university of groningen

University of Groningen

Interpolation in Fragments of Intuitionistic Propositional Logic

Renardel de Lavalette, Gerard
Published in:
The Journal of Symbolic Logic

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1989

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Renardel de Lavalette, G. R. (1989). Interpolation in Fragments of Intuitionistic Propositional Logic. The Journal of Symbolic Logic, 54, 1419-1430.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

INTERPOLATION IN FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC

GERARD R. RENARDEL DE LAVALETTE

Abstract

We show in this paper that all fragments of intuitionistic propositional logic based on a subset of the connectives $\wedge, \vee, \rightarrow, \neg$ satisfy interpolation. Fragments containing \leftrightarrow or $\neg \neg$ are briefly considered.

§1. Introduction.

1.1. A fragment [C] of IpL (intuitionistic propositional logic) is a subset of the set of formulae of IpL built up from the propositional variables and constants (T and \perp) by means of connectives from the set C only. If $C=\left\{c_{1}, c_{2}, \ldots\right\}$, then we write $\left[c_{1}, c_{2}, \ldots\right]$ for [C]. In this note, we mainly consider the primitive connectives \wedge, \vee and \rightarrow; one can, however, also think of defined connectives c_{A} where $A=$ $A\left(P_{1}, \ldots, P_{n}\right)$ is some formula, with $c_{A}\left(B_{1}, \ldots, B_{n}\right):=A\left(B_{1}, \ldots, B_{n}\right)$. Examples of defined connectives are $\neg(\neg A=A \rightarrow \perp)$ and $\leftrightarrow(A \leftrightarrow B=(A \rightarrow B) \wedge(B \rightarrow A))$. So e.g. [$\wedge, \vee, \rightarrow$] contains all formulae of IpL, and $[\leftrightarrow]$ is the fragment containing all formulae built up with \leftrightarrow only.
1.2. The interpolation theorem for IpL reads as follows:

Let A and B be formulae of IpL such that $A \vdash B$. Then there is an interpolant I for $A \vdash B$, i.e.
i) $A \vdash I$ and $I \vdash B$; and
ii) all propositional variables of I occur both in A and in B.

This theorem is a consequence of the interpolation theorem for intuitionistic predicate logic, first proved by Schütte in [S62].
1.3. In this paper, we consider relativizations of the interpolation theorem to elementary fragments (fragments based on primitive connectives or \neg), and we show interpolation holds in all elementary fragments.
There are many fragments of intuitionistic propositional logic for which interpolation fails, e.g. $[\wedge, \rightarrow, \neg, \delta]$ with $\delta(A, B, C)=(A \vee \neg A) \wedge(A \rightarrow B) \wedge(\neg A \rightarrow C)$

[^0](first proved by J. Zucker in [Z78]; see also [R81]). For intermediate logics the situation is the same (see [P85]). In classical logic, however, interpolation holds in all propositional fragments (proved by F. Ville: see [KK71] or [KK72, the exercises to Chapter 1]).

Another notion of fragment is considered in [R86], where a strong version of interpolation is proved for the subset NNIL (No Nestings of Implication to the Left) of formulae of IpL, defined inductively as follows: all propositional variables and constants are in NNIL; NNIL is closed under \wedge and \vee; and if $A \in$ NNIL and P is a propositional variable, then $P \rightarrow A \in$ NNIL.
1.4. The rest of this paper is organized as follows: in $\S 2$ we fix the notation and present a sequent calculus for IpL, $\S 3$ consists of three lemmata about elementary fragments, $\S 4$ contains Schütte's method to prove the interpolation theorem for IpL, which is used subsequently to show interpolation for all elementary fragments, and in $\S 5$ we discuss the consequences of not adding the constants T and \perp to the fragments. $\S 6$ is rather tentative: it reports on unsuccessful attempts to prove interpolation for some fragments containing the connectives \leftrightarrow and $\neg \neg$.
1.5. Acknowledgements. The author is indebted to M.H. Löb, who pointed out to him an error in a previous version of Theorem 4.5.

§2. Preliminaries.

2.1. Notation. All formulae are in intuitionistic propositional logic, with \wedge, \vee, \rightarrow, \neg as connectives and the constants T and $\perp . P, Q, \ldots$ are propositional variables; together with \top and \perp we call them atoms. A, B, C, \ldots are formulae; $\Gamma, \Delta, \Gamma^{\prime}, \ldots$ are finite (possibly empty) sets of formulae. We write Γ, Δ for the union of Γ and $\Delta ; \Gamma, A$ stands for $\Gamma,\{A\}$.

For sets of formulae F, G we define

$$
F \equiv G:=\forall A \in F \exists B \in G(A \equiv B) \text { and } \forall B \in G \exists A \in F(B \equiv A)
$$

where $A \equiv B$ stands for $A \vdash B$ and $B \vdash A$. We also put

$$
\begin{aligned}
\wedge F & :=\left\{A_{1} \wedge \cdots \wedge A_{n} \mid A_{1}, \ldots, A_{n} \in F\right\}, \\
F \rightarrow G & =\{A \rightarrow B \mid A \in F, B \in G\}, \\
\neg F & :=\{\neg A \mid A \in F\} .
\end{aligned}
$$

We define $a(A)\left[a^{+}(A)\right]$, the set of all [strictly positively occurring] atoms in A, by

$$
\begin{aligned}
a(\top) & =a^{+}(\top)=\{\top\}, \\
a(\perp) & =a^{+}(\perp)=\{\perp\}, \\
a(P) & =a^{+}(P)=\{P\}, \\
a(A \wedge B) & =a(A \vee B)=a(A \rightarrow B)=a(A) \cup a(B), \\
a(\neg A) & =a(A), \\
a^{+}(A \wedge B) & =a^{+}(A \vee B)=a^{+}(A) \cup a^{+}(B), \\
a^{+}(A \rightarrow B) & =a^{+}(B), \\
a^{+}(\neg A) & =\varnothing ;
\end{aligned}
$$

$p(A)\left[p^{+}(A)\right]$, the set of all [strictly positively occurring] propositional variables in
A, is defined by

$$
p(A)=a(A)-\{\top, \perp\}, \quad p^{+}(A)=a^{+}(A)-\{\top, \perp\} .
$$

2.2. The derivation system. We use the following sequent calculus, denoted by SC:

$$
\begin{array}{ll}
(P) & \Gamma, P \vdash P, \\
(\mathrm{~T}) & \Gamma \vdash \mathrm{\top}, \\
(\perp) & \Gamma, \perp \vdash C, \\
(\wedge \mathrm{R}) & \frac{\Gamma \vdash A \vdash \vdash \vdash B}{\Gamma \vdash A \wedge B}, \\
(\vee \mathrm{R}) & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}}(i=1,2), \\
(\vee \mathrm{L}) \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C}, \\
(\rightarrow \mathrm{R}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}, \\
(\neg \mathrm{R}) & \frac{\Gamma, A \vdash \perp}{\Gamma \vdash \neg A}, \\
(\rightarrow \mathrm{~L}) & \\
(\neg \mathrm{L}) \frac{\Gamma \vdash A}{\Gamma, A \vee B \vdash C} \\
(\neg, A \vdash B
\end{array},
$$

The main formula of a rule is the newly formed formula of the conclusion: $A \wedge B$ for $(\wedge \mathrm{R})$ and $(\wedge \mathrm{L}), A_{1} \vee A_{2}$ for $(\vee \mathrm{R}), A \vee B$ for $(\vee \mathrm{L}), A \rightarrow B$ for $(\rightarrow \mathrm{R})$ and $(\rightarrow \mathrm{L}), \neg A$ for $(\neg \mathrm{R})$ and $(\neg \mathrm{L})$.
$S \mathbb{S C}$ has the following derived rules:
(CUT) Cut Elimination. If $\Gamma \vdash A$ and $\Gamma, A \vdash B$ then $\Gamma \vdash B$.
(WEAK) Weakening. If $\Gamma \vdash A$ then $\Gamma, \Delta \vdash A$.
(SUB) Substitution. If $\Gamma \vdash A$ then $\Gamma[P:=B] \vdash A[P:=B]$.
The proofs are standard (as for related systems, e.g. in [S62] and [T75]).
Note that the subformula property only holds in the following version:

> if B occurs in a cut-free derivation of $\Gamma \vdash A$, then $B=\perp$ or B is a subformula of Γ, A
the addition $B=\perp$ is made necessary by the presence of $(\neg \mathrm{R})$, in which \perp is eliminated. The following consequence is important in the context of this paper:

Let Π be a derivation of $\Gamma \vdash A$. Then we have:
i) if B is a formula occurring in Π, then all connectives in B occur in Γ, A; and
ii) if $c \in\{\wedge, \vee, \rightarrow, \neg\}$ and $(c \mathrm{R})$ or $(c \mathrm{~L})$ is a rule applied in Π, then c occurs in Γ, A.

For later use $(4.5,4.6)$, we define a variant $\mathbb{S C}^{*}$ of $\mathbb{S C}$ and prove it equivalent to $\mathbb{S C}$.
2.3. $\mathbb{S C}^{*}$ is $\mathbb{S C}$ with $(\vee \mathrm{L})$ and $(\rightarrow \mathrm{L})$ replaced by:

$$
\begin{aligned}
& (\vee \mathrm{L})^{*} \frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \vee B \vdash C} \quad(A \vee B \notin \Gamma), \\
& (\rightarrow \mathrm{L})^{*} \frac{\Gamma, A \rightarrow B \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C} \quad(A \rightarrow B \notin \Gamma) .
\end{aligned}
$$

We write $\Gamma \vdash^{*} A$ for: $\Gamma \vdash A$ is derivable in $\mathbb{S C}^{*}$.
2.4. Lemma. $\Gamma \vdash A$ if and only if $\Gamma \vdash^{*} A$.

Proof. We write $\Gamma \vdash_{n} A$ for " $\Gamma \vdash A$ has a derivation with length at most n "; idem for $\Gamma \vdash_{n}^{*} A$. By induction over n one easily proves:

$$
\begin{align*}
& \text { if } \Gamma, A \vee B, A \vdash_{n} C \text {, then } \Gamma, A \vdash_{n} C \text {; } \tag{1}\\
& \text { if } \Gamma, A \vee B, B \vdash_{n} C \text {, then } \Gamma, B \vdash_{n} C \text {; } \tag{2}\\
& \text { if } \Gamma, A \rightarrow B, B \vdash_{n} C \text {, then } \Gamma, B \vdash_{n} C \text {; } \tag{3}\\
& \text { if } \Gamma \vdash_{n} C \text {, then } \Gamma, \Delta \vdash_{n} C \text {; } \tag{4}\\
& \text { if } \Gamma \vdash_{n}^{*} C \text {, then } \Gamma, \Delta \vdash_{n}^{*} C \text {. } \tag{5}
\end{align*}
$$

We turn to the "if" part of the lemma. Assume $\Gamma \vdash^{*} A$, i.e. $\Gamma \vdash_{n}^{*} A$ for some n; we show $\Gamma \vdash_{n} A$ by induction over n. If $n=1$ then $\Gamma \vdash^{*} A$ is an axiom, hence $\Gamma \vdash$ A; if $n>1$ and $\Gamma \vdash^{*} A$ is (an axiom or) the conclusion of ($\vee \mathrm{L}$)* or a rule different from $(\rightarrow \mathrm{L})^{*}$, then the result directly follows from the induction hypothesis (using that every instance of $(\vee \mathrm{L})^{*}$ is an instance of $\left.(\vee \mathrm{L})\right)$. If $\Gamma \vdash^{*} A$ is the conclusion of $(\rightarrow \mathrm{L})^{*}$, then the premises are of the form $\Gamma^{\prime}, B \rightarrow C \vdash^{*} B$ and $\Gamma^{\prime}, C \vdash^{*} A$ where $\Gamma^{\prime}:=\Gamma-\{B \rightarrow C\}$. Now apply (5) to obtain $\Gamma^{\prime}, B \rightarrow C, C \vdash_{n-1}^{*} A$, and then the induction hypothesis.

Finally we prove the "only if" part, by induction over the length of a derivation of $\Gamma \vdash A$. Assume $\Gamma \vdash A$, so $\Gamma \vdash_{n} A$ for some n. If $n=1$ then $\Gamma \vdash A$ is an axiom, hence $\Gamma \vdash^{*} A$; if $n>1$ and $\Gamma \vdash A$ is (an axiom or) the conclusion of an instance of $(\vee \mathrm{L})^{*}$ or a rule different from $(\vee L),(\rightarrow L)$, then the result directly follows from the induction hypothesis. There are three cases left:
i) $\Gamma \vdash A$ is the conclusion of ($\vee \mathrm{L}$) with premises of the form $\Gamma^{\prime}, B \vee C, B \vdash A$ and $\Gamma^{\prime}, B \vee C, C \vdash A$ where $\Gamma^{\prime}:=\Gamma-\{B \vee C\}$: apply (1), (2), the induction hypothesis and ($\vee \mathrm{L})^{*}$.
ii) $\Gamma \vdash A$ is the conclusion of $(\rightarrow \mathrm{L})$ with premises of the form $\Gamma^{\prime} \vdash B$ and Γ^{\prime}, $C \vdash A$ where $\Gamma^{\prime}:=\Gamma-\{B \rightarrow C\}$: apply (4) to obtain $\Gamma^{\prime}, B \rightarrow C \vdash_{n-1} B$, then the induction hypothesis and $(\rightarrow \mathrm{L})^{*}$.
iii) $\Gamma \vdash A$ is the conclusion of $(\rightarrow \mathrm{L})$ with premises of the form $\Gamma^{\prime}, B \rightarrow C \vdash B$ and $\Gamma^{\prime}, B \rightarrow C, C \vdash A$ where $\Gamma^{\prime}:=\Gamma-\{B \rightarrow C\}$: apply (3) to obtain $\Gamma^{\prime}, C \vdash_{n-1} A$, then the induction hypothesis and $(\rightarrow \mathrm{L})^{*}$.
§3. Elementary fragments. Before turning to interpolation, we derive some properties of elementary fragments.
3.1. Lemma. (i) $[\wedge, \rightarrow] \equiv \bigwedge[\rightarrow]$.
(ii) Let $A \in[\rightarrow]$. Then $a^{+}(A)=\{X\}$ for some atom X, and $A \equiv(A \rightarrow X) \rightarrow X$.
(iii) $\left\{A \in[\wedge, \rightarrow] \mid a^{+}(A)\right.$ is a singleton $\} \equiv[\rightarrow]$.

Proof. (i) Formula induction, using

$$
(A \wedge B) \rightarrow(C \wedge D) \equiv(A \rightarrow(B \rightarrow C)) \wedge(A \rightarrow(B \rightarrow D))
$$

(ii) We have $A=A_{1} \rightarrow\left(A_{2} \rightarrow \cdots \rightarrow\left(A_{n} \rightarrow X\right) \cdots\right)(n \geq 0)$ for some atom X, so $a^{+}(A)=\{X\}$. Also

$$
A \equiv\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow X \equiv\left(\left(\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow X\right) \rightarrow X\right) \rightarrow X \equiv(A \rightarrow X) \rightarrow X
$$

(iii) Formula induction, using (i), (ii) and

$$
((A \rightarrow X) \rightarrow X) \wedge((B \rightarrow X) \rightarrow X) \equiv(A \rightarrow(B \rightarrow X)) \rightarrow X
$$

3.2. Lemma. (i) $[\wedge, \vee, \rightarrow] \equiv \bigwedge[\vee, \rightarrow]$.
(ii) There is a mapping \Rightarrow such that if $A \in[\wedge, \vee, \rightarrow]$ and $B \in[\vee, \rightarrow]$, then $A \Rightarrow B$ $\in[\vee, \rightarrow], A \Rightarrow B \equiv(A \rightarrow B)$ and $p(A \Rightarrow B)=p(A \rightarrow B)$; as a consequence we have $[\wedge, \vee, \rightarrow] \rightarrow[\vee, \rightarrow] \equiv[\vee, \rightarrow]$.

Proof. (i) Formula induction, using the following equivalences:

$$
\begin{aligned}
& (A \wedge B) \vee(C \wedge D) \equiv(A \vee C) \wedge(B \vee C) \wedge(A \vee D) \wedge(B \vee D) \\
& (A \wedge B) \rightarrow(C \wedge D) \equiv(A \rightarrow(B \rightarrow C)) \wedge(A \rightarrow(B \rightarrow D))
\end{aligned}
$$

(ii) Let $A \in[\wedge, \vee, \rightarrow]$ and $B \in[\vee, \rightarrow]$. By (i) we have $A \equiv A_{1} \wedge \cdots \wedge A_{n}$ with A_{i} $\in[\vee, \rightarrow](i=1, \ldots, n)$; from the proof of (i) it follows that $p(A)=p\left(A_{1} \wedge \cdots \wedge A_{n}\right)$. Now put

$$
A \Rightarrow B:=A_{1} \rightarrow\left(A_{2} \rightarrow \cdots \rightarrow\left(A_{n} \rightarrow B\right) \cdots\right)
$$

and one easily sees that (ii) is satisfied.
3.3. Lemma. (i) $[\wedge, \vee, \neg] \equiv \bigwedge[\vee, \neg]$.
(ii) There is a mapping \Downarrow such that if $A \in[\wedge, \vee, \neg]$, then $\Downarrow A \in[\vee, \neg], \Downarrow A \equiv \neg A$ and $p(\Downarrow A)=p(\neg A)$; as a consequence we have $\neg[\wedge, \vee, \neg] \equiv[\vee, \neg]$.

Proof. Analogous to that of 3.2 , using the equivalence

$$
\neg(A \wedge B) \equiv \neg \neg(\neg A \vee \neg B)
$$

and the definition

$$
\Downarrow A:=\neg \neg\left(\neg A_{1} \vee \cdots \vee \neg A_{n}\right)
$$

for $A \in[\wedge, \vee, \neg]$ with $A \equiv A_{1} \wedge \cdots \wedge A_{n}$ and $A_{i} \in[\vee, \neg](i=1, \ldots, n)$.
§4. Interpolation in elementary fragments.
4.1. Lemma (Schütte [S62]). Interpolation holds in $[\wedge, \vee, \rightarrow, \neg]$.

Proof. Let $A \vdash B$. Then there is a derivation in $S C$ of $A \vdash B$. With induction over the length of the derivation it is shown that any partition $\Gamma, \Delta \vdash C$ of a sequent in the derivation has an interpolant I, i.e.

$$
\Gamma \vdash I ; \quad I, \Delta \vdash C ; \quad p(\Gamma) \cap p(\Delta, C) \supseteq p(I)
$$

From this the lemma follows (take $\Gamma=\{A\}, \Delta=\varnothing$ and $C=B$).
The method to obtain the interpolant I for $\Gamma, \Delta \vdash A$ can be rendered as follows:

$$
\begin{array}{lll}
(\mathrm{i} P 1) & \Gamma[\mathrm{T}] \Delta, P \vdash P, & (\mathrm{i} P 2) \\
(\mathrm{i} \top) & \Gamma[\mathrm{T}] \Delta \vdash \mathrm{T}, & \Gamma, P[P] \Delta \vdash P, \\
(\mathrm{i} \perp 1) & \Gamma[\mathrm{T}] \Delta, \perp \vdash C, & (\mathrm{i} \perp 2) \\
(\mathrm{i} \wedge \mathrm{R}) & \frac{\Gamma\left[I_{1}\right] \Delta \vdash A \quad \Gamma[[\perp] \Delta \vdash C,}{\Gamma\left[I_{1} \wedge I_{2}\right] \Delta \vdash A \wedge B}, \\
(\mathrm{i} \vee \mathrm{~L} 1) & \frac{\Gamma\left[I_{1}\right] A, \Delta \vdash C}{\Gamma\left[I_{1} \wedge I_{2}\right] A \vee B, \Delta \vdash C}, \quad \Gamma\left[I_{2}\right] B, \Delta \vdash C \\
(&
\end{array}
$$

$$
\begin{aligned}
& (\mathrm{i} \vee \mathrm{~L} 2) \quad \frac{\Gamma, A\left[I_{1}\right] \Delta \vdash \mathrm{C} \quad \Gamma, B\left[I_{2}\right] \Delta \vdash C}{\Gamma, A \vee B\left[I_{1} \vee I_{2}\right] \Delta \vdash C}, \\
& (\mathrm{i} \rightarrow \mathrm{~L} 1) \frac{\Gamma\left[I_{1}\right] \Delta \vdash A \quad \Gamma\left[I_{2}\right] B, \Delta \vdash C}{\Gamma\left[I_{1} \wedge I_{2}\right] A \rightarrow B, \Delta \vdash C}, \\
& (\mathrm{i} \rightarrow \mathrm{~L} 2) \frac{\Delta\left[I_{1}\right] \Gamma \vdash A \quad \Gamma, B\left[I_{2}\right] \Delta \vdash C}{\Gamma, A \rightarrow B\left[I_{1} \rightarrow I_{2}\right] \Delta \vdash C}, \\
& (\mathrm{i} \neg \mathrm{~L} 1) \frac{\Gamma[I] \Delta \vdash A}{\Gamma[I] \Delta, \neg A \vdash B}, \quad(\mathrm{i} \neg \mathrm{~L} 2) \frac{\Delta[I] \Gamma \vdash A}{\Gamma, \neg A[\neg I] \Delta \vdash B} .
\end{aligned}
$$

We explain this notation with an example. (i $\wedge R)$ means

$$
\begin{aligned}
& \text { if } \Gamma \vdash I_{1} \text { and } I_{1}, \Delta \vdash A \text { and } \Gamma \vdash I_{2} \text { and } I_{2}, \Delta \vdash B \\
& \text { then } \Gamma \vdash I_{1} \wedge I_{2} \text { and } I_{1} \wedge I_{2}, \Delta \vdash A \wedge B ;
\end{aligned}
$$

so ($\mathrm{i} \wedge \mathrm{R}$) indicates how an interpolant for $\Gamma, \Delta \vdash A \wedge B$ can be obtained from interpolants for $\Gamma, \Delta \vdash A$ and $\Gamma, \Delta \vdash B$.

For rules not mentioned here $((\wedge L),(\vee R),(\rightarrow R)$ and $(\neg \mathrm{R}))$, the interpolant for the conclusion is the same as for the premise.
4.2. With Schütte's method (i.e. the method used in the proof of Lemma 4.1), it is easy to prove interpolation for $[\neg]$ and for the fragments containing $\wedge([\wedge]$, $[\wedge, \vee],[\wedge, \rightarrow],[\wedge, \neg],[\wedge, \vee, \rightarrow],[\wedge, \vee, \neg],[\wedge, \rightarrow, \neg],[\wedge, \vee, \rightarrow, \neg])$.

This is not evident for fragments containing \vee or \rightarrow, but not $\wedge([\vee],[\rightarrow],[\vee$, $\rightarrow],[\vee, \neg],[\rightarrow, \neg],[\vee, \rightarrow, \neg])$, as $(\mathrm{i} \vee \mathrm{L} 1)$ and $(\mathrm{i} \rightarrow \mathrm{L} 1)$ introduce \wedge in the definition of the interpolant. To illustrate this, we present the following example where Schütte's method is applied to a proof of $(P \vee Q) \rightarrow R \vdash(P \vee Q) \rightarrow R$:

$\frac{P,(P \vee Q) \rightarrow R[P] \vdash P}{P,(P \vee Q) \rightarrow R[P] \vdash P \vee Q \quad R[R] P \vdash R}$	$\frac{Q,(P \vee Q) \rightarrow R[Q] \vdash Q}{Q,(P \vee Q) \rightarrow R[Q] \vdash P \vee Q} \quad R[R] Q \vdash R$
$\frac{(P \vee Q) \rightarrow R[P \rightarrow R] P \vdash R}{(P \vee Q) \rightarrow R[(P \rightarrow R) \wedge(Q \rightarrow R)] P \vee Q \vdash R}$	
$(P \vee Q) \rightarrow R[(P \rightarrow R) \wedge(Q \rightarrow R)] \vdash(P \vee Q) \rightarrow R$	$\frac{(P \vee Q) \rightarrow R[Q \rightarrow R] Q \vdash R}{(P)}$

Since \neg is definable in fragments containing \rightarrow (using the constant \perp), we have $[\rightarrow, \neg] \equiv[\rightarrow]$ and $[\vee, \rightarrow, \neg] \equiv[\vee, \rightarrow]$, so the only fragments for which interpolation still has to be shown are $[\vee],[\rightarrow],[\vee, \rightarrow]$ and $[\vee, \neg]$. We take a closer look at these four fragments in the rest of this section.
4.3. Interpolation in $[\vee]$ is trivial: if $A, B \in[\vee]$ and $A \vdash B$, then $A=P_{1} \vee \cdots \vee$ $P_{m}, B=Q_{1} \vee \cdots \vee Q_{n}$ with $\forall i \leq m \exists j \leq n\left(P_{i}=Q_{j}\right)$, so $p(A) \subseteq p(B)$ and A is an interpolant. (By a similar argument, interpolation in [\wedge] is trivial.)
4.4. Theorem (Zucker [Z78]). Interpolation holds in $[\rightarrow]$.

Proof (somewhat different from Zucker's). Let $A, B \in[\rightarrow]$ with $A \vdash B$. Schütte's method gives us an interpolant I in the fragment $[\wedge, \rightarrow]$. By induction over the length of the derivation of $A \vdash B$ one can show that $p^{+}(I) \subseteq p^{+}(A)$, so by Lemma 3.1(iii) there is an I^{\prime} equivalent to I in $[\rightarrow]$.
4.5. Theorem. Interpolation holds in $[\vee, \rightarrow]$.

Proof. Let $A, B \in[\vee, \rightarrow]$ with $A \vdash B$. By Lemma 2.4 there is a derivation Π in $\mathbb{S C}^{*}$ of $A \vdash^{*} B$. We define inductively the subtree Π^{+}of Π :
a) $A \vdash^{*} B$ is in Π^{+}; and
b) if the conclusion of a rule is in Π^{+}, then so is (are) the premise(s), with the following exception:
if the rule involved is an instance of $(\rightarrow \mathrm{L})^{*}$ with a subformula occurrence of A as main formula, then only the right-hand premise is in Π^{+}.

By induction over the structure of Π^{+}one easily observes (using the peculiar definition of $(\vee \mathrm{L})^{*}$ and $\left.(\rightarrow \mathrm{L})^{*}\right)$ that every sequent in Π^{+}is of the form $A_{0}, \Gamma \vdash^{*} C$, where A_{0} is a
(1) strictly positive subformula occurrence of A and $\Gamma \cup\{C\}$ a collection of subformula occurences of B.

In other words: the sequents in Π^{+}contain no negative subformula occurrences of A and exactly one strictly positive subformula occurrence of A, namely in the premise.

Now we prove, by formula induction:
for every strictly positive subformula occurrence A_{0} of A, there is an
(2) $I=I\left(A_{0}, \Pi^{+}\right)$such that (i) $I \in[\vee, \rightarrow]$, (ii) $p(I) \subseteq p(A) \cap p(B)$, (iii) $A_{0} \vdash I$, and (iv) for every sequent $A_{0}, \Gamma \vdash^{*} C\left(A_{0} \notin \Gamma\right)$ in Π^{+}we have $I, \Gamma \vdash C$;
from this the theorem follows (take A for A_{0}).
(I) $A_{0}=P, P$ an atom. Take

$$
I\left(P, \Pi^{+}\right):= \begin{cases}P & \text { if } P \in p(B) \\ T & \text { otherwise }\end{cases}
$$

then (i), (ii) and (iii) are trivial. For (iv), we argue as follows: if $P \in p(B)$, then $I\left(P, \Pi^{+}\right)$ $=P=A_{0}$ and (iv) holds trivially; if $P \notin p(B)$, then $P \notin p(\Gamma, C)$ by (1), and with A_{0}, $\Gamma \vdash C$ we get (using $A_{0}=P$ and (SUB)) T, $\Gamma \vdash C$.
(II) $A_{0}=A_{1} \vee A_{2}$. Now put

$$
I\left(A_{1} \vee A_{2}, \Pi^{+}\right):=I\left(A_{1}, \Pi^{+}\right) \vee I\left(A_{2}, \Pi^{+}\right)
$$

(i), (ii) and (iii) are evident, and (iv) is proved as follows by induction over the length of a subderivation of Π^{+}containing only sequents of the form $A_{1} \vee A_{2}, \Gamma \vdash^{*} C$ $\left(A_{1} \vee A_{2} \notin \Gamma\right)$. We distinguish three cases, writing I for $I\left(A_{1} \vee A_{2}, \Pi^{+}\right)$.
(a) The sequent is an axiom; then so is $I, \Gamma \vdash C$.
(b) $A_{1} \vee A_{2}, \Gamma \vdash^{*} C$ is the conclusion of a $(\vee \mathrm{L})^{*}$-rule:

$$
\frac{A_{1}, \Gamma \vdash^{*} C \quad A_{2}, \Gamma \vdash^{*} C}{A_{1} \vee A_{2}, \Gamma \vdash^{*} C}
$$

by the induction hypothesis (2), we have $I\left(A_{1}, \Pi^{+}\right), \Gamma \vdash C$ and $I\left(A_{2}, \Pi^{+}\right), \Gamma \vdash C$; hence we have $I, \Gamma \vdash C$ by $(\vee \mathrm{L})$.
(c) $A_{1} \vee A_{2}, \Gamma \vdash^{*} C$ is the conclusion of a rule with premise(s) containing
$A_{1} \vee A_{2}$, e.g. $(\vee \mathrm{L})^{*}$:

$$
\frac{A_{1} \vee A_{2}, \Gamma^{\prime}, D \vdash^{*} C \quad A_{1} \vee A_{2}, \Gamma^{\prime}, E \vdash^{*} C}{A_{1} \vee A_{2}, \Gamma^{\prime}, D \vee E \vdash^{*} C}
$$

by induction, we now have $I, \Gamma^{\prime}, D \vdash C$ and $I, \Gamma^{\prime}, E \vdash C$, hence $I, \Gamma^{\prime}, D \vee E \vdash C$ by $(\vee \mathrm{L})$. Similarly for other rules.
(III) $A_{0}=A_{1} \rightarrow A_{2}$. Let

$$
\left(\rightarrow \mathrm{L}_{i}\right)^{*} \frac{\Gamma_{i}, A_{1} \rightarrow A_{2} \vdash^{*} A_{1} \quad A_{2}, \Gamma_{i} \vdash^{*} C_{i}}{\Gamma_{i}, A_{1} \rightarrow A_{2} \vdash^{*} C_{i}}
$$

$(i=1, \ldots, n ; n \geq 0)$ be all the instances of $(\rightarrow \mathrm{L})^{*}$ in Π^{+}with $A_{1} \rightarrow A_{2}$ as main formula. By 2.4 we have $\Gamma_{i}, A_{1} \rightarrow A_{2} \vdash A_{1}(i=1, \ldots, n)$, and with 4.2 we find interpolants $J_{i}(i=1, \ldots, n)$ in $[\wedge, \vee, \rightarrow]$ with

$$
\begin{align*}
& \Gamma_{i} \vdash J_{i} \tag{3}\\
& J_{i}, A_{1} \rightarrow A_{2} \vdash A_{1} \tag{4}\\
& p\left(J_{i}\right) \subseteq p\left(\Gamma_{i}\right) \cap p\left(A_{1} \rightarrow A_{2}\right) . \tag{5}
\end{align*}
$$

Now put

$$
I\left(A_{1} \rightarrow A_{2}, \Pi^{+}\right):=\left(J_{1} \vee \cdots \vee J_{n}\right) \Rightarrow I\left(A_{2}, \Pi^{+}\right)
$$

We show (i)-(iv) of (2), writing I for $I\left(A_{1} \rightarrow A_{2}, \Pi^{+}\right)$.
(i) holds by Lemma 3.2(ii).
(ii) $\mathrm{By}(5)$ and (1) we have $p\left(J_{i}\right) \subseteq p(B) \cap p(A)(i=1, \ldots, n)$, so $p(I) \subseteq p(A) \cap p(B)$ by the induction hypothesis (2) and Lemma 3.2(ii).
(iii) By (4) we have $J_{i}, A_{1} \rightarrow A_{2} \vdash A_{1}(i=1, \ldots, n)$, hence $J_{1} \vee \cdots \vee J_{n}, A_{1} \rightarrow$ $A_{2} \vdash A_{1}$; also $A_{2} \vdash I\left(A_{2}, \Pi^{+}\right)$by the induction hypothesis (2). This gives $A_{1} \rightarrow$ $A_{2} \vdash\left(J_{1} \vee \cdots \vee J_{n}\right) \rightarrow I\left(A_{2}, \Pi\right)$, so with Lemma 3.2(ii) we get $A_{1} \rightarrow A_{2} \vdash I$.
(iv) Let $A_{1} \rightarrow A_{2}, \Gamma \vdash^{*} C$ be a sequent in Π^{+}. Three cases:
(a) It is an axiom: then so is $I, \Gamma \vdash C$.
(b) It is the conclusion of one of the $\left(\rightarrow \mathrm{L}_{i}\right)^{*}$, so $\Gamma=\Gamma_{i}, C=C_{i}$. Now $\Gamma_{i} \vdash J_{i}$ by (3), so $\Gamma_{i} \vdash J_{1} \vee \cdots \vee J_{n}$; also, by induction hypothesis (2), $I\left(A_{2}, \Pi^{+}\right), \Gamma_{i} \vdash C_{i}$, hence we have $\left(J_{1} \vee \cdots \vee J_{n}\right) \rightarrow I\left(A_{2}, \Pi\right), \Gamma_{i} \vdash C_{i}$, i.e. (by Lemma 3.2(ii)) $I, \Gamma_{i} \vdash C_{i}$.
(c) It is the conclusion of another instance of a rule, with $A_{1} \rightarrow A_{2}$ as main formula: now (iv) follows with induction, as under (IIc) above.
4.6. Theorem. Interpolation holds in $[\vee, \neg]$.

Proof. Analogous to that of Theorem 4.5 above. We only present the differences. Π^{+}is defined in 4.5 , but now with the exception
if the rule involved is an instance of $(\neg \mathrm{L})^{*}$ with a subformula occurrence of A as main formula, then the premise is not in Π^{+}.
This Π^{+}satisfies (1) of 4.5, and we prove the following analogue of (2):
for every strictly positive subformula occurrence A_{0} of A, there is an
(6) $I=I\left(A_{0}, \Pi^{+}\right)$with (i) $I \in[\vee, \neg]$, (ii) $p(I) \subseteq p(A) \cap p(B)$, (iii) $A_{0} \vdash I$, and
(iv) for every sequent $A_{0}, \Gamma \vdash \vdash^{*} C\left(A_{0} \notin \Gamma\right)$ in Π^{+}we have $I, \Gamma \vdash C$.

$$
\begin{aligned}
& A_{0}=P \text { or } A_{0}=A_{1} \vee A_{2} . \text { As in } 4.5 . \\
& A_{0}=\neg A_{1} . \text { Let }
\end{aligned}
$$

$$
\left(\neg \mathrm{L}_{i}\right) \frac{\Gamma_{i} \vdash A_{1}}{\Gamma_{i}, \neg A_{1} \vdash C_{i}}
$$

$(i=1, \ldots, n ; n \geq 0)$ be all the instances of $(\neg \mathrm{L})$ in Π^{+}with $\neg A_{1}$ as main formula. By 4.2 we find interpolants $J_{i}(i=1, \ldots, n)$ in $[\wedge, \vee, \neg]$ with

$$
\begin{align*}
& \Gamma_{i} \vdash J_{i}, \tag{7}\\
& J_{i} \vdash A_{1}, \tag{8}\\
& p\left(J_{i}\right) \subseteq p\left(\Gamma_{i}\right) \cap p\left(A_{1}\right) . \tag{9}
\end{align*}
$$

Now put

$$
I\left(\neg A_{1}, \Pi^{+}\right):=\Downarrow\left(J_{1} \vee \cdots \vee J_{n}\right)
$$

We show (i)-(iv) of (6), writing I for $I\left(\neg A_{1}, \Pi^{+}\right)$.
(i) holds by Lemma 3.3(ii).
(ii) $\mathrm{By}(9)$ and (1) we have $p\left(J_{i}\right) \subseteq p(B) \cap p(A)(i=1, \ldots, n)$ so $p(I) \subseteq p(A) \cap p(B)$ by the induction hypothesis (6) and Lemma 3.3(ii).
(iii) By (8) we have $J_{i} \vdash A_{1}(i=1, \ldots, n)$, hence $J_{1} \vee \cdots \vee J_{n} \vdash A_{1}$. This gives $\neg A_{1} \vdash \neg\left(J_{1} \vee \cdots \vee J_{n}\right)$, so with Lemma 3.3(ii) we get $\neg A_{1} \vdash I$.
(iv) Let $\neg A_{1}, \Gamma \vdash^{*} C$ be a sequent in Π^{+}. Three cases:
(a) It is an axiom: then so is $I, \Gamma \vdash C$.
(b) It is the conclusion of one of the $\left(\neg \mathrm{L}_{i}\right)^{*}$, so $\Gamma=\Gamma_{i}, C=C_{i}$. Now $\Gamma_{i} \vdash J_{i}$ by (7), so $\Gamma_{i} \vdash J_{1} \vee \cdots \vee J_{n}$; hence we have $\neg\left(J_{1} \vee \cdots \vee J_{n}\right)$, $\Gamma_{i} \vdash C_{i}$, i.e. (by Lemma 3.3(ii)) $I, \Gamma_{i} \vdash C_{i}$.
(c) It is the conclusion of an instance of another rule, with $\neg A_{1}$ as main formula: now (iv) follows by induction, as under (IIc) in 4.5 .
§5. Fragments without T or \perp. To make life simpler, we considered T and \perp as constants which are present in every fragment. If we do not choose to do so, we have to be slightly more careful, as we shall now explain.
5.1. T is definable in fragments containing $\rightarrow($ by $P \rightarrow P), \wedge$ and \neg (by $\neg(P \wedge \neg P)$), or \vee and $\neg($ by $\neg \neg(P \vee \neg P)$); similarly, \perp is definable in fragments containing \neg and \wedge, \neg and \vee, or \neg and \rightarrow. In such fragments we have e.g. the following derivable sequents:

$$
P \rightarrow P \vdash Q \rightarrow Q, \quad P \wedge \neg P \vdash Q \wedge \neg Q
$$

and an interpolant I for any of these must satisfy $p(I)=\varnothing$, which is impossible without constants. The obvious remedy is to strengthen the premise in the formulation of the interpolation theorem by adding any of the following conclusions: $p(A) \cap p(B) \neq \varnothing$, or $\operatorname{not}(A \vdash \perp)$ and $\operatorname{not}(\vdash B)$.
§6. Other fragments, open problems. In this last section we consider fragments containing \leftrightarrow and $\neg \neg$, and sketch some attempts to prove interpolation.
6.1. The only fragments based on $\wedge, \vee, \rightarrow$ and $\leftrightarrow \operatorname{are}[\leftrightarrow],[\wedge, \rightarrow, \leftrightarrow]$
$(\equiv[\wedge, \rightarrow])$ and $[\wedge, \vee, \rightarrow, \leftrightarrow](\equiv[\wedge, \vee, \rightarrow])$ for

$$
\begin{aligned}
A \leftrightarrow(A \rightarrow B) & \equiv A \wedge B, \\
(A \wedge B) \leftrightarrow A & \equiv A \rightarrow B, \\
B \leftrightarrow(A \vee B) & \equiv A \rightarrow B, \\
(A \leftrightarrow B) \leftrightarrow(A \vee B) & \equiv A \wedge B .
\end{aligned}
$$

So $[\leftrightarrow]$ is the only new fragment. We conjecture that interpolation holds, but a proof has not been found. We sketch two approaches.
6.2. The sequent calculus $\mathbb{S C}(\leftrightarrow)$ for $[\leftrightarrow]$ is defined as the axioms $(P),(T)$ and (\perp), plus the following rules:

$$
\begin{array}{ll}
(\leftrightarrow \mathrm{R}) & \frac{\Gamma, A \vdash B \quad \Gamma, B \vdash A}{\Gamma \vdash A \leftrightarrow B}, \\
(\leftrightarrow \mathrm{~L}) & \frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \leftrightarrow B \vdash C},
\end{array} \quad \frac{\Gamma \vdash B \quad \Gamma, A \vdash C}{\Gamma, A \leftrightarrow B \vdash C} . \quad . ~ l
$$

To see that a formula $A \in[\leftrightarrow]$ is derivable in $\mathbb{S C}(\leftrightarrow)$ if and only if it is derivable in $\mathbb{S C}$ (considering $A \leftrightarrow B$ as an abbreviation of $(A \rightarrow B) \wedge(B \rightarrow A)$), one argues as follows. Define $\mathbb{S C}^{+}$as the union of $\mathbb{S C}$ and $\mathbb{S C}(\leftrightarrow)$, show that the cut rule is a derived rule in $\mathbb{S C}^{+}$, observe that

$$
(A \rightarrow B) \wedge(B \rightarrow A) \vdash A \leftrightarrow B \quad \text { and } \quad A \leftrightarrow B \vdash(A \rightarrow B) \wedge(B \rightarrow A)
$$

are derivable in $\mathbb{S C}^{+}$and conclude, for sequents $\Gamma \vdash A$ in $[\leftrightarrow]: \Gamma \vdash A$ derivable in $\mathbb{S C}(\leftrightarrow)$ if and only if $\Gamma \vdash A$ derivable in $\mathbb{S C}^{+}$if and only if $\Gamma \vdash A$ derivable in $\mathbb{S C}$.

It is not immediately clear how to prove interpolation for $[\leftrightarrow]$ with $\mathbb{S} \mathbb{C}(\leftrightarrow)$: the "interpolation rules" to be used in Schütte's method are e.g.

$$
\begin{aligned}
& (\mathrm{i} \leftrightarrow \mathrm{~L} 1) \frac{\Gamma\left[I_{1}\right] \Delta \vdash A \quad \Gamma\left[I_{2}\right] B, \Delta \vdash C}{\Gamma\left[I_{1} \wedge I_{2}\right] A \leftrightarrow B, \Delta \vdash C}, \\
& (\mathrm{i} \leftrightarrow \mathrm{~L} 2) \\
& \frac{\Delta\left[I_{1}\right] \Gamma \vdash A \quad \Gamma, B\left[I_{2}\right] \Delta \vdash C}{\Gamma, A \leftrightarrow B\left[I_{1} \rightarrow I_{2}\right] \Delta \vdash C},
\end{aligned}
$$

so we get interpolants containing \wedge and \rightarrow.
6.3. Another candidate method to prove interpolation for [\leftrightarrow], which works in classical logic (see [Z78]), is: show $A(p) \vdash A(A(T))$. Unfortunately, this does not hold for all $A \in[\leftrightarrow]$: to see this, take $A(p):=(p \leftrightarrow q) \leftrightarrow(p \leftrightarrow r)$, then $A(A(T)) \equiv$ $A(q \leftrightarrow r) \equiv q \leftrightarrow r$, but

$$
(p \leftrightarrow q) \leftrightarrow(p \leftrightarrow r) \vdash q \leftrightarrow r \text { is not derivable; }
$$

to see this, take $p:=\perp$ and $q:=\neg \neg r$. Despite these unsuccessful attempts, we state the following conjecture: interpolation holds for $[\leftrightarrow]$.
6.4. Fragments with $\neg \neg$. We introduce a new connective \sim for double negation. The sequent calculus $\mathbb{S C}(\sim)$ is based on sequents $\Gamma \vdash A$ or $\Gamma \vdash($ think of this last sequent as being equivalent to $\Gamma \vdash \perp$), and contains the axioms and rules of $\mathbb{S C}$
(possibly with sequents $\Gamma \vdash$), together with

$$
\begin{array}{ll}
(\neg \mathrm{L}) \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash}, & (\neg \mathrm{R}) \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A}, \\
(\sim \mathrm{~L}) \frac{\Gamma, A \vdash}{\Gamma, \sim A \vdash}, & (\sim \mathrm{R}) \frac{\Gamma, \neg A \vdash}{\Gamma \vdash \sim A}, \\
\text { (W) } \frac{\Gamma \vdash}{\Gamma \vdash A} . &
\end{array}
$$

The cut rule is a derived rule of $\mathbb{S C}(\sim)$, and it is easy to see that

$$
\sim A \vdash \neg \neg A \text { and } \neg \neg A \vdash \sim A
$$

are derivable in $\mathbb{S C}(\sim)$. For fragments containing \sim but not \neg, the rule $(\neg \mathrm{R})$ can be skipped, but $(\neg \mathrm{L})$ is still needed because of $(\sim \mathrm{R})$. To extend Schütte's method, the following "interpolation rules" are needed:

$$
\begin{array}{ll}
(\mathrm{i} \neg \mathrm{~L} 1) & \frac{\Gamma[I] \Delta \vdash A}{\Gamma[I] \neg A, \Delta \vdash},
\end{array} \quad(\mathrm{i} \neg \mathrm{~L} 2) \frac{\Delta[I] \Gamma \vdash A}{\Gamma, \neg A[\neg I] \Delta \vdash},
$$

Unfortunately, this extension of Schütte's method may (by ($\mathrm{i} \neg \mathrm{L} 2$)) introduce \neg in the definition of an interpolant for $A \vdash B$ with A and B in some fragment containing \sim, but not \neg. Closer inspection learns that ($\mathrm{i} \neg \mathrm{L} 2$) is only needed in fragments containing \neg or \rightarrow, so interpolation holds in the rather trivial fragments $[\sim],[\sim, \wedge],[\sim, \vee]$ and $[\sim, \wedge, \vee]$. For the other fragments, the question arises: which fragments containing \sim and \rightarrow satisfy interpolation?
6.5. Uniform interpolation. Finally we state the following open problem: does IpC satisfy uniform interpolation, i.e. are there, for every formula A and every $\mathbf{P} \subseteq a(A)$, a uniform right interpolant $I_{\mathrm{R}}=I_{\mathrm{R}}(A, \mathbf{P})$ and a uniform left interpolant $I_{\mathrm{L}}=I_{\mathrm{L}}(A, \mathbf{P})$ such that

$$
\begin{aligned}
& A \vdash I_{\mathrm{R}} \text { and } I_{\mathrm{L}} \vdash A, \\
& a\left(I_{\mathrm{R}}\right), a\left(I_{\mathrm{L}}\right) \subseteq \mathbf{P}, \\
& \text { for all } B \text { with } A \vdash B \text { and } a(A) \cap a(B) \subseteq \mathbf{P} \text { we have } I_{\mathrm{R}} \vdash B \text {, and } \\
& \text { for all } B \text { with } B \vdash A \text { and } a(A) \cap a(B) \subseteq \mathbf{P} \text { we have } B \vdash I_{\mathrm{L}} \text { ? }
\end{aligned}
$$

In classical logic, the left and right variant are equivalent. Uniform interpolation holds for classical propositional logic, but not for classical predicate logic (see [H63]), and hence not for intuitionistic predicate logic.

REFERENCES

[H63] L. Henkin, An extension of the Craig-Lyndon interpolation theorem, this Journal, vol. 28 (1963), pp. 201-216.
[KK71] G. Kreisel and J. L. Krivine. Elements of mathematical logic (model theory), NorthHolland, Amsterdam, 1971.
[KK72] , Modelltheorie, Springer-Verlag, Berlin, 1972.
[P85] M. Porebska, Interpolation for fragments of intermediate logics, Bulletin of the Section of Logic, Polish Academy of Sciences, vol. 14 (1985), pp. 79-83, and Reports on Mathematical Logic, vol. 21 (1987), pp. 9-14.
[R81] G. R. Renardel de Lavalette, The interpolation theorem in fragments of logics, Indagationes Mathematicae, vol. 43 (1981), pp. 71-86.
[R86] , Interpolation in a fragment of intuitionistic propositional logic, Logic Group Preprint Series, no. 5, University of Utrecht, Utrecht, 1986.
$[\mathrm{S} \rightarrow$ K. Schütte, Der Interpolationssatz der intuitionistischen Prädikatenlogik, Mathematische Annalen, vol. 148 (1962), pp. 192-200.
[T75] G. Takeuti, Proof theory, North-Holland, Amsterdam, 1975.
[Z78] J. I. Zucker, Interpolation for fragments of the propositional calculus, preprint ZW 116/78, Mathematisch Centrum, Amsterdam, 1978.
department of philosophy
UNIVERSITY OF UTRECHT
3584 CS UTRECHT, THE NETHERLANDS

[^0]: Received October 20, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 03B20, 03C40.
 Key words and phrases. Intuitionistic propositional logic, fragment, interpolation.

