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Glottal flow through a two-mass model: Comparison
of Navier—Stokes solutions with simplified models

M. P. de Vries, H. K. Schutte, A. E. P. Veldman, and G. J. Verkerke
Artificial Organs, Biomedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands

(Received 29 July 1999; accepted for publication 12 September) 2000

A new numerical model of the vocal folds is presented based on the well-known two-mass models
of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the
incompressible Navier—Stokes equations. Glottal waves are produced using different initial glottal
gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase
of the glottal waves have been compared with values known from the literature. The phonation
threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure
obtained using the flow model with Navier—Stokes equations corresponds better to values
determined in normal phonation than the phonation threshold pressure obtained using the flow
model based on the Bernoulli equation. Using the Navier—Stokes equations, an increase of the
subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas
the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.
© 2002 Acoustical Society of AmericdDOI: 10.1121/1.1323716

PACS numbers: 43.70.AAL ]

LIST OF SYMBOLS Ky lower spring stiffness

CQ closed quotient rq lower damper

F vector representing external forces on the fluid m; upper mass

Fo fundamental frequency ks upper spring stiffness

Ug glottal peak flow ro upper damper

p pressure ke coupling stiffness

Ps subglottal pressure Keont lower collision spring stiffness
u vector with the velocity components Keolz upper collision spring stiffness
v kinematic viscosity of the fluid X1 deflection of m

u horizontal velocity of fluid X2 deflection of m

v vertical velocity of fluid { lower damping ratio

my lower mass 45 upper damping ratio

I. INTRODUCTION be made. The use of the Bernoulli equation is allowed when

the flow is assumed to be steady, laminar, nonviscous, and

To understand the process of voice production, severdhcompressible. In a cross section, pressure and velocity are
authors have investigated the pressure—flow relationship insually assumed to be constant. In reality, pressure and ve-
the glottis(e.g., van der Bergt al,, 1957; Scherer and Titze, locity vary over a cross section. The velocity even has a
1983; Alipour et al, 1996, Guo and Scherer, 1993; Lilien- transverse component that is ignored. Each of the assump-
crants, 1991 These examinations were all performed in ations, mentioned before, introduces an error and the resulting
static glottis. Other investigations include the dynamic be-accumulation of errors results in an inaccurate description of
havior of the voice source, which has been experimentallyhe flow. To improve the flow calculations, a more accurate
studied by Shadlet al. (1999 and Mongeatet al. (1997).  flow description has to be used. This is possible by using the
Numerical modeling of the interaction between the oscillat-two-dimensional Navier—Stokes equations. These equations
ing vocal folds and the airflow in the glottis is performed describe the nonsteady and viscous behavior of a fluid under
using a simplified description of the vocal fold combined an external load. In this study, Navier—Stokes equations are
with a simplified description of the airflowe.g., Ishizaka implemented having only the assumption of incompressibil-
and Flanagan, 1972; Pelorsehal., 1994; Story and Titze, ity.
1995; Herzeket al, 1995; Louset al, 1998. With these so- Although solving the Navier—Stokes equations is very
called lumped parameter models, glottal waves are producediime consuming, today’s computing power ensures accept-
as a result of a flow-induced oscillation of the vocal folds.able calculation times. Therefore, in the last decade, the
Generally, in these lumped parameter models, the pressuMavier—Stokes equations already have been used in research
and flow in the glottis are related by the Bernoulli equation.concerning voice production. Alipowt al. (1996, Guo and
To apply this Bernoulli equation, assumptions concerning th&Scheren1993, and Liljencrantg1991) presented data using
physical characteristics of the fluid, air in our case, have tdhe Navier—Stokes equations in a static model of the vocal
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folds. The pressure—flow relationships resulting from these vocal tract
investigations in the static glottis are related to the dynamic
situation during phonation.

Recently, Alipour and Titzg1996 combined the in-
compressible Navier—Stokes equations with a dynamic

symmetry line

finite-element methodFEM) model of the vocal folds and

simulated phonation in this way. In their model, the finite-

element method model of the vocal fold and the model of the
Navier—Stokes equations exchange information, resulting in l

glottal waves. A disadvantage of this model is that it is only
possible to prescribe a subglottal flow rate instead of an ini-
tial pressure. A preceding Bernoulli solution is needed in
their model to approximate the flow rate that occurs at physi-
ological subglottal pressures. wached

When the lumped parameter models of the vocal folds
(Ishizaka and Flanagan, 1972; Heretlal, 1995; Pelorson FIG. 1. Two-mass model.
et al, 1999 are compared with the model of Alipour and

Titze (1996, it can be seen that the glottal airflow descrip- nessk,, and damper , represent the upper part. The wo

tion, based on the Bernoulli equation in the lumped param. o< are counled by a soring with stifniss The two
eter models, is replaced by the Navier—Stokes equations in P y pring e

the Alipour and Titze model, and the description of the Vocalmassgsml andm,, are permitted to move only in a lateral
. .~ direction. The deflections ah; andm, arex; andx,, re-

folds by a number of masses, springs, and dampers in the "~ . .

. Spectively. In the two-mass model, symmetry with respect to

lumped parameter models is replaced by an FEM model. In ; 7 )

: a plane parallel to the main flow axis is assumed; therefore,

the present study we will present a model composed of a . .

; .. _only one vocal fold is considered. When the vocal fold ap-

lumped parameter model of the vocal folds combined with &

Navier—Stokes model of the glottal flow. In this way, the proaches the symmetry line within a very short distance, col-
. . . lision springs with stiffnes&.,; andk,, are activated and
need for assumptions concerning the viscous losses, as

1S
needed in studies using a Bernoulli-based equation, is n

rLave an influence on the massasandm,, respectively, in
necessary: as a consequence of the use of Navier—StokBe contralateral directiofe.qg., Ishizaka and Flanagan, 1972;
equations, viscous effects are included. We will give a com-

2lorsoret al, 1994. In this way, the effective spring stiff-

parison between results obtained using the Navier—Stokes o> dun_ng coII|S|on. qhanges. As a consequence of this way
modeling the collision, the glottal opening is allowed to

equations with results obtained using the Bernoulli-base .
: ave a small negative value.
model. For the model of the vocal fold, we will use a lumped :
In this study, we use two sets of values of the masses

parameter model, i.e., the two-mass model. In this way, Or”%md springs. The first set of values consists of values used by

e e o T i o e 2648 3 FanagdaS72, hich are s used by severl
P ) y P Sther researcherée.g., Herzelet al, 1995; Steinecke and

the low-order modelthe lumped parameter modiknd the Herzel, 199%. The second set of values consists of values

high-order models. Also, a new model of the aerodynamics roposed by de Vriest al. (1999. This new set of param-

';g;ii?:ted in which itis possible to prescribe the SUbglOttazters is based on a finite-element metiBEM) study of the

mechanic behavior of a vocal fold. The values of the masses
and springs are substantially smaller than the values used in
previous studies. The parameter values for both sets are
A model of one vibrating vocal fold has been developed listed in Table I.

composed of a two-mass model describing the vocal fold and

the Navier—Stokes equations describing the glottal flow. DugagLE |. parameter values for the two-mass model: Ishizaka and Flanagan
to symmetry, only one vocal fold is considered. First, theparameters and de Vries parameters.

two-mass model simulating the vocal fold will be described,

Il. MATERIALS AND METHODS

followed by the Navier—Stokes equations describing the I&F parameters de Vries parameters
aerodynamics. The interaction between the two-mass model, lower mass(g) 0.125 0.024
and the Navier—Stokes equations will be described in a folm; upper masgg) 0.025 0.020
Iowing section k, lower spring stiffnesgN/m) 80 22
’ k, upper spring stiffneséN/m) 8 14
A. Two-mass model of the vocal folds k. coupling spring stiffnesgN/m) 25 10
) £, damping ratio(g/s) 0.1
A two-mass model describes one vocal fold by two s, damping ratio(g/s 0.6
coupled oscillatorge.g., Ishizaka and Flanagan, 1972; Her-14 glottal length(cm) 13
zel et al, 1995; Pelorsoret al, 1994; Louset al, 1998. kco/u collision spring stiffness 3k,
Each oscillator consists of a mass, a spring, and a dampé’?J m N
col2 COllision spring stiffness 3k,

(Fig. 1). Massm,, spring stiffnesk,, and damper, repre-  (n/m)
sent the lower part of the vocal fold. Mass, spring stiff-
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B. Aerodynamics location of m1 location of m2

To obtain oscillation of the vocal folds, aerodynamic
forces have to act on the two masses. In the present study =
the aerodynamic forces result from the pressure distribution :
along the glottal surface as determined by the Navier—Stoke: §
equations. For the computation of the aerodynamic part of§
this model, the incompressible two-dimensional Navier—
Stokes equations are used. These equations are based on t
conservation laws.

(1) Conservation of mass

V-u=0, (1)

pharynx

FIG. 2. Nonuniform grid with model of the vocal fold.

whereu is the vector with the velocity components. The outlet conditions combine a prescribed pressure with
(2) Conservation of momentum zero normal derivatives of the velocities. Since in the two-
o mass model only one vocal fold is modeled because of the
—+Vp=R, ) symmetry assumption along the glottis, the aerodynamics is
at assumed to be symmetric along the glottis. At this symmetry
with line, the velocity perpendicular to the symmetry line is set to
zero and the derivative of the axial velocity to its perpen-
R=—(u-V)u+p(V-V)u+F. dicular coordinate is set also to zero.

In Eq. (2), p is the pressurey is the kinematic viscosity of The model of the aerodynamics makes use of adaptive

the fluid, andF is the vector representing external forces ont!me steps: within every time step, a routlne checks for the
the fluid. time step to be small enough to give reliable results. The

routine tries to calculate for the optimal time step for the
present situation. This adaptive time step is profitable in the
present research because the aerodynamic grid is changing

The termdu/dt in Eq. (2) is discretized in time with a for-
ward Euler method using time stép. This results in

V.u"ti=0, (3)  during the simulation as a consequence of the moving vocal

nil o fold. In this way, a stable and fast solution is obtained. Dur-
u"tt—u ; ; ; ; ; ;

+Vpntl=Rn (4) ing the simulations presented in this study, the time step

at ’ varied between 32.0E-6 and 0.5E-6 s. An exhaustive valida-

tion of an expanded version of the model of the aerodynam-
ics is presented by Veldmaat al. (1999.

To be able to compare the results using Navier—Stokes
u"ti=u"+ gtR"—gtvVp" L. (5)  equations with results using simplified models, simulations
with a glottal flow model based on Bernoulli are also used.
The model used for comparison has been presented before by
Louset al. (1998.

wheren+1 is the new time step and is the present time
step. These terms can be rearranged as

This can be substituted into Eg), which results in the Pois-
son equation for the pressure

n

(V-V)p”“=V(u—+R” . (6)

ot

Spatial discretization of the Navier—Stokes equations isc' Interaction

performed in a Cartesian grid. This grid can be refined at  Interaction between the vocal fold and the aerodynamics
places of particular interest. The three degrees of freedom dékes place at the surface that is defined by the location of the
each cell in the grid are the velocity in the direction of thetwo massegqFig. 2). The masses are connected by rigid,
main flow u, the velocity perpendicular to the main flawy =~ massless plates. This configuration is also used by ebas
and the pressurg. The velocity in the direction of the main (1998, where they describe a two-mass model that uses the
flow u is defined on the right edge of a cell, the velocity Bernoulli equation. In this configuration, sharp edges at the
perpendicular to the main flow is defined on the upper locations of the masses are present.
edge of a cell, and the pressyrés defined in the center of a The interaction between the two-mass model and the
cell. This staggered way of placing the variables is known agerodynamic model occurs in the grid of the aerodynamics.
the marker-and-cel(MAC) method (Harlow and Welsh, The cells of the grid in which a part of the two-mass model
1965. The numerical advantage of this method is theis present are supposed to be filled by a nonfluid material. In
uniqueness of the pressure. this way, a distinction is made between cells that are filled
The equations stated above have to be completed bwith air (aerodynamic cellsand cells that are not filled with
boundary conditions. At the laryngeal wall, the tangentialair (mechanic cells In the aerodynamic cells, the Navier—
velocity is set to zero, simulating the sticking of the fluid to Stokes equations are calculated. The mechanic cells provide
the wall, the so-called no-slip condition, and the perpendicuthe boundary conditions for the aerodynamic cells. In the
lar velocity is set to zero, simulating the impermeability of grid, information concerning the pressure of the airflow is
the wall. At the inlet, the subglottal pressure is prescribedtransferred to the two-mass system, and information about
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the position and the velocity of the two masses is transferredABLE II. Properties of the glottal waves produced using the Navier—
to the aerodynamic model in every time step. Stqkes equanqns compared to normal values; these res.ults were obtained

S using the de Vries parameters because the use of the Ishizaka and Flanagan
The pressure distribution along the vocal-fold surface,arameters does not result in glottal waves.

resulting from the Navier—Stokes calculations has to be

translated to two point forces that act on the two masses. Two-mass  Two.mass. _ormal phonation
These forces are not directly available from the aerodynamic Bernoulli  Navier-Stokes Female  Male
model, l?ut are derived from the pressures in the aerodynamig -~ 187 165 207 119
cells adjacent to the vocal fold. The pressure values of th@equencyF, (Hz)
cells that contain air and that are also adjacent to the cellglottal peak flow 0.25 0.48 0.14 0.23
that contain a part of the vocal fold are multiplied by the ared”s(15)

closed quotient 0.30 0.30 0.26 0.39

of the concerning cell, which corresponds to the length of theCQ(_)
cell multiplied by the glottal length. These pressure forces
are calculated in all fluid cells adjacent to the vocal-fold

cells, so the comple’Fe glottal surface is consider_ed. The Pre$7ay, properties of the glottal waves can be compared easily.
sure forces are dlstnputed over the two masses in such away - The glottal waves produced with the new model are ana-
that they form a statically equivalent system. The resultingyzed and will be compared with the glottal waves produced
new positions and velocities of the two masses are calculategly |umped parameter models using the Bernoulli-based
and transferred to the aerodynamic model by defining a Nevhodel by Comparing the fundamental frequency, g|otta|
distribution of aerodynamic cells and mechanic cells in thepeak-flow rate, and closed quotient.
grid. The velocities of the mechanic cells at the glottal sur-  To obtain information about the phonation threshold
face are calculated by interpolation of the velocities of thepressure and the range of self-sustained oscillation, subglot-
two masses. In this way, a dynamic boundary condition fottal pressure was increased during the simulations by 8.0 kPa
the aerodynamic cells is defined, which is used in the nexper second until a value of 2 kPa was reached. Simulations
time step of the calculations of the Navier—Stokes equationdiave been performed with an initial glottal gap of 0.0, 0.05,
In this way, a realistic description of the interaction is ob-0.01, and 0.25 mm. The initial shape of the glottis during
tained. these simulations was uniform, no diverging, and converging
The two-mass model is by definition a two-dimensionalinitial shapes are simulated.
model. Therefore, the aerodynamics is also considered to be
two-dimensional. To obtain results as glottal flow and aero-
. . . L T Ill. RESULTS
dynamic forces, the third dimension is simulated by assum-
ing a uniform distribution of the aerodynamic quantities Using a grid with 12& 30 cells, the condition of stable
along the length of the vocal fold. According to measure-solutions is satisfied. Therefore, this grid is used in all the
ments performed by Ba€t981), the length of the vocal fold simulations.
is modeled by a length of 1.3 cm. In this way, boundary  Using the parameters sets of Ishizaka and Flanagan and
effects that occur at the anterior and posterior glottal comde Vries, different results were obtained. Using the Ishizaka
missure are neglected. and Flanagan parameter values, no self-sustained oscillation
To determine the numerical validity of the model, the is obtained for subglottal pressures between 0.0 and 2.0 kPa

number of cells has been varied until a grid was obtained foRnd different initial glottal gaps. The de Vries parameters
which a doubling of the number of cells does not result in ashow self-sustained oscillation for a wide range of subglottal
noticeable difference in the glottal waves. The grid is madé’ressures and initial glottal gaps. Therefore, the following
nonuniform by taking smaller cells in the neighborhood of€Sults are all produced using the de Vries parameters.

the glottis, because in this region larger velocity gradients. Th.ehpro;t))erltles |°f glottal wa¥eos(;elfgltlnr? frorrtl)a sm(;ula—
and pressure gradients can be expected. tion with subglottal pressure of 0.6 kPa have been deter-

To obtain glottal waves, different values for the subglot—mmed' Glottal waves with a closed phase could only be ob-

. . . tained using an initially closed glottis when a subglottal
tal pressurePs were applied. In a previous studgle Vries ressure of 0.6 kPa was applied. Comparisons of the proper-
et al, 1999, the properties of glottal waves that are pro-p ) ppied. b brop

ties of the glottal waves with the properties of the glottal
duced at a pressure of 6 cm®l were comp:?\red _to normal waves produced using the Bernoulli-used model instead of
vallues.. We also used the value of 6 crpCHin this study, the Navier—Stokes equations are summarized in Table II. For
which is chosen after Holmbergt al. (1989, where they  comparison, values for normal phonation according to Holm-
derived average values for several quantities concerning ph‘E)‘erg et al. (1989 are listed. From this table, it can be seen
nation in males and females. The normal value of the subgat the fundamental frequency appears to be lower by using
glottal pressure of 4.3 cm @, determined by Schutte the Navier—Stokes equations than by using the model based
(1980, has not been used because no glottal waves wergn the Bernoulli equation.
obtained at that pressure for the specific set of model param-  The glottal peak flow of the glottal waves produced us-
eters used in our study. Properties of the glottal waves praing the Navier—Stokes equations is a factor of 2 higher than
duced with the presented numerical model will be considerethe glottal peak flow of the glottal waves produced using the
at Ps=0.6 kPa, which is almost equal to 6 cmy®! In this  Bernoulli-based model. This value is also higher than the
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FIG. 3. Glottal waves for different initial glottal openings and rising subglottal pressure; at the bottom right, a close-up of one glott@llwawe glottal
gap is shown.

normal value in female and male phonation, as shown in  Results of an increase of subglottal pressure in the
Table II. model using different values for the initial glottal gap are
Application of Navier—Stokes instead of the Bernoulli- shown in Fig. 3. It can be seen that, using a different initial
based model does not influence the value of the closed quaiottal gap, oscillation starts at a different subglottal pres-
tient. sure. The pressure at which self-sustained oscillation occurs
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(phonation threshold pressuiress shown in Fig. 4. At this  scription of the glottal flow. The results show that the choice
phonation threshold pressure, a sinus-like waveform is obef the set of parameter values is crucial to achieve phonation:
tained. Increasing the pressure above the phonation threshahd self-sustained oscillation is obtained using the parameter
pressure results in a more than proportional increase of thealues of Ishizaka and Flanagétf72, while the use of the
amplitude of the oscillation, resulting in glottal waves thatparameter values of de Vrieg al. (1999 results in the pro-

are not sinus-like but which have a closed quotient. The presduction of acceptable glottal waves. This could be caused by
sure at which glottal waves with a closed quotient are obthe fact that the parameter values of Ishizaka and Flanagan
tained, is also plotted in Fig. 4. The phonation thresholdare larger than those of de Vries. Probably the values of the
pressure obtained is higher using the Navier—Stokes thamasses and springs that represent the vocal folds are overes-
when using the Bernoulli-based modg€ig. 4) for all initial timated by Ishizaka and Flanagan, as suggested by Lous
glottal gaps. Titze(1988 studied the phonation threshold et al. (1998. In the case of an overestimation of the me-
pressure for different initial glottal gaps; for a uniform glottis chanic influence of the vocal folds, they predominate the
with an initial glottal gap of 0.1 mm, he determined a valuedynamic behavior of the vocal folds.

of approximately 0.9 kPa, which is close to the value ob-  The properties of the glottal waves produced using the
tained using the Navier—Stokes equations of 1.2 kPa. Thblavier—Stokes equations differ from those produced using
value obtained with the Bernoulli-based model is almost 0.1he Bernoulli-based model. Because applying the Navier—
kPa, which is much lower. Stokes equations lowers the fundamental frequency, it can be

The rate of change of the fundamental frequency as a
function of the subglottal pressuref,/dP;) is derived by
dividing the difference betweerF, at 0.6 kPa Fj
=165Hz) and at 1.6 kPa~,=168 Hz) by the difference in
pressure (1.6—0:61.0kPa). Over this pressure range,
dF,/dPg is determined to be 3 Hz/kPa, which is almost
equal to 0.3 Hz/cm KD. This value is substantially lower
than the 2.5 Hz/cm KD determined by Ishizaka and Flana-
gan (1972 using their two-mass model. Using the glottal
flow model that is based on the Bernoulli equation, the fre- =
guency remains unchanged when subglottal pressure is var
ied.

To demonstrate the variations in glottal flow during a
glottal cycle, Fig. 5 shows the velocity component along the
main flow direction in an open phase and in a closed phase
as determined during a simulation with the de Vries param--
eters with an initial glottal opening of 0.5 mm and a subglot- =
tal pressure of 0.8 kPa, resulting in a mean flow of 430 ml/s. -

(a)

"
' vocal fold

axial coordinate——————p

(b)

" vocal fold

IV. DISCUSSION

In this study it is demonstrated that it is possible to
achieve Self'SUSFamed o§C|II§1t|on W'th a tWO_'maSS model Ofg. 5. vector plot of velocities of maximum open phase and closed
the vocal folds in combination with a Navier—Stokes de-phase(b).
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stated that an increase in the effective mass of the vocal fold#ocal-fold surface would be a possible improvement for
has been achieved. So, the lowering in the fundamental fre¢he mechanical model.

guency might be partially explained by the influence of in-

ertia effects which are present in the Navier—Stokes equatioﬁCKNOWLEDGMENT

and absent in the Bernoulli equation. To which extent this  This research was supported by the Technology Founda-
effect contributes to the lowering is a question that will betion.

answered in a forthcoming study. 1096
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