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Glottal flow through a two-mass model: Comparison
of Navier–Stokes solutions with simplified models

M. P. de Vries, H. K. Schutte, A. E. P. Veldman, and G. J. Verkerke
Artificial Organs, Biomedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands

~Received 29 July 1999; accepted for publication 12 September 2000!

A new numerical model of the vocal folds is presented based on the well-known two-mass models
of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the
incompressible Navier–Stokes equations. Glottal waves are produced using different initial glottal
gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase
of the glottal waves have been compared with values known from the literature. The phonation
threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure
obtained using the flow model with Navier–Stokes equations corresponds better to values
determined in normal phonation than the phonation threshold pressure obtained using the flow
model based on the Bernoulli equation. Using the Navier–Stokes equations, an increase of the
subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas
the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.
© 2002 Acoustical Society of America.@DOI: 10.1121/1.1323716#

PACS numbers: 43.70.Aj@AL #

LIST OF SYMBOLS

CQ closed quotient
F vector representing external forces on the fluid
F0 fundamental frequency
Ug glottal peak flow
p pressure
ps subglottal pressure
u vector with the velocity components
v kinematic viscosity of the fluid
u horizontal velocity of fluid
n vertical velocity of fluid
m1 lower mass

k1 lower spring stiffness
r 1 lower damper
m2 upper mass
k2 upper spring stiffness
r 2 upper damper
kc coupling stiffness
kcol1 lower collision spring stiffness
kcol2 upper collision spring stiffness
x1 deflection of m1

x2 deflection of m2

z1 lower damping ratio
z2 upper damping ratio

I. INTRODUCTION

To understand the process of voice production, several
authors have investigated the pressure–flow relationship in
the glottis~e.g., van der Berget al., 1957; Scherer and Titze,
1983; Alipour et al., 1996, Guo and Scherer, 1993; Liljen-
crants, 1991!. These examinations were all performed in a
static glottis. Other investigations include the dynamic be-
havior of the voice source, which has been experimentally
studied by Shadleet al. ~1999! and Mongeauet al. ~1997!.
Numerical modeling of the interaction between the oscillat-
ing vocal folds and the airflow in the glottis is performed
using a simplified description of the vocal fold combined
with a simplified description of the airflow~e.g., Ishizaka
and Flanagan, 1972; Pelorsonet al., 1994; Story and Titze,
1995; Herzelet al., 1995; Louset al., 1998!. With these so-
called lumped parameter models, glottal waves are produced
as a result of a flow-induced oscillation of the vocal folds.
Generally, in these lumped parameter models, the pressure
and flow in the glottis are related by the Bernoulli equation.
To apply this Bernoulli equation, assumptions concerning the
physical characteristics of the fluid, air in our case, have to

be made. The use of the Bernoulli equation is allowed when
the flow is assumed to be steady, laminar, nonviscous, and
incompressible. In a cross section, pressure and velocity are
usually assumed to be constant. In reality, pressure and ve-
locity vary over a cross section. The velocity even has a
transverse component that is ignored. Each of the assump-
tions, mentioned before, introduces an error and the resulting
accumulation of errors results in an inaccurate description of
the flow. To improve the flow calculations, a more accurate
flow description has to be used. This is possible by using the
two-dimensional Navier–Stokes equations. These equations
describe the nonsteady and viscous behavior of a fluid under
an external load. In this study, Navier–Stokes equations are
implemented having only the assumption of incompressibil-
ity.

Although solving the Navier–Stokes equations is very
time consuming, today’s computing power ensures accept-
able calculation times. Therefore, in the last decade, the
Navier–Stokes equations already have been used in research
concerning voice production. Alipouret al. ~1996!, Guo and
Scherer~1993!, and Liljencrants~1991! presented data using
the Navier–Stokes equations in a static model of the vocal
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folds. The pressure–flow relationships resulting from these
investigations in the static glottis are related to the dynamic
situation during phonation.

Recently, Alipour and Titze~1996! combined the in-
compressible Navier–Stokes equations with a dynamic
finite-element method~FEM! model of the vocal folds and
simulated phonation in this way. In their model, the finite-
element method model of the vocal fold and the model of the
Navier–Stokes equations exchange information, resulting in
glottal waves. A disadvantage of this model is that it is only
possible to prescribe a subglottal flow rate instead of an ini-
tial pressure. A preceding Bernoulli solution is needed in
their model to approximate the flow rate that occurs at physi-
ological subglottal pressures.

When the lumped parameter models of the vocal folds
~Ishizaka and Flanagan, 1972; Herzelet al., 1995; Pelorson
et al., 1994! are compared with the model of Alipour and
Titze ~1996!, it can be seen that the glottal airflow descrip-
tion, based on the Bernoulli equation in the lumped param-
eter models, is replaced by the Navier–Stokes equations in
the Alipour and Titze model, and the description of the vocal
folds by a number of masses, springs, and dampers in the
lumped parameter models is replaced by an FEM model. In
the present study we will present a model composed of a
lumped parameter model of the vocal folds combined with a
Navier–Stokes model of the glottal flow. In this way, the
need for assumptions concerning the viscous losses, as is
needed in studies using a Bernoulli-based equation, is not
necessary: as a consequence of the use of Navier–Stokes
equations, viscous effects are included. We will give a com-
parison between results obtained using the Navier–Stokes
equations with results obtained using the Bernoulli-based
model. For the model of the vocal fold, we will use a lumped
parameter model, i.e., the two-mass model. In this way, only
one of the two steps presented by Alipour and Titze~1996!
has been performed. This study is meant to be a step between
the low-order models~the lumped parameter models! and the
high-order models. Also, a new model of the aerodynamics
is presented in which it is possible to prescribe the subglottal
pressure.

II. MATERIALS AND METHODS

A model of one vibrating vocal fold has been developed,
composed of a two-mass model describing the vocal fold and
the Navier–Stokes equations describing the glottal flow. Due
to symmetry, only one vocal fold is considered. First, the
two-mass model simulating the vocal fold will be described,
followed by the Navier–Stokes equations describing the
aerodynamics. The interaction between the two-mass model
and the Navier–Stokes equations will be described in a fol-
lowing section.

A. Two-mass model of the vocal folds

A two-mass model describes one vocal fold by two
coupled oscillators~e.g., Ishizaka and Flanagan, 1972; Her-
zel et al., 1995; Pelorsonet al., 1994; Louset al., 1998!.
Each oscillator consists of a mass, a spring, and a damper
~Fig. 1!. Massm1 , spring stiffnessk1 , and damperr 1 repre-
sent the lower part of the vocal fold. Massm2 , spring stiff-

nessk2 , and damperr 2 represent the upper part. The two
masses are coupled by a spring with stiffnesskc . The two
masses,m1 andm2 , are permitted to move only in a lateral
direction. The deflections ofm1 and m2 are x1 and x2 , re-
spectively. In the two-mass model, symmetry with respect to
a plane parallel to the main flow axis is assumed; therefore,
only one vocal fold is considered. When the vocal fold ap-
proaches the symmetry line within a very short distance, col-
lision springs with stiffnesskcol1 andkcol2 are activated and
have an influence on the massesm1 andm2 , respectively, in
the contralateral direction~e.g., Ishizaka and Flanagan, 1972;
Pelorsonet al., 1994!. In this way, the effective spring stiff-
ness during collision changes. As a consequence of this way
of modeling the collision, the glottal opening is allowed to
have a small negative value.

In this study, we use two sets of values of the masses
and springs. The first set of values consists of values used by
Ishizaka and Flanagan~1972!, which are also used by several
other researchers~e.g., Herzelet al., 1995; Steinecke and
Herzel, 1995!. The second set of values consists of values
proposed by de Vrieset al. ~1999!. This new set of param-
eters is based on a finite-element method~FEM! study of the
mechanic behavior of a vocal fold. The values of the masses
and springs are substantially smaller than the values used in
previous studies. The parameter values for both sets are
listed in Table I.

FIG. 1. Two-mass model.

TABLE I. Parameter values for the two-mass model: Ishizaka and Flanagan
parameters and de Vries parameters.

I&F parameters de Vries parameters

m1 lower mass~g! 0.125 0.024
m2 upper mass~g! 0.025 0.020
k1 lower spring stiffness~N/m! 80 22
k2 upper spring stiffness~N/m! 8 14
kc coupling spring stiffness~N/m! 25 10
z1 damping ratio~g/s! 0.1
z2 damping ratio~g/s! 0.6
l g glottal length~cm! 1.3
kcol1 collision spring stiffness
~N/m!

3k1

kcol2 collision spring stiffness
~N/m!

3k2
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B. Aerodynamics

To obtain oscillation of the vocal folds, aerodynamic
forces have to act on the two masses. In the present study,
the aerodynamic forces result from the pressure distribution
along the glottal surface as determined by the Navier–Stokes
equations. For the computation of the aerodynamic part of
this model, the incompressible two-dimensional Navier–
Stokes equations are used. These equations are based on two
conservation laws.

~1! Conservation of mass

¹•u50, ~1!

whereu is the vector with the velocity components.
~2! Conservation of momentum

]u

]t
1¹p5R, ~2!

with

R52~u•¹!u1n~¹•¹!u1F.

In Eq. ~2!, p is the pressure,n is the kinematic viscosity of
the fluid, andF is the vector representing external forces on
the fluid.
The term]u/]t in Eq. ~2! is discretized in time with a for-
ward Euler method using time step]t. This results in

¹•un1150, ~3!

un112un

]t
1¹pn115Rn, ~4!

wheren11 is the new time step andn is the present time
step. These terms can be rearranged as

un115un1]tRn2]t¹pn11. ~5!

This can be substituted into Eq~3!, which results in the Pois-
son equation for the pressure

~¹•¹!pn115¹S un

]t
1RnD . ~6!

Spatial discretization of the Navier–Stokes equations is
performed in a Cartesian grid. This grid can be refined at
places of particular interest. The three degrees of freedom of
each cell in the grid are the velocity in the direction of the
main flow u, the velocity perpendicular to the main flowv,
and the pressurep. The velocity in the direction of the main
flow u is defined on the right edge of a cell, the velocity
perpendicular to the main flowv is defined on the upper
edge of a cell, and the pressurep is defined in the center of a
cell. This staggered way of placing the variables is known as
the marker-and-cell~MAC! method ~Harlow and Welsh,
1965!. The numerical advantage of this method is the
uniqueness of the pressure.

The equations stated above have to be completed by
boundary conditions. At the laryngeal wall, the tangential
velocity is set to zero, simulating the sticking of the fluid to
the wall, the so-called no-slip condition, and the perpendicu-
lar velocity is set to zero, simulating the impermeability of
the wall. At the inlet, the subglottal pressure is prescribed.

The outlet conditions combine a prescribed pressure with
zero normal derivatives of the velocities. Since in the two-
mass model only one vocal fold is modeled because of the
symmetry assumption along the glottis, the aerodynamics is
assumed to be symmetric along the glottis. At this symmetry
line, the velocity perpendicular to the symmetry line is set to
zero and the derivative of the axial velocity to its perpen-
dicular coordinate is set also to zero.

The model of the aerodynamics makes use of adaptive
time steps: within every time step, a routine checks for the
time step to be small enough to give reliable results. The
routine tries to calculate for the optimal time step for the
present situation. This adaptive time step is profitable in the
present research because the aerodynamic grid is changing
during the simulation as a consequence of the moving vocal
fold. In this way, a stable and fast solution is obtained. Dur-
ing the simulations presented in this study, the time step
varied between 32.0E-6 and 0.5E-6 s. An exhaustive valida-
tion of an expanded version of the model of the aerodynam-
ics is presented by Veldmanet al. ~1999!.

To be able to compare the results using Navier–Stokes
equations with results using simplified models, simulations
with a glottal flow model based on Bernoulli are also used.
The model used for comparison has been presented before by
Lous et al. ~1998!.

C. Interaction

Interaction between the vocal fold and the aerodynamics
takes place at the surface that is defined by the location of the
two masses~Fig. 2!. The masses are connected by rigid,
massless plates. This configuration is also used by Louset al.
~1998!, where they describe a two-mass model that uses the
Bernoulli equation. In this configuration, sharp edges at the
locations of the masses are present.

The interaction between the two-mass model and the
aerodynamic model occurs in the grid of the aerodynamics.
The cells of the grid in which a part of the two-mass model
is present are supposed to be filled by a nonfluid material. In
this way, a distinction is made between cells that are filled
with air ~aerodynamic cells! and cells that are not filled with
air ~mechanic cells!. In the aerodynamic cells, the Navier–
Stokes equations are calculated. The mechanic cells provide
the boundary conditions for the aerodynamic cells. In the
grid, information concerning the pressure of the airflow is
transferred to the two-mass system, and information about

FIG. 2. Nonuniform grid with model of the vocal fold.
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the position and the velocity of the two masses is transferred
to the aerodynamic model in every time step.

The pressure distribution along the vocal-fold surface
resulting from the Navier–Stokes calculations has to be
translated to two point forces that act on the two masses.
These forces are not directly available from the aerodynamic
model, but are derived from the pressures in the aerodynamic
cells adjacent to the vocal fold. The pressure values of the
cells that contain air and that are also adjacent to the cells
that contain a part of the vocal fold are multiplied by the area
of the concerning cell, which corresponds to the length of the
cell multiplied by the glottal length. These pressure forces
are calculated in all fluid cells adjacent to the vocal-fold
cells, so the complete glottal surface is considered. The pres-
sure forces are distributed over the two masses in such a way
that they form a statically equivalent system. The resulting
new positions and velocities of the two masses are calculated
and transferred to the aerodynamic model by defining a new
distribution of aerodynamic cells and mechanic cells in the
grid. The velocities of the mechanic cells at the glottal sur-
face are calculated by interpolation of the velocities of the
two masses. In this way, a dynamic boundary condition for
the aerodynamic cells is defined, which is used in the next
time step of the calculations of the Navier–Stokes equations.
In this way, a realistic description of the interaction is ob-
tained.

The two-mass model is by definition a two-dimensional
model. Therefore, the aerodynamics is also considered to be
two-dimensional. To obtain results as glottal flow and aero-
dynamic forces, the third dimension is simulated by assum-
ing a uniform distribution of the aerodynamic quantities
along the length of the vocal fold. According to measure-
ments performed by Baer~1981!, the length of the vocal fold
is modeled by a length of 1.3 cm. In this way, boundary
effects that occur at the anterior and posterior glottal com-
missure are neglected.

To determine the numerical validity of the model, the
number of cells has been varied until a grid was obtained for
which a doubling of the number of cells does not result in a
noticeable difference in the glottal waves. The grid is made
nonuniform by taking smaller cells in the neighborhood of
the glottis, because in this region larger velocity gradients
and pressure gradients can be expected.

To obtain glottal waves, different values for the subglot-
tal pressurePs were applied. In a previous study~de Vries
et al., 1999!, the properties of glottal waves that are pro-
duced at a pressure of 6 cm H2O were compared to normal
values. We also used the value of 6 cm H2O in this study,
which is chosen after Holmberget al. ~1989!, where they
derived average values for several quantities concerning pho-
nation in males and females. The normal value of the sub-
glottal pressure of 4.3 cm H2O, determined by Schutte
~1980!, has not been used because no glottal waves were
obtained at that pressure for the specific set of model param-
eters used in our study. Properties of the glottal waves pro-
duced with the presented numerical model will be considered
at Ps50.6 kPa, which is almost equal to 6 cm H2O. In this

way, properties of the glottal waves can be compared easily.
The glottal waves produced with the new model are ana-

lyzed and will be compared with the glottal waves produced
by lumped parameter models using the Bernoulli-based
model by comparing the fundamental frequency, glottal
peak-flow rate, and closed quotient.

To obtain information about the phonation threshold
pressure and the range of self-sustained oscillation, subglot-
tal pressure was increased during the simulations by 8.0 kPa
per second until a value of 2 kPa was reached. Simulations
have been performed with an initial glottal gap of 0.0, 0.05,
0.01, and 0.25 mm. The initial shape of the glottis during
these simulations was uniform, no diverging, and converging
initial shapes are simulated.

III. RESULTS

Using a grid with 128330 cells, the condition of stable
solutions is satisfied. Therefore, this grid is used in all the
simulations.

Using the parameters sets of Ishizaka and Flanagan and
de Vries, different results were obtained. Using the Ishizaka
and Flanagan parameter values, no self-sustained oscillation
is obtained for subglottal pressures between 0.0 and 2.0 kPa
and different initial glottal gaps. The de Vries parameters
show self-sustained oscillation for a wide range of subglottal
pressures and initial glottal gaps. Therefore, the following
results are all produced using the de Vries parameters.

The properties of glottal waves resulting from a simula-
tion with subglottal pressure of 0.6 kPa have been deter-
mined. Glottal waves with a closed phase could only be ob-
tained using an initially closed glottis when a subglottal
pressure of 0.6 kPa was applied. Comparisons of the proper-
ties of the glottal waves with the properties of the glottal
waves produced using the Bernoulli-used model instead of
the Navier–Stokes equations are summarized in Table II. For
comparison, values for normal phonation according to Holm-
berg et al. ~1989! are listed. From this table, it can be seen
that the fundamental frequency appears to be lower by using
the Navier–Stokes equations than by using the model based
on the Bernoulli equation.

The glottal peak flow of the glottal waves produced us-
ing the Navier–Stokes equations is a factor of 2 higher than
the glottal peak flow of the glottal waves produced using the
Bernoulli-based model. This value is also higher than the

TABLE II. Properties of the glottal waves produced using the Navier–
Stokes equations compared to normal values; these results were obtained
using the de Vries parameters because the use of the Ishizaka and Flanagan
parameters does not result in glottal waves.

Two-mass1
Bernoulli

Two-mass1
Navier-Stokes

Normal phonation

Female Male

Fundamental
frequencyF0 (Hz)

187 165 207 119

glottal peak flow
Ug(1/s)

0.25 0.48 0.14 0.23

closed quotient
CQ~-!

0.30 0.30 0.26 0.39
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normal value in female and male phonation, as shown in
Table II.

Application of Navier–Stokes instead of the Bernoulli-
based model does not influence the value of the closed quo-
tient.

Results of an increase of subglottal pressure in the
model using different values for the initial glottal gap are
shown in Fig. 3. It can be seen that, using a different initial
glottal gap, oscillation starts at a different subglottal pres-
sure. The pressure at which self-sustained oscillation occurs

FIG. 3. Glottal waves for different initial glottal openings and rising subglottal pressure; at the bottom right, a close-up of one glottal wave~0.1-mm glottal
gap! is shown.
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~phonation threshold pressure! is shown in Fig. 4. At this
phonation threshold pressure, a sinus-like waveform is ob-
tained. Increasing the pressure above the phonation threshold
pressure results in a more than proportional increase of the
amplitude of the oscillation, resulting in glottal waves that
are not sinus-like but which have a closed quotient. The pres-
sure at which glottal waves with a closed quotient are ob-
tained, is also plotted in Fig. 4. The phonation threshold
pressure obtained is higher using the Navier–Stokes than
when using the Bernoulli-based model~Fig. 4! for all initial
glottal gaps. Titze~1988! studied the phonation threshold
pressure for different initial glottal gaps; for a uniform glottis
with an initial glottal gap of 0.1 mm, he determined a value
of approximately 0.9 kPa, which is close to the value ob-
tained using the Navier–Stokes equations of 1.2 kPa. The
value obtained with the Bernoulli-based model is almost 0.1
kPa, which is much lower.

The rate of change of the fundamental frequency as a
function of the subglottal pressure (dF0 /dPs) is derived by
dividing the difference betweenF0 at 0.6 kPa (F0

5165 Hz) and at 1.6 kPa (F05168 Hz) by the difference in
pressure (1.6– 0.651.0 kPa). Over this pressure range,
dF0 /dPs is determined to be 3 Hz/kPa, which is almost
equal to 0.3 Hz/cm H2O. This value is substantially lower
than the 2.5 Hz/cm H2O determined by Ishizaka and Flana-
gan ~1972! using their two-mass model. Using the glottal
flow model that is based on the Bernoulli equation, the fre-
quency remains unchanged when subglottal pressure is var-
ied.

To demonstrate the variations in glottal flow during a
glottal cycle, Fig. 5 shows the velocity component along the
main flow direction in an open phase and in a closed phase,
as determined during a simulation with the de Vries param-
eters with an initial glottal opening of 0.5 mm and a subglot-
tal pressure of 0.8 kPa, resulting in a mean flow of 430 ml/s.

IV. DISCUSSION

In this study it is demonstrated that it is possible to
achieve self-sustained oscillation with a two-mass model of
the vocal folds in combination with a Navier–Stokes de-

scription of the glottal flow. The results show that the choice
of the set of parameter values is crucial to achieve phonation:
no self-sustained oscillation is obtained using the parameter
values of Ishizaka and Flanagan~1972!, while the use of the
parameter values of de Vrieset al. ~1999! results in the pro-
duction of acceptable glottal waves. This could be caused by
the fact that the parameter values of Ishizaka and Flanagan
are larger than those of de Vries. Probably the values of the
masses and springs that represent the vocal folds are overes-
timated by Ishizaka and Flanagan, as suggested by Lous
et al. ~1998!. In the case of an overestimation of the me-
chanic influence of the vocal folds, they predominate the
dynamic behavior of the vocal folds.

The properties of the glottal waves produced using the
Navier–Stokes equations differ from those produced using
the Bernoulli-based model. Because applying the Navier–
Stokes equations lowers the fundamental frequency, it can be

FIG. 4. Phonation threshold pressure
for different initial glottal opening.

FIG. 5. Vector plot of velocities of maximum open phase~a! and closed
phase~b!.
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stated that an increase in the effective mass of the vocal folds
has been achieved. So, the lowering in the fundamental fre-
quency might be partially explained by the influence of in-
ertia effects which are present in the Navier–Stokes equation
and absent in the Bernoulli equation. To which extent this
effect contributes to the lowering is a question that will be
answered in a forthcoming study.

The fact that the glottal peak flow is increased by a
factor of 2 by applying the Navier–Stokes equations instead
of the Bernoulli-based model can be explained by the fact
that the viscous losses are described in a different manner: in
the Bernoulli-based model, viscous effects are calculated us-
ing a fixed separation point for a convergent and divergent
glottis. In the Navier–Stokes equations, the viscous effects in
the main flow and in the boundary layer are described much
more accurately, which can have a significant influence on
the value of the glottal peak flow. The closed quotient of the
glottal waves produced using the Navier–Stokes equations
does not differ from the closed quotient produced using the
Bernoulli-based model. The combination of a higher glottal
peak flow with an equal closed quotient results in a higher
glottal airflow velocity in the Navier–Stokes simulations
than from the Bernoulli-based model. This also can be due to
a different description of the viscous effects in both aerody-
namic models.

The phonation threshold pressure depends on the initial
glottal gap. This is in correspondence with Titze~1988!, who
stated that a tighter adduction of the vocal folds results in a
lower phonation threshold pressure. The fact that a sinus-like
oscillation occurs at a lower pressure using a gap of 0.05 mm
can be explained by the fact that the initially closed glottis
has to be opened first. The transition of a sinus-like oscilla-
tion to oscillation with a closed phase has also been demon-
strated in normal phonation~Schutte and Seidner, 1988!.

The value of the maximum jet velocity as shown in Fig.
5 corresponds very well with Alipouret al. ~1996!. In an
excised larynx, they measured a supraglottal jet velocity of
about 40 m/s at almost the same mean flow rate, namely 470
ml/s.

In the model presented in this paper, we are able to
apply a subglottal pressure without using the Bernoulli equa-
tion to approximate the subglottal pressure for a given flow
field, in contrast to Alipour and Titze~1996! and Guoet al.
~1993!. In comparison with Alipour and Titze~1996! we can
state that, despite of our simple mechanical description of the
vocal folds, we obtain glottal waves that are at least as real-
istic as in their study.

In our study, we assume the vocal folds to be sharp-
edged because we do not apply any rounding to the geometry
of the vocal fold. This choice is made because of the uncer-
tain measures for rounding of the vocal folds that are avail-
able. Instead of the recommendations by Alipour and Titze
~1999!, no bulging of the vocal-fold surface is applied.
If bulging is applied, the small pulses of air in the closed
phase~which occur at higher pressure, as shown in Fig. 3!
would probably be avoided. From this point of view, round-
ing of the vocal fold at the edges and bulging of the

vocal-fold surface would be a possible improvement for
the mechanical model.
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