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Asymptotic Properties of Multistate Random Walks. 
I. Theory 

J. B. T. M. Roerdink 1'2 and K. E. Shuler 1 

Received August 21, 1984, revised February 20, 1985 

A calculation is presented of the long-time behavior of various random walk 
properties (moments, probability of return to the origin, expected number of 
distinct sites visited) for multistate random walks on periodic lattices. In par- 
ticular, we consider inhomogeneous periodic lattices, consisting of a periodically 
repeated unit cell which contains a finite number of internal states (sites). The 
results are identical to those for perfect lattices except for a renormalization of 
coefficients. For walks without drift, it is found that all the asymptotic random 
walk properties are determined by the diffusion coefficients for the multistate 
random walk. The diffusion coefficients can be obtained by a simple matrix 
algorithm presented here. Both discrete and continuous time random walks are 
considered. The results are not restricted to nearest-neighbor random walks but 
apply as long as the single-step probability distributions associated with each of 
the internal states have finite means and variances. 

KEY WORDS:  Multistate random walks; embedded Markov chain; 
inhomogeneous periodic lattices. 

1. I N T R O D U C T I O N  

Considerable interest has developed recently in the theory of multistate 
random walks because of the variety of physical and chemical processes 
which can be modeled by such random walks (for a review see, e.g., Ref. 1). 
The basic concept is that the walker, while moving on a lattice, can be in a 
number of internal states; and the properties of the random walk depend 
on the nature of these states. Such internal states can be different energy 
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206 Roerdink and Shuler 

levels or spin states, but we will be concerned here only with the case of 
configurationaI internal states. That is, we consider random walks on lat- 
tices which are built up by periodically repeated unit cells. The unit cells 
themselves contain several nonequivalent sites which are now considered as 
internal states. Such constructs can be termed inhomogeneous periodic lat- 
tices; for succinctness, we will refer to them simply as inhomogeneous lat- 
tices. Because such lattices are globally translation invariant, the time 
dependence of the random walk properties is the same as for perfect lattices 
(i.e., periodic lattices with one site per unit cell), and only a renor- 
malization of coefficients occurs. The question to be answered is how the 
presence of internal states affects these coefficients. 

The main motivation for this study arose out of a series of papers by 
Silver, Shuler, and Lindenberg(2); Shuler(3); and Seshadri, Lindenberg, and 
Shuler. (4~ These studies were concerned with nearest-neighbor random 
walks on so-called sparsely periodic or random lattices. Such lattices are 
obtained from a regular lattice by periodically (or randomly) removing a 
number of vertical columns. A two-dimensional example is shown in Fig. 1. 
On this lattice, motion in the y direction is possible only at a subset of 
points, the so-called intersection sites. The case shown in Fig. 1 represents a 
sparsely periodic lattice with horizontal periodicity k, i.e., there is one ver- 
tical connection for every kth site along the horizontal direction. Random 
walk properties for such lattices have been obtained by rather complicated 
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Fig. 1. Sparsely periodic two-d imens iona l  lattice with periodicities k x = k, ky = 1. 
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generating function techniques (2'4) as well as by probabilistic methods. (5'6) 
On the other hand, a set of simple assumptions has been proposed (3) 
[called the bond enumeration method (B.E.M)], which reproduce the 
correct asymptotic random walk properties and which are based on 
counting the number of bonds in the unit cell in the various space direc- 
tions. 

In order to investigate the range of validity of the B.E.M., we derive in 
this paper simple expressions for various properties [occupation 
probabilities, moments, probability of return to the origin, expected num- 
ber of distinct sites visited] of multistate random walks in the long-time 
limit. In this way a quick comparison of such properties for different types 
of inhomogeneous lattices becomes possible without the need of computing 
the generating functions for each different case. The explicit question of the 
range of validity of the B.E.M. will be reserved for another paper. (7) 

In paper II of this series (8) we will touch upon another important 
theme in the work cited above, (2 6) namely, the question under which con- 
ditions the properties of the random walk do not depend upon the spatial 
arrangement of the nonequivalent sites within the unit cell but only upon 
their density. For the sparsely periodic lattices mentioned above, it has 
been shown that for a fixed density of vertical columns the random walk 
properties are identical for periodic and nonperiodic or random dis- 
tributions of vertical columns, 3 provided that certain asymptotic uniformity 
conditions are satisfied. (5'6) We will present additional examples for which 
this is the case as well as examples where the detailed spatial arrangements 
cannot be ignored. 

Among earlier approaches to random walks with internal states, we 
mention those of Landman, Montroll, and Shlesinger, (l~ and of Landman 
and Shlesinger (l~'t2) in the context of continuous time random walks 
(CTRW's). The latter authors present two different and lengthy prescrip- 
tions to calculate the asymptotic behavior of the moments of the walk. In 
this paper we present an algorithm to obtain these moments which is much 
simpler, especially for walks for which the average single-step displacement 
from each site of the lattice in each direction is zero. 4 The probability of 
return to the origin and the expected number of distinct sites visited were 
not discussed in the papers cited above. The simple relations we establish in 
this paper between these properties and the moments of the walk permit us 
to include these properties in calculations of specific examples without 
additional effort. 

3 A similar result has been found in the one-dimensional waiting time Lorentz model, where 
the diffusion coefficient is identical for lattices with fixed and with random intervals between 
scatterers for a given density of scatterers/9) 

4 We will call such walks "locally unbiased"; see Section 2.2. 
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The organization of this paper is as follows. Section 2 is devoted to the 
case of discrete time random walks with internal states. The main 
mathematical tool in the derivations is Darboux'  method, (13) applied to the 
matrix generating functions for the various random walk properties. The 
case of continuous time random walks is considered in Section 3, where 
Darboux'  method is replaced by the Hardy-Li t t lewood-Karamata  
theorem, ~14) applied to the Laplace transforms of the random walk proper- 
ties. In Section 4 we present a summary of this paper and draw some con- 
clusions. 

We stress that the method developed here is not restricted to nearest- 
neighbor random walks. We only require that the means and variances of 
the distributions of jump distances for every site of the unit cell be finite. 

2. DISCRETE T I M E  R A N D O M  WALKS 

2.1. In t roduct ion 

Consider a d-dimensional lattice with fundamental translation vectors 
al ,  a2 ..... aa, i.e., the arrangement of all the sites as seen from a position r is 
the same as that seen from a position 

d 

r ' = r +  ~ lia, (2.1.1) 
i = 1  

where l i=0 ,  +1,  +2 , . . .  (15) The vectors {ai} define a d-dimensional 
parallelopipid, which is called a unit cell. We will use primitive translation 
vectors so that the resulting unit cell is the smallest possible one. The trans- 
lation vectors are not necessarily orthogonal. 

The unit cell contains a number of inequivalent sites or "internal 
states." These will be referenced by an index c~, where c~ = 1, 2 ..... m. The 
position of a particular unit cell is labeled by a vector 1, where the com- 
ponents of ! are integers, as in (2.1.1). Accordingly, we will indicate the 
position of a random walker on an inhomogeneous periodic lattice by the 
symbol (l, c~). In the following we will always indicate internal states by 
Greek indices (c~,/~, 7,...) and the various space directions by Latin indices 
(i,j,k,...). 

Now consider a discrete time random walk (DTRW) on such a lattice. 
A basic quantity of interest is P~)(I I !o), the probability that the walker is 
at site (/, c~) after n steps, having started from (!o, fl). By the global trans- 
lation invariance of the lattice, P~n)tlllo) depends only on the difference 
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1-1o, hence we will take 1o=0 in what follows and write 
P~}>(! I 0), etc. Conservation of probability is expressed by 

P(~})(1) for 

~, ~, P(~%)(I) = 1 (2.1.2) 

The evolution of the random walk is described by the Chapman-  
Kolmogorov equation for Markov chains, 

p(n + I)(1) = 2 Tc~?( I -  It) P~nfl)( l' ) (2.1.3) 
I'W 

Here T~(I- I ' )  is the single-step transition probability from site (I', ?) to 
site (I, c~), which again only depends on the difference I - I ' .  It is convenient 
to use the matrix representation 

P(,})(I) = [ p(n>(l)]~ 

etc., so that (2.1.3) becomes the matrix equation 

p(- + lt(l ) = • T ( I -  1') p(n>(l,) (2.1.4) 
1' 

The dimension of all the matrices in (2.1.4) is m x m, where m is the num- 
ber of internal states. 

The derivation of many random walk properties is facilitated by 
introducing the matrix generating function 

G(I, z ) =  s znP(n)(/) (2.1.5) 
n = 0  

It can be shown that (16) 

where 

and 

G(I, z) = (2~) a da0F(0, z) e u-o 

r(o ,  : ) =  [1 - : a ( o ) ]  

(2.1.6) 

(2.1.7) 

A(0)  = ~ T(I) e '''~ (2.1.8) 
l 

Here T(I) is the matrix of transition probabilities occurring in (2.1.4). 
The basic assumption we will make is that the random walk is 

irreducible, i.e., each site of the lattice can be reached from every other site 

822,/40/'1-2-14 
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after a sufficient number of steps. 5 The class of irreducible Markov chains 
can be subdivided into aperiodic (or primitive) walks and periodic 
(or cyclic) walks. (~7'1s/The transition matrix associated with an irreducible 
(aperiodic, periodic) walk is called irreducible (aperiodic, periodic). An 
irreducible stochastic matrix is defined as follows: 

Defini t ion.  A nonnegative matrix Q is called irreducible if for every 
and/~ there exists an integer J/(~,/?)  such that (On)~ > 0 if n >~ J{(c~,/~). 

If an ~ can be found which does not depend on c~ and /~, O is 
aperiodic. If in addition Z~ Q ~ =  1, the matrix is called a stochastic 
irreducible matrix (periodic or aperiodic). 

At this point we make the following observation, which will play an 
important role in what follows. The probability P ~ ) =  ~2~ P~)(I) that the 
walker is in internal state c~ after n steps, having started in state/% irrespec- 
tive of the particular unit cell which the walker occupies after the nth step, 
obeys the equation [we use (2.1.4)] 

P('+ 1) = TP(") (2.1.9) 

where the matrix T is defined by 

T = Z T ( I )  
! 

In view of the normalization of the transition probabilities, we have 

(2.1.10) 

2 ~ = e x p ( T e ) ,  ~ = 0 , 1 , 2  ..... p - 1  (p<~m) (2.1.12) 

The integer p is called the period. Aperiodic matrices have only a single 
eigenvalue 2o = 1 with absolute value 1 ; thus, the period p = 1. If the matrix 

5 We follow the terminology of Seneta~7); unfortunately, there is no agreement as to ter- 
minology in the vast literature on this subject. 

T=# = 1 (2.1.11) 

so T is a stochastic matrix. Hence, we see that by ignoring the position of 
the unit cell, one obtains an embedded Markov chain on the finite set of 
internal states. If the original random walk on the infinite inhomogeneous 
lattice (or finite lattice with periodic boundary conditions) is irreducible, 
the embedded Markov chain is also irreducible. Hence T is a finite 
irreducible stochastic matrix. Such matrices have in general a number, say 
p, of simple eigenvalues, of the form 
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Y in (2.1.9) is aperiodic, the ergodic theorem for primitive Markov 
chains (17) leads to the asymptotic result 

P(~) -~ n~ ( n ~  ~ )  (2.1.13) 

independent of the starting site/3. The vector n =Col{n1,  n2,.. .  , 7~m} is the 
normalized right eigenvector of T corresponding to the maximal eigenvalue 
2o = 1. The components n~, n2,..., 7~m represent the equilibrium occupation 
probabilities of the walker to be in internal state 1, 2 ..... m. In the periodic 
case the limit (2.1.13) no longer exists, but the eigenvector n continues to 
play an important role, as will become clear below. 

We now turn to the determination of the asymptotic behavior as n, the 
number of steps, goes to infinity of various random walk properties, in par- 
ticular the moments of P(~)(I), the probability of return to the origin and 
the expected number of distinct sites visited. It should be noted that the 
only restriction made up to this point is that the random walk on the 
inhomogeneous periodic lattice (i.e., the multistate random walk) is 
irreducible. The results presented below are thus very general and are valid 
regardless of any assumed lattice structure, as long as a unit cell can be 
defined which generates the lattice. 

2.2. M o m e n t s  

2.2. 1. Moments of P(~)(I). The first moment of P~)(I)is defined by 

(Ij(n))~=~ljP(~})(l) ( j = l ,  2 ..... d) (2.2.1) 
l 

The corresponding generating function L~)(z)-Y~,%o zn(lj(n))~ is given 
by 

where F(0, z) is given by (2.1.7). Similarly, the generating function L(~k~(z) 
of the second moments (lj(n)l~(n))~/~- Y~I liljP~})(l)is 

o - ~ F~(0,  z) (2.2.3) 
n =  0 = 0  

The large-n behavior of the moments can now be obtained by applying 
Darboux' method (13,19) to the respective generating functions. That is, one 
expands the generating functions around the singularities in the complex z 
plane. The dominant contribution comes from the singularities closest to 
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the origin, which for the cases considered here lie on the unit circle. The 
singularities outside it (if present) correspond to contributions which are 
exponentially small for large n. The coefficient of z" in the part of the 
generating function which contains the dominant singularity (henceforth 
referred to as the singular part of the generating function) then yields the 
asymptotic behavior as n --, oo of the quantity considered. 

As a first step, we introduce here the matrix H which diagonalizes the 
transition matrix T defined in (2.1.10) (or brings it into Jordan form if T is 
not diagonalizable), i.e., 6 

H 1TH - T = (2.2.4) 

We assume that T is irreducible, so that the eigenvalue 2o = 1 is simple and 
the submatrix D in (2.2.4) contains all the eigenvalues of T smaller than 1 
on its diagonal. We use here the notation 

�9 a , -  H IAH (2.2.5) 

for an arbitrary matrix A. The indices of all the matrices are labeled as 
0, 1,..., m -  1, so that Too = 2o = 1, etc. The first column of H is identical to 
the eigenvector ~ as defined in the previous section, and the first row of 
H-1 is the corresponding left eigenvector which has all components equal 
to 1, so that 

H~o = %,  (H-l)o~ = 1 (2.2.6) 

Now we write the function F~(0,  z) in (2.2.2) and (2.2.3) as 

F~(0,  z ) =  ~ H~,P~,~,(0, z)(H-1)~,~ (2.2.7) 

where, from (2.1.7) 

and 7 

P~,~,(o, z) = { [1 - zX(O) ]  '}~,~,, (2.2.8) 

We always write the single-step averages without argument, e.g., ( l i ) ~ -  
( / i ( 1 ) ) ~  = Z t  l~T~B( l ) ,  etc. Notice that single-step transitions between the 
sites within the same unit cell do not contribute to the moments ( l i ) ~  and 

6 Empty positions in matrices denote zeros. 
7 B y f ( x ) ~ g ( x )  as x--* c we mean lim~ ~,, [ f ( x ) / g ( x ) ]  = 1. 

A(O)~T+iZoj(Tj>--I~oxOk(liI~"-/) ( 0 ~ 0 )  (2.2.9)  
i 2 j,k 
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The singularities in (2.2.8) for 0 = 0 are located at the points in the z 
plane where 1 - z ) ~ = 0 ,  where {,L~} are the eigenvalues of Y. Hence the 
only singularity on the unit circle for an aperiodic matrix Y occurs at z = 1, 
corresponding to the maximal eigenvalue 2 o=  1. Thus the singular part 
F(~(0, z) of F~(0,  z) comes solely from the term with cd =/T = 0  in (2.2.7), 

F~S)~0 z) = ~Poo(0,  z) (2.2.10) 

where we have used (2.2.6). By making use of the relation 

{[A+sB +e2C+ O(a3)]-'}oo { [ ] }_1 
= Aoo + ~Boo + a2 Coo-  Y,'Bo~(A- 1)~ B7 ~ + O(e3) (2.2.11) 

for arbitrary matrices A, B, and C, where A is diagonal or of Jordan form 
(2.2.4) and e a small parameter, we derive the following expansion: 

Foo(0, z )~  1 - -z  l+i20jmj--�89 (0-+0)  (2.2.12) 
y j,k 

where 
m/=  [ <Tj > ]oo (2.2.13a) 

and 

Syk= [<ljl'-~)]oo+~'{[<'[i)]o/3[(1--Q) l ]~[<l 'k)]7o+j~--~k } (2.2.13b) 
/L'y 

Here ~ is the same as in (2.2.4), the prime on the summation signs 
indicates that/~ # 0 and 7 # 0, and the symbol j ~  k denotes the same term 
as the preceding one, but with j and k interchanged. In fact, the matrix 
(1 - ~ ) - ~  in (2.2.13b) should be (1 - z ~ )  -~, but we are interested in the 
behavior as z ~ 1 and therefore have already put z = 1 in this factor. The 
error thus made is of order ( 1 - z )  ~ in L(Yk)tz ~ i.e., of order unity in cq? ~ ) ,  
(2.2.17). 

From (2.2.2), (2.2.3), and (2.2.10)-(2.2.13) we find 

L(Y)tz~ ~myz(1-z)  2 ( z - + l )  (2.2.14) 

and 
L~}k)(Z)~Tz~{SjkZ(1 - - z ) -2+2z2(1  --z) -3 mymk} (z--+ 1) (2.2.15) 

The large-n behavior of the moments is found by determining the coef- 
ficient of z" in these expressions. The first moment is found as 

( l j ( n ) > ~ n ' m ;  (n-+oo) (2.2.16a) 
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After summing over final states ~ and averaging over the (arbitrary) initial 
distribution {p~~ of the internal states, we obtain 

(li(n)) ==-~ (lj(n))~p p~~ (n ~ ~ )  (2.2.16b) 

Similarly we find from (2.2.15) 

( lj(n) lk(n) ) ~  ~r~{nsjk + n(n -- 1)mjmk} (2.2.17) 

Finally, the covariance, defined by 

((lj(n) lk(n) )) = [ ~  (lj(n) l~(n) )~  p}O)]- (lj(n) )(lk(n) ) 

is given by 

((lj(n) lk(n)))~n{sjk--mjmk} (n ~ ~ )  (2.2.18) 

The quantities mj and SJg in (2.2.16) and (2.2.18) are defined in (2.2.13) and 
can be expressed in terms of the moments of T~(I) and the eigenvalues and 
eigenvectors of T by using (2.2.5), e.g., 

mj = Z ( 6 ) ~  z~ (2.2.19) 

If the matrix T is periodic, there are additional contributions in (2.2.10), 
corresponding to other singularities on the unit circle, 

p 1 

F(~(O, z ) =  Z H~TFy~(0, z ) ( H - t ) ~  (2.2.20) 
? = 0  

where p is the period of Y. However, since ~ H~7 = 6~.0, s the generating 
function (2.2.20), summed over final states c~, involves only -~oo(0, z). Hence 
in the periodic case the results (2.2.16b) and (2.2.18) remain valid. 

2.2.2. Moments of the Displacement. The moments of the actual dis- 
placement r(n) after n steps can be related to the moments (2.2.16) and 
(2.2.18). This is done in Appendix A. We give the results for the com- 
ponents ri(n) = r(n)" e~, where {e~} is a complete set of unit vectors, which 
span the d-dimensional space Nd. The first moment is found to be 

(r~(n))~nV~ (n --* oo) (2.2.21) 

8 This follows from the fact that (H- ~ )0/~ = 1 and H - 1 I--I = 1. 
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where the factor Vi, called the "drift velocity" in direction ei, is given by 

d 

Vi = ~ mkAki (2.2.22) 
k = l  

For the covariances the result is 9 

((ri(n) r j (n)))~2Don (n --* oo) (2.2.23) 

where D o is the (0")th element of the matrix of diffusion coefficients 

D o. = �89 Y', { sk i -  mkmt} A~iA o. (2.2.24) 
k,l 

The quantities mk and sk~ in (2.2.22) and (2.2.24) are defined in (2.2.13), 
while 

Aki = ak" ei (2.2.25) 

Here ak is the k th  translation vector as defined in Section 2.1. 
It should be emphasized that the quantities m k and skt depend only on 

the connectivity of the lattice (or more precisely, of the random walk 
defined on it), but not on the length and direction of the steps. 1~ The 
geometrical factors Aki in the expressions for the moments of r(n) take 
account of the size and shape of the unit cell. 

From (2.2.19) and (2.2.22) one notes that the asymptotic means of 
lj(n) or rj(n) only involve the eigenvector n of T belonging to the maximal 
eigenvalue 2 o = 1. The asymptotic second moments, however, involve all 
eigenvalues and eigenvectors of Y [see (2.2.13)], which in general are hard 
to calculate, 11 with the exception of the equilibrium eigenvector n which 
can often be obtained by physical arguments, such as detailed balance. It 
would thus be desirable to have an expression for the diffusion coefficients 
which involves only this vector n. Such an expression does exist for the 
special class of walks for which the average single-step displacement from 
every site of the lattice in every space direction is zero. We will refer to such 
walks as locally unbiased (the term symmetric walks is avoided here since 
the matrix T for the class of walks just defined is not necessarily sym- 
metric.) If we define p~( r )  as the probability that the walker makes a step 
from internal state/~ to internal state e with corresponding displacement r, 

9 The factor �89 in the definition of D o is customary in the physical and chemical literature. 
10 In paper II we will use this fact to calculate the diffusion coefficient of a locally biased walk 

by constructing an associated locally unbiased walk with the same connectivity properties 
as the original walk. 

H The one-dimensional case is still tractable (see Ref. 20). 
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then the average single-step displacement in direction ej from site fi is 
defined by 

(r j )~ - ~, rjp~(r) = ~,  ( r j )~ t  ~ (2.2.26) 
r c~ 

where 

p~(r) = ~ p~(r),  (rj)~=~rjp~(r) (2.2.27) 
r 

For locally unbiased walks, we thus have that ( r j ) ~ = 0 , / 3 =  0, 1,..., m - 1 ;  
j = l ,  2 ..... d. ~2 

If we define P~}/(r) as the probability that after n steps the dis- 
placement of the walker is r, given initial state fi and final state c~, then 
again the Chapman-Kolmogorov equation holds, 

pin+ ~p 1~(r) = Z p~,(r - r') P~})(r') (2.2.28) 
r ' ,~  2 

This equation has the same form as (2.1.3). Obviously, p~r and T~(l) are 
related; to be precise, if the transition from state/~ in unit cell !' to state 
in unit cell r + l corresponds to a displacement r, then p~(r )  = T~e(l). 

Since (2.1.3) and (2.2.28) have the same form, the derivation of the 
moments of P(~})(I) can be repeated for those of P(n~r~ ~ ,, with the result that 
in the expressions (2.2.13a) and (2.2.13b) we only have to replace Ij by rj. 
Hence, for the drift velocity (2.2.22) and the diffusion coefficient (2.2.24), 
we have the alternative results 

V/= ~ ( r i )  ~ 7z~ (2.2.29a) 

and 

where 

Dij=�89 (rirj)~z~+�89 '{(?i)~ 1]/~(?J)'~ + i~-+ J}]  

- �89 Vj (2.2.29b) 

(rirj) ~ =- ~ r~rjp~(r) (2.2.30) 
r 

is the single-step covariance from internal state ft. 
For locally unbiased walks Vi = 0 and the diffusion coefficient is given 

by 
D• = �89 ~ (rirj)~ ~ (2.2.31) 

B 

12 If (rj)/~ = 0 for all ,8, but not necessarily all j, we will refer to the walk as "locally unbiased 
in the direction ej." 
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To derive (2.2.31) we have used the fact that for locally unbiased walks the 
quantity (rj)oa in (2.2.29b) vanishes: 

z~y y 

The corresponding quantity (~}0a in (2.2.13b) is in general nonzero, even 
for locally unbiased walks. 

It should be noted that there are walks which are not locally unbiased, 
but for which nevertheless Vi= 0. Such walks will be called globally 
unbiased or without drift (in the direction ei). An example will be discussed 
in paper II. 

2.2.3. Summory. The main results of this section are the following. 
We have established that the mean and (co)variances of the displacement 
of a multistate random walk grow linearly with n, the number of steps, as 
n ~ oo [Eqs. (2.2.21) and (2.2.23)]. The coefficients, called the drift velocity 
and diffusion coefficient, respectively, have been expressed in terms of the 
eigenvalues and eigenvectors of the stochastic matrix T, which describes the 
embedded Markov chain defined on the set of internal states. The relevant 
formulas are Eq. (2.2.22) or, alternatively, Eq. (2.2.29a), for the drift 
velocity and Eq. (2.2.24) or Eq. (2.2.29b) for the diffusion coefficient. An 
important class of random walks is formed by the so-called "locally 
unbiased walks," for which the single-step averages ( ( i )p  of the dis- 
placement are identically zero for all fl and j. For such walks the drift 
velocity vanishes and the diffusion coefficient is given by Eq. (2.2.31) which 
involves only the eigenvector = of equilibrium occupation probabilities, i.e., 
the right eigenvector of T belonging to the maximal eigenvalue 20 = 1. 

2.2.4. s Consider the random walk on the sparsely periodic 
lattice of Fig. 1. Since every site can be reached from every other site, the 
walk is irreducible. However, it is not aperiodic, since the walker can only 
return to his starting site after an even number of steps. The matrix T 
describing the embedded k-state Markov chain is 

i 
1 1 
2 2 . 

I ' ' ,  . 

1 " , 

T =  -~ "" 
1 
2 

1 

(2.2.32) 

Here dots denote repetitions of the same element and blank positions 
denote zeros. This matrix is aperiodic [a sufficient condition for 
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aperiodicity is that T~ > 0  for some e(17)], hence the embedded Markov 
chain is aperiodic, although the original random walk is not. The vector rc 
of equilibrium occupation probabilities is easily checked to be 

re= (k+  1)1C01{2,  1, 1 ..... 1} (2.2.33) 

So the equilibrium occupation probability of the intersection sites is twice 
as large as those of the nonintersection sites, as already noted by one of us 
on the basis of the B.E.M. (3) In this example detailed balance is satisfied, 
i.e., 

T ~  = TB~z~ (all ~,//) (2.2.34) 

The significance of this property in relation to the questions raised in the 
introduction will be discussed in Ref. 7. 

Now we calculate the moments. Since the walk is locally unbiased, the 
drift velocities in the x and y direction are zero, and the formula (2.2.31) 
for the diffusion coefficients applies. For the intersection site 1, (x2) i  = 
(y2)1 = �89 while for the nonintersection sites (x2)~ = 1, (y2)~  =0,  e = 2, 
3 ..... k; and ( x y ) ~ = 0 ,  all//. So 

1 2 1 k 
2Dxx=-~" k +  1 + ( k -  1) k + ~  - k +  1 (2.2.35) 

1 2 1 
2D~y 2 k + l - k + l  (2.2.36) 

in agreement with the results obtained by the ansatz of Ref. 3. An alter- 
native derivation of Eqs. (2.2.35) and (2.2.36) was given in Ref. 4 by first 
constructing exact expressions for the generating functions for this example 
and subsequently applying Darboux' method, whereas we apply Darboux' 
method to the general problem of obtaining moments before specializing to 
a particular random walk. A glance at Appendix C of that paper readily 
shows the great simplification which has been achieved by the method 
presented here. 

2.3. Probabi l i ty  of Return to the Origin 

In this section we investigate the probability of return to the original 
site on an infinite d-dimensional lattice when the walker can traverse 
several internal states. For the particular case of the two-dimensional spar- 
sely periodic lattice discussed in the preceding section, this quantity was 
obtained by Silver e t  al.  (2) and Seshadri et al. (4) using involved generating 
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function techniques. Apart from the fact that the calculations are quite 
complicated, there is the additional disadvantage that the results thus 
obtained are not general, i.e. the derivation has to be repeated for each par- 
ticular lattice. 

It is the aim of this section to show that, starting from the matrix 
generating function for the multistate random walk, a general expression 
for the asymptotic behavior of the probability of return to the origin can be 
derived. By a careful comparison with the known results for perfect lattices, 
we conclude that the only effect of the internal states is a renormalization 
of the one-step covariances occurring in the perfect lattice results. For the 
purpose of later comparison, we present first a short derivation of the per- 
fect lattice results. 

The probability pn(0) of returning to the origin 0 after n steps on an 
infinite perfect d-dimensional lattice is given by (1~ 

pn(O) = (2~r) -a  ddO 2n(O) (2.3.1) 

where the characteristic (or structure) function 2(0) is defined as 

2(0) = ~ eJ~ (2.3.2) 
I 

and where p(l) is the one-step probability distribution. The summation in 
(2.3.2) is over vectors ! with integer components, as in Section 2.1. The 
reason is that p,,(0) is invariant under a change of length and orientation of 
the individual steps, i.e., it depends only on the connectivity of the lattice. 

The large n-behavior of pn(0) can be determined by Laplace's 
method, ~19) i.e., one expands 2(0) around all points 0* where 12(0")[ = 1. 
The result, for symmetric walks [p(1)= p ( - l ) ] ,  which always have zero 
drift, is 

pn(0)~(det  o)-'/2(2~n) d/2{w+ + w  ( - )~}  (2.3.3) 

where the matrix o has elements 

~ = ~ liljp(l) (2.3.4) 
/ 

and w_+ are certain weight factors [there can be several points where 
2(0*)= _+1]. We will always assume that w+ = 1. This is true if one uses 
so-called primitive characteristic functions, (21) i.e., the unit cell is as small as 
possible. The factor w in (2.3.3) appears for so-called loosely packed 
lattices (22) where the walker can only return to the origin after an even 
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number of steps. Examples are the s.c. and b.c.c, lattices. As soon as we 
assign a nonzero probability for the walker to pause at every site, the 
oscillatory contribution of the form w ( - ) "  in (2.3.3) disappears. This is 
a for t ior i  the case for CTRW's. 

We now consider the case of multistate random walks. To find the 
asymptotic behavior of P~})(0), the probability that the walker returns to 
the original unit cell after n steps, with initial and final internal states given 
by/~ and c~, respectively, we apply Darboux' method to the corresponding 
generating function, which from (2.1.6) and (2.1.7) is given by 

with 

G~(0, z) = (2re)-" �9 dd0 F~(0,  z) 
--re " ' - - ~  

(2.3.5) 

FT.fl(O , Z )  = { [-1 - -  z A ( 0 ) ]  - 1  )c~fl (2.3.6) 

As in the previous section, we expand G~(0, z) around the singularities in 
the complex z plane. One singularity is always at z = 1, and accordingly we 
have to expand F~p(0, z) around 0 = 0. But this was already done above; 
hence we immediately conclude that the singular part G(S)(0 z) near z = 1 is ~Bt , 
given by 

where 

G<~>~n z) = 7r~(~oo(0, z) (2.3.7) 

I = F Goo(0, z ) =  (2~) a _~""  -~ dd0 Foo(0, z) (2.3.8) 

with F00(0, z) given by (2.2.12). Expanding (2.3.8) in powers of z and 
evaluating the coefficient of z n by Laplace's method, as in the perfect lattice 
case, we obtain, again for the case of zero drift [ m j = 0  in (2.2.12)], 

P(~})(0)~n~(det s) 1/2(27Zn) -d/2  (n--* oe) (2.3.9) 

where the matrix elements of s are given by (2.2.13b). 13 For walks without 
drift considered here, we have from (2.2.24) 

det s = (det 2D)(det A) -2 (2.3.10) 

13 If the random walk is periodic, there can be oscillatory contributions to P~})(0) involving 
multiplication of the right-hand side of (2.3.9) by a factor exp(2rci/p)j, j =  1, 2,..., p - -  1, 
where p is the period [see examples (i) and (ii) below]. We note that in many practical 
applications such oscillatory terms can be determined by inspection. For CTRW's such con- 
tributions do not occur. 
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The right-hand side of (2.3.10) is especially simple to calculate for locally 
unbiased walks, where the matrix elements of D can be found by using 
Eq. (2.2.31), which involves only the eigenvector n ofT. The matrix 
elements of A, as defined in (2.2.25), follow from the geometry of the unit 
cell. 

For comparison with previous results in the literature, we also give the 
result for the probability of return to the original unit cell and original 
internal state, averaged over a uniform distribution of all m initial states, 

p(")(0) = l  ~ p~(0) 1 (det 2D)-~/2(det A)(27~n) -d/2 
/T/ c~=O m 

(2.3.11) 

It is clear from Eq. (2.3.11) that the asymptotic probability of return 
to the origin in a multistate random walk can indeed be readily obtained, 
through a simple renormalization of the diffusion coefficients, from the per- 
fect lattice result [Eq. (2.3.3)]. 

The derivation given in this section can easily be extended to derive 
the probability of first return to the origin by applying the same method to 

Z m the generating functionf~/~(0, ) = ~ , , = o  znf~}~(lollo), wheref(~})(ILlo)is the 
probability that the walker visits site (1, c~) for the first time, given that he 
started at (!o, fi). From Eq. (2.4.1) of the next section, one can derive that 
.f~,(0, z) is related to G~/~(0, z) of Eq. (2.3.5) by 

LAo, z)= [a=~(o, z)]-'{~=~(o, z)-6~} (2.3.12) 

E x a m p l e s .  (i) As a first example we consider the sparsely periodic 
two-dimensional lattice of Fig. 1, treated in the previous section. The dif- 
fusion coefficients were obtained in (2.2.35) and (2.2.36) as 

k 1 
2Dxx-k  + 1 ' 2DyY-k + 1 ' D ~y = D yx  = O (2.3.13a) 

Furthermore, since we take the lattice spacing to be unity, 

A,_,=k, Ayy= 1, Axy= Ayx=O (2.3.13b) 

So from (2.3.11) the asymptotic probability of return to the origin in n 
steps averaged over initial states is 

k + l  1 
p(n)(O) 2 ::Tcnx/tc (n~oo)  (2.3.14) 

In fact, it is immediately clear from Fig. 1 that the walker can only return 
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to the original site after an even number of steps, so (2.3.14) should be 
modified to 

k + l  1 
p(")(O) 2 x ~  ~n [1 + ( - ) n ]  (2.3.15) 

This result is in agreement with Eq. (4.9) of Ref. 2, derived by generating 
function techniques, and also with Eq. (27) of Ref. 3. 

(ii) Secondly, we consider the hexagonal lattice of Fig. 2. This lattice 
can be constructed from a unit cell or, more precisely, an irreducible lattice 
fragment with two nonequivalent sites, labeled 1 and 2 in Fig. 2. These sites 
differ in that, along the horizontal bonds, the walker can step only to the 
left from sites 2 and only to the right from sites 1. The fundamental trans- 
lation vectors chosen here are, with the lattice constant equal to unity, 

a~ = (3, 0), a2 = (~-, i x ~ )  (2.3.16a) 

The basic vectors are el = (1, 0) and e2 = (0, 1). The matrix Y is 

T=(0I  10) , ~ = ~ ( 1 1 )  (2.3.16b) 

The matrix T is cyclic, and the second eigenvalue is 21 = -1 .  Hence 

p~)~(det2D)-l/2(detA)(2rcn) ~ { 1 + ( - )  ~ } (2.3.17) 

Fig. 2. Hexagonal  lattice with two sites per  unit cell. The fundamental  t ranslat ion vectors a x 
and a 2 are as indicated. Jump  probabilities are �89 in each direction f rom each site. 



Asymptotic Properties of Multistate Random Walks 223 

The determinants are easily calculated on the basis {e~, e2}. We find from 
(2.2.25) and (2.2.31), 

2Dll  = 2D22__ 1. - -g ,  D12 = D21 =0 ;  

A l l = 3 ,  A 2 2 = � 8 9  A12=0;  A21 = 3  
(2.3.18) 

So 

det 2D =�88 det A = -~ ,,/-5 (2.3.19) 

and 

3,S 
7t~ = �89 (2.3.20) 

We have verified this result by explicitly inverting the matrix 1 - zA(0 )  in 
(2.3.6), expanding the diagonal elements G~(0, z) in powers of z and 
evaluating the coefficient of z" for large n by Laplace's method. For unit 
cells with many sites, the latter approach becomes too cumbersome to be 
useful. 

2.4. Expected Number of Distinct Sites Visited 

We now turn to a determination of the asymptotic behavior of ~,(n) 
the expected (i.e., mean) number of distinct sites visited after n steps, with 
initial state fi and final state c~. Again the result is derived by expanding the 
generating function S~(z) of v(,) around z = 1. Comparison with the per- 
fect lattice case enables us to conclude immediately that the functional 
dependence of S(~} ) on n is the same as for the perfect lattice, but with 
modified coefficients. This modification again involves only the diffusion 
coefficients in dimension d <  3, but it is more complicated in d~> 3. This is a 
consequence of the fact (see Ref. 1) that the matrix generating function 
G(0, z) diverges at z = 1 if d <  3, but is finite at z = 1 for d>~ 3. We again 
assume that the walk has zero drift velocities in all directions. 

Define f~})(l) as the probability that the walker arrives for the first 
time in unit cell ! in state ~ after n steps, given that he started at (0, fl). This 
probability is related to P(~)q~ as defined before, by 

P(~'~)(I)=6,,o6~,~5,,o + ~ P~ J)(/I l) f(~)(l) (2.4.1) 
j = l  

where, from translational invariance, P~-J)(ll l)=P]~ J)(0). Equation 
(2.4.1) is based on the assumption that different internal states with the 
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same/,  visited by the walker, are counted as distinct. In the case considered 
here of configurational internal states which represent different sites on an 
inhomogeneous periodic lattice, this is a natural choice. If the lattice itself 
is perfect, i.e., all sites are identical, but the walker can be in different inter- 
nal states at a given lattice site (e.g., spin 1/2 or - 1/2), so that (l, c~) and 
(/,fl) represent different states at the same site, then (2.4.1) has to be 
replaced by 

(n j) (j) P(~})(l)=b,,ob~3t.o+ ~ ZP~7 (O)f~(l)  (2.4.2) 
j = 1 7  

In the following we will only consider the case described by (2.4.1). The 
second case, (2.4.2), can be worked out in an analogous manner. (24) 

Starting from Eq. (2.4.1), one can derive an expression for the 
, -c( , )  along the same lines as followed generating function S~(z) = Z2= o ~ ~'~B 

by Montroll  and Weiss (23) for perfect lattices. The result is 

S~/~(z) = (1 - z ) - 1  IGor(0, z)] -1[(1 - z T ) - l ] ~  (2.4.3) 

as the relation between S~(z) and the Green's function G~(0, z). 
To find the behavior of S(~} ) for large n we again apply Darboux'  

method to the generating function (2.4.3). The dominant contribution now 
comes solely from the singularity at z = 1, corresponding to the eigenvalue 
2o = 1 of T. This is true even if Y is periodic, owing to the presence of an 
extra factor ( 1 - z )  -1 in (2.4.3). 14 From the identity 

[ ( I  - z T )  --I I aft = E Hc~7 [ ( I  - z ? )  --1 l y6(H-  I)6 fl 
y,6 

[see (2.2.4)], one can see that the main contribution again comes from the 
term with ~ = 6 = 0. Hence, 

S~a(z) zZ1 n~(1 - z ) - 2 [ - G ~ ( 0 ,  z ) ] -1  (2.4.4) 

In dimensions d =  1, 2, G~(0, z) diverges as z --* 1, hence the dominant con- 
tribution as z--* 1 is given by 

G~(0, z ) =  ~ H~7 [(~(0, z)],6(H-1)a~ z~l  7 ~ 0 0 0 ( 0  ' Z) 

It thus follows from (2.4.4) that 

S=e(z ) ~Z~l (1 -z)-2EGoo(0,  z ) ] - 1  (d =  1, 2) (2.4.5) 

14 The singularities at other points of the unit circle, if present, have to be taken into account 
when higher order corrections are calculated. (25~ 
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where (~00(0, z) is given by (2.3.8). In dimensions d>~3, G~(0, 1) is finite, 
hence to leading order 

S ~ p ( z ) ~ Z ~ ( 1 - z )  2[G~(0, 1)] -~ (d>~3) (2.4.6) 

Note that if the walk has a nonzero drift, G~(0, 1) is finite even in d = 1, 2, 
so S~(z) is given by (2.4.6) in that case. 

For walks on perfect lattices, the generating functions S(z) and G(0, z) 
are related by (23) 

S ( z ) = ( l - - z ) - 2 G  1(0, z) 

where the expansions of G(0, z) around z = 1 are given by 

G(0, z) ~Z ~ (a2)-~/2[2(1 - z ) ]  ~/2 

G(0, z)-  2x (det ~) -i/2 log(1 - z) 

G(0, z) :g~ G(0, 1 ) - -1  ( d e t , )  -~/2 (1 ( d = 3 )  -~)/ 

(2.4.7) 

(d=  l ) (2.4.8a 

(d=  2) (2.4.8b 

(2.4.8c 

where the matrix ~ is defined in (2.3.4). For the one-dimensional case, we 
define (7 2 :~ •l  12p(l) �9 

For diagonal matrices ~ these results can be found in Ref. 1 ( d=  1, 2) 
and Ref. 23 (d=  3). ~5 In dimension d~> 3 there is a constant term in the 
expansion of G(0, z) since G(0, 1) is finite in this case, but according to 
Darboux' theorem only the singular part of G(0, z) contributes to the 
asymptotic behavior of the various random walk properties. For the s.c. 
and b.c.c, lattices there are similar expressions for G(0, z) as z ~ -1 .  Using 
(2.4.7) and (2.4.8) it has been shown that (23) 

t ~ l  1/'2 S/n)~(a2) ~/2 (d =  1) (n-~ oo) (2.4.9a) 

( 27cn ) 
S~r') ~ (det ~)~J'2 \ l ~ g  n]  ( d = 2 )  (n ~ oe) (2.4.9b) 

S(n)~n/G(O, 1) (d>~ 3) (n--* oo) (2.4.9c) 

We have found in Section 2.3 that the expansion of the function 
(~oo(0, z) in (2.4.5) around z =  1 is the same as for perfect lattices, with 

15 Note that Eq. (D.8a) of Ref. 23 is in error since a nonprimitive characteristic function was 
used and the weight factor w+ - 4  for the b.c.c, lattice was omitted/TM 

822/40/-2- 5 
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det a replaced by (det 2D)(det A )  -2 .  I t  can readily be seen by comparing 
(2.4.5) with (2.4.7) that for d =  1, 2 the same replacement of det g by 
(det 2D)(det A) -z holds also for S~/. Thus, 

k.w~ 
det A 

X 
2~n 

log n 

(d=  1) 

(d = 2) 

(2.4.10a) 

where in one dimension det 2D equals 2D, i.e., twice the diffusion coef- 
ficient, and det A = L, where L is the length of the unit cell. The diffusion 
matrix D and the matrix A are defined by (2.2.23) and (2.2.25), respec- 
tively. In dimension d >  3, 

S(~Tc~n[G~(O, 1)] 1 (n ~ oo) (2.4.10b) 

and there is no simple dependence of S(~} ) on the diffusion coefficients in 
this case. Such a dependence would only appear in the first correction to 
the leading order result. For this reason the ansatz of Eq. (51) for d =  3 in 
Ref. 3 is invalid. This will be discussed in more detail in Ref. 8. 

The expected number of distinct sites visited, averaged over the initial 
distribution p~O) of the walker on the internal states and summed over all 
final states is obtained from (2.4.10) as 

m--I  rn 1 
S (n)--- ~ ~ S ("),,(~ (2.4.11) 

~ - 0  fl-O 

Example .  For the example (i) of a sparsely periodic two-dimen- 
sional lattice with horizontal periodicity k discussed in the previous section, 
we find from (2.3.13) and (2.4.10a) 

1 ( 2rcn ) (n --* oo ) 
S(~) ~ (k + 1) ~ \ log  n] 

and 

S(,~ x ~  . ( 2 ~ n )  
k + 1 \ log  n] 

(n --* oo) (2.4.12) 

in agreement with Eq. (4.11) of Ref. 2 and Eq. (20) of Ref. 3. 
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3. C O N T I N U O U S  T I M E  R A N D O M  W A L K S  

3.1. Introduct ion 

The results of the previous sections can be extended without difficulty 
to continuous time random walks (CTRW's). (23) The basic quantity which 
describes the random walk is now the function O~,,(l- l ' ,r) ,  where 
~ ( 1 -  I', T) dr is the probability that the walker jumps from unit cell !' and 
internal state 7 to unit cell ! and internal state ~ in a time interval 
(v, r + dr). We will restrict ourselves to so-called separable walks, for which 
the function ~ has the space and time factorized form 

(3.1.1) 

The function T ~ ( I - l ' )  is the same as in (2.1.3) and ~ ( r )  is the 
waiting time density in state 7, i.e., 0~(t)dr  is the probability that the 
walker makes a transition from state 7 in the time interval (r, ~ + dr). The 
normalization condition is now 

ct,/ 

The random walk described by (3.1.1) is a Markov process with con- 
tinuous time parameter if and only if the functions ~ ( ~ )  are exponentials 
for all 7, (26) 

~(T)  = ~ l e  ~/~' (3.1.2) 

The quantity L. is called the mean waiting time in internal state 7. We will, 
however, not restrict ourselves here to waiting time densities of the form 
(3.1.2). As in the discrete time case, we assume that the random walk is 
irreducible. 

Since we are interested in the asymptotic behavior as t-~ oo of 
functions f ( t ) ,  we must examine the properties of the Laplace transformed 
functions f ( u )  = ~ dt e "~f(t) in the limit as u ~ 0. We consider here two 
different cases for the waiting time density ~ ( t ) :  

(a) ~,~(t) has finite first and second moments (t~} and ( t~) ,  where 

(tt~} = dt ~ ( t )  t l ( l=  1, 2,...) (3.1.3) 

Then 

lu2(tf)+O(, 3) (u-,O) (3.1.4) 
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(b) O7(t) has an infinite mean for all 7, in which case 

Iffy(bl) = 1 - -  LtqBy "~- 1 H 2 q c  7 Jr O ( / , / 3 q )  (U --* 0) (3.1.5) 

where B7 and C7 are constants, and 0 < q < 1. 
Other cases, such as when only the first moment of ~,7(t) is finite or 

when the constants in (3.1.5) are slowly varying functions of u, can also be 
worked out [see, e.g., the work of Shlesinger (27) on perfect lattices]. These 
and several other possible models involving internal states with both finite 
and infinite waiting times will not be considered here. 

Let P~(I, t) be the probability that the walker is in unit cell ! in state c~ 
at time t, having started in unit cell 0 in state/3. Then the Laplace trans- 
form of P(L t) for the case of separable CTRW's is (28) 

P(I, u) = u-111 - ~(u)]  G[I, u] (3.1.6) 

Here ql(u) is a diagonal matrix with elements ~7(u), which are the Laplace 
transforms of the waiting time density functions O7(t), 7=0 ,  1 ..... m - 1 .  
The matrix G in (3.1.6) is given by 

S f~ [I, u] =(27r) d .. .  dd0[1 - A ( 0 )  qJ(u)] 1 e it.0 (3.1.7) 
/z --re 

We note that G(/, u) would be identical to the generating function G(/, z) of 
(2.1.6) if ~(u) were replaced by z. 

We now turn to the calculation of the asymptotic properties of 
CTRW's as t-* oo. Since most of the results can be obtained by 
investigating the discrete time generating function G(0, z) already dis- 
cussed, we dispense with most of the details of the calculation. 

3.2. M o m e n t s  

3.2.1, Occupation Probabilities. The Laplace transform P~(u)  of 
P~( t ) -  Z~ P~(I, t), the probability that the walker is in internal state ~ at 
time t, starting from internal state/~, irrespective of the unit cell occupied at 
time t, is given by [using (3.1.6) and (3.1.7)1, 

/%,~(u)  = u 11-1 - 6 ~ ( u ) ]  { I-1 - T ~ ( u ) ]  - ~ }~,,~ (3 .2 .1 )  

From (3.1.4) and (3.1.5) we have, as u--* 0, 

l ( t~) + O(u) 
u-l[1-~'~(u)] = uq_,B~+O(u2~ ~) 

(case a) (3.2.2a) 

(case b) (3.2.2b) 
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and, as shown in Appendix B, 

t(ut) ~ +O(1 )  (case a) (3.2.3a) 
{[I -TO(u)] i}~fi u~O 

~z~' t ( u q t / ) - l +  O(1) (caseb) (3.2.3b) 

where cases a and b correspond to finite or infinite mean waiting times, 
respectively. We define t -and /?  as 

~ = ~  

with ~t~} and B~ defined in (3.1.3) (3.1.5). Hence, as u ~ 0 ,  

(3.2.4a) 

(3.2.4b) 

P~/,(u) = 
(t~)u 1+O(1)  (case a) 7c~ { 

Bc~ 1 ~z~--u +O(u q-~) (caseb) 
B 

(3.2.5a) 

(3.2.5b) 

and thus, in the limit as t -~ o% 16 

~ { (case a) (3.2.6a) 

B~ 
z~ - -  (case b) (3.2.6b) 

B 

The limit is again independent of the initial state /3. The approach to 
equilibrium of the embedded Markov chain defined on the internal states 
may, however, be extremely slow in case b as q approaches zero (see 
3.2.5b). 

3.2.2. Means and Variances. The Laplace transforms of the means 
</y(t)} and covariances <</}(t) l~(t) )) can be obtained by differentiation of 
the function 

K(0, u) = u - ' [ 1  - 0 (u ) ]  [1 - A(0) 0 (u ) ]  -1 (3.2.7) 

which is the spatial Fourier transform of (3.1.6). Again we are interested in 
the small-u behavior of (3.2.7). The analysis is straightforward but 

16 We use the Hardy-Littlewood-Karamata theorem; see Refs. 14 and 27. 
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somewhat tedious and the details are given in Appendix B. From the 
expressions for the moments of l(t), we obtain the following results for the 
mean ( r i ( t ) )  and the covariances ((r~(t) rj(t))) of the actual displacement 
of the walker: 

( r i ( t ) )  t ~  V, t q 1 

-F(I+ q) 

(case a) (3.2.8a) 

(case b) (3.2.8b) 

where F( '  ) denotes the gamma function, { and/~ are defined in (3.2.4), and 
Vi can be obtained from the formulas (2.2.22) or (2.2.29a). The expressions 
for the covariances are rather complicated [-see Eq. (B.15) of Appendix B l, 
and we therefore quote here only the results in the case of zero drift (i.e., 
Vi = 0, all i =  1, 2,..., d): 

(ri(t)  rj(t) ) ' ~ 2D(i 

t 
t- (case a) (3.2.9a) 

t q 1 
(case b) (3.2.9b) 

F(1 + q) B 

where, for the case of zero drift considered here, the discrete time diffusion 
coefficient D o can be calculated from (2.2.24) with r n k = r n t = 0  or from 
(2.2.29b) with Vi = Vj = 0. 

Comparison of the result in (3.2.8) with the discrete time result 
(2.2.21), and of (3.2.9) with (2.2.23) for the case of zero drift, shows that 
the only modification is the replacement of the discrete step variable,n by 
t/{ and [tq/F(1 + q ) ] - ( / ~ )  1 for cases a and b, respectively. In the case of 
nonzero drift, this simple replacement no longer holds for the covariances. 

E x a m p l e .  Consider the one-dimensional random walk on the lattice 
with periodically spaced internal states x and 0 depicted in Fig. 3. We 
assume that the waiting time densities are of the form (3.1.2). The sum of 

q P P 

2 3 4 . . . . . . . . . . . . . . . . . . . . . .  n 

q 

Fig. 3. One-dimensional random walk with jump probabilities p and q from each site, and 
waiting times a i (0 sites) and b -1 (xsites). 
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the jump rates from a site, which is the inverse of the mean waiting time, is 
a for the 0 sites and b for the x sites. The unit cell contains m sites. The 
m x m matrix T for this case is 

T =  P" "" 
q 

q P 

(3.2.10) 

The fact that the dimension of this matrix can be large prompted Landman 
and Shlesinger to replace their matrix method (11) for calculating the 
moments of the displacement by another method using defect generating 
functions./12/However, in the symmetric case (p = q  = �89 we only need the 
components ~r of the right eigenvector n of T corresponding to 2 o = 1, 
which are trivially found to be l/m, and substitute this in the expression for 
the variance, which is 

where l is the lattice spacing and where we have used ( x 2 ) ~ =  l 2 for all/~ 
for the single-step variance. The mean waiting time [ is 

{= ~ (t~)rc~=rn l{b t + ( m - 1 ) a  1} (3.2.12) 

since ~z~ = m 1 and Z~ ( t~ )  is the sum of m -  1 contributions a t from 0 
sites and one contribution b - I  from the x site. The asymptotic variance is 
thus found to be 

tl2mab 
(xZ(t ) )  (3.2.13) 

a + ( m -  1)b 

This result is in agreement with Eq. (2.52) of Ref. 12(a). 
In the asymmetric case (p ~ q) the eigenvector rc of (3.2.10) is the same 

as for the symmetric case, i.e., ~ = m 5. The mean displacement follows 
from (3.2.8a), 

(x(t))  t ~ t tl(p -- q) mab 
{ ~ ( x ~ ) ~ = - t _ l ( p - q ) - a + ( m _ l ) b  (3.2.14) 

where we have used (3.2.12). The result (2.59) of Ref. 12(a) for (x( t))  is in 
error since for a = b the perfect lattice result t l (p-q)a is not recovered. 
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The variance of the displacement in the asymmetric case is harder to 
obtain. In general we need all the eigenvalues and eigenvectors of T [see 
Eq. (B.15)]. 17 The diffusion coefficient D(E) in the presence of a field E 
(which causes the asymmetry of jump probabilities) differs from that in 
zero field only by terms of order (E/t'2) 2, where f2 is a measure for the size 
of the systemJ 29'3~ Hence, in physical applications one usually calculates 
the drift velocity in the presence of the field and the diffusion coefficient in 
zero field. Both quantities can be obtained from the expressions (2.2.29a) 
and (2.2.31) which involve only the equilibrium occupation probabilities. 

Virtually all examples given by Landman and Shlesinger (~2) are of the 
simple type just studied, i.e., the different configurational sites within the 
unit cell are distinguished merely by different waiting time distributions. In 
all these cases the occupation probabilities ~p of the associated discrete 
time walk are equal to m-l ,  and the desired results can be written down 
immediately. 

3.3. Probability of Return to the Origin 

The long-time behavior of P~(0, t), which is the probability that the 
walker will return to state c~ in the initial unit cell at time t, having started 
his walk from state fl in that cell, is determined by the small-u behavior of 
P~(0, u), as defined in (3.1.6). The singular part as u --, 0 in (3.1.7) is again 
determined by the eigenvalue 2o = 1 of the matrix Y which occurs in A(0) 
[see Eq. (2.2.9)]. 

In the case of finite mean waiting times and again assuming zero drift, 
we thus obtain, in analogy to (2.3.7), 

P~(u) ~Z~ (t~)  lr~oo[O, u] (3.3.1a) 

where (see Appendix B), 

E ]1 ~ooEO, u] U~,O (t-)--l(27"c)--d f~ "'' f ddO U--~-l(t')-I 20kOrnSkm 
-- rc ~z k,m 

(3.3.1b) 

and where S~m is given by (2.2.13b). The inverse Laplace transformation 
yields for P~(0, t), 

P~(O,t) (t~)Tr~(det2D)-l/2(detA)(2rct/t-) J/2 ( t~oo) (3.3.2) 
t 

17 T h e  o n e - d i m e n s i o n a l  ca se  c a n  still be  w o r k e d  o u t  expl ici t ly .  12~ 
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where (2.3.10) has been used, and the diffusion matrix D is the discrete 
time matrix appearing in Eq. (2.3.11). Finally, we average again over a 
uniform initial distribution of the walker over the m internal states to 
obtain 

1 1 
p ( O , t ) - - - y ' P ~ ( O , t ) ~ - - ( d e t Z D )  x/2(detA)(Z~zt/t-) a/2 (3.3.3) 

m m c~ 

where p(0, t) is the probability that the walker returns to the starting site at 
time t. Note that (3.3.3) is identical to the discrete-time result (2.3.11) when 
the discrete step variable n is replaced by t/{. The weighted average t-in 
(3.3.3) of the mean waiting times { ( t~)}  is the same as that encountered in 
the previous sections. If the mean waiting times { ( t~)} are infinite, only 
the time dependence in the last parenthesis of (3.3.3) is changed, in the 
same way as for perfect lattices. 

3.4. Expected Number  of Dist inct  Sites Visi ted 

The generating function for the expected number S~( t )  of distinct sites 
visited after a time t with initial and final states/3 and e, respectively, can 
be derived in a way analogous to that in Ref. 23 for perfect lattices. First we 
write 

S~( t )  = dr f~ ( l ,  r) (3.4.1) 

wheref~(/ ,  r) is the probability per unit time that the walker arrives for the 
first time in unit cell ! and internal state c~ precisely after a time z, having 
started in unit cell 0 and internal state ]?. This probability can be related to 
the probability P~(l ,  t) as defined in Section 3.1 by 

fo P~(l ,  t ) = ( ~ 6 , . o F p ( t  ) + & P ~ ( l - l ,  r)f~p(l, t - r )  (3.4.2) 

which is the CTRW analog of Eq. (2.4.1). Here F~(t) is the probability that 
the walker who is initially in state • and unit cell 0 has not made a jump 
after a time t, so 

F~(t )= 1 - ~k~(t) dt (3.4.3) 

where ~ ( t )  is the waiting time density in state/~. Upon Laplace transfor- 
mation of (3.4.2) and (3.4.3), we obtain 

f~( l , .u)  - P~(I ,  u) - 6~ff,.oF~(u) _ G~[i ,  u] - 6~6,.o (3.4.4) 
P~(0, u) G~[0, u] 
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where G[I, u] is given by (3.1.7). To obtain (3.4.4) we have used Eq. (3.1.6) 
and the fact that the Laplace transform of F~(t) is precisely given by 
u - ~ [ 1 - ~ ( u ) ] ,  so that the first equality in (3.4.4) can be simplified by 
dividing out a common factor P~(u). 

Making use of the fact that Z~G[Lu]= [1 -T@(u) ]  1 we finally 
arrive at 

l [ ( ~ [ 0 ,  u]]  1[{[1 T~(u)] ~}~-6~p]  (3.4.5) 
/g 

The factor 3~ in (3.4.5) appears because the starting site is not counted as 
a visited site [in contrast to (2.4.3)1 but for the long-time behavior of 
S~(t) this is of course irrelevant. 

Making use of (3.2.3a) we find for the case of finite mean waiting 
times, 

g~(u) uZ~ 1EC~E0, u]]  i (3.4.6) 

The Laplace transform G~I-0, u] approaches the discrete time generating 
function G~(0, 1) as u--*0. In dimension d>~ 3, G~(0, 1) is finite, as noted 
before, and thus 

g~(u)'~~ 'Ec~(0, 1)] -1 (d>~3) 

Applying the Tauberian theorem cited in Appendix B, we find then for the 
expected number of distinct sites visited, summed over final states and 
averaged over the distribution of the walker over the initial states, 

t 
S(t)~.~t_~rc=[G==(O, 1) ] 1 (d>~3) ( t ~ o e )  (3.4.7) 

For d =  1, 2, G==(0, 1) diverges (assuming zero drift), so 

G==[0, u] ~ ~=~o0[0, u] (u --* 0) (3.4.8) 

where ~o0[0, u] is given by (3.3.1b), which is identical to (2.3.8) with z 
replaced by 1 -  ut-. After inverse Laplace transforming (3.4.6), one obtains 
the discrete time results (2.4.10a) with the variable n replaced by t-. Sum- 
ming over final states c~ and averaging over the initial states/3 then leads to 

t ~  (det 2D) ~/2 t/ (d= 1) (3.4.9a) 
S(t) ~ m 

det A 2rot~{ 
(d = 2) (3.4.9b) 

log(t/t) 
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For case b of infinite mean waiting times, the corresponding results 
are, with/~ defined in (3.2.4b), 

(det 2D)1/2 
S(t) ,~oo m 

det A 

[q/'2 
x f2 (B)  172F(l+q/2) ( d = l )  (3.4.10a) 

1 2rttq / 
(B) F ~ + q ) / l o g [ t q / B ]  ( d = 2 )  (3.4.10b) 

and 

S(t) ~ m ~r~[G~(0,1)] -1 . -  (d>~3) (3.4.10c 
F(1 + q) /~ 

These results reduce to those of Shlesinger (27) for perfect lattices if there is 
only one internal state (m = 1). 

4. S U M M A R Y  A N D  C O N C L U S I O N S  

We have considered multistate random walks on inhomogeneous 
periodic lattices, which are globally translation invariant, and have deter- 
mined the long-time asymptotic behavior of the occupation probabilities of 
the internal states, the means and covariances, of the probability of return 
to the origin, and the expected number of distinct sites visited. The crux of 
the method is to focus attention on the embedded Markov chain which is 
obtained by projecting the random walk on the set of internal states and to 
use asymptotic properties of Markov chains to show that, under the 
assumption that the walk is irreducible and aperiodic, the distribution of 
the walker over the internal states evolves toward a unique equilibrium dis- 
tribution. 

It was shown that the random walk properties mentioned above are 
identical to those for perfect lattices except for a renormalization of coef- 
ficients. In the case of the moments, explicit expressions for the modified 
coefficients (drift velocities and diffusion coefficients) were developed in 
terms of the eigenvalues and eigenvectors of the transition matrix of the 
embedded Markov chain. The calculation of the drift velocity and, for the 
case of locally unbiased walks, the diffusion coefficients, involves only a 
determination of the equilibrium distribution of the walker among the 
internal states. In the asymptotic expressions for the probability of return 
to the origin and the expected number of distinct sites visited (the latter 
only in dimension d < 3), the renormalized coefficients are precisely the dif- 
fusion coefficients of the multistate walk as modified by a geometrical scal- 
ing factor. 
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In the case of separable continuous time random walks (CTRW's) 
with finite mean waiting times and zero drift, the results are identical to 
those for discrete time walks with the discrete step variable n replaced by 
t/[ where t is the time and { is a weighted sum of mean waiting times in 
each internal state. If the mean waiting times are infinite, the time depen- 
dence of the asymptotic results is different, but the coefficients still involve 
the discrete-time diffusion coefficients. If the drift velocity is nonzero, the 
expressions for the second moments are more complicated. 

We therefore conclude that, in the case of walks with zero drift (not 
necessarily locally unbiased), the calculation of the asymptotic random 
walk properties for inhomogeneous periodic lattices studied here reduces 
to: (i) a calculation of the diffusion coefficients in discrete time for such lat- 
tices, using the formalism developed in Section 2.2, and (ii) The additional 
calculation of the quantities t- and /~, as defined in (3.2.4), for the case of 
CTRW's. 
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A P P E N D I X A  

In this appendix, we derive Eqs. (2.2.21)-(2.2.24). The relation 
between the actual position [ r (n ) ]~  of the walker after n steps, given 
initial and final states /~ and e, and [ / (n) ]~ ,  which is the position of the 
unit cell which the walker occupies after n steps, is given by [1(0)=0]:  

d 

Er(n)]~p = ~ [-/,(n)3a~ a , +  Pap (A1) 
i = 1  

Here Pa~ = P~-P~,  where p~ denotes the relative position of the internal 
state ~ (which defines a particular site within the unit cell) with respect to 
the point which is used to indicate the position of the unit cell. The vectors 
{ai} are the fundamental translation vectors of the lattice (see Section 2.1). 
The components of [ r (n ) ]~  with respect to a coordinate system defined by 
the unit vectors e~ ..... ed, are defined by 

[ r i (n)]~ = rap(n ) �9 e i (A2) 
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The average of (A2) is for large n given by 

( ri(n) } ~p~n~c~ ~, rniAij + rGp.~ " ej (A3) 
i 

where we have used (2.1.13) and (2.1.16a), and where Ao is defined in 
(2.2.25). Summing over cr and the initial distribution p}O)we obtain (2.2.21) 
and (2.2.22) (now we omit all terms of order unity). The expressions 
(2.2.23) and (2.2.24) are derived similarly if one observes that for large n all 
terms of O(n) in (r~(n) rj(n)} which depend on P~ cancel against the 
corresponding contributions from the product - ( r~(n)}(r j (n)}.  

A P P E N D I X  B 

Here we present an outline of the derivation of (3.2.3), (3.2.8), and 
(3.2.9). To derive the first result, we need the singular part as u--,0 of 
F~(0, u)= { [1-Tu) (u) ]  1}~r which, by the same argument as in Sec- 
tion 2.2, is given by 

where 

Now, 

F(s)~0 u) = ~r0o(0 ,  u) 

~oo(O, . )  = { [-~ - ~ ( , ) ] - ~ } o o  

(Bla) 

(Bib) 

I - -  ? ~ ( U )  = ] - -  ? -[- u q g  - -  21/,/2q~ -~- O(U 3q) (LI -+ 0 )  ( B 2 )  

The matrices B and C are diagonal, with diagonal elements B7 and C7 [-see 
(3.1.5)]. The case of finite mean waiting times is obtained by replacing B 7 
by (t~ } and C~ by (t2}, and letting q ~ 1. 

In order to apply (2.2.11) we replace T by ~/(u)T, where the auxiliary 
parameter r/(u) -~ 1 as u ~ 0. At the end of the calculation this parameter 
therefore disappears again. Taking A =  l - r / T  in (2.2.11), where e now 
indicates the variable u q, we find 

where 

and 

Foo(0, u) ,~o u ~ _  lu2qC, + O(u39 

C'=  e +  2 E'('~'a')oZ(1 - o)-*]e/~-X)~o 
fl,7 

(B3) 

(B4) 
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The quantity/~ is defined in (3.2.4), and the matrix 1"~ in (2.2.4). From (B1) 
and (B3) the result (3.2.3) is immediate (remember that q = 1 a n d / ~ =  t- in 
case a). 

To derive the moments of P~(I ,  t) we have to look at the singular part 
of (3.2.7), which is 

K(~(0, u) = u-~[1 - ~ ( u ) ]  u~,Poo(0, u) (B6) 

where 

i~'00(0 , /,/) = { [1 -- A(0)  ~ ( u ) ]  -1 }oo (B7) 

We again invoke (2.2.11) with A the same matrix as above, where we retain 
all terms linear or quadratic in {0~} and u or u q (in case a or case b, respec- 
tively). The result is [ ]1 
Foo(0, u )~  Foo(0, u ) - i ~ O j m j ( u ) + � 8 9  ( 0 ~ 0 )  (B8) 

j jk  

where Foo(0, u) is given in (B3), and 

mj(u) = mj - uqmj + O(u 2q) 

sjk(u) = sjk + O(uq) 

Here mj and sjk are defined in (2.2.13) and 

(u ~ 0) (B9a) 

(u ~ 0) (B9b) 

fl,';, 

+ (TB)o~{ (1 - D ) - '  }~</j>-eo] (B10) 

The generating function (B6), summed over final states ~ and averaged 
over the initial distribution {p~~ is 

K(S)(0, u ) =  (/~u q-1 - �89 �9 ')/~oo(0, u) (u-+ 0) (B l l )  

The Laplace transform of <lj(t)> is given by 

K(s) o . ) ]  
<Zj(u)> = -iLOOj , ,  (S12) 

0 = 0  

Using (Bll) ,  (B8), and (B3) we find 

<'J(U)>U'~'OH (l+q)(B)-lmj-~-bl l[mj(Ct~lC~--m~]~2 ] (813)  

from which (3.2.8) follows by the Hardy-Lit t lewood Karamata theorem. 



Asymptotic Properties of Multistate Random Walks 239 

The Laplace transform of the second moments  is 

( l j ( u ) l ~ ( u ) ) =  - [~-~j ~--~k K(S)(0, u)]0 = o (B14) 

Carrying out the differentiations, inverting the Laplace transform and sub- 
tracting the product ( b ( t ) ) ( l e ( t ) )  we arrive at 

, ~ .  2t 2q __ t 2q ~ m j m  k 

((!/(t) Ik(t))) ~ ( F ( l + Z q )  F 2 ( l + q ) ~  9 2 

t q rnim k _ 1 (mjm'k + mkmj)  
+ F(l+q-----~ + ~ \ /~2/ 92 

(B15) 

For the case of driftless walks (mj = 0, j = l, 2 ..... d) this expression reduces 
to (3.2.9). 
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