/Wide Field
Fibre Optical Spectrograph on the WHT (150 members in Draco, Kleyna et al. 2001).

In the second half of the 2000s several large spectroscopic surveys of the classical MW
dSphs were carried out. In broad terms we can distinguish them in 3 main “streams”:

1. Surveys that obtained l.o.s. velocities for typically ∼100-150 members per dSph,
with a large success ratio of dSphs members/target stars thanks to an optimized
target selection using Washington photometry (M, T2, and DDO51 filters, e.g.
Majewski et al. 2005; Muñoz et al. 2005, 2006; Westfall et al. 2006; Sohn et al.
2007). These have made use of Keck/HIRES, Magellan/MIKE, CTIO/Hydra and
Keck/DEIMOS.

2. Surveys to obtain several 100s of stars per dSph to determine both the internal kine-
matics and the metallicity distribution from Ca II triplet lines using intermediate
resolution spectroscopy. This includes the Dwarf Abundances and Radial veloci-
ties Team (DART, PI: Tolstoy) (∼570, 800, 170 members for the Sculptor, Fornax,
Sextans dSphs, respectively, at R∼6500 over the wavelength range 8200Å - 9400Å ,
Tolstoy et al. 2004, 2006; Battaglia et al. 2006; Helmi et al. 2006; Battaglia et al.
2008b; Starkenburg et al. 2010; Battaglia et al. 2011); and program 171.B-0520 (PI:
Gilmore) “Towards the Temperature of Cold Dark Matter” (∼500, 170 members for
the Carina and Leo II dSphs with the same set-up as for the DART data-set, Koch
et al. 2006, 2007a). These have taken advantage of the VLT’s large collecting area
coupled to the wide-field, multi-object capability and stability of the FLAMES-
GIRAFFE spectrograph (Pasquini et al. 2002) and, also of Keck/DEIMOS and
GeminiN/GMOS (Koch et al. 2007c).

3. Surveys to obtain several 100s to 1000s l.o.s. velocities and spectral indexes (pro-
viding estimates of the relative metallicity of red giants) on a restricted wave-
length range (5140 Å -5180Å ) at resolution R∼20000 (PI: M.Mateo, e.g. ∼800,
2500, 1400, 400 members for Carina, Fornax, Sculptor and Sextans, respectively
Walker et al. 2007a, 2009a). These have been mainly carried out with the Michi-
gan/MIKE Fiber System (MMFS) at the Magellan/Clay (6.5m) telescope and with
MMT/Hectochelle (see Mateo et al. 2008, for Leo I). With a comparable field-of-
view to FLAMES (20 arcmin), MMFS has the advantage of almost double number
of fibres (equally shared between the blue and red channel of the MIKE spectro-
graph).

Therefore, to-date the combined data-sets for the best studied dSphs have impres-
sive sizes (∼2900 and 1700 probable members for Fornax and Sculptor, respectively),
permitting studies of their internal properties to a level of detail that was unthinkable
a little more than a decade ago. In particular, they have led to the characterization of
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the line-of-sight velocity distributions (LOSVD) and its moments for the nearest dSph,
crucial observables to constrain dynamical models.

While the global velocity dispersion tells us about the mass content of the system,
the shape of the velocity dispersion profile provides information about the characteristics
of the underlying potential and therefore the dark matter distribution of the system.
However, it is also dependent on the internal orbital structure of the system (see also
Sec. 1.2.1), and therefore just the second moment of a LOSVD is generally not sufficient
to break this (mass- velocity anisotropy) degeneracy, and higher moments (especially the
fourth) are necessary.

Instead of taking moments of the LOSVD, other possibilities are to express the
LOSVD in, for instance, Gauss-Hermite moments (van der Marel et al. 1998) or analo-
gous quantities (Amorisco & Evans 2012b). The (theoretically) best way would be to fit
and model the full LOSVD (as in Chapter 4), since this incorporates all information and
avoids spatial binning, which always leads to a loss of information.

1.1.2 DSph in a cosmological context
In our current understanding of the Universe, a mere 5% of the total mass/energy density
budget consists of baryons, atoms essentially, with the remaining 95% comprising about
24% non-baryonic “dark matter” and 71% “dark energy” (see Hinshaw et al. 2012, for
the 9-years WMAP results). This has become known as the Λ cold-dark matter (ΛCDM)
model. As the evocative naming suggests, we ignore the nature of the great majority of
constituents of the Universe.

There are several DM candidates such as weakly interacting massive particles, axions,
sterile neutrinos, light gravitinos etc., whose existence is also motivated to solve problems
in the Standard Model (for a review see Feng 2010). Some of these behave as cold and
some as warm dark matter, where e.g. “cold” is defined as being non-relativistic at
the time of structure formation. A wealth of experiments and strategies for direct and
indirect detections of DM particles are underway (e.g. for reviews see Bertone et al.
2005; Hooper & Baltz 2008; Feng 2010), but at present the evidence for the existence of
DM (based on the validity of Newton’s law of gravity on all gravitational acceleration
regimes) is provided by astrophysical observations on a variety of scales, from the smallest
galaxies such as the dSph up to the largest structures in the Universe2.

Potentially, astrophysical observations can provide important constraints on the dom-
inant form of DM, as the characteristics of the DM particle are expected to influence
the growth of structures, the substructure content and internal properties of DM halos.
Rather than reviewing the extensive literature on the topic, we proceed to discuss re-
sults that are most directly related to this review, highlighting the crucial role of dwarf
galaxies.

Cosmological pure DM N-body simulations, carried out in the ΛCDM framework,
show that the halos formed follow very specific functional forms, such as the Navarro,
Frenk & White profile (NFW, Navarro et al. 1996b, 1997)

ρ(r) = ρ0

r/rs(1 + r/rs)2 (1.1)

2 Alternative theories of gravity, or modifications of Newton’s law have also been presented in the
literature. We decided not to discuss these here because their application to model the dynamics
of dSph has been very limited.
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where ρ0 and rs are a characteristic density and radius. More recently the Einasto form
has been found to provide better fits (e.g. Springel et al. 2008; Navarro et al. 2010)

ρ(r) = ρ−2 exp
{
− 2
αE

[(
r

r−2

)αE

− 1
]}

, (1.2)

where ρ−2 and r−2 are the density and radius where the logarithmic slope d log ρ/d log r =
−γDM = −2, and αE is a shape parameter3. These density profiles are rather steep near
the centre, with the NFW being cuspy with γDM = 1, while the Einasto profile has
γDM = 0 at the centre.

Although not necessarily theoretically motivated, other density profiles are also often
employed in the literature. Typically they have the form

ρ(r) = ρ0

(r/rs)γ(1 + (r/rs)κ)(α−γ)/κ , (1.3)

where α, γ, κ ≥ 0. Note that γ and α correspond to the inner and outer slopes respec-
tively. The sharpness of the transition between these two regimes is thus given by κ. A
cuspy profile has γ > 0, while for a cored one γ = 0 and κ > 1. This is because in the
cored case, the profile must have a flat shape at the centre, i.e. dρ/dr = 0. A profile that
has γ = 0 and κ ≤ 1 has at the centre d log ρ/d log r = 0 and a finite density, but in this
case dρ/dr is non-zero, and hence this profile should not be confused with a core.

In the ΛCDM high-resolution cosmological N-body simulations described above the
sub-halo mass function of MW-sized main halos is dN/dM ∝ M−α, with α = 1.9 down
to the simulations resolution limit (Springel et al. 2008), which is smaller than the mass
estimates for the faintest dSph (see Sec. 1.2). These simulations predict that MW halos
contain 20% of the mass in subhalos, which results in a very large number of (mostly
extremely low mass) satellites.

A comparison between the results of these pure DM N-body simulations with obser-
vations on galactic scales is not straightforward. Part of the issue lies in making the
link between a luminous satellite to what should be its corresponding sub-halo in a DM
simulation (e.g. of what mass? how dense?, see Strigari et al. 2010). This is particularly
difficult because such simulations do not include baryons. This has motivated numerous
theoretical efforts to provide a realistic treatment of baryonic effects using semi-analytical
models and hydrodynamical simulations of dwarf galaxies (e.g. Revaz et al. 2009; Li et al.
2010; Font et al. 2011; Sawala et al. 2012; Starkenburg et al. 2013). Observationally, it
is clearly important to obtain reliable estimates of the mass content and its distribution
in dwarf galaxies.

For example, there is a debate about the inner shape of the density profiles of the DM
halos hosting galaxies. For dSph, this issue is still very open (see Sec. 1.2 and Chapters
2 & 3). On the other hand, for isolated late-type dwarfs and low surface brightness
galaxies, the rotation curves seem to favor cored rather than cusped DM distributions
(e.g. de Blok 2010, and references therein). It has been suggested that feedback from
supernovae explosions in these more massive systems could transform a cuspy halo into
a cored one (e.g. Navarro et al. 1996a; Read & Gilmore 2005; Governato et al. 2010;
Pontzen & Governato 2012; Teyssier et al. 2013). Note that in the case of an UFD, a
single SN event releases an amount of energy comparable to the binding energy of the
3 For αE ∼ 0.2 the resulting profile resembles an NFW.
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whole system. On the other hand, it is still to be assessed whether this mechanism is
important or relevant on the scales of the MW dSphs, also given their low star formation
rates (see Peñarrubia et al. 2012).

The “missing satellites” problem refers to the large mismatch between the observed
number of dwarf galaxies satellites of the MW and M31 and the predicted number of DM
subhalos (Klypin et al. 1999; Moore et al. 1999). The discovery of dozens low-luminosity
dwarf galaxies in the Local Group, mainly by SDSS around the MW (e.g. Willman
et al. 2005; Zucker et al. 2006; Belokurov et al. 2006, 2007, to mention a few) and the
PandAS survey for M31 (e.g. McConnachie et al. 2009; Martin et al. 2009), has mitigated
somewhat the “missing satellite” problem, after taking into account the surveys coverage
and selection function (Koposov et al. 2009). The most appealing solution to reconcile
predictions and observations is to suppress star formation, or gas accretion, in low-mass
halos because of the joint effects of feedback and of a photo-ionizing background due to
re-ionization (e.g. Bullock et al. 2000; Benson et al. 2002; Somerville 2002).

Another interesting issue was the recently reported “too big too fail problem” pointed
out by Boylan-Kolchin et al. (2011), who used the Aquarius suite of DM simulations to
argue that there exists a population of subhalos that are too massive and too dense to be
consistent with the internal kinematics of the MW dSphs, and yet they do not have an
observed stellar counter-part. However, as argued by Wang et al. (2012) and Vera-Ciro
et al. (2012), the number of massive satellites is a stochastic quantity that also depends
on the mass of the host. For example, if the mass of the MW is around 8×1011 M�,
i.e. the least massive MW-like halos of the Aquarius suite (which reproduces well the
observed MW satellite luminosity function, see Koposov et al. 2008; Starkenburg et al.
2013), the mismatch disappears. Furthermore, Vera-Ciro et al. (2012) show that M31, if
assumed to be more massive than the Milky Way, does not miss such a population.

A plausible alternative to CDM is warm dark matter (WDM). The warm component
has the effect of reducing the small-scale power in the primordial fluctuations spectrum,
yielding fewer subhalos and of lower central densities (Colín et al. 2000, 2008; Lovell et al.
2012). Specifically, in the numerical simulations of Macciò et al. (2012, 2013), which
explore a range of masses for the WDM particles, cored density profiles arise naturally.
However, either the core sizes are too small to be consistent with those suggested in
some studies of the internal kinematics of MW dSphs (see Sec. 1.2) or if large enough,
they would be due to particles whose masses are inconsistent with the limits imposed by
observations of the Lyman-α forest (e.g. Viel et al. 2005; Seljak et al. 2006; Viel et al.
2008). Note however that e.g. Busha et al. (2007) find in their WDM simulations that the
halos are well described by an NFW form (i.e. cuspy) while Wang & White (2009) find
this even holds for halos in hot dark matter simulations. Given that the state-of-the-art
of WDM simulations is not as extensive and developed as for CDM, we await future
developments.

From the above it is clear that there are numerous reasons to try and pin down the
DM content and its distribution in the dSph. Given that the overall evolution of small
systems like dwarf galaxies will most likely be sensitive to their relatively small potential
well (e.g. Revaz & Jablonka 2012; Sawala et al. 2012), obtaining such measurements
will also allow us to make sense of the variety of star formation and chemical enrichment
histories of these galaxies, in particular in conjunction with the information on the dSphs
orbital history that the Gaia satellite mission (Prusti 2011) will provide.
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1.1.3 Are dSph in dynamical equilibrium?

A commonly made assumption in the dynamical modeling of dSph is that these objects
are in dynamical equilibrium, while if they were significantly affected by tidal interactions
with the MW this would need to be taken into account.

The possibility that dSphs are fully tidally disrupted dark-matter free galaxies has
been excluded on the basis of their observed internal kinematic and structural properties
(see for example Klessen et al. 2003; Muñoz et al. 2008), the large distances of some of
these galaxies (up to 250 kpc from the MW) and a well-established luminosity-metallicity
relation. It would also be difficult to explain the dSphs extended SFHs and broad metal-
licity distributions (see e.g. Tolstoy et al. 2004; Battaglia et al. 2006; Koch et al. 2006;
Starkenburg et al. 2010; Battaglia et al. 2011) if the potential well would be due solely
to the dSphs stars (amounting to typically 105-106 M�, e.g. McConnachie 2012).

Partly because of the lack of knowledge of the orbits of dSph around the MW, the
importance of tides on the stellar components of dSphs is largely unknown. This also
depends on the degree of embedding of this component in its dark matter halo, as well
as on the average density of the system. Mayer et al. (2001) propose that dSph galaxies
are what results when a disky dwarf is tidally stirred by the MW. For this process to
be effective, the stellar component of the dSph today has to be tidally limited, in which
case tidal tails are expected. However, Peñarrubia et al. (2008b) find that the stars are
very resilient to tides in their simulations where the stellar component follows a King-
profile and is deeply embedded in an NFW halo. In any case, there is general consensus
that the central velocity dispersion (or the dispersion at the half-light radius) continues
being a good indicator of the present maximum circular velocity and bound mass, as
long as the objects retain a bound core (e.g. Muñoz et al. 2008; Peñarrubia et al. 2008b;
Klimentowski et al. 2009; Kazantzidis et al. 2011).

Besides the obvious case of Sagittarius, the only classical dSph presenting unambigu-
ous signs of tidal disturbance such as tails and isophote twists is Carina (Battaglia et al.
2012). This object has been a candidate for tidal disturbance since a long time, with
convincing arguments given by the presence of spectroscopically confirmed RGB stars
probable members out to very large distances from its center (4.5 times the central King
limiting radius), observed together with a break in the surface brightness profile, a ve-
locity shear with turn-around, and a rising line-of-sight velocity dispersion profile (e.g.
Muñoz et al. 2006). Among the classical dSphs, other candidates for tidal disruption are
Leo I (e.g. Sohn et al. 2007; Mateo et al. 2008) and Ursa Minor (e.g. Martínez-Delgado
et al. 2001; Palma et al. 2003; Muñoz et al. 2005), although the observational evidence
is not as strong as for Carina. Note that even for Carina, the N-body simulations by
Muñoz et al. (2008) show that large amounts of DM (M/L ∼ 40 M�/L�) within the
remaining bound core are still needed to explain its characteristics.

N-body simulations of tidally perturbed dSphs agree in predicting rising l.o.s. velocity
dispersion profiles in the majority of cases, while only Carina and perhaps Draco (Walker
2012) are observed to show such feature. Together with the fact that most classical dSph
show no tidal streams, this may taken as indicative that the outer parts of the stellar
components of dSph have not been significantly affected by tides. All these arguments
provide some justification for the assumptions made in this Thesis, namely that we may
consider the dSph to be in dynamical equilibrium.
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dwarf galaxy Jeans Schwarzschild DF M2MSpherical Axis. Spherical Axis.

Carina G07,Wa07,
L09,Wa09 HC12 Ch3

Draco L05,G07,
Wa07,Wa09 HC12 J13 Kl01,Kl02 LM10

Fornax L01,Wa07,
L09,Wa09 HC12 Ch3 JG12†

LeoI
Ko07b,G07,
Wa07,M08,
Wa09

HC12

LeoII Ko07a,G07,
Wa07,Wa09

Sculptor Wa07,B08,
L09,Wa09 HC12 Ch2,Ch3,Ch4 AmE12

Sextans
G07,Wa07,
Wa09,L09,
B11

HC12 Ch3

Ursa Minor G07,Wa09

Table 1.1: Overview of various modeling techniques applied to Local Group dSph
galaxies. AmE12: Amorisco & Evans (2012a), B08: Battaglia et al. (2008a), B11:
Battaglia et al. (2011), Ch2: Chapter 2 or Breddels et al. (2012), Ch3: Chapter 3 or
Breddels & Helmi (2013), Ch4: Chapter 4, G07: Gilmore et al. (2007), HC12: Hayashi
& Chiba (2012), JG12: Jardel & Gebhardt (2012), J13: Jardel et al. (2013), Kl01:
Kleyna et al. (2001), Kl02: Kleyna et al. (2002), Ko07a: Koch et al. (2007b), Ko07b:
Koch et al. (2007c), L01: Łokas (2001), L01: Łokas et al. (2005), L09: Łokas (2009),
LM10: Long & Mao (2010), M08: Mateo et al. (2008), Wa07: Walker et al. (2007b),
Wa09: Walker et al. (2009b), † Note that their dark matter halo is still spherical

1.2 Dynamical modeling
The techniques to model the internal dynamics of spheroidal systems have long been in
place. However, their application to nearby dwarf spheroidals has only really taken off in
the last decade, with the need for more sophisticated approaches thanks to the manifold
increase in data samples. In this section we review the methods used, briefly discuss
their limitations and the results obtained thus far for these systems. Table 1.1 gives an
overview of the various modeling techniques applied to the MW dSph.

We divide this Section according to the groups of methods that have been used so
far. In general, we can broadly classify methods on whether they are parametric, i.e.
they assume a family of models, or non-parametric, in which the distribution function is
expressed in more general terms, for example as an expansion of basis functions. Most
works attempt to fit the moments of the velocity distributions, while the use of the
velocities and positions of individual stars to determine the likelihood of a given model
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(also known as discrete modeling) has been explored to a lesser extent in the literature.

1.2.1 Modeling with the Jeans Equations
To a very good approximation, a dwarf galaxy may be considered a collisionless system.
The internal structure of such a dynamical system can be described through its distri-
bution function f(x,v, t), which in the collisionless case, obeys the Boltzmann equation

∂f

∂t
+ v.∇xf −∇xΦ.∇vf = 0, (1.4)

where Φ(x) is the total gravitational potential of the system (including stars and dark
matter contributions Binney & Tremaine 2008). For our purposes f(x,v, t) describes the
probability of finding a star with a given position x, and velocity v at time t.

In general we assume that the distribution function is time-independent (see Sec. 1.1.3),
so that the first term in this equation may be dropped. Deriving the distribution function
from Eq. (1.4) by comparison to observations is not straightforward (see below), so a com-
monly used approach is to take moments of this equation, and compare these moments
to observables, since also low-order moments are easily measured from observations.

The zero-th moment corresponds to the continuity equation in hydrodynamics, and
it is generally not used in data-model comparison. The first moment is obtained by
multiplying Eq.(1.4) by vj and integrating over all velocities. The resulting equation is

∂ν〈vivj〉
∂xi

+ ν
∂Φ
∂xj

= 0, (1.5)

where ν(x) is the stellar density, i.e. ν(x) =
∫
d3vf , and the brackets 〈〉 denote moments,

e.g. here 〈vivj〉 =
∫
d3vvivjf . Eq.(1.5) represents a set of 3 equations known as the Jeans

equations. These are useful because they relate to observables, however, it should be born
in mind that this is not a closed set of equations, in the sense that even if we knew the
potential and the density, to derive the streaming (mean) velocities (3 components) and
the full velocity ellipsoid (6 independent quantities), we only have 4 equations, i.e. the
continuity and the Jeans equations. Although it is possible to use higher moments of
the Boltzmann equation, this tends to be more cumbersome. Higher moments are also
difficult to measure observationally reliably, and nonetheless the use of closure relations
would still be necessary. Therefore, typically, as we shall see below, certain assumptions
are made, regarding for example the form of the velocity ellipsoid, to find a solution to
the system.

The distribution function of a steady state system depends on the integrals of motion.
If the potential is time-independent, then the energy E is an integral of motion. For a
spherical system, all components of the angular momentum L are conserved, while if
the system is axisymmetric, then only Lz will be, but a third integral I3 might exist.
Therefore, in non-rotating spherical systems, the distribution function can be a function
f(E) or f(E,L). Although it is possible for a spherical system to rotate (Lynden-Bell
1960), in which case the distribution function will be of the form f(E,L) this is not the
most general configuration. Rotation would be more natural in the axisymmetric case,
when f(E,Lz), i.e. there is a preferred axis (that about which the system rotates). As
we will discus in Chapter 2, there is evidence of small velocity gradients in the dSph,
however, their origin is unclear, and in many cases these can be explained by projection
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effects. Therefore, in the rest of this Thesis we assume that our systems to do not rotate.
In that case, the second moment and the variance of the velocity distribution are equal
(after subtraction of the gradient), and we refer to these interchangeably.

Jeans equations for spherical systems

In the case of a spherical system, only one of the Jeans equations is non-trivially zero,
and it relates the 2nd moment of the radial velocity 〈v2

r〉, the stellar density ν(r), the
velocity anisotropy β(r) = 1− (〈v2

θ〉+ 〈v2
φ〉)/(2〈v2

r〉), and the total gravitational potential
Φ(r) as follows:

d(ν〈v2
r〉)

dr + 2β
r
ν〈v2

r〉 = −ν dΦ
dr . (1.6)

An equivalent, often useful form of this equation is
GM(r)

r
= 〈v2

r〉(γ∗ − 2β − α), (1.7)

where r is the spherical radius, γ∗ = −d log ν/d log r and α = d log〈v2
r〉/d log r. For ex-

ample, if the radial velocity and stellar density have been measured, and we make an
assumption on the velocity anisotropy β, we may be able to derive the mass distribu-
tion (gravitational potential) of the system. This is the most frequently used approach.
The velocity ellipsoid can be isotropic, in which case β = 0, tangentially or radially
anisotropic, when β < 0 or β > 0 respectively, and will in the most general case, vary
with radius. In the case of β = 0, this implies that the velocity distribution is ergodic,
i.e. it is only a function of energy f = f(E), while for anisotropic systems, f = f(E,L).

The above equations highlight a degeneracy between mass and anisotropy (if the
stellar density is perfectly known from observations; otherwise this also enters the de-
generacy). This is most easily seen if we assume that β is constant with radius. In that
case, Equation (1.6) reduces to (Binney & Tremaine 2008)

〈v2
r(r)〉 = 1

r2βν(r)

∫ ∞
r

dr′r′2βν(r′)dΦ
dr′ . (1.8)

We thus see directly that different combinations of the mass distribution, density and
anisotropy might conspire to produce the same velocity dispersion profile in the radial
direction. The situation is worsened by the fact that generally one deals with projected
quantities, as discussed below.

A way to reduce the degeneracy is to use higher moments, in particular, the 4th
moment equations are obtained by multiplying Eq. (1.4) by v3

r and vrv2
t and integrating

over velocity space (see Merrifield & Kent 1990):

d(ν〈v4
r〉)

dr − 3ν
r
〈v2
rv

2
t 〉+ 2

r
ν〈v4

r〉+ 3ν〈v2
r〉

dΦ
dr = 0, (1.9)

and
d(ν〈v2

rv
2
t 〉)

dr − ν

r
〈v4
t 〉+ 4

r
ν〈v2

rv
2
t 〉+ ν〈v2

t 〉
dΦ
dr = 0. (1.10)

If one assumes that the distribution function is of the form f(E,L) = f0(E)L−2β , it can
be shown that the anisotropy is constant, and these equations simplify significantly to

d(ν〈v4
r〉)

dr + 2β
r
ν〈v4

r〉+ 3ν〈v2
r〉

dΦ
dr = 0, (1.11)
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(Łokas 2002), whose solution may be expressed as

〈v4
r(r)〉 = 3

r2βν(r)

∫ ∞
r

dr′r′2βν(r′)〈v2
r(r′)〉dΦ

dr′ . (1.12)

As discussed above, the intrinsic moments are not directly accessible to the observer,
and only projected moments of the line-of-sight velocity distribution and stellar density
profile are measurable. Following Merrifield & Kent (1990) these projected moments take
the form

µ(R) = 2
∫ ∞
R

ν(r) rdr
(r2 −R2)1/2 , (1.13)

〈v2
los(R)〉 = 2

µ

∫ ∞
R

ν(r)
[(

1− R2

r2

)
〈v2
r〉+ 1

2
R2

r2 〈v
2
t 〉
]

rdr
(r2 −R2)1/2 , (1.14)

〈v4
los(R)〉 = 2

µ

∫ ∞
R

ν(r)
[(

1− R2

r2

)2

〈v4
r〉+ 3R

2

r2 (r2 −R2)〈v2
rv

2
t 〉+ 3

8
R4

r4 〈v
4
t 〉

]

× rdr
(r2 −R2)1/2 . (1.15)

Here R denotes the projected radial distance. Expressed in terms of the anisotropy β
these equations take the form

〈v2
los(R)〉 = 2

µ

∫ ∞
R

ν(r)
(

1− βR
2

r2

)
〈v2
r〉

rdr
(r2 −R2)1/2 , (1.16)

〈v4
los(R)〉 = 2

µ

∫ ∞
R

ν(r)〈v4
r〉g(r,R, β) rdr

(r2 −R2)1/2 , (1.17)

where
g(r,R, β) = 1− 2βR

2

r2 + β(1 + β)/2R
4

r4 , (1.18)

(Łokas & Mamon 2003). Eq. (1.17) is valid for the specific form of the distribution
function that leads to a constant anisotropy, while Eq. (1.16) is more general.

In the recent past, Jeans modeling has been the most frequently used method to
estimate the mass content of dSph (Łokas 2001; Kleyna et al. 2001; Koch et al. 2007b;
Gilmore et al. 2007; Walker et al. 2007b; Battaglia et al. 2008a). For simplicity, many
of the works assumed a constant anisotropy, and typically only the second moment is
fit using the Jeans equation (although see below). The first modeling attempts already
showed that mass following light models could not fit the relatively flat velocity dispersion
profiles observed, and that extended dark matter halos were needed, for example in the
case of Draco (Kleyna et al. 2001).

More recently, the focus has shifted to the type of dark matter halos that could
host dSph. For example, Gilmore et al. (2007) assumed the velocity ellipsoid to be
isotropic (β = 0), a cored light surface density distribution and a flat (inner) l.o.s. velocity
dispersion profile, and found that dSph could be embedded in cored or cuspy dark matter
halos (but shallower than the singular isothermal sphere). Walker et al. (2007b) assume
NFW profiles and constant anisotropy together with an exponentially declining surface
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brightness distribution. These authors fit the total mass Mvir and (constant) anisotropy
β, and assume a particular value for the concentration from the virial mass-concentration
relationship found in cosmological N-body simulations (e.g. Bullock et al. 2001; Macciò
et al. 2007). It is important to stress that a quantity such as the total mass is not well
constrained, but what is better constrained is the mass within a given radius (within the
region spanned by the dataset). Such a quantity is less sensitive to the functional form of
the density profile, and therefore preferable. Although the virial mass may be considered
just another (free) parameter of the fit, its meaning as representing the total mass of the
system is actually an extrapolation.

Walker et al. (2009b, 2010) have extended the modeling of their sample of dSph to
allow for more general forms of the density profile of the dark matter (ρ ∝ 1/(xγ(1 +
xκ)(3−γ)/κ), with γ, κ ≥ 0, i.e. as in Eq. (1.3) with an outer slope α = 3), while
still assuming constant anisotropy. They use a Monte Carlo Markov Chain (MCMC)
method to explore the space of parameters and find the best fit models. The results are
shown in Fig. 1.2. An interesting finding is that they can strongly constrain the mass
at the projected half-light radius rhalf (the projected radius enclosing half of the total
luminosity). Therefore, they also derive the circular velocity at rhalf , Vhalf , and hence
place lower limits on Vmax. This is only a lower limit because there is a degeneracy
between Vmax and the scale radius rs of NFW profiles, as there are many such profiles
consistent with a given measurement of Vhalf (Peñarrubia et al. 2008a)4.

Łokas (2009) performed Jeans modeling of Car, Fnx, Sext and Scl using the 2nd and
4th moments of the l.o.s. velocity distribution. In this paper, they remove interloper
stars iteratively, which leads to a velocity dispersion profiles that decrease with radius.
They therefore find systematically lower masses than other authors, and that models
in which mass follows light can in fact, fit the derived observables. However, the M/L
derived are still much greater than expected from standard stellar populations (generally
much greater than 10, see their Table 2). In the case of Draco, Łokas et al. (2005)
found that the anisotropy was mildly tangential for a model with a r−1 density profile
(with an exponential cut-off). This is consistent with the Jeans model by Walker et al.
(2009b) and also with Jardel & Gebhardt (2012) orbital based Schwarzschild model of
the system (within ∼ 1σ, see below). Although the use of the 4th moment leads to a
better constraint on the model parameters, its effect is relatively minor, and the solutions
found are rather similar to those in which only the second moment is used. The reason
for this may be attributed to the fact that the uncertainties on the measured kurtosis are
large (samples are still small to measure moments very reliably), and that the differences
with a Gaussian-like velocity distribution are not very big, in which case the 2nd moment
suffices to characterize the LOSVD.

Other interesting results based on the Jeans equations

As discussed in previous sections, the use of the spherical Jeans equations requires as-
sumptions on the functional form of the anisotropy and density profile of the system’s
dark matter halo. The solution to Eq. (1.14) gives us the parameters of the profile (a
mass/density and scale radius, and an anisotropy). More generally, also the shape of the

4 However, this degeneracy can be broken by measuring the velocity dispersion profile over a large
extent in radius, as shown by Breddels & Helmi (2013) or Chapter 3. There is a second, more
difficult to break degeneracy between the slope/functional form of the density profile and rs.
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Figure 1.2: Projected velocity dispersion profiles for eight bright dSph obtained by
Walker et al. (2009b). The profiles calculated from isothermal, power-law, NFW and
cored halos (with M(r) ∝ r1.4 are also shown. These fits have been obtained using the
spherical Jeans equations, and in particular Eqs. (1.8) and (1.16). For each type of halo
these authors fit only for the anisotropy (assumed to be constant) and mass normalization
(at a given scale/distance). The scale radius of the system is fixed for the various models
as indicated in the panels.
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density profile may be allowed to vary, as in Strigari et al. (2007b); Walker et al. (2009b).

A common mass scale? In two thorough studies, Strigari et al. (2007b, 2008) used
MCMC numerical methods to explore a large range of models for the dark halos hosting
dSph. These authors found that of all the parameters describing the model, the mass
within 300 pc was a robust and well determined quantity, that was roughly independent
of anisotropy or shape parameters. In an immediate application of this result, Strigari
et al. (2008) found that most dSph must be embedded in dark matter halos of similar
mass within this radius M300 ∼ 1 − 2 × 107M�, despite the fact that they span several
orders of magnitude in luminosity. Although these results have been refined, especially
for the ultrafaint dSph, which do not even extend up to 300 pc (and hence thisM300 is an
extrapolation), in general theM300 is confirmed to be a very weak function of luminosity
M300 ∝ L0.03±0.03 (Rashkov et al. 2012).

Robust measurement of M(r1/2) The virial theorem as well as the Jeans equa-
tions actually offer a plausible explanation for why the mass at a particular radius
may be estimated reliably from the LOSVD only. The virial theorem tells us that
Mtot = σ2

totrg/G where rg is the gravitational radius of the system (see Eq. (2.42) of
Binney & Tremaine 2008). On the other hand, Wolf et al. (2010) have shown analyti-
cally using the Jeans equation, that at the radius at which the slope of the stellar density
profile d log ν/d log r = −γ∗ = −3, the mass is very well constrained independently of
the anisotropy of the system. Thus

M(r−3) = 3 〈σ
2
los〉r−3

G
(1.19)

for a system with a flat velocity dispersion profile. Since most of the dSph have such
relatively flat profiles, Wolf et al. (2010) and also Walker et al. (2009b, 2010) in their
MCMC analysis of the Jeans equation have been able to confirm this analytic result.
In general, however, instead of estimating the radius r−3, Wolf et al. (2010) use the
half-light radius r1/2 since the two are very similar for most profiles used to model the
light distribution in dSph. Note that this is the 3D radius containing half of the total
luminosity of the system, and not the effective radius obtained from the surface brightness
profiles nor the 2D projected radius containing half of the luminosity, rhalf in Walker et al.
(2010).

These relations are also useful for ultrafaint dSph, provided these systems are in
dynamical equilibrium. The sample sizes for most of these systems are too sparse to
warrant a full dynamical model so general scalings as those just described may be more
useful. See also An & Evans (2011) for more information on the theory of virial mass
estimators.

General constraints on the df Not every solution to the Jeans equation has an
associated distribution function that is physical, i.e. positive everywhere. This is why it
is important to find additional conditions that can help identify when the assumptions
made to solve the Jeans Equations will lead to plausible (physical) solutions.

An & Evans (2006, 2009) and Evans et al. (2009) use the Jeans equations to explore
the asymptotic relations between the anisotropy β, the logarithmic slope of the light
distribution γ∗ and that of the underlying dark matter density profile near the center
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of a spherical system γDM . They show that, if the tracer population is embedded in a
spherical dark halo that is shallower than the singular isothermal sphere (γDM < 2) in
the center, a finite central velocity dispersion σr,0 implies a relation between the central
value of the logarithmic slope of the tracers γ∗,0 and the velocity anisotropy at the center
β0, namely γ∗,0 = 2β0. However, it is also possible that the system is dynamically cold
at the center (i.e. σr,0 = 0), in which case the condition is γ∗,0 > 2β0. This theorem
highlights that care is required in the interpretation of results based on assumptions such
as isotropy and spherical symmetry.

Ciotti & Morganti (2010) showed that there may be a more general relation that
should hold at all radii, which is that γ∗ ≥ 2β. This may be seen to be related to the
positivity of the mass (Eq. 1.7), as M ∝ γ∗ − 2β − α ≥ 0, where α = d log σ2

r/d log r.
Ciotti & Morganti (2010) have demonstrated the above relation holds for particular forms
of the distribution function (namely those in which the augmented density is a separable
function of radius and potential, see their Eqs.(1 - 6) for more details), but the more
general inequality (including α) should be always true.

However, it should also be born in mind that this analysis applies to intrinsic quanti-
ties implying for example, that even if σr,0 = 0, σlos can still be finite at the center, and
hence the theorem is, although correct, less powerful in predicting the orbital behavior
at the center, as we demonstrate in Chapter 5. Furthermore, a surface brightness profile
might have a very shallow cusp (as considered in Strigari et al. 2010), in which case the
velocity ellipsoid need not be isotropic.

1.2.2 Modeling through distribution functions
As stated previously, a solution to the Jeans equation is not necessarily physical since
there is no guarantee that a distribution function will exist that is positive definite
everywhere. This is one of the reasons why several authors have attempted to model
directly the distribution function itself.

Dejonghe & Merrit (1992) have studied the issue of how the projected velocity dis-
tribution as a function of position flos(vlos, rlos) for a spherical system constrains the
distribution function and gravitational potential. They show that if the form of the
spherical potential is specified, then f(E,L) is uniquely determined by flos(vlos, rlos).
However, if the spherical potential is not known, they argue that there will be a family
of possible potentials, but only those that lead to a df that is positive everywhere would
be allowed, and not every potential will permit that.

Merritt & Saha (1993) explore the problem of inferring the gravitational potential
of a spherical system from measurements of the l.o.s. velocity and positions for in-
dividual stars (or galaxies, in their case). They assume that the distribution func-
tion may be expressed as a polynomial expansion: f(E,L) =

∑
m,n cm,nfm,n where

fm,n = (−E)n−1/2L2m, hence this distribution function is non-parametric. To determine
the properties of the potential, however, a few parametric forms are considered. Thus
from a discrete set of velocities of galaxies in the Coma cluster, they find best solutions
in a maximum likelihood sense. These authors estimate that meaningful constraints are
possible with datasets containing ∼ 1000 objects.

Wu & Tremaine (2006) (see also Merritt 1993) take an even more general form for
the distribution function, namely they divide the (E,L) space into NE × NL bins, and
construct a set of top-hat basis functions, hmn = 1/Vmn where Vmn =

∫
mn

d3xd3v is the
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phase-space volumen associated to bin mn. Thus, f(E,L) =
∑
mn wmnhmn, and the

task consists in finding the weights wmn that fit the observables after assuming a specific
gravitational potential. Wu & Tremaine (2006) use this technique to infer the mass of
M87 from the motions of its globular clusters. These approaches are very powerful as they
use maximally the datasets, without turning to moments to characterize the LOSVDs,
and are also free of assumptions regarding the distribution function. In Chapter 4, we fit
similar models where instead of the top-hat functions we use orbits as building blocks.

Wilkinson et al. (2002) introduce a family of anisotropic distribution functions for
spherical systems, in which the dominant gravitational potential is cored and parametrized
as v2

c = v2
0r

2/(1 + r2)1+δ/2. For different values of the characteristic parameters (−2 ≥
δ ≥ 1), this leads to flat or declining rotation curves. The velocity ellipsoid is isotropic
in the center, and may become radially or tangentially anisotropic at intermediate radii,
while at large distances it is constant. The advantage of this family of distribution func-
tions is that the expressions for the various moments (including the 2nd and 4th) are
analytic, and depend only on the parameters of the distribution function. This means,
that in principle, these characteristic parameters could be retrieved directly through
comparison to observations. They also compute the projected (observable) quantities
for different values of the parameters. The resulting l.o.s. velocity dispersion profiles
(see their Fig. 3) can be flat, rising or declining depending on the distribution function.
In Kleyna et al. (2002) they have applied this modeling to a dataset for Draco with
∼ 160 member stars, and found that the system is best fit by a slightly tangentially
anisotropic ellipsoid and with a halo that falls off more slowly than a flat rotation curve
model (vc ∝ r0.17), while they are also able to rule out a mass-follows-light model and
an extended harmonic core with 3σ confidence.

1.2.3 Made to measure
The Made-to-Measure (M2M) is a numerical method that integrates the orbits of test
particles in a gravitational potential in order to reproduce a given set of observables
(Syer & Tremaine 1996). Particles have associated weights, which themselves follow
equations of motion. The system is evolved in time until a satisfactory solution has been
found. The gravitational potential may be specified or determined self-consistently, and
the resulting distribution function is completely non-parametric, and determined by the
final particle’s configuration that satisfies the observational constraints. The method can
be used to model individual measurements or moments of a LOSVD (as with N-MAGIC
in de Lorenzi et al. 2007).

Long & Mao (2010) have modeled Draco using the data from Kleyna et al. (2002) and
assumed an isotropic velocity ellipsoid, and the same type of cored potentials as Wilkinson
et al. (2002). The best fit model has asymptotic slope for the squared circular velocity v2

c

of δ = −0.90+0.36
−0.35, while for the mass within three core radii they find 9.7±2.3×107M�,

in comparison to Kleyna et al. (2002) who obtain δ ∼ −0.34 and a somewhat smaller
mass. Long & Mao (2010) attribute this difference to their assumption of isotropy.

1.2.4 Schwarzschild modeling
This is the method of choice in this Thesis, and it is discussed and used extensively in
Chapters 2, 3 and 4. Schwarzschild modeling is by now a traditional technique to derive



1.2: Dynamical modeling 17

the mass distribution, especially in elliptical galaxies, from integrated light spectroscopy.
It was initially developed in the 1980s (Schwarzschild 1979; Richstone & Tremaine 1984),
and used extensively to derive M/L and black hole masses in the 1990s and the 2000s
(e.g. Rix et al. 1997; van der Marel et al. 1998) where it was extended to allow for
axisymmetric models, and even triaxiality (van den Bosch et al. 2008). The basic idea of
the method is that the building blocks of galaxies are orbits, and through the right orbital
superposition it is possible to match the light and kinematic distributions observed.

Therefore the method consists in assuming a specific gravitational potential, cal-
culating the observables predicted for each orbit, and then weighting the orbits (with
non-negative weights) to obtain a model that fits the observed data in a χ2 sense. This
approach guarantees that the distribution function obtained (which is reflected in the
orbit weights) is non- negative. The fitting procedure thus allows the determination of
the characteristic parameters of the best fit model for a specific gravitational potential.
If one wishes to test different functional forms for the gravitational potential, then new
orbit libraries need to be built, and the fitting procedure is repeated. The advantage
of this method is that it does not make assumptions about the form of the anisotropy
or the distribution function (rather these are an outcome of the model), and therefore
it is less biased than some of the modeling techniques described above. Naturally, it is
less flexible in the sense that it is more computationally intensive/expensive, and hence
it is possible to explore a smaller variety of gravitational potentials, than for example,
through Jeans models.

Despite the vast history, this method has not been applied systematically to the
dynamical modeling of dwarf galaxies until very recently. Besides the work described
in this Thesis, Jardel & Gebhardt (2012) have presented three-integral, Schwarzschild
models of Fnx that take into account the non-spherical light distribution of this galaxy,
although embedded in a spherical dark matter halo. These authors have tested a cored
profile ρ ∝ (3r2

c + r2)/(r2
c + r2)2 and the NFW model. They find that the cored model is

strongly favored, and that the velocity ellipsoid is mildly radially anisotropic. Their mass
for Fnx M(Re) = 3.9+0.46

−0.11 × 107M� is somewhat smaller than what the estimators by
Wolf et al. (2010) or Walker et al. (2009b, 2010) would predict. Jardel & Gebhardt (2012)
argue that this might be related to the fact that those estimators have been established
(and shown to be independent of anisotropy) for spherical models. Another difference
might lie in that the amplitude of the line-of-sight velocity dispersion profile they derive
for Fnx is somewhat lower than that derived, for example, in Chapter 3 of this Thesis.

Jardel et al. (2013), return to spherical models, but assume that the density profile
for the dark matter is non-parametric. They model Draco in this way, and find that the
preferred model is a power-law, with a slope quite similar to the NFW, that is γDM = 1
for 20 ≤ r ≤ 700 pc, and that the velocity ellipsoid is radial. Note that, in comparison
to Wilkinson et al. (2002), Jardel et al. (2013) have allowed greater freedom in the form
of the density profile (and have not forced cored models), and hence their results are
potentially more robust.

1.2.5 Modeling dSph with composite stellar components
Several dSph host multiple stellar chemo-dynamical components. Since these components
are embedded in the same gravitational potential, they allow to place more stringent
constraints on the properties of this potential, since e.g. each of the component has to
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Figure 1.3: L.o.s. velocity dispersion profiles for the Sculptor members more metal-
rich than [Fe/H]= −1.5 (filled squares) and more metal-poor than [Fe/H]= −1.7 (open
squares), from rotation-subtracted velocities in the Galactocentric Standard of Rest sys-
tem (see Battaglia et al. 2008a).

satisfy the Jeans equations independently. In practice this means that there are fewer free
parameters since each component will follow its own distribution function entering the
left-hand-side of Eq. (1.6), but the right-hand-side will be the same, thereby effectively
leading to a reduction in the number of degrees of freedom.

This idea was first exploited by Battaglia et al. (2008a), who modeled Scl using two
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components, a metal-rich centrally concentrated, and a metal-poor hot and extended,
both embedded in a dark matter halo. These authors found, using Jeans models, that
the metal-poor component was better fit with a nearly flat anisotropy profile, while the
metal-rich one, because of its rapidly falling velocity dispersion profile (see Fig. 1.3),
required a radially anisotropic ellipsoid. They found that cored models provided better
fits but that NFW models could not be ruled out. In Chapter 4 we see that these two
(likely the same) components will appear in the distribution function without using the
chemical information.

Walker & Peñarrubia (2011) put forward another use of the composite stellar compo-
nents, namely to infer the slope of the dark matter profile. These authors argue that one
might consider Eq. (1.19) for each component separately, so that the mass of the host
halo is constrained at the half-mass radius of each component independently. This then
leads to two measurements of the mass at two different radii, and hence to a slope. They
have performed many tests of their method, whose basic assumption is that the l.o.s.
velocity profiles are flat, and found that their results are relatively robust to such (and
other) assumptions, although systematic uncertainties affect the masses at rhalf which
depend on the density profile of the halo and the degree of embedding of the stars).
These authors define

Γ = ∆ logM/∆ log r = log(Mh,2/Mh,1)
log(rh,2/rh,1) ∼ 1 + log(σ2

2/σ
2
1)

log(rh,2/rh,1) , (1.20)

where rh,pop and Mh,pop refer to the projected half-light radius and the mass at this
point, while σ2

pop is the global velocity dispersion that characterizes the population, and
where pop = 1, 2, i.e. metal-rich or metal-poor components. In the limit of r → 0,
then d logM/d log r = 3− γDM where γDM is the central value of the slope of the dark
matter density profile. Since d logM/d log r decreases as r increases for any reasonable
density profile, this implies that 3 − γDM > Γ, or alternatively that γDM < 3 − Γ,
as the slope Γ is measured at a finite distance from the center. Walker & Peñarrubia
(2011) find Γ = 2.61+0.43

−0.37 for Fnx, while for Scl Γ = 2.95+0.51
−0.39. This thus implies that

NFW-like profiles (γDM = 1) would be ruled out at significance levels & 96% and & 99%
respectively for these systems. These results are much more stringent than any of the
previously reported findings by other authors, where typically both profiles are consistent
with the data.

More recently, Amorisco & Evans (2012a) have modeled the two populations in Scl us-
ing Michie-King models. These are isotropic in the center and become radially anisotropic
in the outskirts. The validity of these assumptions for the velocity ellipsoid is taken from
their analysis of the shape of the l.o.s. velocity distributions of Scl in Amorisco & Evans
(2012b), whose estimates of the 4th moment would suggest a radially anisotropic ellipsoid
(see however Chapter 2, where we find a kurtosis profile that is consistent with tangen-
tial anisotropy). Under these assumptions for the velocity ellipsoid (or the distribution
function) these authors find that cored mass distributions are preferred over cusped ones.
Given the uncertainties in the measurements of the 4th moments, this result could be
related to the assumed shape of β(r) rather than necessarily reflect the underlying mass
distribution.

Agnello & Evans (2012) use the projected virial theorem and argue that the two
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populations in Scl should satisfy independently the virial theorem,

Klos,1

Klos,2
= Wlos,1

Wlos,2
(1.21)

from which the obtain the relation

(
σ0,1

σ0,2

)2
> 2

(
Rh,1
Rh,2

)
, (1.22)

if the stars follow Plummer profiles and are embedded in NFW halos. Given their
estimates of these various observables, Agnello & Evans (2012) conclude that no NFW
halo can be compatible with the energetics of the two populations. Because the two
populations should co-exist in virial equilibrium, the authors argue that this implies that
the dark halo must be cored, and they estimate its size to be ∼ 120 pc.

The results presented in this section all argue that the modeling using two (or mul-
tiple) components disfavor NFW/cuspy profiles for dSph, at least for Fnx and Scl. It
is striking that the consideration of two components in dynamical equilibrium point all
in the same direction. It would be important to confirm these results using fully-fleshed
non-parametric methods, such as Schwarzschild or Made-to-Measure, that explore the
presence of multiple populations and remove some of the (systematic) uncertainties in the
use of global scaling relations. It would also be desirable to understand the extent down
to which these systems’ properties are better described using a few independent compo-
nents, rather than to assume that the properties of the stars change gradually throughout
the system, and specifically how these assumptions affect the dynamical models and their
conclusions.

Figure 1.4 compares the results of various modeling approaches on Scl. In this figure
we have plotted the mass distribution derived using Schwarzschild models from Chapter
3 (or Breddels & Helmi 2013). We have included here estimates ofM300 by Strigari et al.
(2008) and Walker et al. (2009b) and at the 3D half-light radius by Wolf et al. (2010).
These estimates are all consistent with those obtained of Chapter 3 which is reassuring.
The mass estimated at 1.8 kpc obtained by Battaglia et al. (2008a) assuming a cored
density profile but modeling simultaneously metal-rich and metal-poor populations is
also shown (open black circle). It is on the upper side of the curves, but is consistent
within error bars, and is beyond the region where the mass profiles are indistinguishable,
so this mass estimate is likely to be more model dependent. Finally, the two estimates of
the mass derived by Walker & Peñarrubia (2011) are shown as diamonds in this Figure.
These two estimates of the mass at the projected half-light radius of the metal-rich
and metal-poor components of Scl, appear to be somewhat larger than what is found in
Chapter 3. This is consistent with the systematic uncertainties that Walker & Peñarrubia
(2011) reported from their Monte Carlo simulations. However, we notice that the mass
at the half-light radius of the metal-poor component is more overestimated than that of
the metal-rich one (and even higher than M300 or M1/2 for example). In view of this,
it seems plausible that the slope Γ that Walker & Peñarrubia (2011) derived could be
overestimated, in which case, cuspy profiles with γDM > 0 could still be allowed.
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Figure 1.4: Mass distribution M(r) for Scl derived in Chapter 3. The various curves
represent the best fit models obtained using Schwarzschild’s orbit-based method. As in
the case of Fnx, the various density profiles appear indistinguishable from one another.
We have overlaid various measurements for the mass at different radii, including those
obtained considering separately the metal-rich and metal-poor populations by Battaglia
et al. (2008a), and by estimating separatelyM1/2 for the metal-rich (MR) and metal-poor
(MP) component in Walker & Peñarrubia (2011).

1.3 This Thesis
In this thesis we focus on applying Schwarzschild modelling to fit the internal kinematics
of Local Group dSph galaxies.

In Chapter 2 we have developed spherically symmetric dynamical models of dwarf
spheroidal galaxies using Schwarzschild’s orbit superposition method. We present our
results for the Sculptor dwarf spheroidal galaxy, after testing our methods on mock data
sets. We fit both the second and fourth velocity moment profile to break the mass-
anisotropy degeneracy. For an NFW dark matter halo profile, we find that the mass of
Sculptor within 1 kpc is M1kpc = (1.03±0.07)×108 M�, and that its velocity anisotropy
profile is tangentially biased and nearly constant with radius. The preferred concentration
(c ∼ 15) is low for its dark matter mass but consistent within the scatter found in N-
body cosmological simulations. When we let the value of the central logarithmic slope
α vary, we find that the best-fit model has α = 0, although an NFW cusp or shallower
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is consistent at 1σ confidence level. On the other hand, very cuspy density profiles with
logarithmic central slopes α < −1.5 are strongly disfavoured for Sculptor.

In Chapter 3, we use the same models to fit both the 2nd and 4th moments of the
line of sight velocity distributions of the Fornax, Sculptor, Carina and Sextans dwarf
spheroidal galaxies. Our goal in this Chapter is to compare dark matter profile models
of these four systems using Bayesian evidence. We consider NFW, Einasto and several
cored profiles for their dark halos and present the probability distribution functions of
the model parameters. When considering each system separately, we find there is no
preference for one of these specific parametric density profiles. However, the combined
evidence shows that is unlikely that all galaxies are embedded in the same type of cored
profiles of the form ρDM ∝ 1/(1+r2)β/2, where β = 3, 4. For each galaxy, we also obtain
an almost model independent, and therefore accurate, constraint on the logarithmic slope
of the dark matter density distribution at a radius ∼ r−3, i.e. where the logarithmic slope
of the stellar density profile is −3. This is because all our best fit models essentially have
the same mass distribution over a large range in radius (from just below r−3 to the last
measured data point). This remarkable finding likely implies much stronger constraints
on the characteristics that subhalos extracted from cosmological simulations should have
in order to host the dSph galaxies around the Milky Way.

In Chapter 4 we fit the full line of sight velocity distribution of Sculptor, with again
orbit-based dynamical models. Unlike previous work based the moments of the line of
sight velocity distribution, we use the individual measured velocities. When we test our
method on a Mock dataset, we find that we can recover well the distribution function and
the parameters of the underlying potential. To estimate the effects of sampling, we test
the method both using the expectation value of the log likelihood of the data and on a
discrete dataset of 2,000 stars, i.e. the size available for Sculptor, as well as one that is 5×
larger. This enables us to show we accurately estimate the parameters of the potential
and without bias with 6% (3%) uncertainty in the mass for a kinematic dataset of 2,000
(10,000) stars. When we apply our method to Sculptor, assuming a Navarro, Frenk &
White profile, we find a mass of M1kpc = 108.05±0.024M� and rs = 5.1+2.6

−1.7 kpc which
are consistent, though slightly larger, than the estimates presented in Chapters 2 and
3. Interestingly, the distribution function of our best fit model appears to be bimodal,
a result that is also present when the dataset is modeled using its moments and with
different dark matter halo profiles. We show that an association to the metal-poor and
metal-rich components known to exist in Sculptor is plausible. Hence this constitutes a
demonstration of the full power of Schwarzschild’s method, because the multi-component
nature of Sculptor is not explicitly assumed in our modeling.

In the last chapter (Chapter 5), we demonstrate the existence of distribution functions
that can be used to represent spherical massless cored stellar systems embedded in cuspy
dark matter halos with constant mildly tangential velocity anisotropy. This provides full
support to the fact that the models presented in Chapters 2, 3 and 4 are truly physical.
In particular, we derive analytically the functional form of the distribution function for
a Plummer stellar sphere in a Hernquist dark halo, for β0 = −0.5 and for different
degrees of embedding. This particular example satisfies the condition that the central
logarithmic slope of the light profile γ0 > 2β0. Our models have velocity dispersion
profiles similar to those observed in nearby dwarf spheroidal galaxies. Hence they can be
used to generate initial conditions for a variety of problems, including N-body simulations
that may represent dwarf galaxies in the Local Group.
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1.4 Future directions
In the previous sections we have discussed the status of the field, and have begun to iden-
tify directions where more research would be desirable to understand the properties and
dynamics of dSph. In the case of the dynamical modeling, much of this work, including
this Thesis, has been done assuming that the dSph are embedded in spherical dark mat-
ter halos (and often, even assuming their light distribution is approximately spherical).
First attempts to veer from this assumption have been made using the Jeans equations
(Hayashi & Chiba 2012), but these have the limitation of exploring parametric models.
It is therefore desirable to apply non-parametric modeling, for example along the lines of
Jardel & Gebhardt (2012, although these authors still assume the dark halos are spheri-
cal), who have used Schwarzschild models assuming non-spherical light distributions. In
fact, van den Bosch et al. (2008) have performed triaxial modeling of elliptical galaxies,
implying that the tools needed for the dSph may already have been largely developed
(see also van de Ven et al. 2006, for the modeling of OmegaCen in the limit of axisymme-
try). Another example, is the M2M modeling of the Galactic bar by Long et al. (2013).
Unfortunately the sample sizes for the most classical dwarfs may be still too small to
warrant such sophisticated approaches, with the possible exceptions of Sculptor and For-
nax. Nonetheless, it is worthwhile establishing what are the degeneracies/limitations in
the modeling, and to what extent they can be broken by different datasets. This can be
addressed by applying dynamical models on Mock datasets, for example extracted from
N-body simulations or generated from known distribution functions.

The use of proper motion measurements of stars in dSph is another unexplored aspect
of the dynamical modeling. The reason is, of course, that this has been beyond the
capabilities of current instrumentation. However, the situation is likely to change in the
coming years. For example, it is now possible to constrain the mean tangential motions of
dSph using the Hubble Space Telescope (see Piatek & Pryor 2008, and references therein),
and these measurements are likely to be significantly more accurate with the advent of
Gaia5. The internal motions may still be just about beyond reach for individual stars in
dSph. For example for a star at 70 kpc, an internal tangential velocity of vt ∼ 10 km s−1

translates into proper motion of µ ∼ 30µas/yr. For a star of magnitude G ∼ 17, the
accuracy expected for the Gaia mission is σµ ∼ 36µas/yr, and hence the internal velocity
and its error will be of comparable magnitude. This implies, however, that one ought to
be able to bin the data to obtain a tangential velocity curves with reasonable accuracy,
as the error on the dispersion is inversely proportional to the square root of the sample
size. For the UFDs the situation is less clear, as these objects have faint and sparsely
populated red giant branches. At these characteristic faint magnitudes Gaia’s proper
motion accuracies degrade quickly, from ∼ 80µas/yr at G = 18, to 140µas/yr at G = 20.
For an object at a distance of ∼ 40 kpc, this implies an error in the tangential velocity of
∼ 15−25 km s−1. Although in principle one can reduce this error by binning, the sparsely
populated RGBs prevent from obtaining the significant gains needed to characterize the
internal kinematics of the UFDs. Nonetheless, these measurements clearly will allow the
determination of their orbit, as well as aid in establishing membership and potentially
finding extra-tidal stars and streamers. On the other hand, for the brightest stars in the
LMC (those with G . 15), the expected accuracies are in the range ∼ 4−14µas/yr, which

5 See http:www.rssd.esa.intindex.php?project=GAIA&page=Science_Performance for the latest esti-
mates of its performance.
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at a distance of ∼ 50 kpc, corresponds to a tangential velocity error of ∼ 0.1− 3.3 km/s,
comparable to what can be obtained nowadays for the l.o.s. velocities routinely from the
ground.

Wilkinson et al. (2002) have studied the impact of proper motion information follow-
ing the specifications planned for the former SIM mission, namely 3 – 6 µas/yr, which
translates into 1-2 km/s for stars in Draco of magnitude V ∼ 19−20. These authors show
that by adding proper motion information for samples as small as 160 stars, it is possi-
ble to obtain accurate estimations of both the velocity anisotropy and mass slope, and
thereby break modeling degeneracies unambiguously. This is also confirmed by Strigari
et al. (2007a), who show that, for general dark matter density and anisotropy profiles,
the log slope of the dark matter profile at about ∼ 2rc can be measured to within ±0.2 if
the proper motions of 200 stars (with tangential velocity errors of ∼ 5 km/s) are added
to the l.o.s. velocity measurements. This would allow to place tighter constraints on the
type of dark matter halos hosting dSph, and hence possibly also on the nature of dark
matter.
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Abstract
We have developed spherically symmetric dynamical models of dwarf spheroidal galaxies using
Schwarzschild’s orbit superposition method. This type of modelling yields constraints both
on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital
structure of the system (e.g. velocity anisotropy). This method is thus less prone to biases
introduced by assumptions in comparison to the more commonly used Jeans modelling, and it
allows us to derive the dark matter content in a robust way. Here we present our results for
the Sculptor dwarf spheroidal galaxy, after testing our methods on mock data sets. We fit both
the second and fourth velocity moment profile to break the mass-anisotropy degeneracy. For
an NFW dark matter halo profile, we find that the mass of Sculptor within 1 kpc is M1kpc =
(1.03± 0.07)× 108 M�, and that its velocity anisotropy profile is tangentially biased and nearly
constant with radius. The preferred concentration (c ∼ 15) is low for its dark matter mass but
consistent within the scatter found in N-body cosmological simulations. When we let the value
of the central logarithmic slope α vary, we find that the best-fit model has α = 0, although
an NFW cusp or shallower is consistent at 1σ confidence level. On the other hand, very cuspy
density profiles with logarithmic central slopes α < −1.5 are strongly disfavoured for Sculptor.
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2.1 Introduction

The existence of dark matter has been invoked to explain discrepancies in the observed
kinematics of (systems of) galaxies. Especially in the last 30 years it has become a key
ingredient of our current cosmological model, the Λ cold dark matter paradigm (hereafter
ΛCDM). N-body simulations have made clear predictions on how dark matter should be
distributed in the Universe. Navarro, Frenk & White (1996) showed that simulated dark
halos have a universal internal density distribution, now known as the NFW profile.
Although there have been some revisions, the general form has remained, and the inner
regions of simulated dark halos are found to be cusped with logarithmic slopes in the range
−1.2 to −0.75 (Navarro et al. 2010). CDM simulations have also revealed the existence
of a universal spin distribution and of relations between the characteristic parameters of
a dark halo such as concentration and mass (e.g Bullock et al. 2001a).

The predictions of the ΛCDM model may be tested using kinematic data. Cleaner
tests are generally obtained using tracers located at large distances, i.e. in the regions
that are dominated by the dark matter (e.g Romanowsky et al. 2003; Battaglia et al.
2005, 2006; Xue et al. 2008). In these examples, a relatively accurate measurement of
the mass contained within a given radius can be obtained, but constraints on the density
profile depend on good knowledge of the spatial distribution of the tracers, which may
be somewhat uncertain. Another possibility is to use galaxies that are dark matter
dominated at all radii, such as low surface brightness systems (de Blok 2010).

An example of the latter class are the dwarf spheroidal (dSph) galaxies satellites of the
Milky Way (Mateo 1998). These appear to be the most dark matter dominated galaxies
with total dynamical mass to stellar light ratios in the order of 100-1000 M�/L� derived
under the assumption of dynamical equilibrium (e.g. Wolf et al. 2010). The nearby dSph
galaxies have the additional advantage that individual stars can be resolved, and their
red giant branch (RGB) stars are bright enough to measure line-of-sight velocities with
errors of a few km s−1 (Mateo et al. 1991). The dynamical modelling of these objects is
relatively simple since they are rather round, pressure supported and show little or no
rotation. Their high dynamical mass-to-light ratios makes these systems ideal to study
dark matter halos, especially their internal structure and to constrain their inner density
profiles.

Most of the Milky Way dSph satellites have been modelled using the spherical Jeans
equations (e.g. Kleyna et al. 2001; Battaglia et al. 2008; Strigari et al. 2008; Łokas
2009; Walker et al. 2009b), while for more distant objects, such as the dSph satellites of
M31, masses have been derived from the average velocity dispersion and projected mass
estimators (Kalirai et al. 2010; Collins et al. 2010). In Jeans models one has to specify (i)
the form of the light distribution, (ii) the density profile (or equivalently the gravitational
potential) of the dark matter component, and (iii) velocity anisotropy of the stars. These
characterise a given Jeans model, from which the second velocity moment projected along
the line-of-sight can be computed. This is then compared to the measured line-of-sight
velocity dispersion of the stars at different locations across the galaxy to establish the
performance and characteristic parameters of the specific model.

Jeans modelling suffers from a number of limitations. Firstly the functional form of
the velocity anisotropy has to be specified a priori while it is generally unknown. This
is because precise measurements of the proper motions of stars in dSph are well beyond
reach with current instrumentation. Also inherent to the method is the comparison be-
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tween the moments of the model to those of the data which requires binning of the data
and generally implies loss of information. It is also important to note that there is no
guarantee that the resulting distribution function is non-negative everywhere, a require-
ment for it to be physical. Nonetheless, there have been interesting discoveries based
the use of the Jeans equations and which are robust to assumptions of the underlying
anisotropy profile. These include for example, the existence of a possible common mass
scale of dwarf spheroidals (e.g. Strigari et al. 2008), and the tight constraints on the total
mass within the half-light radius of these systems (Walker et al. 2010; Wolf et al. 2010).

Recently, An & Evans (2009) demonstrated that if the tracer population is supported
by a spherical dark halo with a core or a cusp (less steep than a singular isothermal
sphere), then the central value of the logarithmic slope γ0 of the light profile and the
central velocity anisotropy β0 are related as γ0 = 2β0. This is valid if σr(0) > 0, i.e.
only if the stars are not dynamically cold in this region. This would imply that the
derived existence of a cusp or core at the centre could merely be a consequence of the
assumptions alone, if just the second velocity moment is modelled using Jeans equations
(see also Ciotti & Morganti 2010, who show that a density slope-anisotropy inequality
γ > 2β holds at all radii, at least for a specific class of distribution functions for spherical
systems). Thus care is required in interpreting the outcome of this type of models.

The above discussions shows clearly that there is a need to go beyond the modelling
of the second moment using Jeans equations. For example, Łokas (2002) proposed to use
higher moments to constrain the internal dynamics of dSphs since the kurtosis profile
depends mostly on anisotropy while the velocity dispersion depends both on mass and
anisotropy Łokas et al. (2005), hence this lifts some of the degeneracies. Other possi-
bilities would be to use parametrised phase-space distribution functions as pioneered by
Kleyna et al. (2001, 2002); Wilkinson et al. (2002a) (see also Amorisco & Evans 2012a),
or the made-to-measure technique (Syer & Tremaine 1996; Long & Mao 2010).

In this chapter we take a different approach and use a technique named Schwarzschild
modelling (Schwarzschild 1979) to probe the internal dynamics and characterise the
dark matter content of the Sculptor dwarf spheroidal galaxy. The basic steps of the
Schwarzschild method are to integrate a set of orbits in a given potential, calculate the
predicted observables for each orbit, and then to weigh the orbits (with non-negative
weights) to obtain a model that fits the observed data well in a χ2 sense. This ap-
proach guarantees that the distribution function (which is reflected in the orbit weights)
is non-negative. This method was originally used by Schwarzschild (1979) to prove that
a self consistent solution in dynamic equilibrium exists for a triaxial system, but was only
implemented to reproduce the density distribution. The method was later extended to
include kinematic constrains (Richstone & Tremaine 1984; Pfenniger 1984). Since then
many codes have been developed (e.g. Richstone & Tremaine 1984; Rix et al. 1997; van
der Marel et al. 1998; Cretton et al. 1999; Valluri et al. 2004; van den Bosch et al. 2008).
While first only the lowest moments of the line of sight velocity distribution (mean ve-
locity and velocity dispersion) were fitted, better data have led to the inclusion of higher
moments in the fits. While the use of moments allows one to use linear or quadratic
programming to find the orbit weights, also likelihood methods using discrete data have
been developed (e.g. Merritt & Tremblay 1993; Wu & Tremaine 2006; Chanamé et al.
2008). A great advantage of Schwarzschild modelling is that it does not require the spec-
ification of the anisotropy profile, this is in fact an outcome of the model (see also Jardel
& Gebhardt 2012; Jardel et al. 2012, for applications on the Fornax and Draco dSph).
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Sculptor (Scl) is a dwarf spheroidal galaxy satellite of the Milky Way. It lies at high
galactic latitude and is located at a heliocentric distance of 79 kpc. With an ellipticity
of 0.32 (axis ratio is 0.68) it is not extremely flattened (Irwin & Hatzidimitriou 1995),
allowing us to approximate and model Sculptor as a spherical object. Its luminosity is
LV = 2.15×106L� and one recent estimate of its dynamical mass is 2−3×108M� within
1.8 kpc (Battaglia et al. 2008). Its (stellar) mass distribution can be well fitted with a
Plummer profile with scale radius b = 13.0 arcmin (' 0.3 kpc, Battaglia 2007). Two large
kinematic data sets have been compiled by Battaglia et al. (2008) and by Walker et al.
(2009a), leading to a total ∼ 2000 member stars with radial velocity measurements with
errors of ∼ 2 km/s. As we show below, the combination of these two data sets together
with the Schwarzschild method allows us to constrain the dark matter distribution of
Sculptor and its internal orbital structure.

This chapter is organised as follows. In §2.2 we will describe the basic ingredients of
Schwarzschild modelling, especially focusing on how it can be applied to dSph data. In
§2.3 we validate our model on a mock data set motivated by the current Sculptor data.
In §2.4 we apply the technique to Scl data, we present a brief discussion in §2.5, and
leave our conclusions to §2.6.

2.2 Dynamical model
In this section we review some of the theory that provides the basis for our Schwarzschild
method. We then describe how to generate models and focus later on how these can be
fit to the observables.

2.2.1 Generalities
The phase-space structure of a galaxy can be specified by its distribution function (here-
after df) f(x,v), where x and v are the position and velocity coordinates respectively.
The probability of finding a star in the volume dxdv is given by f(x,v)dxdv. All ob-
servables may be derived from knowledge of the df. For example the normalised surface
density:

µ(x, y) =
∫

dzdvf(x,v), (2.1)

where z is the direction along the line-of-sight.
According to the (strong) Jeans (1915) theorem, the df of a steady-state stellar system

in which almost all orbits are regular, is a function of the isolating integrals of motion
(see also Binney & Tremaine 2008). Spherically symmetric systems (both in the tracer’s
density and the underlying potential) have only regular orbits and generally respect 4
integrals of motion, the energy and the 3 components of the angular momentum vector.
However, if the galaxy shows no rotation, due to symmetry, the df will depend only
on the energy and the length of the angular momentum vector, i.e. f(x,v) = f(E,L).
Furthermore if the velocity distribution is isotropic, the df can only depend on energy
and f(x,v) = f(E).

Most dSph galaxies are so distant that the only phase-space coordinates that may be
measured currently are the projected stellar positions on the sky, and the line-of-sight
velocities of (a subset of) its stars. These can be used to derive the surface density µ0(R)
and the moments of the line-of-sight velocity distribution:
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µ0(R) =
∫

dzdvf(E,L), (2.2)

µ2(R) = 1
µ0(R)

∫
dzdvv2

‖f(E,L), (2.3)

µ4(R) = 1
µ0(R)

∫
dzdvv4

‖f(E,L). (2.4)

Here R is the projected distance on the sky from the centre of the galaxy and v‖ the
velocity along the line-of-sight, after subtraction of the centre of mass mean motion.

The above equations suggest that through comparison to the observables it should be
possible to derive the form of the df. In some cases, it may be better to parametrise the
df and try to estimate its characteristic parameters by comparison to the data (Wilkin-
son et al. 2002b; Amorisco & Evans 2012a). However, in this work we prefer to use a
non-parametric approach such as the Schwarzschild method. This method uses orbits
integrated in a specific gravitational potential as building blocks. From these, light and
kinematical profiles may be derived and compared to observations through appropriate
weighing of the orbits.

In the case of a dwarf galaxy embedded in a spherical dark matter halo, the grav-
itational potential can be characterised by a few parameters such as: i) the (enclosed)
mass of the dark matter halo MDM, and ii) its scale parameter rDM. Due to the high
dynamical mass-to-light ratios of dSphs, we do not expect the stellar mass to have a sig-
nificant influence on the dynamics of the galaxy. We assume a fixed stellar mass-to-light
ratio of M�/L� = 1 as in Walker et al. (2007), and hence from the light distribution we
may directly derive the gravitational potential associated to the stars. In the remainder
of the chapter we shall refer to properties related to the stellar mass and luminosity
interchangeably.

Thus in practise, for a given set of parameters of the potential, we integrate orbits
and match these to the observations by adjusting the orbital weights. We then repeat
this exercise for other values of these parameters. This can be used to establish the values
of the set of parameters which result in a better fit to the observables.

2.2.2 From the model to the observables
Our Schwarzschild method is based on many of the ideas of Rix et al. (1997) and van den
Bosch et al. (2008). It is however, a new implementation that is optimised for spherical
symmetry. Among other small improvements, our code can be run in parallel and is
therefore significantly faster; furthermore for each orbit, we do not store the full line-of-
sight velocity distribution but only its moments, which also reduces the computational
load.

We now focus on how to generate the observables, namely the surface density and
moments of the line-of-sight velocity distribution of the models and how to compare these
to data.

For convenience we define l = L/Lmax the relative angular momentum (where Lmax
is the angular momentum of a circular orbit of energy E), such that l ∈ [0, 1]. This
enables us to define a rectangular grid in energy and relative angular momentum. Since
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the Schwarzschild method is based on orbit integrations, the df may be seen as a sum of
Dirac delta functions:

f(E,L) =
∑
i,j

f̂i,jδ(E − Ei)δ(L− ljLmax,i), (2.5)

where
∑
i,j f̂i,j = 1 and f̂i,j ≥ 0.

To define the grid in energy and (relative) angular momentum we proceed as follows.
For the energy we choose N ′E radii between a minimum and maximum radius spaced
logarithmically, and take the corresponding energy of a purely radial orbit. The minimum
and maximum radii we consider are 0.033 kpc and 24.492 kpc, respectively. For each
energy we choose N ′l relative angular momenta spaced linearly between 0 and 1. All
orbits are integrated starting from their apocentre.

We also defineNR radial bins on the sky, defined by radii at the edges Rk (k = 0...NR).
The borders are determined by the kinematic data, by requiring for instance that each
bin contains a particular number of stars.

In general, it is convenient to work with the (normalised) mass in a given radial bin:

dm∗(R)
M∗

= 2πRµ0(R)dR. (2.6)

Thus the mass contributed by orbit of energy Ei and relative angular momentum lj in
the radial bin k is:

∆m∗,i,j,k
M∗

=
∫ Rk+1

Rk

2πRµ0,i,j(R)dR. (2.7)

In the Schwarzschild method this quantity is obtained by integrating the i, j orbit
and calculating the fractional time this orbit spends in radial bin k. Since we integrate
the orbit with a fixed time step, this is simply equivalent to counting the number of times
the orbit crosses bin k, divided by the number of time steps. To reflect the spherical
symmetry, at each time step the position and velocities are rotated randomly Nrot = 25
times, as in Rix et al. (1997, Eq. 2). Each orbit is integrated for 100 orbital timescales
torb, with torb = 2πra/vcirc, and where ra is the apocentre radius and vcirc the circular
velocity at ra. Each orbit is stored at 1000 points (separated by a constant time step).
Therefore the total mass (contributed by all orbits) in bin k is:

∆m∗k
M∗

=
N ′E∑
i=1

N ′l∑
j=1

g(Ei, Lj)f̂i,jLmax∆Ei∆li ×
∆m∗,i,j,k
M∗

=
N ′E∑
i=1

N ′l∑
j=1

c′i,j ×
∆m∗,i,j,k
M∗

,

(2.8)

where g(E,L) is the density of states. The coefficients c′i,j are known as the orbital
weights.

We may now proceed to calculate the light-weighted second and fourth moments of
the line-of-sight velocity distribution in a given projected radial bin k as:
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µ2,k = M∗
∆m∗k

N ′E∑
i=1

N ′l∑
j=1

c′i,j

∫ Rk+1

Rk

2πRµ0,i,j(R)µ2,i,j(R)dR, (2.9)

µ4,k = M∗
∆m∗k

N ′E∑
i=1

N ′l∑
j=1

c′i,j

∫ Rk+1

Rk

2πRµ0,i,j(R)µ4,i,j(R)dR, (2.10)

where µ2,i,j(R) and µ4,i,j(R) are the second and fourth moment respectively of orbit i, j.
The integral is also derived from the orbit integrations. However, instead of counting each
time the orbit is found in bin k, we add the corresponding second moment in quadrature
(and to the fourth power for the fourth moment) and at the end divide by the number of
time steps. Note that the moments are linear in the orbital weights, which allows us to
find a solution using quadratic programming, while for instance the kurtosis (γ2 = µ4/µ

2
2)

is not.
It is possible to consider the orbit weights (c′i,j) as free parameters whose exact values

will be determined through comparison to the observables. However this would imply
that the number of orbits that are integrated to reproduce the observables is exactly
equal to the number of free parameters that define the df. Decoupling these two sets of
quantities is clearly desirable, see e.g. Cretton et al. (1999). This procedure is known as
dithering and results in smoother density distributions while keeping the number of free
parameters in the distribution function small.

While we may use N ′E × N ′l orbits to reproduce the observables, we choose only
NE×Nl = N ′E×N ′l/(NdE

×Ndl
) free parameters to characterise the distribution function,

where we take NdE
×Ndl

= 8× 8 = 64. The coefficients of the distribution function ci,j
are related to the orbit weights (c′i,j) as follows:

c′i,j = 1
NdE

×Ndl

ci\NdE
,j\Ndl

, (2.11)

where \ indicates the integer part, e.g. [i/NdE
]. Therefore NdE

× Ndl
orbits share the

same df coefficient. In practice, one can simply average the quantities obtained from the
individual orbits. We choose NE = 20 and Nl = 8, which results in 20 × 8 = 160 free
parameters for the distribution function, but we integrate 20× 8× 8× 8 = 10250 orbits.

To fit models to the data we generally use projected quantities (i.e. the observables).
However, if one knows (or has derived) the df coefficients, it is also possible to make
predictions for quantities that are not (yet) directly observable, such as the intrinsic (3d)
density distribution or moments of the full velocity distribution. For example, the mass
contained in the (spherical) radial bin m contributed by orbit i, j is

∆m∗,3d,i,j,m
M∗

=
∫ rm+1

rm

4πr2ν∗,i,j(r)dr, (2.12)

where the integral is computed from the orbital integrations, and ν∗,i,j(r) is the radial
density profile of orbit i, j. In practise we use Nr = 50 (3d) radial bins, spaced linearly
between rmin = 0 kpc and rmax = 1.5 kpc. Similarly we also store the radial and
tangential velocity dispersions in these bins. Although we do not store the intrinsic
properties beyond 1.5 kpc, this has no effect on the way the projected properties are
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determined. Note that the intrinsic properties are not used in any of the fitting routines
but may be used for inferring for instance the intrinsic velocity anisotropy profile.

Orbits are integrated using the GNU Scientific Library (GSL) ordinary differential
equation solver using an 8th order (Runge Kutta) Prince-Dormand method. We found
that the energy is conserved to better than 0.1%.

2.2.3 Fitting procedure
Light distribution

Our first requirement is for the model to fit the observed light distribution. We assume
that this is known accurately. We require that the projected mass (or light) in each bin
is matched within 1 per cent. Given our assumption of a constant stellar mass-to-light
ratio, we make no distinction between surface brightness and stellar mass surface density
in what follows. From the assumed brightness profile µ∗(R), we calculate:

∆m∗,true,k

M∗
=
∫ Rk+1

Rk

2πRµ∗(r)dR, (2.13)

and thus require for each projected radial bin k that:∣∣∣∣∆m∗,true,k

M∗
− ∆m∗,k

M∗

∣∣∣∣ ≤ 0.01. (2.14)

Note that the number of bins for the light does not have to equal the number of bins
for the kinematics, in this work we choose 250 bins for fitting the light distribution.

Kinematics

To derive the line-of-sight velocity dispersion profile we calculate the second and fourth
moment estimators of the line-of-sight velocity distribution µ̂2,k and µ̂4,k in bins contain-
ing at least 250 stars. Assuming that the measurement errors are normally distributed,
and all measurements and errors are independent and uncorrelated, we can obtain µ̂2 of
the population as follows. The expectation value of the second moment is

E[m2] = E

[
1
N

N∑
i

(vi + εi)2

]
= µ2 + s2, (2.15)

where εi is the unknown noise of measurement i, which we assume is drawn from a normal
distribution with dispersion σi (i.e. this is the formal error of measurement i). Hence
s2 =

〈
σ2
i

〉
= E

[
1
N

∑N
i ε

2
i

]
is the average of the estimated squared errors. Here µ2 the

true value of the second moment. Therefore, our best estimate for the second moment
of the underlying population is:

µ̂2 = 1
N

N∑
i

(vi + εi)2 − s2. (2.16)

Similarly, the expectation value of the fourth moment

E[m4] = E

[
1
N

N∑
i

(vi + εi)4

]
= µ4 + 3s2

2 + 6µ2s2, (2.17)
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where we have used that the fourth moment of a normal distribution is 3σ4. Therefore
our estimate for the fourth moment is:

µ̂4 =
N∑
i

(vi + εi)4 − 3s2
2 + 6µ2s2, (2.18)

where we have assumed µ2 ≈ µ̂2.
The variance of the second moment var(m2), can be determined using var(x) =

E[x2]− (E[x])2, which yields

var(m2) = 1
N

(
µ4 − µ2

2 + 2s2
2 + 4µ2s2

)
. (2.19)

Although we formally need var(µ̂2), we have found by testing with a Gaussian distribu-
tion, that for our purposes var(µ̂2) ≈ var(m2). For the variance of the fourth moment
we find:

var(m4) = µ8 + 105s4
2 + 204µ4s

2
2 + 420µ2s

3
2

+ 28µ6s2 − 9s4
2 (2.20)

which require the 6th and 8th moments:

E[m6] = µ6 + 15µ4s2 + 45µ2s
2
2 + 15s3

2, (2.21)
E[m8] = µ8 + 210µ4s

2
2 + 28µ6s2 + 420µ2s3

2, (2.22)

and again we use var(µ̂4) ≈ var(m4).
The likelihood of the kinematic data given a model is:

p(kinematic data|model) ∝ e− 1
2χ

2
kin (2.23)

where

χ2
kin =

Nbins∑
k

(µ̂2,k − µ2,k)2

var(µ̂2,k) +
Nbins∑
k

(µ̂4,k − µ4,k)2

var(µ̂4,k) . (2.24)

Here µ2,k is given by Eq. (2.9), µ̂2,k is the estimate from the data for bin k and similarly
for the fourth moment1.

Finding a solution

We need to find the ci,j that maximise the probability (Eq. 2.23) or minimise the
χ2

kin, under the condition that all ci,j are positive (and sum up to unity) and the light
distribution is reproduced to within 1 per cent. This problem can easily be solved by
quadratic programming (QP), since the minimisation is quadratic in the df coefficients,
and the constraints are linear. Note however that for this non-parametric problem, the
parameter space is very large, and a solution will often yield an unrealistically spiky df. To
effectively reduce the parameter space and yield a smoother df, we add a regularisation
constraint, in analogy to Cretton et al. (1999) and van den Bosch et al. (2008), by
including a penalty term to the total χ2. This term has the form:

χ2
reg = χ2

reg,E + χ2
reg,L, (2.25a)

1 Here we have neglected correlations between the moments, although these may exist in practice.
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χ2
reg,E =

λE NL∑
j=0

NE−1∑
i=1
−ξi−1ci−1,j + 2ξici,j − ξi+1ci+1,j

2

, (2.25b)

χ2
reg,L =

λL NL−1∑
j=1

NE∑
i=0
−ξici,j−1 + 2ξici,j − ξici,j+1

2

, (2.25c)

where χ2
reg,E and χ2

reg,L are small for a smooth df. This smoothness requirement is
implemented by demanding the second order derivatives of the df to be small, which we
compute by taking second order finite differences (Eqs. 2.25b-2.25c).

In our case we found λL = λE/8 to work well, and we calibrate λE in the next section.
The ξi terms are the inverse of the (normalised) masses inside the radii defined by our
energy grid (§2.2.2) (see also van den Bosch et al. 2008, Eq. 29). Since the regularisation
term χ2

reg is quadratic in the df coefficients, it can also be optimised using the QP.
The total χ2 now becomes:

χ2 = χ2
reg + χ2

kin, (2.26)

Minimising this equation, in combination with the linear constrains of the ci,j and the
linear constraints on the light distribution (Eq. 2.14) defines the problem for the QP.

2.3 Testing the method
2.3.1 Plummer profile embedded in an NFW dark matter halo
Mock Sculptor

We now create a mock galaxy that may be representative of Sculptor according to previ-
ously published dynamical models of this system (Battaglia et al. 2008). The goal is to
test our method in the region of parameter space where we expect Sculptor to be. For the
stellar component we choose a Plummer profile with total massM∗ = 106 M� and a scale
radius b = 0.3 kpc. The stellar component is embedded in a spherical NFW dark matter
halo with scale rs = 0.5 kpc, and enclosed mass at 1 kpc ofMDM(< 1 kpc) = 108M�. The
radial density profile for the NFW halo is of the form ρDM (r) = ρ0(r/rs)−1(1 + r/rs)−2.
We set the velocity anisotropy to be constant, β = −1. Recall that β(r) = 1−σ2

t (r)/σ2
r(r)

and σ2
t (r) (where σ2

t = σ2
φ = σ2

θ for every r) and σ2
r(r) are the second moments of the in-

trinsic velocity distribution at radius r in the tangential and radial directions respectively.
Note that in this model, although the central velocity dispersion is null2, the line-of-sight
velocity dispersion is finite, and has a value σlos = 7.71 km s−1. By assuming the df to
be separable, i.e. f(E,L) = fE(E)fL(L), we may compute it explicitly (numerically) as
described in Appendix 2.A.

As an extra check that our model galaxy is physical and stable, we have generated
phase-space coordinates for 100 000 stars from its df, and simulated it numerically using
GADGET-2 (Springel 2005). In this simulation the stars are represented as N-bodies and
they are embedded in the static potential given by the dark halo of our mock Sculptor
model. We found that, even after 10 Gyr of evolution, the density distribution, velocity
dispersion profiles and the anisotropy match the initial values well.
2 which implies there is no conflict with the An & Evans (2009) theorem.
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Figure 2.1: The line-of-sight velocity dispersion (bottom) and kurtosis (top) for mock
Sculptor. Black symbols:: Values for the moments in radial bins from the mock Sculp-
tor data, with 1σ error bars. Blue contours: Recovered profiles from the models, where
the regions correspond to the 68.3, 95.4 and 99.7 per cent confidence intervals.

To generate observations of our mock Sculptor we could draw a random sample of
∼ 2000 stars from its distribution function. However, this has the disadvantage that many
realisations would be required to test if the mean of the recovered quantities matches the
known input values. Therefore, for the purposes of testing our modelling technique we
prefer to compute the moments of the line-of-sight velocity distribution at different radii
directly from the known distribution function, as this is less susceptible to randomness.
We add uncertainties in the moments and choose the location of the radial bins to
match the Sculptor data set. Fig. 2.1 shows the line of sight velocity dispersion profile
and the kurtosis derived in this way. Note however in the model fitting we use the
second and fourth moments since these are linear in the df coefficients. We calculate
the uncertainties in the moments using Eqs.(2.19) and (2.20), assuming no measurement
errors since these contribute only ∼ 1% of the error budget for the typical measurement
errors of 2 km s−1 and line of sight velocity dispersions of 10 km s−1 found in dSph.
Therefore the uncertainties in the moments are only due to the number of objects per
bin. Here we we choose to have 250 stars per bin, which gives a total 8 bins for a sample
of 2000 objects.

We proceed to test our code in two steps. In the first instance our aim is to establish
how well the method recovers the intrinsic properties of our mock galaxy if the df is
known. Thus in this first test we use the known df to compute the df coefficients.
These define the orbital weights which our Schwarzschild code uses to calculate the
observables. The df coefficients are shown in the upper left panel of Fig. 2.2. The
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Figure 2.2: Result of a test of our Schwarzschild code on mock Sculptor. Here we have
assumed knowledge of the df coefficients and recovered the intrinsic properties of the
model.

recovered (normalised) mass per intrinsic (3d) bin (Eq. 2.12), is plotted in the top right
panel of the same figure. The red dashed curve shows the output of the Schwarzschild
code, while solid black corresponds to the true values. In the lower left panel we plot
the velocity dispersions for the radial (red) and tangential (green) directions. The solid
curves indicate the true values, whereas in dashed we showed the recovered dispersions.
Here the “true” velocity dispersion has been calculated using the Jeans equations (Binney
& Tremaine 2008, chapter 4). The lower right panel shows the true (solid black) and the
recovered (dashed red) anisotropy as a function of radius. This exercise shows that given
the correct weights we are indeed able to recover the known intrinsic properties of our
mock galaxy.

The small deviations from the true values especially visible in the anisotropy profile
are expected since the df coefficients only approximate the true df. These deviations can
thus be removed by increasing the number of df coefficients. For example, if we double
the number of coefficients in the energy and angular momentum directions, the small
offset between the true and recovered anisotropy profiles disappears. The increase in
the resolution in the energy direction also leads to the elimination of the wiggles in the
anisotropy profile. On the other hand, the turnover of the anisotropy profile seen at small
radii is related to the sampling of orbits with the highest binding energy. Recall that
we sample orbits from a minimum radius rmin ∼ 0.03 kpc, so that the highest binding
energy radial orbit has its apocentre at rmin. The orbits that contribute to the region
r . rmin are those which are very elongated with pericentres inside this radius and with
large apocentres ( beyond rmin), and the set of orbits with the highest binding energy but
which have more angular momentum. These more circular orbits only contribute within
a small range in radii, and hence the resulting velocity ellipsoid is radially biased. Clearly
if we were to reduce rmin, i.e. increase the sampling of orbits in the central regions, this
will lead to a decrease in the radius at which the velocity anisotropy turns over. However,
we deem this unnecessary as the amount of mass associated to this region is negligible,
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Figure 2.3: Result of the application of the Schwarzschild code on our mock Sculptor.
The figure shows that the intrinsic structure is recovered through the QP when the
underlying gravitational potential is known. The grey region in the lower right plot
indicates where we cannot recover the anisotropy.

and this regime is in fact outside the reach of observations since we only have access to
observables along the line-of-sight, and a star at small projected radius could be located
at larger physical radii from the centre. Furthermore, the size of the currently available
data sets is a strongly limiting factor (see next paragraph).

We now use the full Schwarzschild method, and solve for the df using QP. For the
regularisation parameters we found λE = 0.1 to give good results. Fig. 2.3 summarises
our findings. The overall properties of the df are well recovered as well as the remaining
characteristics (see Fig. 2.2 for comparison). The anisotropy is recovered accurately
except for r . 0.1 kpc. This is not due to sampling of highly-bound orbits discussed
above, but is mostly driven by the small number of stars in this (3d) inner region.
Running the same experiment with a larger data set (10 000 and 50 000 stars) we see the
mismatch in the anisotropy to occur at smaller radii. In practise, this means that with
the current data sets we are not sensitive to the anisotropy at r . 0.1 kpc.

Global halo parameter recovery

In the above tests we showed that the Schwarzschild code accurately recovers the df
and therefore the kinematic properties of our mock dwarf galaxy. This test was done
assuming that the (enclosed) mass within 1 kpc of the NFW halo (M1kpc) and its scale
(rs) were known. We now focus on how to estimate these parameters directly.

We proceed to calculate the probability of a model for a set of parameters values.
In our case these parameters are M1kpc and rs. However, instead of calculating this
probability on a regular grid as done in e.g. Gebhardt et al. (2007) and van den Bosch
et al. (2008), we use an adaptive method, similar to Gebhardt & Thomas (2009). This
first finds the probability density function (pdf) on a coarse grid and then determines
where the pdf needs to be refined, and does so hierarchically. This allows us to obtain
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Figure 2.4: Left column: Probability density functions (joint and marginalised) for
mass and scale parameters of the NFW dark matter halo potential recovered for mock
Sculptor model. Blue dot and blue lines (left column) indicate the maximum likelihood
value (of the unmarginalised pdf), while the red dot and vertical dashed lines indicate
the input values for the mock Sculptor model. The green solid line indicates the median
value and the blue regions (or black contour lines in the top left panel) the 68.3, 95.4
and 99.7 per cent confidence intervals. Top right: Recovered anisotropy profile. The
grey region indicates where we cannot recover the anisotropy. Middle right: Recovered
logarithmic density slope (see text) for the dark matter. Bottom right: Recovered
enclosed mass profile.
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a relatively smooth pdf via the evaluation of a small number of models. For each set
of model parameters we calculate the (relative) probability as p ∝ e−

1
2χ

2
kin (Eq. 2.24).

This results in estimates of the best fit parameters, as well as in confidence intervals. We
assume the prior on M1kpc to be uniform in logM1kpc in the range logM1kpc ∈ [7.6, 8.2]3
and the prior on rs uniform in log rs in the range log rs ∈ [−1, 1].

The pdf for the parameters M1kpc and rs for our mock Sculptor model is shown in the
top left panel of Fig. 2.4. The pdf is nicely centred on the input values M1kpc = 108M�
and rs = 0.5 ≈ 10−0.3 kpc. The maximum likelihood value (blue dot or lines) almost
equals the input value, where the small deviation is caused by the discretisation of the pdf.
Although the enclosed mass at 1 kpc is recovered both accurately and precisely (mean
M1kpc = 1.02×108.00±0.03M�, corresponding to a 7% uncertainty, or M1kpc = 1.02+0.075

−0.070×
108M�), the scale radius is more poorly constrained (mean rs = 0.56 × 10±0.14 kpc,
corresponding to a 37% uncertainty, or rs = 0.56+0.21

−0.15 kpc). Note that the marginalised
pdf for M1kpc and rs are somewhat asymmetric (a reflection of what is seen in the upper
left panel of Fig. 2.4), and this leads to slightly biased mean values for the parameters
of the model.

Each Schwarzschild model (i.e. for a given M1kpc and rs) results in a single anisotropy
profile. To find the pdf of the velocity anisotropy profile one should integrate (marginalise)
over all possible df coefficients (as in Magorrian 2006). However this is not always fea-
sible due to the high dimensionality of the parameter space required to specify the df
(NE × Nl = 160 for this model). Instead we take the single anisotropy profile of each
model, and calculate the probability density function for the anisotropy as a function of
radius as follows:

p(β|r) =
∫

dM1kpc

∫
drsp(β|r,M1kpc, rs)p(M1kpc, rs). (2.27)

We plot the median anisotropy as a function of radius in green in the top right panel of
Fig. 2.4, together with the 68.3, 95.4 and 99.7 percent confidence intervals in blue. Note
however, that the anisotropy values at different radii are not independent. The input
anisotropy is indicated by the red dashed line. The anisotropy seems to be reproduced
quite accurately, except at small radii. Since our technique recovers nearly perfectly the
input values of the model, the anisotropy profile found is essentially equivalent to that
derived in Fig. 2.3. The mismatch at small radii is explained in the previous section, and
the apparent small uncertainty in the anisotropy in this region may be understood from
the following argument. Using the Jeans equation, we may express the mass within a
given radius as

GM(r)/r = σ2
r(γ − 2β − α),

where γ = d log ν∗/d log r, β is the anisotropy, and α = d log σ2
r/d log r. For any model

without a black hole in the centre, the lhs→ 0 as r → 0. For a cored profile (as we have
assumed) γ = 0 in this limit. This implies that there is quite a strong restriction on the
behaviour of β (and σr) at small radii. The above equation implies that as r → 0,

2σ2
r − 2σ2

t − rdσ2
r/dr = 0,

and since σr → 0 as r → 0 to have a physical solution in a cuspy dark matter halo
according to An & Evans (2009), then this means that there is only one possible σt at
r = 0, for any model, i.e. value of MDM and rs.
3 Outside this interval the pdf is essentially zero.
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In the central right panel of Fig. 2.4 we plot the logarithmic slope (η) of the dark
matter density (ρDM) as a function of radius:

η(r) = d log ρDM

d log r . (2.28)

In the inner parts η = −1 and in the outer regions η = −3 due to our choice of the
NFW profile. In the next section we also explore a different functional form for the halo
density profile, which makes this plot more meaningful and useful for later comparison.

In the bottom right panel we plot the enclosed (dark matter) mass as a function of
radius. The least uncertainty in the enclosed mass is at r ≈ 0.5 − 0.6 kpc. This radius
is close to the half light radius r1/2 ≈ 1.3b ≈ 0.4 kpc where Walker et al. (2009b, 2010)
and Wolf et al. (2010) find the enclosed mass to be most robustly determined and to be
independent of anisotropy.

The line of sight velocity dispersion and the kurtosis profiles obtained from the models
are shown as the blue contours in Fig. 2.1. These have been computed in an analogous
manner to the anisotropy profile, i.e. as in Eq. (2.27). This figure shows that the resulting
curves are in excellent agreement with the input profiles.

To gain further confidence in our methodology, we have also performed a similar set
of tests for different anisotropy profiles, while keeping the same stellar and dark matter
density profiles. In one case the anisotropy varied from β = −1 in the centre to β = +0.25
at larger radii (i.e. from tangentially to radially biased). The other case we have tested
has an anisotropy profile that changes from β = 0 at the centre to β = −1 at larger radii
(i.e. from radial to tangential anisotropy). Also in these cases all the quantities recovered
are in excellent agreement with the input values, indicating that our methodology works
well and is robust.

2.3.2 Changing the dark matter halo density profile
In reality we will not know the actual density profile of the dark matter halo hosting a
galaxy like Sculptor, and we would like to determine this from the data. A particularly
interesting quantity is the inner slope of the density profile since this depends on the
nature of the dark matter particles themselves, i.e. whether it is cold, warm or self-
interacting (Avila-Reese et al. 2001; Spergel & Steinhardt 2000).

Therefore, in this section we use our mock Sculptor, which is embedded in an NFW
profile, but we assume a more general functional form to test the performance of our
Schwarzschild method, i.e. we take:

ρDM(r) = ρ0 (r/rs)α (1 + r/rs)−(3+α)
, (2.29)

such that for α = −1 this reduces to the NFW case. For the orbit integration we need to
know the potential (or rather the forces) generated by this density distribution. Since no
general analytic expression exists for these general potentials, we have to solve Poisson’s
equation numerically. We do this using the FEM (Finite Element Method) method (e.g.
Pepper & Heinrich 1992). Our basis functions are Lagrange polynomials of degree 0 to
3 (cubic), which leads to a force field of order 2 (quadratic). We use a grid of 200 points
in log radius, from r = 10−6 − 104 kpc. Testing this in the case of the NFW profile we
find that the relative errors in the force in this range are ∼ 10−6.
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Figure 2.5: Top two rows: Probability density functions (joint and marginalised) for
mass, scale and inner slope parameters of the dark matter halo potential recovered for
our mock Sculptor model. Blue dots (top row) and blue lines (middle row) indicate the
maximum likelihood value (of the unmarginalised pdf), while the red dot and vertical
dashed lines indicate the input values for the mock Sculptor model. The green solid line
the median value and the blue regions (or black contour lines in the top row) the 68.3,
95.4 and 99.7 per cent confidence intervals. Bottom left: Recovered anisotropy profile.
The grey region indicates where we cannot recover the anisotropy. Bottom centre:
Recovered enclosed mass profile. Bottom right: Recovered logarithmic density slope
(see text) for the dark matter.
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We use our Schwarzschild code to find the best model that fits our mock Sculptor
data, now with an additional unknown parameter α, assuming a uniform prior in the
range ∈ [−2, 0] (α > 0 corresponds to a central hole in the dark matter distribution,
which we do not consider). The results are given in Fig. 2.5. The top row in shows the
joint pdfs, marginalised over the remaining parameter. The middle row shows the pdfs
of the single parameters, marginalised over the other two parameters. The blue dots and
blue lines indicate the maximum likelihood value (of the unmarginalised pdf). In the
bottom row the recovered anisotropy, mass and density profile are shown.

In general, all quantities are recovered quite well. However, the pdf of α versus log rs
shows an important degeneracy between these parameters, indicating that it is hard to
determine either of these quantities reliably from our mock data set. The maximum like-
lihood (the blue dot) is slightly offset from the input value (red dot), which may indicate
small systematic errors due to for instance the discretisation of the distribution function.
However, note that since this systematic offset is in the direction of the degeneracy, the
systematic error is small compared to the statistical uncertainty and therefore we do no
consider this to be a problem for data sets of this size and quality. This analysis suggests
that the current data is not sufficient to provide a good estimate of the inner slope for
these models. The limitation lies in the number of stars with spectroscopic measurements
(which in the case tested here is 2000) and/or their spatial distribution.

2.4 Application to the Sculptor dSph galaxy
2.4.1 Data and extracted velocity moments
We use the line-of-sight velocities of Battaglia et al. (2008, 1073 stars, hereafter B08)and
Walker et al. (2009a, 1541 stars, hereafter W09)4. In the case of duplicates (stars in com-
mon in the datasets) we average the line-of-sight velocities and the errors (in quadrature).
Two observations are considered to be from the same star when the astrometry agrees
within 1 arcsec, and a velocity difference less than 3ε, where ε is the average velocity
error. Inspection of the relative distances between stars in the datasets shows that this
criterion is optimal to sieve duplicates. This procedure led to the identification of 308
duplicates, roughly 11% of the combined dataset.

To create a velocity dispersion profile, we first need to convert the measurements of
the heliocentric line-of-sight velocities into line-of-sight velocities that take into account
the space motion of Sculptor. We provide below a brief summary of this procedure and
refer the reader to Appendix 2.B for more details.

The heliocentric line-of-sight velocities of Sculptor’s stars are shown in Fig. 2.6. As
can be seen from this figure, there appears to be a velocity gradient along the major axis
(see also Fig. 1 of B08). The presence of such a gradient could be due to intrinsic rotation
in Sculptor, as suggested by B08. On the other hand it is also possible that the gradient
is a result of the projection of the proper motion of the centre of mass of Sculptor (or a
mix of both), in which case it can be used to infer its space velocity (Walker et al. 2008).
In absence of independent and direct measurements of the proper motion of Sculptor, it
remains debatable what the source of the gradient is. For simplicity, here we assume that
4 Although Amorisco & Evans (2012b) have reported a systematic velocity offset of 1.5 km/s in the

dataset of W09 compared to B08’s, we here perform no correction. The various tests we have done
show that this offset has no visible effect on the results.
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Figure 2.6: Top: Line of sight velocities for Sculptor versus radius. We only use the
stars at radii r < 3400 arcsec. The grey line indicates the systemic radial velocity for
Sculptor and red lines ±3σ the mean velocity dispersion. Bottom: Heliocentric line-of-
sight velocities from the combined data set of Battaglia et al. (2008) and Walker et al.
(2009a). The velocities have been smoothed by taking the median in cells of 0.2 degrees
on a side.

Sculptor does not rotate and we derive the velocity of the centre of mass of Sculptor from
the line-of-sight measurements in Appendix 2.B. We note that in practice, our procedure
simply removes the gradient, which one might say is equivalent to having removed (solid
body) rotation.

Velocity dispersion profile

For our dynamic modelling, we need to calculate the velocity dispersion profile of Sculptor
in radial bins. To this end, we initially make a rough selection of the likely members
of Sculptor, and then perform a more thorough analysis including the effects of Milky
Way contaminants. In the first step, we take the systemic heliocentric radial velocity
(vScl,sys,helio = 110.6 km s−1) and the mean velocity dispersion (σScl = 10.1 km s−1)
from B08. We require that the member stars are within 3σ of the systemic velocity of
Sculptor, as indicated by the red solid lines in the right panel of Fig. 2.6. Furthermore
we also require that they are located within r < 3400 arcsec (∼ 0.94 deg, 1.3 kpc),
indicated by the green dashed line in the same panel. We add this requirement since we
are not confident that outside this radius a reliable velocity dispersion can be measured
due to the low number density of (probable) Sculptor members compared to Milky Way
stars. An improved method for discriminating Milky Way contaminants based on surface
gravity in the data set of B08 has been developed by (Battaglia & Starkenburg 2012),
see also Walker et al. (2009c).

We then define radial bins such that each but the last bin contains at least 250 stars
that match these criteria. From the total of unique (i.e. non-duplicates) 2306 stars, 1695
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match the above two criteria, resulting in 7 radial bins, where the last one contains 195
stars.

After we defined our bins to include at least 250 probable members, we remove the
requirement of being within 3σ of the systemic velocity of Sculptor. We now only require
r < 3400 arcsec (= 1.3 kpc), so all stars below the green dashed line in top panel of
Fig. 2.6 are considered for calculating the velocity dispersions (2153 stars). We now use
a model for the velocity distribution of the foreground contamination and of Sculptor
itself, which then allows us to calculate the most likely velocity dispersion in each radial
bin.

Following B08 and W09 we model the velocity distribution in a radial bin as a sum of
Gaussians. The velocity distribution of Sculptor itself is modelled as a single Gaussian,
while that of the Milky Way is modelled as a sum of two Gaussians5, following B08.
Then the probability of the velocity dispersion of Sculptor in radial bin j with data Dj

is:

p(σj |Dj) = p(Dj |σj)p(σj)
p(Dj)

=
Nj∏
i

p(Dj,i|σj)p(σj)
p(Dj,i)

=
Nj∏
i

p(Rj,i, vj,i|σj)p(σj)
p(Rj,i, vj,i)

∝ p(σj)
Nj∏
i

(p(Rj,i, vj,i,m|σj)

+p(Rj,i, vj,i,¬m|σj)) ,

(2.30)

where Rj,i and vj,i are the radius and velocity of the ith star in the jth bin, Nj is
the number of stars in bin j, p(σj) is the prior, which we take flat between the range
0 ≤ σj ≤ 30 km s−1 and m and ¬m indicate the Boolean value of being a member
star of Sculptor or not. The proportionality can be used since the denominator is a
normalisation constant. The first terms in the last line of Eq. (2.30) can be expanded
further (for each j):

p(Ri, vi,m|σ) = p(Ri, vi|m,σ)p(m|σ)
= p(Ri, vi|m,σ)p(m)
= p(Ri|m)p(vi|m,σ)p(m)

(2.31)

We take the prior on membership, to be equal p(m) = p(¬m) = 1
2 . Using the model

of Sculptor as described above, p(Ri|m) = µScl(Ri), the normalised surface density and
p(vi|m,σ) is a Gaussian convolved with the individual measurement errors on vi.

The second term in Eq. (2.30) can similarly be derived by replacing m with ¬m in
Eq. (2.31), p(Ri|¬m) = µMW is the density of the Milky Way foreground. Since the
normalisation is not important, we only need to know the ratio µMW/µScl(Ri) in each
bin6 . This can be estimated by the ratio of stars outside the 3σ and inside the 3σ
5 This gives a good fit to the Besançon model in this region of the sky and for stars with colours and

magnitudes in the observed range (Robin et al. 2003).
6 Although the sampling of B08 and W09 is different, we have found in tests that this has no influence

on our results.
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Figure 2.7: Line-of-sight velocity dispersion profile obtained in radial bins for the data
by Battaglia et al. (2008) and Walker et al. (2009a) of Sculptor, taking into account the
foreground contamination by the Milky Way. The dashed curve corresponds to the (pdf
weighted) median line-of-sight velocity dispersion profile from the Schwarzschild models
presented in Sec. 4.2, while the contours indicate the 1, 2, and 3σ uncertainties around
this curve. The last bin extends to 1.3 kpc.

velocity dispersion. Furthermore, if there is any bias in the sampling of the kinematic
data (which usually is the case), it will affect both the Sculptor data and the foreground
data in equal ways, and will cancel out in the ratio. The term p(vi|¬m,σ) is the weighted
sum of two Gaussians as described in Battaglia et al. (2008).

For each radial bin we find the maximum likelihood value for the velocity dispersion.
After this, we perform a 3σ clipping around the mean, and estimate the second and
fourth moments for the remaining stars using Eqs. (2.16) and (2.18). The errors are
computed from Eqs. (2.19) and (2.20). The final sample contains 1696 member stars.
Fig. 2.7 shows the resulting velocity dispersion profile and the kurtosis (µ̂4/µ̂

2
2). The line-

of-sight velocity dispersion is well-constrained, it is relatively flat although it appears to
be slightly rising with radius. The kurtosis has larger error bars, and this implies that
additional modelling is required to establish in a robust statistical way what the shape
of the velocity ellipsoid is (Gerhard 1993).

2.4.2 Schwarzschild method applied to Sculptor
We now apply the Schwarzschild method to the data from the Sculptor dSph and model
this galaxy as a (non-rotating) spherically symmetric system. For the light distribution
we assume a Plummer profile with scale radius b = 0.3 kpc (Battaglia 2007).

We first assume that Sculptor is embedded in an NFW dark matter halo, as we did for
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mock Sculptor in §2.3.1. The results of this modelling are shown in Fig. 2.8. We obtain a
tight constraint on the enclosed dark matter mass of M1kpc = 1.03× 108.00±0.03M� (7%
uncertainty, or M1kpc = 1.03+0.075

−0.070 × 108M�). The scale radius at rs = 2.15 × 10±0.25

kpc (76% uncertainty, or rs = 2.15+1.6
−0.93 kpc) is less well constrained, similar to what we

find for mock Sculptor. In comparison to our mock model, the Sculptor dwarf galaxy
would seem to have a larger scale radius (see Fig. 2.4).

Our estimates are consistent with those derived in previous work for the NFW family
of mass models. For example, Walker et al. (2009b, 2010) derive a mass of 10+3.2

−5.0×107M�
within 1.1 kpc, while we estimate 10+1.3

−1.2× 107M� within the same distance with smaller
error bars. On the other hand, Battaglia et al. (2008) obtained a mass of 2.2+1.0

−0.7×108M�
within 1.8 kpc, while our measurement at this radius is 1.9+0.4

−0.3 × 108M�. The mass
estimates by Strigari et al. (2008) Walker et al. (2010, MCMC value) and Wolf et al.
(2010) are over plotted in the bottom right panel of Fig. 2.8, and all three agree very
well with ours and are within the confidence regions.

The top right panel of Fig. 2.8 shows that Sculptor’s anisotropy is mostly tangential
and fairly constant with radius, except near the centre where it becomes slightly more
isotropic (even after talking into account our limitations due to the projection effects
shown and discussed in the context of Fig. 2.3). This anisotropy profile at r > 0.1 kpc
is consistent with the constant anisotropy assumed in Jeans models of Sculptor, as by
Walker et al. (2007), who find β = −0.5.

We plot the joint pdf of M1kpc and rs again in Fig. 2.9. In the left panel we plot
lines of constant virial mass M200 in blue7, with the blue dotted line indicating a value
of log M200 = 8.5, increasing with steps of 0.5 dex until log M200 = 10.5. Orange lines
indicate constant concentration values, with the orange dashed line corresponding to
c = 10, increasing with steps of 5 until c = 40. This shows that the concentration of
Sculptor is ∼ 15 ± 6 and that the virial mass is not well determined (not better than
within factor of 100 at a 3σ level uncertainty).

Cosmological N-body simulations of dark matter have shown that there is a relation
between the concentration of dark matter halos and their virial masses, the so called
mass-concentration relation (e.g. Bullock et al. 2001b). In the right panel of the Fig. 2.9,
we show as the dashed black line the mass-concentration relation of Macciò et al. (2007):

log c200 = −0.109 log(M200/M�) + 2.34. (2.32)

Judging solely from this relationship this would suggest that Sculptor is not compatible
with the current ΛCDM cosmology. If we however plot the intrinsic scatter of σln c200 =
0.33 in the same panel (solid red lines, 1,2 and 3σ contours) we see that Sculptor lies well
within the 1 and 2σ contours. We can also use the mass-concentration relation as a prior
in our models. The results are shown as the green contours in this figure and they are
slightly smaller than the original contours. The effect is small, but leads to a narrowing
down of the possible values for rs.

7 M200 is the virial mass (mass enclosed within r200), where r200 is the distance at which the average
density of a dark matter halo is 200 times the cosmological density ρc (e.g. Binney & Tremaine
2008, §2.2).
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Figure 2.8: Left column: Probability density functions (joint and marginalised) for
mass and scale parameters of the NFW dark matter halo potential recovered for Sculptor.
Blue dot and blue lines (left column) indicate the maximum likelihood value (of the
unmarginalised pdf). The green solid line indicates the median value and the blue regions
(or black contour lines in the top left panel) the 68.3, 95.4 and 99.7 per cent confidence
intervals. Top right: Recovered anisotropy profile. The grey region indicates where we
cannot recover the anisotropy. Middle right: Recovered logarithmic density slope (see
text) for the dark matter. Bottom right: Recovered enclosed mass profile.
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Figure 2.9: Left: The black contours correspond to the same pdf as that shown in
the bottom right panel of Fig. 2.8. Blue lines indicate curves of constant M200, with
the blue dotted line corresponding to a value of log M200 = 8.5, increasing with steps of
0.5 dex until log M200 = 10.5. Orange lines indicate values of constant concentration,
with the orange dashed line corresponding to c = 10, increasing with steps of 5 until
c = 40. Right: Red contour lines indicate the cosmologically motivated prior, with the
black dashed line the mean value. The green contours are the pdf obtained using this
prior for Sculptor.

2.4.3 Dark matter inner density profile

We now consider a more general dark matter profile for the dark matter halo of Sculptor
as we did for our mock models in §2.3.2 by allowing in the inner slope α to vary (see Eq.
2.29). The results are shown in Fig. 2.10.

This figure shows that the maximum likelihood value for M1kpc and that the velocity
anisotropy recovered by the Schwarzschild method are in very good agreement with the
values obtained when α is fixed to−1 as in Fig. 2.8. However, as discussed in Sec. 2.3.2 the
strong degeneracy between rs and α implies that the scale radius is less well determined.

The middle right panel of Fig. 2.10 shows that the distribution of values for the inner
slope α is very broad. Nonetheless it is clear that very steep cuspy profiles (α < −1.5)
are excluded. The maximum likelihood value is reached for a cored profile (α = 0),
although this is statistically indistinguishable from slightly cuspier slopes as evidenced
by the pdfs in this Figure. The bottom right panel of Fig. 2.10 shows that at a distance
of 250 pc (where the anisotropy profile begins to change its shape, and which according
to our tests in Sec. 2.3.2 is the inner most point where it is reliably determined) the
median logarithmic slope profile (green line) takes a value of ∼ −1.25, which is larger
that found in our mock Sculptor model (∼ −1.75). Since the maximum likelihood value
of rs estimated by the Schwarzschild method is not very different from that assumed
in mock Sculptor, this comparison would suggest that the density profile of Sculptor is
shallower than NFW, although the uncertainties are still too large to make a very firm
statement.
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Figure 2.10: Top two rows: Probability density functions (joint and marginalised)
for mass, scale and inner slope parameters of the dark matter halo potential recovered
for Sculptor. Blue dots (top row) and blue lines (middle row) indicate the maximum
likelihood value (of the unmarginalised pdf). The green solid line indicates the median
value and the blue regions (or black contour lines in the top row) the 68.3, 95.4 and
99.7 per cent confidence intervals. Bottom left: Recovered anisotropy profile. The grey
region indicates where we cannot recover the anisotropy. Bottom centre: Recovered
enclosed mass profile. Bottom right: Recovered logarithmic density slope (see text)
for the dark matter.
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Figure 2.11: Line-of-sight velocity distributions for Sculptor stars for different radial
bins (black histogram). The red curve corresponds to the best-fit α = 0 model, while the
best-fit NFW model (α = −1) is shown in blue. The p-values correspond to the proba-
bility that the observed and best-fit model are drawn from the same parent distribution,
as quantfied by a KS-test.

2.5 Discussion
Our results agree with previous studies of Sculptor that a central logarithmic slope α = 0
is more likely than the NFW α = −1 cusp (Battaglia et al. 2008; Walker & Peñarrubia
2011; Amorisco & Evans 2012a; Agnello & Evans 2012), although in our case the evidence
is clearly not strong enough to rule out the latter. Note however, that many, though not
all, of these works have tested the presence of a true core, namely dρ/dr = 0 and not
just d log ρ/dr = α = 0 at the centre. A comparison of the statistical significance of our
results with Walker & Peñarrubia (2011) or Agnello & Evans (2012) is not straightfor-
ward because of the very different methods employed to estimate the inner slope. These
authors use the existence of two distinct populations (metal-rich and metal-poor) to con-
strain the mass distribution (which is modelled non-parametrically), and this may or may
not be the cause of the difference. Amorisco & Evans (2012a) favour a cored profile over
an NFW with a high significance, but their conclusion is based on the assumption that
two populations follow Michie-King phase-space distribution functions, which are radi-
ally anisotropic. In Amorisco & Evans (2012b) these authors present evidence that the
velocity anisotropy of Sculptor might in fact radial. This is in conflict with our results,
since we find, with high confidence levels, that the orbits of stars in Sculptor are tangen-
tially biased (also when marginalised over all models), especially at radii beyond 250 pc,
where the dominant population is the metal-poor one. Furthermore, also Walker et al.
(2007); Battaglia et al. (2008) and Łokas (2009) favour a tangentially biased constant
anisotropy profile in their Jeans models of this system.

Given these seemingly contradictory results, it is worthwhile taking a closer look
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at the line-of-sight velocity distributions to understand where the discrepancies might
arise. Figure 2.11 shows these distributions (black histograms) together with the results
obtained for the best fit NFW (blue dotted) and α = 0 (red dashed) models. This
figure shows that the l.o.s. velocity distribution is more peaked at small radii than in
the outskirts, where it is more flat-topped. This is consistent with our measurements of
the l.o.s. kurtosis, and also with our derived anisotropy profile. As shown by Dejonghe
(1987), systems with a tangentially biased velocity ellipsoid have a flat-topped l.o.s.
velocity distribution only at large radii, while in the centre, this distribution is always
more peaked. This is because the l.o.s. towards the centre has contributions from stars
located at a larger range of radii, and hence also from radial plunging orbits, which drives
the shape of the projected velocity distribution to be more peaked. This is known as the
“complementarity property”, and the results of our modeling would be consistent with
such a scenario.

Figure 2.11 also shows the small differences between the α = 0 and α = −1 profiles,
and lend support to our conclusion that the two profiles are both relatively good repre-
sentations of the data. This is quantified by a KS-test, whose probabilities are indicated
in the corners of each of the panels of this figure. In a few of the radial bins, none of
the models fair particularly well. The α = 0 model tends to fit better the peak of the
histogram, and this could be partly to the lower but still tangential anisotropy since
β ∼ −0.3 for most radii.

The question thus arises as why do Amorisco & Evans (2012b) find a radial anisotropy.
Just like us, these authors have utilized the W09 dataset. However, they use stars
with a membership probability of 0.5 (as estimated by W09), and do not model the
contamination by the Milky Way any further. In the presence of contaminants, l.o.s.
velocity distributions have extended wings, and this produces a peaky distribution akin
that of truly radially anisotropic systems. We have tested this idea by measuring the
kurtosis for two different membership probability values p = 0.5, as in Amorisco & Evans
(2012b), and p = 0.9 (which is more in line with our more sophisticated modeling of the
foreground), and found a significant difference: the kurtosis is > 3 in the first case while
in the second case it is consistent with that shown in Fig. 2.6 of this chapter.

In conclusion, care is required when contamination is present, and the differences
between profiles that have α = −1 such as the NFW or α = 0, although present, are
perhaps not as dramatic as maintained in other published work.

2.6 Conclusions
We have presented a spherically symmetric dynamical model for the Sculptor dwarf
spheroidal galaxy using the Schwarzschild orbit superposition method. This method fits
a set of observables, which in our case are the light, the second and fourth moments of
the line of sight velocity distribution. We have tested this method on a mock model
for the Sculptor dSph galaxy embedded in an NFW profile, and generated with similar
sampling and velocity errors as the data currently available for this system.

In our tests we have found our method to give precise (7% uncertainty) and accurate
estimates for the mass within 1 kpc, when assuming that the underlying gravitational
potential is of NFW form. However the scale radius is recovered less precisely (37%
uncertainty) for data sets containing ∼ 2000 member stars. We have also explored a
more general model for the dark matter halo and found that we are able to measure the
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logarithmic slope of its density profile, although the central value is weakly constrained.
Nonetheless we find that the maximum likelihood value for the inner slope is very close
to the input value.

We then used the Schwarzschild method on Sculptor after having estimated the second
and fourth line of sight velocity moments for this galaxy. Assuming an NFW profile for
the dark matter profile, we derive a mass within 1 kpc of M1kpc = (1.03±0.07)×108 M�,
and find the concentration (c ∼ 15) to be compatible with current ΛCDM predictions,
given the expected scatter in the mass-concentration relation (Macciò et al. 2007). When
we try to constrain the inner slope of the dark matter density profile of Sculptor, we can
exclude very cuspy profiles (α < −1.5). However, given the current data set, our method
does not seem to be able to discriminate in a statistically significant way between a
α = −1 cusp and a central logarithmic slope α = 0, although the latter is the most
likely value. We are, however, able to determine that the logarithmic slope of the density
profile falls off to the value of −2 at a distance of ∼ 1 kpc.

The Schwarzschild method is also able to derive the velocity anisotropy profile, except
near the centre where we are limited by the number of tracers. For Sculptor we find this
to be tangentially biased with a hint that it may become more isotropic for r . 250 pc.
This result is nearly independent of the assumed shape of the dark matter density profile,
whether NFW or its generalised form. This nearly flat tangentially anisotropic ellipsoid
should hold clues to the formation and dynamical evolution of Sculptor but it is as yet
unclear whether a model exists that can reproduce this trend.

Models in which stars follow the dark matter are inconsistent with our results, as
they predict a more radially anisotropic velocity ellipsoid (Diemand et al. 2004). On
the other hand, the tidal stirring of a disky galaxy (see e.g. Mayer 2010), can lead to
a tangentially biased ellipsoid. However, this model predicts that the ellipsoid becomes
increasingly tangential with radius as a consequence also of tidal stripping, and this is
not what we derive at face value.

Schwarzschild modelling does not have to assume a parametric form for the velocity
anisotropy as for instance in the commonly used Jeans modelling. We therefore believe
that we are less affected by biases due to assumptions compared to such class of models.
Furthermore, by construction we are guaranteed that our models are physical in the sense
of having non-negative distribution functions.

We plan to develop the Schwarzschild method further to work with the full line of
sight velocity distribution, instead of binning the data and comparing it the the velocity
moments profile. Avoiding the loss of information when binning, we expect that this may
give us better estimates for the inner slope and the anisotropy profile. Also, since neither
Sculptor nor any of the other dwarf spheroidal galaxies are spherical, we are developing
a non spherical orbit-based dynamical model. We also plan to apply this modelling to
other dwarf spheroidal galaxies such as Fornax, Carina and Sextans in future work.
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Appendix 2.A Numerical approximation to the dis-
tribution function

We take the following separable form for the distribution function:

f(E,L) = fE(E)fL(L). (2.33)

For a constant anisotropy for instance, fL(L) ∝ L−2β . Now we assume that the distri-
bution function f(E,L) can be approximated by f̂(E,L), where f̂E(E) is a sum of delta
functions, such that:

f̂(E,L) = 1
N

N∑
i=1

wiδ(E − Ei)fL(L). (2.34)

The density distribution corresponding to this distribution function is:

ν̂(r) = 2π
∫ vr,max

−vr,max

dvr

∫ vt,max

0
vtdvtf̂(E,L) (2.35)

= 4π
r2

∫ −Φ(r)

0
dE

∫ Lmax

0
dLL

f̂(E,L),√
−2(E − Φ(r))− L2

r2

(2.36)

= 4π
r2

1
N

N∑
i=1

wi

∫ Lmax

0
dLL

fL(L)√
−2(Ei − Φ(r))− L2

r2

(2.37)

×Θ(−(Ei − Φ(r))) (2.38)

= 1
N

N∑
i=1

wiν̂i(r), (2.39)

where Θ is the Heaviside step function and the ν̂i(r) the densities that correspond to the
each of the energy delta functions.

Given a stellar density distribution ν(r) and a gravitational potential Φ(r), it may
be possible to find the weights wi such that ν(r) ≈ ν̂(r). In this case we may state that
we have found a numerical approximation to the distribution function that generates the
proper stellar density distribution and is embedded in the potential Φ(r). A solution can
be found for instance using a non-negative least square method. An even simpler method
is to start with the ν̂j corresponding to the lowest binding energy. All ν̂i associated with
higher binding energies can only contribute to the density at smaller radii, therefore by
weighing ν̂j this can account for the density out to the outermost radius. Now one can
proceed with the next ν̂i. Thus we start from the lowest binding energy components, use
appropriate weights and build the density distribution from outside in. Care should be
taken to make sure all weights are positive.

In the case of the mock Sculptor model discussed in the main text, ν(r) is the Plummer
profile and Φ(r) is the sum of the potentials of the Plummer mass distribution describing
the stellar component and that generated by the NFW profile associated to the dark
halo. In this case we have chosen fL(L) ∝ L−2β , where β = −1. For our purpose we
choose a logarithmically spaced radial grid of 600 points between rmin = 10−3 kpc and
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rmax = 103 kpc. For each ri on the grid, we calculate the potential energy, giving us a
grid of energies, which we take the energies for our distribution function (Ei in Eq. 2.34).
For each Ei we calculate the density on the same radial grid. The last step is to find the
weights wi using the above procedure. A small mismatch (few %) of the density at large
radii (> 300 pc) occurs due to the distribution function missing lower binding energy
components. The cumulative mass distribution of the stellar mass deviates < 10−4 from
the true mass distribution, and within 300 pc the relative density deviates < 2 × 10−4.
Outside this radius the density does not match very well, but since this is at large radii
and its mass contribution is very small (note also that the cumulative mass distribution
shows only small deviations) this is of no importance.

Appendix 2.B Centre of mass velocity of Sculptor

In this Appendix we transform the observed line-of-sight velocities to velocities with
respect to the centre of mass of Sculptor. This requires knowledge of the latter, which is
what we derive here using a maximum likelihood method.

The observed (heliocentric) line-of-sight velocity of a star can be expressed as:

v∗,hel(l, b) = elos(l, b) · (v∗,Scl(l, b) + vScl,GSR − v�,GSR)
= v∗,Scl(l, b) + vScl,GSR(l, b)− v�,GSR(l, b),

where elos(l, b) is the line-of-sight unit vector in the direction of the star, v∗,Scl(l, b) the
velocity of the star with respect to the centre of mass of Sculptor, vScl,GSR the systemic
velocity of the centre of mass of Sculptor with respect to the Galactic Standard of Rest
(hereafter GSR), v�,GSR the velocity of the Sun with respect to the GSR and · indicates
the inner product. The component of the line-of-sight velocity we are interested in is
v∗,Scl(l, b). Since v∗,hel(l, b) is measured, and assuming we know v�,GSR, we only need
to find vScl,GSR(l, b). For the velocity of the Sun we use v�,GSR = v�,LSR + vLSR,GSR =
(10.0, 5.2, 7.2) + (0, 220, 0) km s−1, where LSR denotes Local Standard of Rest (Dehnen
& Binney 1998).

To determine which stars are likely members of Sculptor we make a rough first se-
lection. We take the systemic heliocentric radial velocity (vScl,sys,helio = 110.6 km s−1)
and the mean velocity dispersion (σScl = 10.1 km s−1) from Battaglia et al. (2008). We
first require that the member stars are within 3σ of the systemic velocity of Sculptor,
as indicated by the red solid lines in the right panel of Fig. 2.6. Furthermore we also
require that they are located within r < 0.944 degree, indicated by the green dashed
line in the same panel. We add this requirement since we are not confident that outside
this radius a reliable velocity dispersion can be measured due to the low number density
of (probable) Sculptor members compared to Milky Way stars.

For simplicity we first assume the line-of-sight velocity distribution is described by a
Gaussian distribution with a constant velocity dispersion and zero mean velocity w.r.t
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Figure 2.12: Probability distribution function (pdf) of the three velocity components
of the systemic velocity of Sculptor with respect to the Galactic Standard of Rest. Left
column: Joint pdfs with 1, 2 and 3 σ contours lines, marginalised over the other com-
ponent. Right column: Individual pdfs marginalised over the other two components.
The measurements from Piatek et al. (2006) are shown in red, while those by Schweitzer
et al. (1995) are shown in blue. The vertical lines in the right panels and the dot in the
left panels indicate the maximum likelihood values.
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the centre of mass of Sculptor. Then the probability for vScl,GSR can be expressed as:

p(vScl,GSR) =
∏
i

1√
2πσi

exp
(
−v∗i,Scl(li, bi)2

2σ2
i

)
=
∏
i

1√
2πσi

exp
[
− 1

2σ2
i

{v∗i,hel−

elos(li, bi) · (v�,GSR − vScl,GSR)}2
] (2.40)

where σ2
i = σ2

Scl + σ2
∗i

is the velocity dispersion of Sculptor added in quadrature with
the measurement error of the velocity of star i. Although the velocity dispersion is
not constant with radius, we use the global value of σScl = 10.1 km s−1 as described
previously.

The joint and marginalised probability distribution functions for the velocity com-
ponents of Sculptor are plotted in Fig. 2.12 together with the 1, 2 and 3 σ contours.
The maximum likelihood value is reached at v̂Scl,GSR = (vx, vy, vz) = (278.5, 101.5,
−81.0) km s−1. These values are in agreement with Walker et al. (2008), who use a
similar method. We also over plot the measurements of Piatek et al. (2006, in red) and
Schweitzer et al. (1995, in blue) while the maximum likelihood value is indicated in black.
Note that the uncertainty in vz is smallest since this reflects mainly the uncertainty in
the mean radial velocity of the centre of mass of Sculptor due to its high galactic latitude.
The uncertainties in the other two velocity components mainly reflect the uncertainties
in the proper motion measurements. Our determination of the vy component agrees well
with the various data sets, while the vx component appears to be systematically offset.
Note however, that there is overlap at the 3σ level, and the 2σ and 3σ contours for the
joint vx and vy overlap as well. Perhaps this level of disagreement could be taken as an
indication that there may be intrinsic rotation in the system. Nonetheless, we note that
with this procedure we effectively have removed the observed gradient and no apparent
rotation remains, whatever its origin.
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Abstract
We use orbit based dynamical models to fit the 2nd and 4th moments of the line of sight velocity
distributions of the Fornax, Sculptor, Carina and Sextans dwarf spheroidal galaxies. Our goal
is to compare dark matter profile models of these four systems using Bayesian evidence. We
consider NFW, Einasto and several cored profiles for their dark halos and present the probability
distribution functions of the model parameters. When considering each system separately, we
find there is no preference for one of these specific parametric density profiles. However, the
combined evidence shows that is unlikely that all galaxies are embedded in the same type of
cored profiles of the form ρDM ∝ 1/(1 + r2)β/2, where β = 3, 4. For each galaxy, we also obtain
an almost model independent, and therefore accurate, constraint on the logarithmic slope of
the dark matter density distribution at a radius ∼ r−3, i.e. where the logarithmic slope of the
stellar density profile is −3. This is because all our best fit models essentially have the same
mass distribution over a large range in radius (from just below r−3 to the last measured data
point). This remarkable finding likely implies much stronger constraints on the characteristics
that subhalos extracted from cosmological simulations should have in order to host the dSph
galaxies around the Milky Way.
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3.1 Introduction

According to galaxy formation theories dwarf spheroidal galaxies are believed to inhabit
massive dark matter halos. Because of their large mass to light ratio these galaxies are
ideal to test fundamental predictions of the ΛCDM cosmological paradigm, since it is
generally considered relatively safe to neglect baryons in the construction of dynamical
models.

One of the strongest predictions from ΛCDM concerns the dark matter density pro-
file. Early simulations of dark matter halos assembled in a cosmological context showed
that such a profile is accurately described by a two-sloped form, now known as NFW
profile (Navarro et al. 1996, 1997). More recently Einasto profiles have been shown to
provide a better fit (e.g. Springel et al. 2008; Navarro et al. 2010), in particular for
satellite galaxies (Vera-Ciro et al. 2013). These predictions are made using dark matter
only simulations and therefore neglect (by construction) the baryonic component. And
although baryons are sub-dominant in the total potential of the system (Walker 2012a),
it has been suggested that they could play a role in the evolution of dwarf spheroidal
galaxies, for instance, in modifying the internal orbital structure (Bryan et al. 2012) and
the overall density profile (Governato et al. 2012). The complex evolution of baryons and
its non-trivial interplay with the host halo are difficult to model and not yet completely
understood (see Pontzen & Governato 2012).

Another effect driving the internal dynamics of satellite halos is the tidal interaction
with the main host. It can change the density profile (Hayashi et al. 2003), the geometrical
shape of the mass distribution (Kuhlen et al. 2007), and also influence the kinematics
of the embedded stars (Łokas et al. 2010). Unfortunately these uncertainties imply that
even when the observations of the local dwarf spheroidal galaxies are not consistent with
being embedded in the halos predicted from pure dark matter N-body simulations, this
does not necessarily reflect a fundamental problem of ΛCDM.

Thanks to their relative proximity, information for individual stars in the dwarf galax-
ies satellites of the Milky Way are relatively easy to get. Sky positions are easily de-
termined from photometry, and radial velocity measurements are possible to estimate
within an error of ∼ 2 km/s. Some of the datasets compiled to the date include thou-
sands of individual members with line-of-sight velocities (Helmi et al. 2006; Battaglia
et al. 2006, 2008; Walker et al. 2009a; Battaglia et al. 2011) Proper motions of individual
stars are currently still too difficult to measure. Despite the fact that only three of the
total of six phase space coordinates are available from measurements, it is possible to
create dynamical models of these systems that can be compared to these observables.

Following the method thoroughly described in Chapter 2 we set out to model For-
nax, Sculptor, Carina and Sextans with orbit-based dynamical methods (Schwarzschild
modeling) assuming they are embedded in spherical halos. As extensively shown in the
literature (e.g. Richstone & Tremaine 1984; Rix et al. 1997; van der Marel et al. 1998;
Cretton et al. 1999; Valluri et al. 2004; van den Bosch et al. 2008; Jardel & Gebhardt
2012) this method allows to construct a non-parametric estimator of the distribution
function. Among many, this method has one advantage over Jeans modeling, by not
having to assume a particular velocity anisotropy profile, therefore being more general
and thus less prone to biases associated to the assumptions. But even in this case there
are other limitations in the modeling such as the mass-anisotropy degeneracy. In this
work we use higher moments (fourth moment) of the line of sight velocity distribution
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to get a better handle on this degeneracy.
To compare how different shapes for the dark matter profiles fit the data, we first

need to establish a statistical framework. In this chapter we do this in a Bayesian way
using the evidence (Mackay 2003). This method provides a natural way of comparing
models in Bayesian inference and also makes it possible to combine the data of all the
dwarf spheroidals to test for example, if all dwarf spheroidals could be embedded in a
universal halo (Mateo et al. 1993; Walker et al. 2009b). Furthermore, the shape may
give us hints to how the dwarf galaxy formed and the anisotropy profile may be used to
distinguish between evolutionary scenarios (see e.g. Mayer 2010; Kazantzidis et al. 2011;
Helmi et al. 2012).

This chapter is organized as follows. We begin in §3.2 by presenting the data and all
the ingredients needed to do the model comparison. In §3.3 we present our dynamical
and statistical methods. We present the results of our Schwarzschild models for the four
dSph in our sample in §3.4.1, while the Bayesian model comparison is done in §3.4.2. We
discuss the implications of our results in §3.4.3 and conclude in §3.5.

3.2 Data
In this section we present the data that is used for fitting our dynamical models. The
radial velocity measurements of the dwarf spheroidal galaxies come from Helmi et al.
(2006); Battaglia et al. (2006, 2008); Walker et al. (2009a) and Battaglia et al. (2011).
We plot radius versus heliocentric velocity in Fig. 3.1 for each galaxy separately.

Figure 3.1 shows that each dSph suffers from foreground (Milky Way) contamination.
To remove this contamination and reliably identify member stars we have developed a
simple analytic model for the positional and kinematic distribution of both foreground
and the galaxy in question (along the lines of Battaglia et al. 2008, and Chapter 4). For
each particular dataset1, we assume that the foreground has a constant surface density,
and that the dSph follows a specific stellar density profile. We also assume that the
velocity distribution at each radius may be modeled as sum of two Gaussians. The
Gaussian describing the foreground has the same shape at all radii, while that of the
stars associated with the dwarf can have a varying dispersion with radius. Their relative
amplitude also changes as function of distance from the dwarf’s centre. This model
results in a determination of the relative contribution of member-to-non-member stars
as a function of velocity and radial distance R.

Based on this model we calculate the elliptical radius at which the ratio of dSph to
foreground is 3:1 (without using any velocity information). We remove all stars outside
of this radius from the dataset. A particular star included in more than one dataset
is removed only when it it satisfies the condition for all sets, for instance a star outside
Re,cut, Batt, but insideRe,cut, Walker will not be discarded. This simple clipping in elliptical
radius cleans up part of the foreground contamination. For completeness, the radii for
all datasets cleaned up in this way are presented in Table 3.2, as well as the fit to the
foreground model. The number of stars and the sources are listed in Table 3.1.

For the resulting dataset, we compute the second and fourth moment of the radial
velocity as a function of circular radius as follows2. We first define radial bins such
1 For a given dSph there may be multiple datasets, and we treat each independently because their

sampling might be different.
2 Elliptical radii are only used for the clipping, for the rest of the analysis we use the circular radius
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Figure 3.1: Radius versus line of sight velocity for Fornax, Sculptor Carina and Sextans.
The horizontal lines show the borders of the bins, the vertical lines denote the mean
systemic velocity of the galaxy together with the ±3σ region.

Name NBatt NWalker Nmember
Fornax 945(1) 2633(5) 2936
Sculptor 1073(2) 1541(5) 1685
Carina 811(3) 1982(5) 885
Sextans 792(4) 947(5) 541

Table 3.1: Number of stars in the kinematic samples used in this chapter. Sources:
(1)Battaglia et al. (2006), (2)Battaglia et al. (2008), (3)Helmi et al. (2006); Koch et al.
(2006); Starkenburg et al. (2010), (4)Battaglia et al. (2011), (5)Walker et al. (2009a)

Name Re,max,Batt Re,max,walker µMW σMW µdwarf σdwarf
(kpc) (kpc) (km/s) (km/s) (km/s) (km/s)

Fornax 1.82 2.21 41.1 38.9 55.1 12.1
Sculptor 1.37 1.65 17.9 47.4 110.6 10.1
Carina 0.86 0.96 70.9 62.5 222.9 6.6
Sextans 1.86 1.65 67.5 74.5 224.3 7.9

Table 3.2: Parameters of the foreground plus dwarf galaxy model used for determining
membership, as well as for deriving the radial profiles for the second and fourth velocity
moments for each dSph.
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Figure 3.2: Line of sight velocity moments for Fornax, Sculptor Carina and Sextans.
For each galaxy we show the velocity dispersion and the kurtosis. The black dots show
the mean, and the error bars the 1σ error. The blue regions show the confidence interval
for the NFW fit, similar as in Chapter 2.
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Name distance profile scale radius LV
(kpc) (kpc) ×105L�

Fornax 138(1) Plummer2 0.79 100(2)

Sculptor 79(3) Plummer3 0.30 10(3)

Carina 101(1) Exponential4 0.16 2.4(4)

Sextans 86(1) Exponential4 0.39 4.37(4)

Table 3.3: Distances, type of photometric profile used, scale radius and stellar luminos-
ity used for the dynamic models. Sources: (1) Mateo (1998), (2) Battaglia et al. (2006),
(3) Battaglia et al. (2008), (4) Irwin & Hatzidimitriou (1995)

that each bin has at least 250 stars in the velocity range vsys − 3σv, vsys + 3σv. If the
last bin has less that 150 objects, the last two bins are merged. After this, we fit our
parametric model for the galaxy plus foreground for each radial bin, to derive new velocity
dispersions. Then for each bin we do a 3σ clipping on the velocity using the new velocity
dispersion, and from this selection we calculate the second and fourth moments. The
errors on the moments are computed using Eqs. (17) and (19) in Chapter 2. The second
moment and the kurtosis3 are shown in Fig. 3.2 for each galaxy, where the black dot
corresponds to the mean, and the error bars indicate the 1σ error bar. The blue region
shows the confidence interval for the NFW model found in §3.4.1.

For the photometry we use analytic fits given by various literature sources as listed
in Table 3.3. Although the stellar mass is sub-dominant in the potential, we do include
its contribution in the dynamic models and fix M/LV = 1, as in Chapter 2.

3.3 Methods
3.3.1 Dynamical models
Our aim is to compare different models to establish what type of dark matter profile
best matches the kinematical data of local dSph galaxies. Here we consider the following
profiles to describe the dark matter halos of the dwarfs in our sample:

ρ(r) = ρ0

x (1 + x)2 , NFW (3.1)

ρ(r) = ρ0

(1 + xγ)β/γ
, (cored) βγ-profile (3.2)

ρ(r) = ρ0 exp
(
− 2
α′

(
xα
′
− 1
))

, Einasto (3.3)

where x = r/rs and rs is the scale radius. Each model has at least two unknown
parameters rs and ρ0. As we did in Chapter 2, we transform these two parameters
to rs and M1kpc (the mass within 1 kpc). As discussed in the Introduction, the NFW
and Einasto models are known to fit the halos dark matter distributions extracted from
cosmological N-body simulations. On the other hand, we explore the βγ models to test
3 The kurtosis is defined as γ2 = µ4/µ2

2, where µ4 is the fourth and µ2 is the second moment of the
line of sight velocity distribution.
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Name Fixed parameters Free parameters
NFW - M1kpc, rs
core13 β = 3, γ = 1 M1kpc, rs
core14 β = 4, γ = 1 M1kpc, rs
core23 β = 3, γ = 2 M1kpc, rs
core24 β = 4, γ = 2 M1kpc, rs
einasto.2 α′ = 0.2 M1kpc, rs
einasto.4 α′ = 0.4 M1kpc, rs

Table 3.4: Model names and their characteristic parameters of the various dark matter
density profiles explored.

the possibility of a core in the dark halo. Note that, in comparison to the NFW profile,
the Einasto model has one extra parameter (α′), but here we consider only two values
for α′ = 0.2, 0.4 to cover the range suggested by Vera-Ciro et al. (2013). On the other
hand, the βγ profiles have two extra parameters, but we limit ourselves here to two
different outer slopes (β = 3, 4) and two different transition speeds between the inner
and the outer slopes (γ = 1, 2). Note that the βγ models have a true core only for γ > 1,
however in all cases the central logarithmic slope vanishes, d log ρ/d log r = 0. However,
we loosely refer to these models as cored in what follows. Note that, with these choices,
all of our profiles ultimately have just two free parameters. The list of models explored
and their parameters are summarized in Table 3.4.

The orbit-based dynamical (Schwarzschild) models of each dwarf galaxy are obtained
as follows (see Chapter 2 for a more detailed description). For each of the dark halo
profiles, with its own set of parameters, we integrate a large number of orbits in the
respective gravitational potential (including also the contribution of the stars). We then
find a linear combination of these orbits that fits both the light and the kinematics. The
orbital weights found in this way have a physical meaning and can be used to obtain the
distribution function of the system. As data we have the line of sight velocity moments
(second and fourth depicted in Fig. 3.2), and the light profile (Table 3.2). The best
fit models (which give us the values of the parameters for a specific dark matter halo
profile) are those that minimize the χ2 = χ2

kin +χ2
reg, under the condition that the orbital

weights are positive, and that the observed light distribution is fit to better than 1% at
each radius. Here χ2

kin =
∑
k(µ2,k − µmodel2,k )2/var(µ2,k) +

∑
k(µ4,k − µmodel4,k )2/var(µ4,k).

The χ2
reg is a regularization term to make sure that the solution for the orbit weights leads

to a relatively smooth distribution function. In Chapter 2 we calibrated the amplitude
of this term for Sculptor. To have the regularization term for the other dwarfs of the
same relative strength, we note that χ2

reg ∝ 1/N , where N is the number of members
with radial velocities, since the χ2

kin term also scales as 1/N . Therefore, normalizing its
amplitude to that of Sculptor we get χ2

reg, dwarf = χ2
reg, Scl ×NScl/Ndwarf .

3.3.2 Bayesian model comparison
Background on Bayesian model comparison may be found in Mackay (2003). For com-
pleteness we discuss it here briefly, but we assume the reader is familiar with the basics
of Bayesian inference.

Given the data data and assuming a model Mi, the posterior for the parameters θi
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of this model is:
p(θi|data,Mi) = p(data|θi,Mi)p(θi|Mi)

p(data|Mi)
. (3.4)

The normalization constant p(data|Mi), also called the evidence, is of little interest in pa-
rameter inference, but is useful in Bayesian model comparison. To assess the probability
of a particular model given the data, we find

p(Mi|data) = p(data|Mi)p(Mi)
p(data) , (3.5)

where we see the evidence is needed. In this case p(data) is the uninteresting normaliza-
tion constant, as it cancels out if we compare two models:

p(Mi|data)
p(Mj |data) = p(data|Mi)

p(data|Mj)
p(Mi)
p(Mj)

= Bi,j
p(Mi)
p(Mj)

, (3.6)

where Bi,j is called the Bayes factor. If we take the priors on the different models to be
equal (i.e. p(Mi) = p(Mj)), the ratio of the evidence (the Bayes factor Bi,j) gives the
odds ratio of the two models given the data data.

Using these results we can perform model comparison between dark matter density
profiles, i.e. M = {Mnfw,MEinasto, ...}, and calculate for instance the odds that a given
galaxy is embedded in an NFW profile compared to an Einasto model, BNFW,Einasto.

Not only can we do model comparison on a single object, but we may also test if
our objects share a particular model (e.g. they are all embedded in NFW halos). If our
dataset data consists of the observations of two galaxies, i.e. data = data1 ∪ data2 and
assuming the datasets are uncorrelated and independent, we obtain:

p(Mi|data)
p(Mj |data) = p(data1|Mi)p(data2|Mi)

p(data1|Mj)p(data2|Mj)
p(Mi)
p(Mj)

= Bi,j,1Bi,j,2
p(Mi)
p(Mj)

(3.7)

where each factor p(datak|Mi) should be marginalized over its (own) characteristic pa-
rameters. From Eq. (3.7) we can see that the odds ratio of the models and Bayes factor
from different measurements can be multiplied to give combined evidence for a particular
model.

Behind each p(Mi|data) is a set of orbit based dynamical (Schwarzschild) models,
obtained as described above. For each of the models we calculate the evidence. Later on
we compare each model’s evidence to that of an NFW profile, i.e. we compute the Bayes
factor Bi,NFW, where i can be e.g. Einasto. By definition BNFW,NFW = 1, and again
assuming equal priors on the different models, the Bayes factor equals the odds ratio of
the models, such that for Bi,NFW > 0, model i is favored over an NFW profile.

3.4 Results
3.4.1 Schwarzschild models
As a result of our Schwarzschild modeling technique, we obtain a two dimensional prob-
ability density function (pdf) of the two parameters, M1kpc and rs, for each galaxy and
for each dark matter halo profile. In Fig. 3.3 we plot the pdf for the cored models and
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Figure 3.3: Pdf for the two free parameters characterizing the dark halo profiles for
each dSph galaxy obtained using Schwarzschild modeling. The top row shows the pdfs
with NFW/Einasto models, the bottom panel those for all cored models explored. The
contours show the 1 and 2σ confidence levels (the 3σ contour is not shown to avoid
crowding the image).

the NFW and Einasto models separately for each galaxy. The colored dots correspond
to the maximum likelihood for each of the corresponding models as indicated by the
legend. The contours show the 1 and 2σ equivalent confidence intervals (the 3σ contour
is not shown for clarity). For both Fornax and Sculptor the parameters for all profiles
are relatively well determined, while for Carina and Sextans this is less so. This can be
attributed to the difference in sample size (and hence to the smaller number of mem-
bers) in these systems, which has translated into fewer bins where the moments can be
computed (see Fig. 3.2). In general for all four galaxies the scale radius for the cored
profiles is found to be smaller than that for the NFW/Einasto profiles. We come back
to this point in section 3.4.3.

Our model’s masses at r1/2, the 3d radius enclosing half of the stellar mass, are
compatible with those of Wolf et al. (2010). However, our results for Fornax do not agree
with those of Jardel & Gebhardt (2012). These authors prefer a cored profile with a
much larger scale radius, and their enclosed mass is smaller in comparison to Wolf et al.
(2010). We note that this might be partly related to the fact that the amplitude of their
line of sight velocity dispersion profile (see their Fig. 2) is slightly lower than what we
have determined here.

In Fig. 3.4 we overlay on the kinematic observables the predictions from the best
fit Schwarzschild models. We note that all models provide very similar and virtually
indistinguishable fits, especially for the 2nd moment. Some slight differences are apparent
in the kurtosis, but in all cases, the differences are smaller than the error bars on the
moments.

In general we find all anisotropy profiles to be roughly constant with radius and
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Figure 3.4: Similar to Fig. 3.2, except now we show the different best fit models for
the various density profiles explored, which are indicated with different colors (the color
scheme is the same as in Fig. 3.3).
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Figure 3.5: Evidences for all models listed in Table 3.4, relative to the NFW case. The
last column shows the combined evidence for all galaxies together, and shows that the
core23 and core24 are strongly disfavored.

slightly tangentially biased on average. We do not find significant differences between
the profiles for cored and NFW models (the reason for this will become clear in §3.4.3).
Fornax’ s anisotropy β ∼ −0.2 ± 0.2, while Sculptor and Carina have on average β ∼
−0.5 ± 0.3. For Sextans the anisotropy cannot be determined reliably, β ∼ −0.3 ± 0.5.
These values are compatible with those of Walker et al. (2007), which were derived using
the spherical Jeans equation assuming a constant velocity anisotropy profile.

3.4.2 Bayesian comparison of the models
We compute the evidence relative to the NFW using Eq. (3.6) by integrating over the
parameters (in our case the scale radius and the mass) the pdfs shown in Fig. 3.3. We do
this for each dwarf galaxy and for all the models listed in Table 3.4. The different Bayes
factors are shown in Fig. 3.5. Each set of bars shows the Bayes factors for the given
dSph galaxy (Bi,NFW,k), while the last set shows the combined result (Bi,NFW,comb =∏
k Bi,NFW,k). We note that an odds ratio between 1:2 till 1:3 is considered “Barely worth

mentioning” (Jeffreys 1998), and only odds ratios above 1:10 are considered “strong”
evidence.

For each galaxy there is hardly any evidence for or against an Einasto profile (with
α′ = 0.2, 0.4) compared to NFW. This is not unexpected since these profiles are quite
similar over a large region (Vera-Ciro et al. 2013). Also in the case of the combined
evidence the NFW and Einasto are hard to distinguish. Comparing the NFW or Einasto
profiles for individual galaxies to the cored models, one cannot strongly rule out a par-
ticular model. For Fornax, Sculptor and Carina, the γ = 2 models (where the transition
speed is fast) appear to be less likely, but this is not the case for Sextans. However, when
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Fornax Sculptor Carina Sextans

Figure 3.6: Top row: Enclosed mass as a function of radius for the different dark
matter density profiles, with the stellar component in black. Middle row: Logarithmic
density slope as a function or radius, where the black curve corresponds again to the
stellar component. The red dashed line indicates r−3, the radius at which the light
profile has a logarithmic slope of −3, while the black line indicates r1/2, the radius at
which half of the stellar mass in enclosed (in 3d). Bottom row: Cumulative density
distribution of the (2d) radial distribution of the data (black), and the light (red) showing
the kinematic data is sampled more concentrated towards the center.

we look at the combined evidence, i.e. we explore whether all dwarfs are embedded in
the same halos, such γ = 2 models are clearly disfavored.

The results for Sculptor may be compared to those of Chapter 2. In that chapter
we found that the maximum likelihood value for the central slope of the density profile
corresponded to a cored model. Since the evidence is the integral of the pdf, and not
directly related to the maximum likelihood (except for a Gaussian distribution), we
should not be surprised to find a slightly stronger evidence for the NFW case here. In
any case, the differences between the models are minor as shown graphically in Fig. 3.4,
and the evidence and the maximum likelihood (marginally) favoring different models can
be attributed simply to not being able to distinguish amongst these.

3.4.3 A robust slope measurement
We now inspect in more detail the shape of the mass distributions found for the various
best fitting models. We are interested in exploring why the differences between the
various models as small as apparent in Fig. 3.4.

The top row of Fig. 3.6 shows the enclosed dark matter mass for the best fit models
(indicated by the solid dots in Fig. 3.3) for each galaxy separately. We use the same color
coding as in Fig. 3.3, and also include the stellar mass in black. The red-dashed vertical
lines denote r−3, the radius at which the light density profile has a logarithmic slope
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of −3, while the black line indicates r1/2. This remarkable figure shows that for each
galaxy there is a region where the mass distributions are truly almost indistinguishable
from one another. The different profiles, each characterized by its own functional form,
scale radius rs and mass M1kpc, conspire to produce a unique mass distribution. This
region extends from slightly below r−3 to approximately the location of the outermost
data point (see bottom panel). Here M(r) ∝ rx, where x ranges from 1.65 for Fnx, to
1.9 for Sextans.

In the middle row of Fig. 3.6 we plot the logarithmic slope of the dark halo density
distribution, where the black line denotes the stellar density. Near the position where the
logslope of the stellar density is −3, all the best fit dark matter density profiles seem to
reach a similar logslope, although the value of the slope varies from galaxy to galaxy. The
radius where the logslopes coincide lies, as expected, inside the region where the mass
distribution is well determined, since both quantities are related through derivatives.

To illustrate the distribution of the kinematic sample with respect to the light, we
plot in the bottom row of Fig. 3.6 the cumulative 2d radial distribution of the kinematic
data in black. The cumulative 2d radial distribution for the light is plotted as the red
histogram. All kinematic datasets are more concentrated than the light, but no clear
trend is visible between the distribution of the kinematic sample with respect to the
light, and the exact location where the logslope of most accurately determined.

The existence of a finite region where the mass is more accurately determined has
also been observed in the literature in works using MCMC in combination with Jeans
modeling. For example, it is visible in e.g. the right panel of Fig 1. in Wolf et al. (2010),
Fig. 18 in Walker (2012b), and Fig. 10 in Jardel et al. (2013) for Draco, in the case of a
non-parametric density distribution with Schwarzschild models.

The analysis of Wolf et al. (2010) used the light weighted average of the velocity
dispersion to relate the radius at which the logslope of the light is −3, or the half light
radius, to the point where the mass is accurately (being independent on the anisotropy)
and precisely (showing the least uncertainty) determined. Our findings go beyond this
result. They suggest that whatever dynamical model or method is explored, there is
a better set of parameters to describe the mass distribution of dSph galaxies. Let r−3
be the radius at which the logslope of the (3d) light distribution is −3. Since the mass
is accurately determined in this region, a natural parameter would be M−3 = M(r−3).
And since also the logslope at this radius is accurately determined, the next parameter
should be κ−3 = d log ρ

d log r |r=r−3 . For any general model, if the values of β and γ are fixed,
this effectively makes rs a function of κ−3.

Fig. 3.7 shows the pdf for the M−3 and κ−3 parameters for both the NFW and
core13 models for each galaxy, assuming a flat prior on these parameters in the domain
shown in this figure, except for the NFW profile which we limit to κ−3 = −1.05, since
for κ−3 ≥ −1 the scale radius is unphysical. As can be seen from the pdf while there
is still uncertainty associated to the logslope at this radius, the value is nearly model
independent and therefore we believe this value to be accurate, especially for Fornax and
Sculptor (κ−3 = −1.4 ± 0.15 and κ−3 = −1.3 ± 0.12 respectively for the NFW model).
Note also that some uncertainties might arise because the kinematics are not sampled
exactly according to the light.

These results also help us understand why we found that the scale radii of the best
fitting NFW profiles always to be larger than those of the cored models (see Fig. 3.3).
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Fornax Sculptor Carina Sextans

Figure 3.7: Similar to Fig. 3.3, except now using M−3 and r−3 as parameters. Note
that the contours for the NFW cannot go beyond κ(r−3) ≥ −1.

For the NFW, we have
κ(r) = d log ρ(r)

d log r = −2r
r + rs

− 1, (3.8)

which can be easily solved for rs:

rs,nfw = −rκ+ 3
κ+ 1 . (3.9)

A similar solution can be found for the other parametric models, for instance the γβ
model gives:

rs,γβ = r

(
−κ
β + κ

)−1/γ
. (3.10)

If we now require that the slopes are the same at r−3 for the NFW and core13 models,
we find

rs,nfw

rs,core13
= κ

κ+ 1 , (3.11)

which is > 1 for κ < −1, explaining why the cored profiles have smaller scale radii than
the NFW profile, i.e. to get the same logslope at the same location for the cored models,
their scale radius needs to be smaller than that of the NFW profile. A similar result
holds for the other cored models.

3.5 Conclusions
In this chapter we have presented a comparison of dynamical models using different dark
matter profiles for four dwarf spheroidal galaxies in the Local Group, namely Fornax,
Sculptor, Carina and Sextans. The model comparison was done using Bayesian evidence.
We have found that no particular model is significantly preferred, and that all four
dwarf spheroidals are compatible with either NFW/Einasto or any of the explored cored
profiles. Only Sextans shows a slight preference for cored models, but not with high
odds. Nonetheless, we find that it is very unlikely that all four dwarf spheroidals are
each embedded in a cored dark matter halo of the form ρDM ∝ 1/(1 + r2)β/2, with
β = 3, 4.

Our best fit models however, conspire to produce the same mass distribution over a
relatively large range in radii, from r−3 up to the last measured data point (which is often



BIBLIOGRAPHY 81

close to the nominal tidal radius obtained from fitting the light profile). ThisM(r) ∼ rx,
with x = 1.65 − 1.9, is similar to that suggested by Walker et al. (2009b) albeit with a
slightly steeper exponent. Another (related) quantity that is robustly determined and
independent of the assumed dark matter density profile, is the logslope of the density
distribution at r−3. We find for the dwarfs in our sample, that this slope ranges from
κ−3 ∼ −1.4 at r−3 = 0.96 kpc for Fornax, to κ−3 ∼ −1.1 at r−3 = 0.98 kpc for Sextans.

These findings can be seen as an extension of the results of Wolf et al. (2010), who
showed that the mass at r−3 can be determined very accurately in a model independent
fashion. These authors demonstrated that this result might be understood from the
Jeans equation. Although we do not have yet a solid mathematical explanation for our
new findings, we suspect that this might be obtained using the virial theorem, which is
effectively another, yet independent moment of the collisionless Boltzmann equation.

In the near future, we will apply Schwarzschild modeling to the same data but in-
stead of the moments, we will use the discrete individual measurements directly. This
approach should allows us to get the most out of the data, since no information is lost.
When binning, one loses spatial resolution, but also the higher moments of the line-of-
sight velocity distribution are not included in the fitting procedure because of their large
and asymmetric errors. Furthermore, the use of the full line-of-sight velocity distribu-
tion should improve the precision of the anisotropy profile, which may be an interesting
quantity to discriminate formation scenarios.

This moments-to-discrete modeling step must be carried out before deciding if and
how much more data is needed to discriminate among various dark matter density profiles.
Nonetheless, we have learned here that the functional form of the mass distribution
may be determined over a large distance range, even when only a few hundred velocity
measurements are available (as in the case of Sextans). However, the uncertainty on the
value of the exact slope of the density profile at e.g. r−3 is driven by the sample size.

An obvious next step is to establish if the subhalos extracted from cosmological
simulations have the right characteristics to host the dSph of the Milky Way, now that
not only the mass, but also its functional form (1st and 2nd derivatives), of their dark
halos have been determined reliably.
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Chapter 4
Discrete orbit based dynamical models
of the Sculptor dSph galaxy

Maarten A. Breddels and Amina Helmi

Abstract
We fit the full line of sight velocity distribution of Sculptor with orbit-based dynamical models.
Unlike previous work based the moments of the line of sight velocity distribution, we use the
individual measured velocities. When we test our method on a Mock dataset, we find that we
can recover well the distribution function and the parameters of the underlying potential. To
estimate the effects of sampling, we test the method both using the expectation value of the log
likelihood of the data and on a discrete dataset of 2,000 stars, i.e. the size available for Sculptor,
as well as one that is 5× larger. This enables us to show we accurately estimate the parameters
of the potential and without bias with 6% (3%) uncertainty in the mass for a kinematic dataset
of 2,000 (10,000) stars. When we apply our method to Sculptor, assuming a Navarro, Frenk
& White dark matter profile, we find a mass of M1kpc = 108.05±0.024M� and rs = 5.1+2.6

−1.7 kpc
which are consistent, though slightly larger, than the estimates presented in Chapter 2 and 3.
Interestingly, the distribution function of our best fit model appears to be bimodal, a result
that is also present when the dataset is modeled using its moments and with different dark
matter halo profiles. We show that an association to the metal-poor and metal-rich components
known to exist in Sculptor is plausible. Hence this constitutes a demonstration of the full power
of Schwarzschild’s method, because the multi-component nature of Sculptor is not explicitly
assumed in our modeling.
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4.1 Introduction
The dwarf spheroidal galaxies, satellites of the Milky Way, are the most dark-matter dominated
systems known to-date. Their very large mass-to-light ratios (in the range 10 - 1000s, Wolf et al.
2010; Walker et al. 2009b), make them ideal to constrain the nature of dark matter, through
estimates of their mass content and distribution, in a way that they provide important tests
to the ΛCDM cosmological concordance model. The satellites of the Milky Way are nearby
which permits accurate measurements of the line of sight velocities for hundreds to thousands
of individual stars (e.g. Battaglia et al. 2008; Walker et al. 2009a), and such datasets are thus
mature to call for sophisticated dynamical modeling.

Such dynamical models allow the inference of intrinsic properties from projected quantities
like sky positions and line of sight velocities. Not only mass content, but for example, orbit-based
dynamical models also constrain the galaxy’s potential and its distribution function. Although
much information about the line of sight velocity distribution (LOSVD) is contained in its first
four moments, working with these has some disadvantages. Most importantly it involves binning
of the data, and this leads to loss of spatial information since all stars in a (usually radial) bin
are grouped together. Furthermore higher moments tend to have large and non-gaussian errors,
complicating the analysis. It would be more natural to model the full LOSVD to then evaluate
the likelihood in a straightforward way. However, not all dynamical modeling methods provide
these, and in particular the widely used Jeans models only fit, nearly by definition, the moments
of (rather than) the LOSVD itself.

In principle all methods that aim at the determination of the underlying distribution func-
tion, be it parametrically or using orbits as building blocks, should be able to compute the
LOSVD, and in this Chapter we explore the latter, i.e. Schwarzschild models. The basic steps
of Schwarzschild’s method consist in integrating a set of orbits in a given potential, calculat-
ing the predicted observables for each orbit, and then weighing the orbits (with non-negative
weights) to obtain a model that fits the observed data. This approach guarantees that the
distribution function (which is reflected in the orbit-weights) is non-negative. This method
was originally used by Schwarzschild (1979) to demonstrate that a self consistent solution in
dynamic equilibrium exists for a triaxial system, but was only implemented to reproduce the
density distribution. The method was later extended to include kinematic constraints (Richstone
& Tremaine 1984; Pfenniger 1984). Since then many codes have been developed (e.g. Richstone
& Tremaine 1984; Rix et al. 1997; van der Marel et al. 1998; Cretton et al. 1999; Valluri et al.
2004; van den Bosch et al. 2008). Initially only the lowest moments of the line of sight velocity
distribution (mean velocity and velocity dispersion) were employed, but better data have led to
the inclusion of higher moments in the fits. While employing the moments allows one to use
linear or quadratic programming to find the orbit-weights, also likelihood methods for discrete
datasets have been developed (e.g. Merritt & Tremblay 1993; Wu & Tremaine 2006; Chanamé
et al. 2008). A great advantage of Schwarzschild modelling is that it is non-parametric in the
distribution function, and thus it does not require for example the specification of the anisotropy
profile, which is in fact an outcome of the model. Previous works modeling the dynamics of
dSph using this method include Jardel & Gebhardt (2012); Jardel et al. (2012, for applications
on the Fornax and Draco dSph), and Chapter 2 (or Breddels et al. 2012) and Chapter 3 (or
Breddels & Helmi 2013) on Sculptor, Fornax, Carina and Sextans. Most of these works have
employed moments of the LOSVD, although Jardel & Gebhardt (2012) model the full LOSVD
approximating it with a kernel density estimator in radial bins, which however, does not fully
exploit the discrete nature of the datasets.

Because of the obvious advantages of non-parametric methods and of the use of the full
LOSVD, in this Chapter, we implement Schwarzschild’s method in a fully discrete approach to
apply it on dwarf spheroidal galaxies. In §4.2 we first explain how we implement our discrete
Schwarzschild model numerically. We then test our method on a Mock model of a dSph galaxy
in §4.3. In §4.4 we discuss the issue of modeling the foreground contamination, while in §4.5 we
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apply our method to the Sculptor dwarf, and finally conclude in §4.6.

4.2 Dynamical model
4.2.1 Generalities
The phase-space structure of a galaxy can be specified by its distribution function (hereafter df)
f(x, v), where x and v are the position and velocity coordinates respectively. The probability
of finding a star in the volume dxdv is given by f(x, v)dxdv. All observables may be derived
from knowledge of the df. For example the normalised surface density:

µ(x, y) =
∫

dzdvf(x, v), (4.1)

where z is the direction along the line-of-sight.
According to the (strong) Jeans (1915) theorem, the df of a steady-state stellar system in

which almost all orbits are regular, is a function of the isolating integrals of motion (see also
Binney & Tremaine 2008). Spherically symmetric systems (both in the tracer’s density and
the underlying potential) have only regular orbits and generally respect 4 isolating integrals of
motion, the energy and the 3 components of the angular momentum vector. However, if the
galaxy shows no rotation, due to symmetry, the df will depend only on the energy and the
modulus of the angular momentum vector, i.e. f(x, v) = f(E,L). Furthermore if the velocity
distribution is isotropic, the df can only depend on energy and f(x, v) = f(E).

Most dSph galaxies are so distant that currently the only phase-space coordinates that may
be measured are the projected stellar positions on the sky, and the line-of-sight velocities of (a
subset of) its stars. These can be used to derive the surface density µ0(R) and the moments of
the line-of-sight velocity distribution, such as:

µ0(R) =
∫

dzdvf(E,L), (4.2)

µ2(R) = 1
µ0(R)

∫
dzdvv2

‖f(E,L), (4.3)

µ4(R) = 1
µ0(R)

∫
dzdvv4

‖f(E,L). (4.4)

Here R is the projected distance on the sky from the centre of the galaxy and v‖ the velocity
along the line-of-sight, after subtraction of the centre of mass mean motion.

Although the zeroth moment µ0(R), is very useful in comparing the photometric data to
a particular distribution function (see §4.2.2) since it is defines the probability that a star
should be at (projected) radial distance R from the center, the rest of the moments do not
define probability density functions (pdf) themselves. Following Chanamé et al. (2008), we are
interested in the pdf that describes the probability of finding a star with a particular line-of-sight
velocity at a given position:

p(vlos|R) = 1
µ0(R)

∫
dzdv⊥f(E,L), (4.5)

where v⊥ indicates the velocity vector perpendicular to the line of sight. Note that since the
kinematic data often is not randomly sampled in R, we are not interested in p(vlos, R) but in
the conditional pdf p(vlos|R) = p(vlos, R)/p(R).

This equation together with Eq. (4.2) for the surface density, constitute the basis for finding
the answer to the fundamental question: what is the probability of our data given a model?
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In the remainder of this Chapter we deal mainly with the implementation of a method that
constitutes a numerical approximation to Eq. (4.2) and Eq. (4.5), and which using orbit-based
dynamical (Schwarzschild’s) method allows us to establish the model that best fits the data in
the sense described above.

4.2.2 From the model to the probability density function
Our implementation of the Schwarzschild method follows a similar approach to that presented
in Chapter 2, which is based on Rix et al. (1997) and van den Bosch et al. (2008). The main
difference is that instead of finding the moments of the LOSVD, we actually obtain the full
LOSVD and the associated projected stellar density distribution. Our procedure is quite similar
to Chanamé et al. (2008). It differs in that instead of computing the probability for each star,
it is performance-wise more convenient to store the (model) LOSVD on a grid since for dwarf
spheroidal galaxies the only kinematic information available at the moment are the line of sight
velocities.

For convenience we define l = L/Lmax the relative angular momentum (where Lmax is the
angular momentum of a circular orbit of energy E), such that l ∈ [0, 1]. This enables us to
define a rectangular grid in energy and relative angular momentum. Since the Schwarzschild
method is based on orbit integrations in a specified gravitational potential, the df may be seen
as a sum of Dirac delta functions:

f(E,L) =
∑
i,j

f̂i,jδ(E − Ei)δ(L− ljLmax,i), (4.6)

where
∑

i,j
f̂i,j = 1 and f̂i,j ≥ 0.

To define the grid in energy and (relative) angular momentum we proceed as follows. For
the energy we choose N ′E radii between a minimum and maximum radius spaced logarithmically,
and take the corresponding energy of a purely radial orbit. The minimum and maximum radii
we consider are 0.033 kpc and 24.492 kpc, respectively. For each energy we choose N ′l relative
angular momenta spaced linearly between 0 and 1. All orbits are integrated starting from their
apocentre. For simplicity we refer to a single orbit with a single index j instead of the double
index i, j.

Since the location of the star is not a random observable (as is the line of sight velocity)
but chosen beforehand, the probability of a set of parameters θ that define the gravitational
potential and distribution function of the galaxy, given the measured line of sight velocity vi at
radius Ri is:

p(θ|vi, Ri) = p(vi|Ri, θ)p(θ)
p(vi|Ri)

, (4.7)

and for a whole dataset, this reduces to a product over i. For parameter inference the normal-
ization p(vi|Ri) (the evidence) is not relevant, and the prior on p(θ) needs to be specified. The
likelihood term p(vi|Ri, θ) is where the dynamical model plays a role.

For a fixed set of characteristic parameters of the specified gravitational potential, we inte-
grate a set of orbits, and each orbit j defines a pj(vi, Ri|θ), such that given a set of orbit-weights
wj we have a full pdf from

p(vi, Ri|θ) = 1∑
j
wj

∑
j

wjpj(vi, Ri|θ), (4.8)

where the first factor automatically normalizes the pdf. For the likelihood we actually need
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p(vi|Ri, θ) since, as mentioned above, the position is not a random variable:

p(vi|Ri, θ) = 1∫
dvp(vi, Ri|θ)

1∑
j
wj

∑
j

wjpj(vi, Ri|θ), (4.9)

= 1
p(Ri|θ)

1∑
j
wj

∑
j

wjpj(vi, Ri|θ), (4.10)

= 1∑
j
wj

∑
j

wjpj(vi|Ri, θ). (4.11)

In the numerical implementation we integrate the orbits with a fixed timestep and count
each time the star is inside a cell of a grid in R and v. We choose this grid linear in R
between R = 0, Rmax, and linear between v = −vmax, vmax with size NR × Nv. The choices
for the Rmax, vmax, NR, Nv depend on the resolution needed or wanted and storage (and/or
performance) issues. For instance choosing vmax much larger than the escape velocity of a
particular model will compromise the resolution in the v-direction, while hardly any star may
lie close to this value. We therefore choose to fix vmax to 40 km/s for Sculptor, which is around
4σlos, where σlos is its velocity dispersion along the line of sight. Using Nv = 30 gives a resolution
of ∆v = 80/30 km/s = 2.6 km/s which we found to be sufficient (also considering the average
error of 2 km/s in the data). For the radial direction we choose Rmax = 1.5 kpc and NR = 30,
giving a resolution of ∆R = 1.5/30kpc = 50 pc. Increasing the resolution leads to more shot-
noise from the finite integration time, and is potentially a big issue for datasets with larger
dimensionality (see McMillan & Binney 2013).

When an orbit is outside the range of the R − v grid, a count is missed. To have a proper
prediction for the light (or mass) distribution, we keep a separate R grid with the same resolution
in the R direction as the R− v grid, but where counts are added independent of the respective
velocity. After the integration all grids are normalized by dividing by the number of integration
points (Norbit = 5000) and the resolution size of a grid element (∆v ×∆R for the R − v grid)
such that:

Nv∑
k

NR∑
l

∆v ×∆R× gR,vj,k,l ≤ 1, (4.12)

NR∑
l

∆R× gRj,l ≤ 1, (4.13)

where gR,vj and gRj are the probabilities on the grids that correspond to pj(v,R|θ) and pj(R|θ)
respectively for orbit j. For orbits that are fully inside the radial and velocity range (see e.g.
Fig 4.1 for a variety of examples) the equality holds. Some orbits probe regions beyond the
radial or velocity range. For those the inequality holds (the counts inside the grid are smaller
than the number of integration points), and although the pdfs (gR,vj and gRj ) of the individual
orbits may not be normalized in these cases, care is taken such that the final pdf is properly
normalized.

For every vi and Ri we calculate the index for these grids, ki, li corresponding to the index
in the v and R directions. Therefore given a set of orbit-weights the numerical equivalent of Eq.
4.10 (and Eq. 4.11) is:

p(vi|Ri, θ) = 1∑
j
wj
∑Nv

k
gR,vj,k,li

∑
j

wjg
R,v
j,ki,li

. (4.14)

Notice that in the denominator we use the gR,v grid and sum over velocity rather than over the
gR grid directly, this is to ensure that the numerator and the denominator are normalized in
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Figure 4.1: Line of sight velocity distributions: building blocks for the discrete
Schwarzschild method. Each panel represents the pj(vi, Ri|θ) distribution associated
to an orbit with energy Ei and angular momentum Lj , with R along the x-axis, and
vlos along the y-axis. From left to right the binding energy is decreasing, and the
angular momentum increases from bottom to top.

the same way. We can treat the photometry in a similar way as the kinematics, in which case
the likelihood factors become:

p(Ri|θ) = 1∑NR

l

∑
j
wjgRj,l

∑
j

wjg
R
j,li . (4.15)

We show a graphical representation of the gR,vj,k,l (the numerical equivalent of pj(v,R|θ)) in
Fig. 4.1. Each panel represents gR,vj,k,l, i.e. one orbit (although see below for dithering), where
the dark color means higher probability. For each panel the x-axis represents the radial direction
and the y-axis represents the velocity axis. On the bottom left the lowest angular momentum
and highest binding energy orbits are found, while the panels to the right represent orbits with
lower binding energy (larger radii) and the panels to the top represent higher angular momentum
orbits.

As in Chapter 2 we implement dithering by effectively replacing each R−v grid by an average
of a set of R − v grids with neighbouring energy and angular momentum values. This leads to
a more continuous distribution function instead of a small set of delta functions in energy and
angular momentum space while keeping a relatively low number of degrees of freedom for the
orbit-weights defining the distribution function.

4.2.3 Fitting the data
Apart from fitting the data we also include an extra regularization term, as done in Chapter
2. This effectively reduces the parameter space and yields a smoother df. This smoothness
requirement is implemented by demanding the second order derivatives of the orbit-weights
in the energy and angular momentum direction to be small (for more details, see §2.2.3). To
convert the χ2

reg of Chapter 2 into a likelihood term, we add the following term to our likelihood:

Lreg = e−χ
2
reg , (4.16)

where the λL and λE in Eq. (2.25a-2.25c) determines the relative strength of the regularization
compared to the data. As in Chapter 2, we use λL = λE/8 and λE = 0.1.
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Given a set of kinematic datapoints of sizeNkin and a set ofNlight photometric measurements,
we can evaluate the likelihood of this dataset for a given gravitational potential and set of orbit-
weights using Eqs. (4.14) and (4.15):

L =

(
Nkin∏
i

p(vi|Ri, θ)

)
×

(
Nlight∏
j

p(Rj |θ)

)
× Lreg, (4.17)

where θ are the characteristic parameters of the potential and the orbit-weights, and we assume
that the positions of the kinematic samples are chosen, which is generally the case for kinematic
samples for dSph galaxies. For clarity we have used a different index for the two products, to em-
phasize that the kinematics and photometry will generally be completely different (independent)
datasets.

It is not possible to find the best fitting orbit-weights using quadratic programming as done
in Breddels et al. (2012), since the likelihood is not linear nor quadratic in the orbit-weights. We
therefore have to resort to a general optimization routine. We have found the BFGS optimization
routine from the Python package scipy to work adequately. The gradient of Eq. (4.17) can easily
be computed which significantly speeds finding the optimum. Since the orbit-weights need to
be non-negative, appropriate boundary conditions are required.

4.3 Testing with a mock model
In this section, we take a similar approach as in Chapter 2 to test our code. We first fix the
parameters of the potential to their true values to see if we can estimate the orbit-weights and
therefore recover the distribution function. After this, we test how well we can estimate the
parameters of the potential. McMillan & Binney (2013) argue that finding the distribution func-
tion is possible, but that due to random numerical errors on the log likelihood, that parameter
estimation of the potential is practically impossible. We do not appear to have this problem,
most likely due to the lower dimensionality of the observable space in the case of data for dSph
(vlos and R).

4.3.1 Dataset versus expected log likelihood
Given a kinematic dataset {Ri, vlos,i} of size Nkin drawn from a distribution p(vlos|R, θtrue),
where θtrue indicates the true parameters of the potential and the true orbit-weights, the likeli-
hood of this dataset is

Lkin =
Nkin∏
i=1

p(vlos,i|Ri, θ), (4.18)

logLkin =
Nkin∑
i=1

log p(vlos,i|Ri, θ). (4.19)

We can take the expectation value of the log likelihood over the data:

E[logLkin] =
Nkin∑
i=1

∫
dvlos,i

∫
dRip(vlos,i|Ri, θtrue) log p(vlos,i|Ri, θ) (4.20)

=
Nkin∑
i=1

∫
dvlos

∫
dRp(vlos|R, θtrue) log p(vlos|R, θ) (4.21)

= Nkin

∫
dvlos

∫
dRp(vlos|R, θtrue) log p(vlos|R, θ), (4.22)
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where p(vlos|R, θtrue) is the conditional pdf of the line of sight velocities for the true model
(i.e. the data), and p(vlos|R, θ) that of a particular model, and the integral is the negative
of the cross entropy. The cross entropy is minimal when p(vlos|R, θtrue) = p(vlos|R, θ), which
corresponds to the maximum likelihood when the correct model is found. We also can see
from this equation that the expection value of the log likelihood of N observations is simply
N times the expected log likelihood of a single observation. This makes studying the effect
of sample size on the uncertainty of the estimated model parameters simply a multiplication
of the individual expected log likelihoods. Tests of the method based on a single realisation
cannot detect systematic biases since the maximum likelihood never equals the true values of
the parameters simply due to sample variance. On the other hand, when we calculate the
expectation value, we can recognize biases directly. Tests using the expectation value of the
log likelihood are similar in spirit to those performed in Chapter 2, where we considered the
expected moments (rather than only those obtained from single realisations of the mock model).

A similar approach can be used for the light profile, in which case we find

E[logLlight] =
Nlight∑
i=1

∫
dRip(Ri|θtrue) log p(Ri|θ) (4.23)

= Nlight

∫
dRp(R|θtrue) log p(R|θ), (4.24)

where Nlight is the number of photometric samples.
When we test our code using this method, p(vlos|R, θtrue) and p(R|θtrue) are given since we

know the underlying gravitational potential and distribution function of our mock model. Then
for a particular set of characteristic parameters for the potential (reflected in θ), we adjust
the orbital weights (which is also reflected in θ), to obtain p(vlos|R, θ) and p(R|θ), until we
find the maximum likelihood. Note that in this simple test, we cannot change the parameters
of the potential and the orbit-weights at the same time, since changing the potential requires
calculating a complete set of orbits.

4.3.2 Recovering the distribution function
As in Chapter 2 we use our mock model to test our code. Our mock model consists of a
spherically symmetric stellar distribution of the Plummer form with scale radius b = 0.3 kpc
and total mass M∗ = 106M�. The stars are embedded in a dark matter halo of the NFW
form with rs = 0.5 kpc and an enclosed mass withing 1 kpc of M1kpc = 108 M�. We put the
velocity anisotropy to a constant value of β = −1 and numerically find the distribution function
as explained in Appendix 2.A.

Since we know the distribution function and the potential of our mock model (i.e. we know
θtrue), we can directly compute p(vlos|R, θtrue) and log p(R|θtrue) in Eqs. (4.22) and (4.24),
where we have chosen Nkin = 2,000, and Nlight = 200,000. Both p(vlos|R, θtrue) and p(vlos|R, θ)
are convolved with a gaussian of 2 km/s dispersion in the velocity direction to simulate the
measurement errors. We then change the orbit-weights to optimize E[logLkin] +E[logLlight] +
logLreg (i.e. Eq. 4.22 + Eq. 4.24 and the log of Eq. 4.16) using the algorithm as explained in
§4.2.3. This is the same as finding the maximum likelihood of the expectation value of the log of
Eq. (4.17). Note that since the regularization term does not depend on the data, its expectation
value is the term itself.

We show the orbit-weights in the top left panel of Fig. 4.2 which are a good match to the
true orbit-weights shown in Fig. 2.2. The true values for the velocity dispersions (top middle
panel), velocity anisotropy (bottom middle panel) and mass distribution (bottom left panel) are
also recovered well.
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Figure 4.2: Top left: Orbit-weights found using the maximum likelihood of the expec-
tation value of the log likelihood method for a kinematic dataset of Nkin = 2000. Black
lines indicate the projected orbit-weights in the energy and angular momentum direction.
Bottom left: Mass distribution for the found solution in the red dashed line, true value
in black. Top middle: Intrinsic velocity dispersion in the radial direction (red) and
the tangential direction (green), the black lines indicate the true velocity dispersions.
Bottom middle: Velocity anisotropy profile in red, with the true value in black. Right
column: Similar to the middle column, except now showing the solution using a discrete
sample of Nkin = 2000.

Although we have shown the results for the expectation value of the log likelihood, in practice
we always deal with discrete datasets. We therefore repeat the same procedure, except that we
now simply use Eq. (4.17). Our more realistic (discrete) dataset is produced by drawing 2, 000
stars from the true distribution function and convolving the line of sight velocities with a 2 km/s
gaussian error. The results of the fitting procedure for the velocity dispersions and anisotropy
are shown on the right column of Fig. 4.2. This shows the expected sampling effects, but also
shows that the trends are similar. The gray regions in the bottom middle and right panels
indicate where we cannot recover the anisotropy profile reliably (see Chapter 2 for an extensive
discussion).

4.3.3 Recovering the parameters of the potential
Since we have shown that we can closely recover the distribution function (or orbit-weights),
we now focus on recovering the parameters of the potential. For each M1kpc and rs we have to
integrate a set of orbits as outlined in §4.2. Then for each M1kpc and rs we find the best fitting
orbit-weights, and construct the pdf of these parameters. With uniform priors on log rs and
M1kpc, we show this pdf in the left column of the left part of Fig. 4.3 for a discrete realization of
the mock model. The blue line (dot) indicates the maximum likelihood while the red line (dot)
shows the true value. As noted in the previous paragraph, since this is only a particular sample,
we do not expect the maximum likelihood to be equal to the true value, and the same holds for
the velocity anisotropy. We therefore take the test a step further and check that our method
indeed works when using the expectation value. The corresponding results are shown on the
right part of the same Fig. 4.3. Here we see the maximum likehood value overlaps perfectly
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Figure 4.3: Probability distribution function for Mock Sculptor for a sample of 2,000
stars, with the two leftmost columns corresponding to the same sample of Fig. 4.2, and
the rightmost columns to the expectation value. For each plot the following description
holds. Left column: Probability distribution functions (joint and marginalised) for
mass and scale parameters of the NFW dark matter halo potential recovered for mock
Sculptor model. Blue dot and blue lines (left column) indicate the maximum likelihood
value (of the unmarginalised pdf), while the red dot and vertical dashed lines indicate
the input values for the mock Sculptor model. The green solid line indicates the median
value and the blue regions (or black contour lines in the top left panel) the 68.3, 95.4 and
99.7 per cent confidence intervals. Top right: Recovered anisotropy profile. The grey
region indicates where our method cannot recover the anisotropy (see text for details).
Middle right: Recovered logarithmic density slope for the dark matter. Bottom right:
Recovered enclosed mass profile.

with the true value, and the anisotropy is recovered accurately outside the grey region, except
maybe for a slight deviation at large radii. If we look at the pdf of M1kpc and rs we see that the
pdf is sharply cut off at the bottom left. This is due to these models having a smaller escape
velocity than the maximum velocity present in the dataset, which evaluates to a likelihood of
zero since these models would claim it impossible to have stars with velocities larger than the
particular model’s escape velocity. Since we consider a line of sight velocity error of 2 km/s, this
sharp border is not that near the true value, while if we decrease the errors this sharp border
approaches it.

Note that in 68% of cases, a particular sample drawn from this model will have its maximum
likelihood within the 1σ contour. The uncertainty on the mass based on the expectation value of
the log likelihood is σlog M1kpc = 0.026, while that of the scale radius is σlog rs = 0.081 for a sample
of 2,000 stars. A natural question is what is the gain when the sample size is increased. The left
panel of Fig. 4.4 shows the pdf using the log likelihood method for a kinematic dataset of 10,000
stars with errors of 2 km/s. The right panel shows the corresponding anisotropy. If the pdf
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Figure 4.4: Left: Pdf for Mock Sculptor for 10,000 stars using the expectation value
for the log likelihood. Right: Corresponding anisotropy profile.

were well described by a multivariate Gaussian, one would expect the uncertainties to decrease
by a factor of

√
5 ≈ 2.2. We find however that the uncertainties are now σlog M1kpc = 0.013 and

σlog rs = 0.040, a decrease of a factor of 2 for both parameters. Although very close to the factor
of
√

5, we see that the comparison to a multivariate Gaussian only holds to a certain degree.
The uncertainty on the velocity anisotropy also decreases significantly, which could constitute
an additional valid motivation for getting kinematic datasets of this size.

4.4 A foreground model for Sculptor
In contrast to our mock model, Local Group dwarf spheroidal galaxies suffer from foreground
contamination from the Milky Way. This contamination is apparent for example in Fig. 3.1 of
Chapter 3 where the data from Battaglia et al. (2008); Walker et al. (2009a) are shown. The
most likely contaminants may be removed using, for example, a 3σ clipping (e.g. Battaglia et al.
(2008); Chapter 2), a membership probability (Walker et al. 2009c), dwarf/giant discriminators
(Battaglia & Starkenburg 2012), or an interloper removal scheme based on some prejudice about
the dynamical state of the galaxy (Łokas 2009). A sharp cut in any of the parameter spaces
will unlikely be the best approach since members and non-members will generally overlap in any
space used, be it velocity or metallicity.

In this section we therefore explore a different approach. Instead of trying to remove fore-
ground stars from our catalogue, we develop a joint kinematic model for the foreground and
for the dwarf galaxy in question, and derive a probability for each star for belonging to either
component.

4.4.1 Joint kinematical model for Sculptor and the foreground
If we assume that the contamination by the Milky Way does not vary with sky position within
the angle subtended by the dwarf galaxy, then the probability of a star being a member of the
dwarf galaxy or being a contaminant can be expressed as,

p(m|Rε) + p(¬m|Rε) = 1, (4.25)
p(m|Rε)/p(¬m|Rε) = µ(Rε)/µ0,fg, (4.26)
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where p(m|Rε) is the probability of being a member of the galaxy at elliptical radius Rε while
p(¬m|Rε) being the probability of not being a member. The function µ(Rε) is the (normalized)
surface density of the stars which, for a constant stellar mass-to-light ratio, is equal to the
surface brightness. In the case of Sculptor, we assume this follows a Plummer form with a scale
radius of b = 0.3 kpc. Note that for this model we use the elliptical radius, since the Plummer
fit to the surface density is performed with elliptical instead of circular annuli. However, in the
rest of this Chapter we use a circular radius since our dynamical model is spherically symmetric.
The quantity µ0,fg is the constant surface density of the foreground and depends also on the
selection function for example, on the location of stars in the color-magnitude diagram. This
quantity is difficult to predict a priori, and therefore it is one of the parameters to determine
with our kinematic model.

If we also take the velocity into consideration, the probability to find a star i with velocity
vi, at elliptical radius Rε,i is:

p(vi|Rε,i) =

dSph model︷ ︸︸ ︷
p(vi|m,Rε,i) p(m|Rε,i)︸ ︷︷ ︸

Eqs. 4.25−4.26

+

Foreground model︷ ︸︸ ︷
p(vi|¬m,Rε,i) p(¬m|Rε,i)︸ ︷︷ ︸

Eqs. 4.25−4.26

. (4.27)

The first factor of the first term is the velocity model of our dwarf galaxy. The first factor
of the second term is the velocity model of the foreground. The last factors of both terms
come from Eqs. (4.25 - 4.26). Note that in the case of multiple datasets of the same galaxy, a
particular star may appear more than once (through repeat observations, or because the datasets
were obtained by different authors). In that case, the velocity used is equal to the mean of the
various measurements. Since our goal is to have a foreground model we keep our velocity model
of the dwarf galaxy simple and assume it can be well approximated by a Gaussian. We make the
same assumption for the foreground velocity distribution. In total our model has six parameters,
the mean and dispersion of the two Gaussians and the two constant surface densities (µ0,fg), one
for each of the datasets we work with (those from Battaglia et al. 2008; Walker et al. 2009a).

To find the best fitting foreground model, we optimize the following log likelihood function:

log
N∏
i

p(vi|Rε,i) =
N∑
i

log p(vi|Rε,i), (4.28)

To check the results of our best model fit, we make a detailed comparison to the data. We
take the radial bins used in Chapter 3, and use these as the limits of our elliptical bins. (These
bins were found such that in each radial bin there were at least 250 members inside 3σ. Note
that for the current analysis, it is not important how many stars are in each bin, and that using
the radial bins to define our elliptical bins is convenient and bears no particular meaning). We
count the number of stars within 3σ of the mean velocity of Sculptor (Ninside), and outside this
3σ (Noutside), where σ is the velocity dispersion of the dwarf galaxy found for the best fitting
model. From our model we can calculate the fraction of members (fm) and non members (fnm)
inside this 3σ at a given radius, since these correspond to the area under the best-fit Gaussian
in or outside this given velocity range. Expressed using the terms in Eq. (4.27)

fm =
∫ vmax

vmin

dvp(v|m,Rε)p(m|Rε), (4.29)

fnm =
∫ vmin

−∞
dvp(v|¬m,Rε)p(¬m|Rε) +

∫ ∞
vmax

dvp(v|¬m,Rε)p(¬m|Rε), (4.30)

where, in this case, we have chosen vmin and vmax corresponding to the mean velocity of Sculptor
plus or minus 3σ.
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Figure 4.5: Top left: Number of “member” stars in each elliptical bin, where “mem-
bers” are defined as being within 3σ of the mean velocity of Sculptor. Bottom left:
Difference between the estimated number of members from the counts versus the pre-
dicted number based on the best fit models. Middle column: Similar to the left column,
but now for the non-members. Top right: ratio of member to non members for both
datasets (red is for the dataset of Battaglia et al. (2008) while green for Walker et al.
(2009a)). Bottom right: Normalized histogram of the radial velocity of all stars in the
datasets in black, and in red the best fit model.

Using the observed counts and these estimates we then solve the following equations to get
an “observed” number of members and non-members within this velocity range:

Ninside = fmNmembers + fnmNnon-members, (4.31)
Noutside = (1− fm)Nmembers + (1− fnm)Nnon-members. (4.32)

On the other hand, we can also predict directly from the model the number of members and
non-members in each bin, which are simply N×fm and N×fnm, where N is the number of stars
in each bin. In the top left panel of Fig. 4.5 we plot the number of “observed” members with the
solid line, while the number of predicted members in each bin is given by the dashed line. The
comparison for the number of non-members is plotted in the top middle panel. The differences
are plotted in the panels below these. In the bottom right panel we plot the normalized histogram
of the line-of-sight velocity for all the stars in Sculptor in black, with the best fit model in red.
This comparison shows that we accurately describe the full velocity distribution. In the top
right panel we show for each dataset separately the logarithm of the fraction of member to
non-members inside 3σ of Sculptor’s mean velocity and highlight the radius at which this ratio
is 3:1. In the following sections we will not consider stars that are outside this elliptical radius,
since we believe that the simple model we are using has its limitations, and that by introducing a
conservative cut we will be less affected by biases. Note that it is not crucial that our kinematic
model for Sculptor reproduces perfectly its observed velocity distribution, since we only need
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Figure 4.6: Left panels: Same as Fig. 4.5 except the best fitting model is found
leaving the light profile scale radius as a free parameter. Right panel: Distribution of
the light profile scale parameter from an MCMC analysis, showing the scale radius of
the light profile obtained from the photometry is inconsistent with that found with our
kinematical model.

to estimate the foreground contamination for the more sophisticated orbit based dynamical
modeling that follows.

4.4.2 Foreground model issues

From Fig. 4.5 we see that at small radii the predicted number of members is larger than that
based on counting, while in the last bin the model underpredicts the number of members. A
possible explanation is that the analytic (Plummer) light profile is not a good match at larger
radii, as inspection of Fig. 4.1 of Battaglia (2007) suggests. Since the kinematics are more
uniformly sampled compared to the light, we have relatively more stars at large than at small
radii compared to what would be obtained from a random sample based on the photometry.
While the Plummer profile is generally a good fit to the photometric data, and a mismatch at
large radii may be considered small because most of the stars are located at smaller distances,
the sampling of the kinematics implies that the description of the light profile needs to be
accurate at all radii. To explore the effect of the light profile on our kinematical model, we now
set the scale radius of Sculptor’s light profile as a free parameter, and find again the best model
for the foreground and the dSph. We show the results for this model in Fig. 4.6 (similar to
Fig. 4.5). With a best fitting scale radius of b = 0.47 kpc, instead of b = 0.3 kpc based on fits to
photometric datasets, the number of members and non-members are predicted more accurately.

As a final test, we explore the parameter space of our seven parameters (the six mentioned
above and the scale radius b), using Eq (4.28) by means of a Markov Chain Monte Carlo method.
In the right panel of Fig. 4.6 we show the marginalized distribution of the scale radius of the
light (b), where the red line indicates the value of 0.3 kpc, which describes the light accurately. It
is clear from this figure that the scale parameter that fits the light distribution is not consistent
with the distribution derived from fitting the kinematic sample. Since we cannot find a model
that accurately describes the foreground, we will perform a clipping in velocity space to remove
most of the foreground contimination in the next section.
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4.5 Application to the Sculptor dSph galaxy
4.5.1 Data
As in Chapter 3, we use the kinematic datasets of both Battaglia et al. (2008) and Walker et al.
(2009a). However, because we can not model the foreground accurately as shown in the previous
section, we proceed as follows. We still make use of the foreground model (as in Chapter 3)
to do a clipping in elliptical radius, and consider only those stars within an elliptical distance
where the ratio of member-to-non-member is smaller than 3:1 within 3σ of the mean velocity of
Sculptor. We then fit a parametric model in each bin to estimate a velocity dispersion. After
this we do a 3σ clipping per radial bin. As in Chapters 2 and 3, we assume the light profile to
be of Plummer form with a scale radius b = 0.3 kpc. Instead of evaluating the likelihood of the
photometry in Eq. (4.17), we use the expection value of the log likelihood of the light as in §4.3,
and Eq. (4.24) assuming that the light profile is estimated from N = 20, 000 stars. The velocity
gradient known to be present in the data is removed in the same way as in Chapter 2.

4.5.2 Parameter estimation for the NFW model
Using the cleaned up dataset, we find the orbit-weights that maximize the likelihood (Eq. 4.17)
assuming an NFW potential with characteristic parameters M1kpc and rs that are to be deter-
mined. To take velocity errors into account, we convolve our pdfs, p(vlos|R, θ), with a Gaussian
with a dispersion of 2 km/s (instead of using the individual errors and for performance reasons).
The fitting procedure is essentially the same as that done for mock sculptor.

We calculate the pdf for Sculptor on a grid for a range of parameters for the NFW profile,
and the findings are shown in Fig. 4.7. Compared to the results of Chapters 2 and 3 (see
Fig. 2.8 and Fig 3.3) we obtain here a comparable mass and a somewhat larger scale radius,
M1kpc = 108.047±0.024 M�(this chapter) versus M1kpc = 108.004±0.028M� (Chapter 2) and rs =
100.71±0.18 ≈ 5.1+2.6

−1.7 kpc versus rs = 100.26±0.23 ≈ 1.8+1.3
−0.8 kpc , while the velocity ellipsoid is

slightly less tangentially anisotropic now. We have also checked that the mass M−3 and the
logarithmic slope of the density profile γ−3 at r−3 (i.e. the radius where the logarithmic slope
of the light profile is γ = −3), are entirely compatible with our previous estimates. Inspection
of the moments in Fig. 4.8 shows that the preferred model found by our discrete Schwarzschild
method is able to reproduce remarkably well both the velocity dispersion and kurtosis profiles
and does so better than the method used in Chapter 2 (see Fig. 2.7).

The reasons behind the slight differences in the results provided by the methods are worth
investigating. A possible explanation may lie in the influence of the discrete fitting, which
perhaps allows for more flexibility in finding a model that fits the full LOSVD nearly on a point
by point basis. Another difference with respect to Chapter 2 is in the fitting of the light profile,
which we previously required to be matched to within 1%, while in this Chapter it is treated
statistically, i.e. in the same way as the kinematic samples.

The mass estimates of Strigari et al. (2008) and Walker et al. (2009b) are compatible with
our mass profile as shows in the lower right panel of Fig. 4.7. The mass estimate of Wolf et al.
(2010) however is on the high side compared to that derived by the method presented here.

4.5.3 The distribution function
For the best fit model found in the previous section, and indicated by the black dot in Fig. 4.7, we
show in the left panel of Fig. 4.9 the orbit-weights that define the distribution function. We note
that this distribution seems to be bimodal, and appears to have two distinct components: one at
low angular momentum (near energy index 8, angular momentum index 2), and a second one at
higher angular momentum (near energy index 7, angular momentum index 7). To establish the
robustness of this finding and for comparison, we have included in the same figure the distribution
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Figure 4.7: Left column: Probability density functions (joint and marginalised) for
mass and scale parameters of the NFW dark matter halo potential recovered for Sculptor.
Blue dot and blue lines (left column) indicate the maximum likelihood value (of the
unmarginalised pdf). The green solid line indicates the median value and the blue regions
(or black contour lines in the top left panel) the 68.3, 95.4 and 99.7 per cent confidence
intervals. Top right: Recovered anisotropy profile. The grey region indicates where we
cannot recover the anisotropy. Middle right: Recovered logarithmic density slope for
the dark matter. Bottom right: Recovered enclosed mass profile.
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Figure 4.8: Line-of-sight velocity dispersion profile obtained in radial bins for the data
by Battaglia et al. (2008) and Walker et al. (2009a) of Sculptor, taking into account
the foreground contamination by the Milky Way, similar to Chapter 2. The solid curve
corresponds to the (pdf weighted) median line-of-sight velocity dispersion profile from
the discrete Schwarzschild models for the NFW profile, while the contours indicate the
1, 2, and 3σ uncertainties around this curve. The last bin extends to 1.3 kpc.

discrete, nfw moments, nfw moments, core13

Figure 4.9: Orbit-weights for the best fit NFW model obtained using our discrete
Schwarzschild method (left, see §4.5.2); the best fit NFW model obtained by fitting the
moments (middle, see Chapter 3); and the best fit “core13” model also found using the
moments (right, see Chapter 3). Black lines indicate the projected orbit-weights in the
energy and angular momentum direction.
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low angular momentum high angular momentum

Figure 4.10: Top left: The black dots correspond to the velocity dispersion for Sculp-
tor. The red dashed curve shows the line of sight velocity dispersion for the low angular
momemtum part of the distribution function. Top right: Similar, but now for the high
angular momentum part. Bottom: Velocity dispersion of the metal rich and metal poor
populations in Sculptor (Battaglia et al. 2008). The velocity dispersion profile of the
metal rich stars shows similarities to the component of the df with low angular momen-
tum.

functions found in Chapter 3, for the “nfw” and the “core13” models. Although the exact
location of the lower component is at a slightly different energy and angular momentum, it is
reassuring that this component is found using both the discrete and the traditional Schwarzschild
methods and also for a different dark matter profile.

To obtain some insight into what this second component corresponds to, we proceed as fol-
lows. We split the orbit-weights into two separate groups (that would correspond to separate
distribution functions): one with angular momentum index ≤ 3 (low angular momentum) and
the other with angular momentum index > 3. In Fig. 4.10 we show the line of sight velocity
dispersion for the two distribution functions separately, left and right correspond to the low and
high angular momentum parts respectively. The low angular momentum part shows an increas-
ing velocity dispersion towards the centre and falls off rapidly with radius. This component is
centrally concentrated and makes up 17% of the mass within 200 pc and 30% of the mass within
100 pc. Therefore it seems plausible it is related to the metal rich component in Sculptor, which
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is centrally concentrated and shows a rather similar velocity dispersion profile (see Battaglia
et al. 2008, and the bottom panel of Fig. 4.10). This result is quite remarkable since we have
not assumed at any point the existence of multiple components in the Sculptor dwarf. Moreover
it demonstrates that the metal-rich and metal-poor stars indeed are dynamically distinct, and
that Sculptor is not simply a system with a radial gradient in stellar populations. Furthermore,
this finding constitutes a demonstration of the full power of the Schwarzschild approach, and
would not have been possible if the approach used to model the distribution function would
have been parametric.

4.6 Discussion and Conclusions
In this Chapter, we have shown how a discrete orbit based dynamical can be applied to dwarf
spheroidal galaxies. We first applied the method to a mock model resembling the Sculptor
dwarf, both using a discrete kinematic dataset as well as using the expectation value of the log
likelihood. Both tests confirm that the method can recover the distribution function, although
the discrete sample of 2000 stars clearly shows the effects of limited sampling. We also showed
that we can estimate the parameters of the dark matter halo potential reliably (M1kpc within 6%
and the scale radius within 18%), where the results of the expectation value of the log likelihood
analysis shows these estimates are not biased and therefore accurate.

Local Group dSph suffer from foreground contamination from the Milky Way, and this
needs to be taken into account. We have explored the possibility of including the modeling of
the foreground in our discrete maximum likelihood approach. This would allows to refrain from
performing hard cuts to establish membership. However, when we model the foreground in this
way we find that the best fit model that is compatible with the light distribution fails to predict
the right number of members and non-members established kinematically. When releasing some
of the assumptions regarding the light profiles we can find a model that accurately describes
members and non-members, but that is incompatible with the known light profile established
from large photometric datasets and studies. We suspect that the Plummer profile often used
is insufficiently accurate at large radii to describe the surface density of stars, which is crucial
for predicting the right number (kinematic) members.

By lack of a proper foreground model, we perform a clipping in velocity space to remove
the most likely non-members, and a clipping in elliptical radius to avoid including regions that
include too many non-members (the outskirts). We model Sculptor using an NFW profile and
find M1kpc = 108.05±0.024 M� and rs = 5.1+2.6

−1.7 kpc. Although the scale radius found is larger
than that found in Chapter 2, the values meet at the 1σ confidence level, which shows that the
systematic error due to modeling differences is still small compared to the uncertainties. The
anisotropy although slightly closer to zero, is still negative β ∼ −0.2 at intermediate radii and
becomes more radial at larger radii. The distribution function for the best fit NFW potential is
bimodal in energy and angular momemtum space. The two components may be split in a low
and high angular momentum parts, and the properties of the low angular momentum component
are similar to the metal rich component known to be present in Sculptor. It depicts a centrally
rising velocity dispersion profile, and a more concentrated light distribution (Battaglia et al.
2008).

All the principles elaborated in this paper can be applied and extended to more sophisti-
cated orbit based models. Non spherical models can be implemented by storing the LOSVD in a
two-dimensional (radial and angular) grid, instead of the one-dimensional radial grid used here.
Non-spherical models naturally require three integral models to adequately describe the distri-
bution function, for both axisymmetric and triaxial models. Given the power and success of
our Schwarzschild’s models, it is only natural that we plan to perform such discrete orbit-based
non-spherical modeling to a variety of systems in the near future.
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Chapter 5
An analytic distribution function for a
massless cored stellar system in a
cuspy dark matter halo

Maarten A. Breddels and Amina Helmi

Abstract
We demonstrate the existence of distribution functions that can be used to represent spheri-
cal massless cored stellar systems embedded in cuspy dark matter halos with constant mildly
tangential velocity anisotropy. In particular, we derive analytically the functional form of the
distribution function for a Plummer stellar sphere in a Hernquist dark halo, for β0 = −0.5
and for different degrees of embedding. This particular example satisfies the condition that the
central logarithmic slope of the light profile γ0 > 2β0. Our models have velocity dispersion
profiles similar to those observed in nearby dwarf spheroidal galaxies. Hence they can be used
to generate initial conditions for a variety of problems, including N-body simulations that may
represent dwarf galaxies in the Local Group.
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5.1 Introduction
In the concordance ΛCDM cosmological model, galaxies are expected to be embedded in massive
dark matter halos. Recently, much focus has been placed on measuring and modeling the internal
dynamics of dwarf spheroidal galaxies (dSph) as these systems have very high mass-to-light ratios
and appear to be dark matter dominated at all radii (see Walker 2012, for a review). Particular
emphasis has been put in establishing the characteristics of the host dark matter halos and
to determine whether their properties are consistent with those expected in the context of the
ΛCDM model (Stoehr et al. 2002; Strigari et al. 2010). More specifically, an open question is
whether the dSph satellites of the Milky Way could be embedded in density profiles that are
centrally cusped such as the NFW profile (Navarro et al. 1996).

Much of this modeling work has been carried out using the Jeans equations in the spherical
limit (e.g. Łokas 2001; Koch et al. 2007; Walker et al. 2007, 2009; Łokas 2009). The general goal
has been to constrain the dark matter content (i.e. to estimate the characteristic parameters of
given density profiles) by fitting the observed l.o.s. velocity distributions, and more specifically
the 2nd and 4th moments, i.e. the dispersion and the kurtosis profiles. In Jeans modeling
also the functional form of the velocity anisotropy needs to be specified. A more fundamental
limitation is that the existence of a distribution function, once a solution has been found, is
not guaranteed. Specifically, there is no assurance that a distribution function that is positive
everywhere (i.e. that it is physical), will exist.

More recently, with the application of Schwarzschild’s modeling technique, which finds a
distribution function in a numerical fashion, this concern has been side-stepped (e.g. Jardel
& Gebhardt (2012); Chapter 2). However, the respective distribution functions have not been
given in analytic form in these works, and it may not even be plausible to find a simple expression
in the most general circumstances. On the other hand, Wilkinson et al. (2002) has introduced a
family of distribution functions to represent spherical stellar systems with anisotropic velocity
ellipsoids that are embedded in cored dark matter halos

The An & Evans (2009) theorem provides an important constraint regarding distribution
functions that may be associated to dSph. This theorem states that a system with a finite
central radial velocity dispersion must satisfy that the central value of the logarithmic slope of
the stellar density profile γ0 and the central velocity anisotropy β0 be related through γ0 = 2β0.
This implies that if the light profile is perfectly cored, as often assumed, i.e. γ0 = 0, then the
velocity ellipsoid must be isotropic, independently of the dark matter halo profile (which should
be shallower than the singular isothermal sphere). However, if the system is cold at the center,
i.e. σr,0 = 0, then the only constraint is that γ0 > 2β0, which in the case of cored stellar
profiles is satisfied by tangentially anisotropic ellipsoids (Ciotti & Morganti 2010). Since these
conditions refer to the intrinsic velocity dispersion, they do not impose strong constraints on
the line-of-sight velocity dispersion (σlos), which is the observable, and one may obtain a flat
σlos profiles even if the system is intrinsically cold at the centre.

Given the extensive modeling performed assuming cuspy dark matter halos and cored stellar
profiles, the natural question that arises is whether physical distribution functions that can
reproduce the properties of dSph exist in such cases. For example, Evans et al. (2009) have
shown that for a stellar Plummer profile with an isotropic velocity ellipsoid and a strictly constant
velocity dispersion profile, the dark matter must follow a cored isothermal sphere. We show here
that this particular result cannot be generalized, and that (tracer) cored light distributions
can exist in equilibrium in cuspy dark matter halos, once the condition of constant velocity
dispersion is relaxed.

In this short Chapter, we present a distribution function that represents a massless stellar
system following a Plummer profile embedded in a Hernquist dark matter halo, and which has
a constant anisotropy β = −1/2. We focus on this particular example as it is mathematically
easier to manipulate, but also because it is observationally sound. The surface brightness profiles
of dSph are well fit by Plummer models (Irwin & Hatzidimitriou 1995), and the velocity ellip-
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soids derived from Schwarzschild models have radially constant, if slightly negative anisotropies
(Chapter 3). Therefore, models such as that presented below can be used, for example, to gen-
erate initial conditions for an N-body simulation of a dwarf galaxy resembling a dSph satellite
of the Milky Way.

5.2 Methods
5.2.1 Generalities
The distribution function of a spherical system in equilibrium can depend on energy E, and if
the velocity ellipsoid is anisotropic, also on angular momentum L: f(E,L). It can be shown
that when the distribution function takes the form f(E,L) = f1(E)L−2β , with β = cst, then
then this β is the constant velocity anisotropy of the system.

The functional form of the energy part of the distribution function can be determined through
an Abel equation, as outlined in Sec. 4.3.2 of Binney & Tremaine (2008). In that case (see their
Eq. 4.67), we may derive f1(E) from

Cβ
d

dΨ(r2βν) = (1
2 − β)

∫ Ψ

0
dε

f1(ε)
(Ψ− ε)β+1/2 (5.1)

where ν(r) is the density, Ψ(r) = −Φ(r) + Φ0 the relative gravitational potential, ε = −E =
Ψ(r)−1/2v2 the relative energy, and Cβ is a constant. This equation is valid for −1/2 < β < 1/2,
and might be inverted using the Abel integral to obtain an analytic expression for f1(ε). In the
case of β = −1, an additional derivative is needed to reach the Abel integral equation form, but
the distribution function may also be derived, now from

f1(ε) = C′β=−1

∫ ε

0

dΨ
(ε−Ψ)1/2

d3(ν/r2)
dΨ3 . (5.2)

These expressions are completely general, but only in the case of gravitational potentials Ψ(r)
of simple mathematical form it is possible to invert and obtain r as function of Ψ, and to easily
compute all corresponding derivatives.

The case of β = −1/2 is particularly simple and yields (see Eq. 4.71 of Binney & Tremaine
2008)

f1(ε) = 1
2π2

d2(ν/r)
dΨ2

⌋
Ψ=ε

(5.3)

If the system were self-consistent, then the density and the potential would be related through
Poisson’s equation (see e.g. Baes & Dejonghe 2002). However, in the case of dSph, the gravita-
tional potential is largely determined by the dark matter, and the stars may simply be considered
as tracers. In this case, the above equations are still valid but the density is that of the stars
ν∗(r), while we may assume the potential to be that of the dark matter only. A priori, there
is no guarantee that for example, the integral in Eq. (5.2) will converge, and that a physical
solution, i.e. a positive distribution function leading to a stable system, will exist.

5.2.2 Plummer stellar sphere in a Hernquist dark halo, β = −1/2
For mathematical convenience we assume that the gravitational potential is given by the Hern-
quist model (Hernquist 1990), and as explained above, it is meant to describe the (dominant)
contribution of the dark matter. Although this model is not cosmologically motivated, its den-
sity profile has the same r−1 limiting behavior in the inner regions as the NFW model. On the
other hand, it has a finite mass M , and a steeper fall off at large radii (as r−4 instead of r−3).
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This is also why it is often used in the literature to set up N-body simulations. The gravitational
potential for the Hernquist model is

Ψ(r) = Ψ0
1

1 + r/b
, (5.4)

where b is the scale radius, and Ψ0 = GM/b. For the stars we assume a Plummer profile

ν∗(r) = 3
4πa3

1
(1 + r2/a2)5/2 , (5.5)

where a the Plummer scale length. Note that there are two characteristic lengthscales in the
problem, namely a and b, and we will relate these using a dimensionless parameter α = a/b,
and we expect that in general α ≤ 1.

Using Eq. (5.4) we may thus express r = r(Ψ) for the Hernquist profile as

r = b
1− Ψ̃

Ψ̃
, Ψ̃ = Ψ/Ψ0. (5.6)

The energy part of the distribution function f1(ε) may now be computed explicitly from Eq. (5.3),
using Eqs. (5.5) and (5.6) and after taking the corresponding derivatives, we find

f1(ε) = 3
8π3(GMa)2

α4ε̃4

(1− ε̃)3(1− 2ε̃+ (1 + α2)ε̃2)9/2 p(ε̃) (5.7)

where ε̃ = ε/Ψ0, 0 ≤ ε̃ ≤ 1, and p(ε̃) is the following polynomial

p(ε̃) = 30− 108ε̃+ (132− 5α2)ε̃2 + 24(−2 + α2)ε̃3

−3(6 + 11α2)ε̃4 + 2(6 + 7α2 + α4)ε̃5. (5.8)

Figure 5.1 shows the functional form of the distribution function f1(ε) for different values of
α, namely α = 0.01, 0.1 and 1, that is, for different degrees of embedding of the stars in the dark
matter halo. The distribution function is well-behaved, it is continuous and positive everywhere
and has a positive slope, indicating that it is stable to radial modes (see Sec. 5.5 of Binney &
Tremaine 2008).

We have checked that the density profile obtained by integrating this distribution function
over velocity space returns the Plummer functional form. The left column of Fig. 5.2 shows the
velocity dispersion profiles in the radial (solid) and tangential (dashed) directions for different
values of α, and makes explicit the dependence of the internal kinematics on the degree of
embedding of the stars in the dark halo. For small α (top and middle left panels) the velocity
dispersion profile is relatively flat for r > 0.1r/a. Since the properties of the halo are fixed by
the mass M and the scale b, we note that the velocity dispersion has a smaller amplitude for
smaller values of α, as expected.

In the right column of Fig. 5.2 we have plotted the resulting l.o.s. velocity dispersion profiles
for the different values of α explored. It shows that these profiles are relatively flat with radius
over the range 0 < R/a < 2, which is similar to that probed by the observations the kinematics
of stars in the dSph satellites of the Milky Way. If we setM = 109M� and b = 2.5 kpc, then the
system with α = 0.01 (top right panel) would have a velocity dispersion of ∼ 2 km/s and a ∼ 25
pc. On the other hand, if α = 0.1 (top middle panel), then a = 250 pc, and σlos ∼ 6.3 km/s
at the centre. This case could for example, represent systems akin the Carina, Sextans or Ursa
Minor dSph. A more massive halo would probably be required if the aim is to represent systems
like Sculptor or Fornax, as this would allow a better matching to the central value of σlos.
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Figure 5.1: Energy part of the distribution function for a Plummer stellar sphere of scale
a embedded in a Hernquist dark matter halo of mass M and scale b, and with constant
velocity anisotropy β = −1/2, as given by Eq. (5.7). The various panels correspond
to different degrees of embedding α = a/b of the stars in the (same) dark matter halo,
α = 0.01 (lop left), 0.1 (top right) and 1 (bottom left).

5.3 Conclusions

By example, we have demonstrated that a Plummer stellar system embedded in a Hernquist dark
matter halo constitutes a plausible physical configuration. We have explicitly derived the form
of the distribution function for the case of a tangential anisotropy β = −1/2 and for different
degrees of embedding of the stars, as quantified by the ratio of scalelengths parameter α. This
distribution function is positive for the values of α = 0.01− 1 and also leads to a system that is
stable to radial modes, as ∂f/∂ε > 0. The line-of-sight velocity dispersion profiles characteristic
of this family of distribution functions resemble those observed for dSph, and hence can be used
to represent these systems. They satisfy the An & Evans (2009) theorem, namely that γ0 > 2β0,
but clearly not the equality condition. We have also explored the β = −1 case, and also found
an analytic physical solution, though this is more cumbersome mathematically and hence not
presented here.
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Figure 5.2: Velocity dispersion profiles associated to the distribution functions pre-
sented in Fig. 5.1 for different degrees of embedding, namely α = 0.01, 0.1 and 1 from
top to bottom. Left column: Intrinsic radial (solid) and tangential (dashed) velocity
dispersions as function of radial distance r/a. Right column: Corresponding line-of-
sight velocity dispersions as function of projected distance R/a. The resulting σlos profiles
are relatively flat, especially for small α, i.e. 0.01 and 0.1, and reach a finite value at the
centre. In general, the curves bare a good resemblance to the observed velocity dispersion
profiles of stars in dSph satellites of the Milky Way, as determined in e.g. Walker et al.
(2009).
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Nederlandse Samenvatting

Van ons zonnestelsel naar de Melkweg

Afstanden in de sterrenkunde worden meestal niet in kilometers of mijlen uitgedrukt. Afhanke-
lijk van de situatie gebruiken we vaker astronomische eenheden, lichtjaren, parsec of megaparsec.
In deze samenvatting zal ik lichtseconden, lichtminuten, lichtjaren en kiloparsec gebruiken. In
1 seconde kan licht een afstand afleggen gelijk aan zeven maal rond de aarde. Dat is vrij snel,
maar zeker eindig. We kunnen dus afstanden ook uitdrukken in lichtseconden, de afstand die
licht aflegt in 1 seconde (bijna 300 000 kilometer). Zo is bijvoorbeeld de afstand tot de maan
ongeveer 1.2 lichtseconden. De afstand tot de zon is een stuk groter, iets meer dan 8 lichtminu-
ten. Dat wil zeggen, het licht doet er dus meer dan 8 minuten over om van de zon tot de aarde
te komen.

De aarde draait in bijna een cirkelbaan om de zon. De snelheid waarmee we deze baan
afleggen, hangt af van de afstand van de aarde tot de zon en haar massa. Dat wil zeggen, als
we de snelheid weten waarmee de aarde zich beweegt en we de afstand tot de zon weten, we de
massa van de zon kunnen bepalen. Dit is een belangrijk concept. In werkelijkheid hebben de
planeten in ons zonnestelsel ook nog invloed op elkaar, maar dit effect is zo klein dat we het
kunnen verwaarlozen.

Onze zon bevindt zich in een sterrenstelsel, de Melkweg, en volgt een bijna cirkelbaan rond
het middelpunt van ons sterrenstelsel. De afstand van de zon tot het middelpunt is ongeveer
26 000 lichtjaar. Nu is misschien ook duidelijk waarom we vaak overstappen naar andere eenhe-
den. Als we deze afstand uitdrukken in kiloparsec, dan komen we uit op 8 kiloparsec, dat werkt
prettiger. Omdat we ons ín de Melkweg bevinden kunnen we deze niet in zijn geheel afbeelden,
maar we hebben wel een idee hoe het er van buitenaf gezien uit zal zien. Figuur 1 beeldt de
Melkweg uit waarbij de lokatie van de zon staat aangegeven door een gele pijl. In tegenstelling
tot een zonnestelsel, waar zich nagenoeg alle massa zich in het middelpunt bevindt (de zon),
is de massa in een sterrenstelsel (onder andere de sterren) verdeeld over het hele sterrenstelsel.
Waar in een zonnestelsel sprake is van een simpele relatie tussen massa, afstand tot het centrum
en snelheid van de planeet is een vergelijkbare relatie in een sterrenstelsel minder eenvoudig.
Hoewel het in dit geval minder simpel is, kunnen we hier toch mee rekenen. Als we nu gaan
schatten hoe zwaar de sterren zijn en de andere materie tussen de sterren, blijkt dat de er niet
genoeg materie is om de bewegingen van de sterren in de nabijheid van onze zon te kunnen
verklaren, er mist 50% van de materie. Dit fenomeen vinden we vaker in de sterrenkunde. Er
lijkt een systematisch tekort te bestaan aan materie om de bewegingen van sterren en gas, maar
ook sterrenstelsels onderling te kunnen verklaren.
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Figuur 1: Een artist’s impression van de Melkweg, onze zon (aangegeven door de gele
pijl) staat op een afstand van ongeveer 8 kiloparsec (of 26 000 lichtjaar) van het centrum
van onze Melkweg. Credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech).
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Donkere materie
Een oplossing voor dit probleem is het postuleren van donkere materie. Dit is materie die niet
direct waar te nemen is, maar wel zwaartekracht uitoefent op elkaar en normale materie. Het
lijkt misschien een erg simplistische oplossing voor dit probleem, maar blijkt zeer succesvol in
het verklaren van bijvoorbeeld de grote schaal structuur in het universum en enkele karakte-
ristieken van de microgolfachtergrondstraling (maar dan dwalen we af). Daarnaast beschikken
natuurkundigen over modellen die het bestaan van dit soort deeltjes kunnen verklaren.

Kosmologen kunnen erg goed vooorspellingen maken over hoe de donkere materie zich ver-
deelt over het universum. Dit doen ze met behulp van simulaties waarbij ze de beweging van heel
veel donkere materie kunnen volgen. Plaatsen waar veel donkere materie samenkomt, noemen
we halos. Deze simulaties laten zien dat de verdeling van de donkere materie nagenoeg in elke
halo hetzelfde is, dus universeel.

In het universum bevindt zich waarschijnlijk meer dan vijf maal meer donkere materie dan
normale materie. Aangezien er in het universum zoveel meer donkere dan normale materie is, zal
op plaatsen waar heel veel donkere materie samenkomt, de donkere materie de gewone materie
aantrekken. De gewone materie zal dichter bij elkaar komen en onder zijn eigen zwaartekracht
ineenstorten om sterren te vormen, een sterrenstelsel is daarmee geboren.

Veel onderzoek heeft zich gericht op het testen of de universele verdeling van de donkere
materie ook overeenkomt met de snelheidsverdeling in sterrenstelsels. Het lastige is dat we weten
dat in sommige sterrenstelsels de normale materie invloed kan hebben op de verdeling van de
donkere materie. In simulaties wordt vaak alleen de donkere materie gesimuleerd, omdat het
modelleren van de krachten (of processen) die gewone materie kunnen ondergaan ingewikkeld
is. Dit maakt een vergelijking met simulaties zonder deze normale materie soms niet geheel
betrouwbaar.

Dwergsterrenstelsels
Ons sterrenstelsel is niet alleen, het wordt omringd door kleinere sterrenstelsels (dwergsterren-
stelsels) van verschillende typen en groottes (zie Figuur 2 voor een overzicht van de posities
ten opzichte van de Melkweg). De meeste van deze dwergsterrenstelsels bevinden zich in een
baan om ons sterrenstelsel, sommige worden opgeslokt en andere passeren simpelweg. Een be-
paald type dwergsterrenstelsels, sferoïde1 dwergsterrenstelsels (in het engels dwarf spheroidal
galaxies), zijn bijna bolvormig en bevatten geen of weinig gas. Dit maakt het relatief makkelijk
om deze sterrenstelsels met een model te beschrijven of te vergelijken. Een opname van een in
dit proefschrift veel gebruikt sterrenstelsel is weergegeven in Figuur 3. Aan dit figuur is te zien
dat dit sterrenstelsel weinig bijzondere kenmerken heeft en een bijna ronde vorm. Dit dwergs-
terrenstelsel bevindt zich op een afstand van ongeveer 80 kiloparsec. Binnen een straal van een
halve kiloparsec bevindt zicht meer dan 50% van alle sterren. Dit sterrenstelsel is dus vrij klein
vergeleken met de Melkweg.

Aangezien deze sterrenstelsels relatief dichtbij zijn, is het mogelijk om de snelheid van indi-
viduele sterren te bepalen. Als we het licht van een ster splitsen met bijvoorbeeld een prisma,
zullen we zien dat er zich vaak donkere lijnen bevinden op bepaalde kleuren, of golflengtes. Dit
komt omdat er chemische elementen in de atmosfeer van de ster zitten die het licht van die
golflengte zal absorberen. Van metingen uit het laboratorium of van natuurkundige modellen
weten we vaak precies op welke golflengtes deze donkere lijnen horen te zitten. Echter, de sterren
bewegen zich ten opzichte van de aarde. Hierdoor zullen deze donkere lijnen iets verschuiven
naar langere golflengtes als ze van ons af bewegen en naar kortere golflengtes als ze naar ons toe
bewegen. Een vergelijkbaar effect bij geluid is hoorbaar wanneer een ambulance iemand inhaalt.

1 Een sferoïde is een enigszins platgedrukte of uitgerekte bol
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Figuur 2: Een overzicht van de omgeving van de Melkweg. De schaal rechtsonder geeft
aan hoeveel 100,000 lichtjaar is (ongeveer gelijk aan 30 kiloparsec). Sculptor bevindt zich
op een afstand van ongeveer 80 kiloparsec. Credit: J. S. Bullock.

Naar de persoon toe zal de toonhoogte hoger zijn dan wanneer de ambulance van de persoon af
beweegt. Uit de verschuiving van deze golflengtes kan dus de snelheid van de sterren afgeleid
worden.

Van veel van de sterren in lokale dwergsterrenstelsels zijn snelheden gemeten (voor Sculptor
ongeveer 2000). Uit deze snelheden kunnen we afleiden dat er ongeveer 100 maal meer massa
lijkt te zijn dan dat we zien in de vorm van sterren. In de Melkweg, rond de positie van de zon,
is dit een gelijke hoeveelheid. Ook bij andere sferoïde dwergsterrenstelsels zien we vergelijkbare
discrepanties tussen de snelheden van de sterren en de hoeveelheid normale materie. Omdat zich
in deze sterrenstelsels dus zoveel meer donkere materie dan normale materie bevindt, kunnen
we gerust zeggen dat de invloed van de sterren klein is. Het is bij deze sterrenstelsels dus zeer
waarschijnlijk dat de verdeling van de donkere materie goed overeenkomt met de universele vorm
die similaties voorspellen, als de theorie klopt.
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Figuur 3: Een opname van het nabije (ongeveer 80 kiloparsec) dwergsterrenstelsel
Sculptor (beeldhouwer in het Nederlands), met weinig bijzondere kenmerken en een bijna
ronde vorm. Credit: David Malin, Anglo-Australian Observatory.

Figuur 4: Een schematische weergave van twee banen in een sterrenstelsel. De zwarte
cirkel geeft de cirkelbaan aan van de ene ster. De andere lijn geeft een excentrisch baan
weer. De donkere kleur geeft de donkere materie weer.
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Dit proefschrift
In dit proefschrift hebben we nieuwe modellen ontwikkeld om de waarnemingen van sferoïde
dwergsterrenstelsels te verklaren. Met deze modellen kan getest worden wat voor verdelingen
van de donkere materie passen bij de waarnemingen van een sterrenstelsel. Aangezien de donkere
materie modellen hier voorspellingen over doen, willen we dit valideren met de waarnemingen
in het universum. Misschien kloppen de aannames niet die we maken in onze donkere materie
modellen. Het kan zelfs zo zijn dat donkere materie niet bestaat en er een andere oplossing nodig
is om de hoge snelheden in deze sterrenstelsels te verklaren. Naast de informatie over de verdeling
van de donkere materie, leren we ook welke banen nodig zijn om deze waarnemingen te verklaren.
De samenstelling van deze banen kan ons eventueel iets vertellen over de ontstaansgeschiedenis
van het sterrenstelsel.

Eerdere modellen moesten aannames maken over wat voor banen nodig waren om deze
sterrenstelsels te kunnen verklaren, wat kan leiden tot verkeerde inzichten. De modellen die
wij gebruiken bestaan uit een verzameling banen, niet alleen cirkelbanen, maar (bijna) alle
mogelijke banen die kunnen bestaan in dit soort sterrenstelsels, zogenaamde excentrische banen.
In Figuur 4 geven we schematisch 2 banen weer, een cirkelbaan en een excentrische baan. Met
deze methode neem je eerst een verdeling van de donkere materie aan, deze verdeling van materie
defineert het krachtenveld. In dit krachtenveld laat je een testdeeltje voortbewegen die een ster
voor moet stellen en je houdt bij wat voor observaties je bij deze baan zou verwachten. Doe
je dit met heel veel banen, dan kan je al deze banen als het ware bij elkaar optellen, met een
bepaald gewicht, om daarmee je waarnemingen te kunnen verklaren. Dit zal niet lukken voor
elke verdeling en hoeveelheid van donkere materie, als bijvoorbeeld de massa te laag is zullen
de snelheden te laag zijn en vice versa.

In hoofdstuk 2 passen we deze methode toe op het sferoïde dwergsterrenstelsel Sculptor.
Hoewel deze methode al lange tijd werd toegepast op andere soorten sterrenstelsels, was deze
weinig toegepast op specifiek deze sterrenstelsels. Nadat wij deze methode uitvoerig hebben
getest op gesimuleerde waarnemingen hebben we deze op Sculptor toegepast. De hoeveelheid
donkere materie komt in grote lijnen overeen met wat anderen hebben gevonden met de andere
(meestal simpelere) modellen. Dit is geruststellend, aangezien in veel gevallen deze simpele
modellen je correcte antwoorden geeft over de hoeveelheid donkere materie binnen een bepaalde
straal. Wat nieuw is, is dat deze baan-gebaseerde modellen je vertellen uit wat voor banen het
sterrenstelsel is opgebouwd. Dit kan van belang kan zijn voor het begrijpen van het onstaan
van deze sterrenstelsels. Hiernaast hebben we laten zien dat, in tegenstelling wat andere auteurs
beweren, de verdeling van de donkere materie toch consistent kan zijn met wat donkere materie
simulaties voorspellen.

In hoofdstuk 3 passen we dezelfde modellen toe op drie extra sterrenstelsels: Fornax, Carina,
Sextans. We vergelijken veel verschillende donkere materie verdelingen, maar vinden dat er erg
lastig onderscheid te maken is hiertussen. Wanneer we deze modellen met elkaar vergelijken,
zien we dat hoewel ze in het binnengebied en buitengebied erg kunnen verschillen, er een straal
is waarop alle modellen bijna dezelfde eigenschappen hebben. Een van die eigenschappen was
al bekend, de massa binnen deze karakteristieke straal was bijna onafhankelijk van het model.
Wat wij hebben gevonden is dat ook de verdeling rond dit punt statistisch niet veel verschilt
per model. Waar veel onderzoek zich richt op de binnengebieden, waar erg veel dissussie over is,
stellen wij voor dat het zinniger is om de vorm van de donkere materie op deze karakteristieke
schaal te bekijken. Het is immers makkelijker om iets te vergelijken wat goed te meten is, dan
iets wat erg lastig te meten is.

In hoofdstuk 4 verfijnen we ons model. In hoofdstuk 2 en 3 vergelijken we onze modellen
met zogenaamde momenten van de snelheidsverdeling, statistieken die de vorm van de snelheids-
verdeling beschrijven. Hoewel deze statistieken erg handig zijn in de analyse, is het statistisch
simpeler en correcter om elke individuele ster te gebruiken. Op deze manier gaat er minder
informatie verloren en wordt dus de maximale informatie uit de gegevens gehaald. Dit verschil
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Figuur 5: In het onderste paneel geven we de waarnemeingen weer. Elk punt geeft de
snelheid en afstand tot het centrum van een ster weer. De dispersie van de snelheidsver-
deling per groep is weergegeven in het bovenste paneel. (De eenheid van de verticale as
is in beide gevallen in kilometers per seconde.)

maken we duidelijker in Figuur 5. In het onderste paneel geven we de waarnemingen weer. Elk
punt geeft de snelheid en afstand tot het centrum van een ster weer. Wanneer we nu sterren die
op bijna dezelfde afstand tot het centrum staan groeperen, en de snelheidsverdeling van deze
groep beschrijven met een statistiek (voor de geïnteresseerden: de dispersie), krijgen we het
bovenste paneel. Hoewel deze statistiek een zeer goede beschijving is van de snelheidsverdeling
in het onderste paneel van deze figuur, bevat dit onderste paneel toch altijd meer informatie. In
hoofdstuk 2 en 3 hebben we met de gegevens van het bovenste paneel gewerkt, de statistieken
die de snelheidsverdeling beschrijven, terwijl we in hoofdstuk 4 met de gegevens van het onderste
paneel werken, de complete snelheidsverdeling.

Na het wederom uitgebreid testen van deze methode, passen wij deze toe op het sterrenstelsel
Sculptor. Hoewel we een iets andere verdeling van de donkere materie vinden dan in de vorige
hoofdstukken, is het (statistisch gezien) in overeenstemming met de vorige resultaten. Wanneer
wij kijken naar het soort banen waarmee dit sterrenstelsel wordt beschreven, zien we dat de
verzameling banen als het ware twee groepen vormt. Een groep met cirkelbanen en licht excen-
trisch banen en een tweede groep met voornamelijk meer excentrische banen. Het sterrenstelsel
lijkt dus uit meerdere componenten te bestaan. Wanneer we deze twee groepen apart bekijken
vinden we een grote gelijkenis met de twee componenten gevonden door middel van scheiding
in chemische eigenschappen van de sterren. Met deze methode hebben we laten zien dat deze
modellen de twee componenten waarschijnlijk al weten op te sporen zonder de informatie over de
chemische samenstelling van de twee componenten. Het gebruiken van alle individuele sterren
zal belangrijk zijn voor toekomstige ingewikkeldere modellen, welke het steeds lastiger zullen
maken om te werken met de momenten van de snelheidsverdeling. Het aantonen van de werking
van deze modellen is hiervoor een eerste aanzet.



122 Nederlandse Samenvatting

Onze modellen zijn gemaakt zodat ze altijd fysisch zijn en dus kunnen bestaan in de realiteit.
Desondanks ontvingen we enige skepsis of onze modellen daadwerkelijk fysisch waren en de
numerieke aard van onze modellen dit misschien verborg. Om alle twijfel weg te nemen hebben
we in hoofdstuk 5 een wiskundig model gepresenteerd, welke deze onzekerheid moet wegnemen.
Het is een vergelijkbaar, maar minder flexibel model, wat overeenkomstigheden heeft met de
modellen in hoofdstukken 2, 3 en 4. Hiermee hebben we dus aangetoond dat de modellen van
hoofdstuk 2, 3 en 4 zonder twijfel een echt sterrenstelsel kunnen beschrijven. Hiernaast is een
wiskundig model erg handig om simulaties van sferoïde dwergsterrenstelsels op te zetten.

Het belangrijkste hoofdstuk voor toekomstige ontwikkelingen is hoofdstuk 4. De modellen in
dit proefschrift zijn allemaal sferisch, maar in Figuur 3 is te zien dat dit stelsel niet bolvormig is,
maar iets afgeplat. De techniek om individuele sterren te gebruiken in plaats van de statistieken,
maakt het mogelijk om deze niet-bolvormige modellen op een goede manier te kunnen vergelijken
met de waarnemeingen. Hiernaast zou het interessant zijn om te resultaten over de verdeling van
de donkere materie van hoofdstuk 3 te kunnen vergelijken met de voorspellingen van donkere
materie simulaties, rekening houdend met eventuele effecten van de normale materie.
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