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Key Extraction From General Nondiscrete Signals
Evgeny A. Verbitskiy, Pim Tuyls, Chibuzo Obi, Berry Schoenmakers, and Boris Škorić

Abstract—We address the problem of designing optimal schemes
for the generation of secure cryptographic keys from continuous
noisy data. We argue that, contrary to the discrete case, a universal
fuzzy extractor does not exist. This implies that in the continuous
case, key extraction schemes have to be designed for particular
probability distributions. We extend the known definitions of the
correctness and security properties of fuzzy extractors. Our defi-
nitions apply to continuous as well as discrete variables. We pro-
pose a generic construction for fuzzy extractors from noisy contin-
uous sources, using independent partitions. The extra freedom in
the choice of discretization, which does not exist in the discrete case,
is advantageously used to give the extracted key a uniform distribu-
tion. We analyze the privacy properties of the scheme and the error
probabilities in a one-dimensional toy model with simplified noise.
Finally, we study the security implications of incomplete knowl-
edge of the source’s probability distribution . We derive a bound
on the min-entropy of the extracted key under the worst-case as-
sumption, where the attacker knows exactly.

Index Terms—Biometrics, fuzzy extractors, privacy.

I. INTRODUCTION

A. Fuzzy Extractors

E XTRACTION of secure cryptographic keys from noisy
measurements is a problem that received a lot of atten-

tion in recent years [4], [7], [8], [12], [13]. The main motiva-
tions originate from the area of biometrics and physical unclon-
able functions (PUFs) [9]. Within the field of biometrics key
extraction plays a role in protecting the privacy of stored bio-
metric templates and in the formation of new applications such
as file access based on biometric data. PUFs on the other hand
are used for anti-counterfeiting (e.g., making devices such as
radio-frequency identification (RFID) tags unclonable) and se-
cure storage of cryptographic keys [11].

Most of the research up to now has focused on the extraction
of secure keys from discrete noisy sources [4]. The basic prim-
itive that resulted from this work is the fuzzy extractor. A fuzzy
extractor is a general primitive that allows one to extract a se-
cure cryptographic key from a noisy source. It consists basically
of two phases. In the first phase (enrollment) the source is chal-
lenged; a secure bit string (the key) as well as helper data are ex-
tracted from the response by means of a probabilistic procedure.
The helper string has to be considered as publicly available data
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and hence can be observed by an attacker. In the second phase
(reconstruction phase), the key has to be reconstructed from a
fresh measurement of the noisy source. This measurement will
in general differ slightly from the first one. The reconstruction
procedure takes as input the fresh measurement and the helper
data to reconstruct the original key.

A fuzzy extractor combines two functionalities, information
reconciliation (error correction) and privacy amplification
(making sure that eavesdroppers have negligible knowledge
about the key). It was noted in [4] that a fuzzy extractor can
in general be built from two primitives: a secure sketch and a
strong extractor. The secure sketch part makes it possible to ex-
actly reconstruct the enrollment measurement from the public
helper data and the second measurement. The strong extractor
extracts the secret key from the reconstructed measurement.

The generic construction comprising a secure sketch and a
strong extractor works for discrete sources. Many sources, how-
ever, produce continuous rather than discrete data. Fingerprint
templates for instance are represented by sequences of points in
a continuous domain such as . Speckle patterns originating
from optical PUFs and capacitance measurements of coating
PUFs [11] are typically continuous data. Another example is
the measurement of field amplitudes in quantum key distribu-
tion schemes that use coherent states [6], [10]. The notion of a
discrete fuzzy extractor cannot be immediately generalized to
this situation. This is primarily because several entropy notions
(min-entropy and Renyi entropy) used in the definition of the
discrete fuzzy extractor are not well defined for the continuous
case.

In order to use continuous responses for cryptographic pur-
poses, some quantization step has to be performed. The choice
of this quantization is relevant since it determines the quality of
the input of all the discrete procedures that follow. A bad choice
can lead to large entropy loss. An important consideration here
is the noise reduction. A carefully chosen quantization allows
for extraction of most of the entropy available in the measure-
ment while reducing the noise to a point where an efficient error
correcting code can be deployed.

Literature addressing the extraction of secure keys from noisy
continuous sources exists in two areas: PUFs/biometrics and
quantum key distribution. The former is rather limited [3], [7].
The latter is quite extensive, but not very general in scope, con-
centrating mostly on Gaussian distributions [1] (of the signal
as well as the noise), small signal-to-noise ratio, and/or proto-
cols that require many rounds of interaction (e.g., [2]). In this
paper, on the other hand, we address general distributions and
the single-round communication scenario, which is relevant for
most PUF/biometrics applications.

B. Contributions and Organization of This Paper

In Section II, we extend the known definitions of the correct-
ness and security properties of fuzzy extractors. Our definitions

1556-6013/$26.00 © 2010 IEEE
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apply to continuous as well as discrete variables. We argue that
the universality property of fuzzy extractors for discrete distri-
butions does not directly apply to continuous distributions, since
concepts such as min-entropy are undefined if the quantization
is left unspecified.

Then, in Section III-A, we present a geometric approach to
the problem of key extraction from noisy continuous sources.
The extraction scheme is based on an independent pair
of partitions of the measurement space. The extra freedom in
the choice of quantization, which does not exist in the discrete
case, is advantageously used to give the extracted key a uniform
distribution. In Section III-B, the privacy aspects of the scheme
are addressed. In Section III-C, various types of errors are in-
troduced. In Section III-D, we introduce a one-dimensional toy
model with simplified noise, for which we analyze the error
probabilities.

In practice, the designer of a key extraction scheme does not
exactly know the true probability distribution of the source.
He only has an estimate based on a finite set of experimental
data. The mismatch between the empirical distribution and
the real distribution affects the security of the extracted key.
In Section IV, we compute a lower bound on the min-entropy
of the extracted key, taking this mismatch into account. This is
done under the worst-case assumption, i.e., we assume that the
attacker has perfect knowledge of . Finally, to illustrate our ap-
proach, we analyze the case of a source with normal distribution.

II. SECURITY AND CORRECTNESS OF KEY EXTRACTION

SCHEMES

A. Preliminaries

Throughout this paper, except when otherwise stated, is
taken to base 2. When an algorithm or a function is random-
ized, we use the semicolon when we wish to make the random-
ization explicit: i.e., we denote by , the outcome of com-
puting on input with randomness . Pair will rep-
resent a discrete metric space and an uncountable (“con-
tinuous”) metric space.1

Let and be probability measures on . The total
variation between and is defined as2

.
The min-entropy of is given by

. For a random variable with
distribution (denoted by ), we often write
instead of .

For a joint distribution , the marginal distribution
of is denoted as . The conditional min-
entropy of given is defined as

(1)

(2)

1We abuse notation by setting the same notation � for the metric in both�
and � . The precise meaning will, however, be clear from the context.

2For � � , � � , we often write ����� � or ��� � � � instead
of �� � �.

Definition II.1 ([4]): For , the average min-en-
tropy of given is defined as

(3)

(4)

B. Fuzzy Extractors

Below, we first recall the definition of a fuzzy extractor as in-
troduced by Dodis et al. [4], and then extend the notions of cor-
rectness and security in Definitions II.4 and II.5, respectively.

Definition II.2: A fuzzy extractor of length on a discrete
metric space is a pair of (randomized) procedures gen-
erate and reproduce with

(5)

We write for values of the function
at point . If is a random variable with values
in , then , given by , are random
variables with values in and respectively, with
the joint distribution induced by from .

Naturally, fuzzy extractors must be resilient with respect
to small measurement errors and should produce sufficiently
random keys. The following conditions are reformulations of
the corresponding conditions of the definition in [4].

Definition II.3 ([4]): Let be a fuzzy extractor of
length on a metric space . Let . We
say that is

C -correct for , if for all with
one has . (Irrespective

of the randomness used by .)

S -secure for some and , if for any
probability distribution on with min-entropy
at least , the random variables ,
with , satisfy

(6)

where is a uniformly distributed random variable
on .

By definition, the entropy loss of an -secure fuzzy ex-
tractor of length is .

Fuzzy extractors aim at correcting for noise corrupting the
data. However, in the definition above, the distribution of the
noise is not taken into account. One can argue that the correct-
ness property of the fuzzy extractor should be stated in terms of
the noise distribution.

To illustrate this argument further, we give a number of condi-
tions that a “good” fuzzy extractor could satisfy. We modify our
notations slightly, for better understanding. The noisy measure-
ment of will be modeled by means of a family
of probability measures which define the distribution of
given .
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Definition II.4 (Correctness): Suppose is a random vari-
able with values in distributed according to a probability
measure , and is a noisy measurement of for the noise

, i.e., , if . We say that a fuzzy
extractor is

C on average -stochastically resilient for noise , if

(7)

C worst-case -stochastically resilient for noise ,
if for any one has

(8)

Conditions C and C are meant to generalize C , by
taking into account the effect of the measurement noise. For the
same value of the parameter , C implies C . Condition
C can be reformulated in probabilistic terms as well: a fuzzy

extractor is -resilient for some , if and only if
is worst-case 0-stochastically resilient for any noise

such that

(9)

Definition II.5 (Security): Suppose is a random variable
with values in distributed according to a probability measure

. A fuzzy extractor is called

S on average -secure if

(10)

S worst-case -secure if for all such that
,

(11)

C. On the Relation Between the Security Conditions

For the same value of parameter , S is stronger than S .
We argue that S is too strict: it takes the worst-case helper
data, while for predictability by an adversary, the average case
suffices. Averaging over all possible helper data as in S suf-
fices because the helper data is not under attack by the adver-
sary. The advantage the adversary has, depends on how much
control he has in creating the worst case. The attacker has no
influence on the key generating procedure so the best he
can do is hope that the helper data is the worst possible (i.e., the
helper data reveals a lot of information about the key). However,
the worst case occurs with negligible probability. A proof of this
fact is given in Appendix A. We prove that if S holds, then the
probability of occurring such that

is bounded from above by . Since this bad class
of helper data occurs with negligible probability, describing the
security of a fuzzy extractor in terms of property S is valid.

Moreover, one can also compare the security conditions S
and S . Namely, suppose is -secure in the
sense of S . Then for , one has

(12)

where

(13)

Therefore, for any

(14)

and hence

(15)

Hence, any key extraction scheme which is S secure with
parameters , will be secure in the sense of S as well
with

(16)

In our opinion, the new condition S is more natural than
the previously introduced condition S . The main reason is
that S provides an explicit bound on the uncertainty of the
key data given the helper data. Thus providing a direct “mea-
surement” of how secure the scheme is; the same applies to
condition S . This becomes apparent when we consider the
following question. Suppose a scheme is S secure with pa-
rameter . What can be said about its performance in terms of
condition S ?

One can proceed as follows. First of all, it is easy to see that

since .
It is also possible to bound the total variation distance be-

tween and . However, the bound is intrinsically
poor. We start with the following easy fact.

Lemma II.6: Suppose is such that

Then

(17)

Proof: The conditions on imply that at least of
its entries are nonzero. Naturally, , so , and
therefore the maximal value of is attained
for . The maximal value is equal
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to , which is of order
.

Applying the result of Lemma II.6 to defined by (13) with
, , we obtain that

(18)

and for , one has

(19)

Using the well-known inequality between harmonic and arith-
metic means

for ’s equal to and ’s equal to
, we conclude that

Therefore, we can conclude that if is large,
then the bound on total variation is close to one, and hence
not informative. In fact the bound is sharp and cannot be im-
proved without further assumptions on conditional distributions

. Indeed, it suffices to consider conditional
distributions which are close to uniform dis-
tributions on elements. The situation is rather paradoxical.
On one hand, a scheme such that for each ,
is uniform or close to uniform on some set of keys (subset
of a set of all possible keys of cardinality ), is perfectly fine:
the scheme is sufficiently secure, nonrevealing, etc. On the
other hand, such a scheme will be considered weak in the sense
of condition S . Therefore, we argue that condition S is
more appropriate.

Moreover, condition S has to be treated with care: for large
values of and seemingly small values , S secure schemes
can produce keys with low entropy. This is another argument
in favor of a more explicit condition S . Indeed, for an S
secure scheme, we have established above [c.f., (15)] that

(20)

If and are such that , then the right-hand side
is of order , effectively, independent of . The lower
bound is sharp. Indeed, without further assumptions, conditional
distributions could be such that for each

and hence

Since condition S does not impose any further assumptions
on conditional distributions, the entropy could be of
the order (provided is large enough). To be more
precise, for an S secure scheme, one has

(21)

A practical fuzzy extractor must have at least one of the cor-
rectness properties and one of the security properties, where
fuzzy extractors satisfying properties C and S are pre-
cisely those introduced in [4].

D. Entropy Loss and Universality Property

It is expected that the helper data might reveal some amount
of information about the original measurement and/or the bit
string derived from the measurement. In the discrete case, this
can be quantified in terms of the universal loss (see [7])

(22)

The universality refers to the fact that the inequality should be
valid for all or at least a large class of probability distributions
on the measurement space.

The fuzzy extractor allows one to extract an -secure bit string
of length from all discrete noisy sources that have
min-entropy at least . This is called the universality property
for fuzzy extractors for discrete distributions.

For continuous distributions, a quantization scheme is
applied to transform the continuous domain to a discrete do-
main. A fuzzy extractor for discrete domains is then applied.
During reconstruction, the quantized version is reconstructed
instead of the original in the continuous domain. Quan-
tization is treated as the “discrete original” [7]. The
entropy loss in this phase of the construction is given by

. The second term is called
the left-over entropy [7]. In the continuous case, we aim at
maximizing left-over entropy because it is the “source entropy”
for the strong extractor phase. A strong extractor can now be
applied to to extract a secure bit string. The total entropy
loss of the fuzzy extraction scheme using this construction is

where is the length of extracted string.
It is interesting to find out how much information the helper

data reveals about the extracted string. Unlike in the discrete
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case, for any quantization scheme on and any fixed positive
, one can find a probability distribution on such that

is smaller than , hence making the above estimate useless. This
distribution can be made to have a large value of appropriately
defined entropy. Since for the continuous case the quantization
scheme is part of the fuzzy extractor, one, therefore, concludes
that there are no “universally” good fuzzy extractors for contin-
uous spaces. Hence, contrary to the discrete case, one must con-
struct good quantization schemes for a fixed distribution, since
schemes with reasonable properties do not exist for any suffi-
ciently large class of distributions, e.g., the class of distributions
with reasonably large entropy.

The scheme presented in Section III is derived for a
fixed distribution and has the property that

, i.e., the entropy loss due to the helper data is
zero. Furthermore, the output after quantization is uniform, so
we do not require a strong extractor and, therefore, .
Consequently, we have

(23)

i.e., the helper data does not reveal any information about the
key.

III. FUZZY EXTRACTORS FOR CONTINUOUS DISTRIBUTIONS

A. Construction Based on Independent Partitions

There are many ways to partition a measurable space . In
fact, there is one-to-one correspondence between measurable
function and partitions: For example, any measurable function
(“quantizer”) , where is a finite
set, gives rise to a finite partition into level sets

(24)

where . Similarly, any
partition gives rise to a function

, given by if . Moreover, by considering
functions from , we can associate partitions to randomized
functions on . To simplify notation, we only consider de-
terministic functions and corresponding partitioning schemes.

As mentioned above, induces a natural partitioning of
, which consists of subsets

(25)

satisfying for and . To explic-
itly state the relationship between the quantizer and the parti-
tioning , we write , if and only if

. If is a probability distribution on , induces a discrete
probability distribution on , .

Now we are going to incorporate a noise correction mech-
anism, because the measurement can be corrupted by noise.
This is done by means of another partition of size of
as follows. First of all, for two partitions and

of , the refinement of and is a partition
consisting of the sets . The cor-
responding quantizer, is given by if
and only if . In this case, we say that is the ex-
tracted key and is the helper data.

Fig. 1. For each fixed � , large gaps exist between each pair of subsets in �� �
� �. This allows for efficient error correction.

On input of a noisy observation and helper data
, the key is recovered as follows:

(26)

where One could also con-
sider other means to recover keys, e.g.,

(27)

where is a preselected point in . Construction based
on (27) is somewhat closer to the standard quantization setup.
In the present paper, we consider constructions based on (26).

To ensure that the key is recovered correctly, we demand that
a sufficient gap should exist between each pair of sets ,

, with and (see Fig. 1).
It is easy to see that in the case of additive noise, i.e.,

, where the noise is such that
, then the noise cannot

cause a reconstruction error, and we will always have .
It is desirable that the helper data reveals the least infor-

mation possible about the extracted key . To accomplish this,
we demand that and are independent, i.e.,

. This implies that the helper data reveals no
information about the extracted key. So .

To optimize our construction, we require that the probability
distribution induced on by the quantizer is
uniform, i.e.,

(28)

for all , . Equivalently, and
.

In our construction, independence of the partitions is a more
important property, because it ensures that the helper data leaks
no information about the extracted key. We treat uniformity as
an additional requirement to achieve optimality.

In line with the notation in [4], we give a formal construction
of a continuous space fuzzy extractor as follows.
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Construction III.1: Let be a continuous metric space.
Let be a random variable on with distribution . Let and

be independent partitions of of sizes and , respectively,
such that induces a uniform distribution on .
We define the generation procedure : and the
reproduction procedure as follows:

1) Generation: . Here is
the key and is the helper data.

2) Reproduction:
.

By construction this scheme yields perfect security
in the sense of � , where

, , and is uniform on . Moreover,
the scheme has zero entropy loss incurred from publishing the
helper data, .

B. Privacy

In the case where represents the biometric data, the privacy
of the original measurement has to be preserved. Therefore, it is
interesting to investigate how much information is gained on the
measurement from the value of helper data . It was shown
in [4] and [8] that in the discrete case, the helper data always
leaks information on the measurement . A natural measure
for determining the amount of leakage is the mutual information
between the measurement and the helper data. In the case of
our Construction III.1, the amount of information an adversary
learns about is given by

(29)

Here we have used , which holds because given
, an adversary can easily compute .

In order to reveal as little information as possible about ,
has to be chosen as small as possible. However, the choice of
(together with ) has an impact on the amount of noise the

scheme can tolerate.

C. Error Analysis

A properly designed fuzzy extractor scheme extracts a long
key in a robust fashion. Yet, errors are inevitable. Therefore,
error analysis of our proposed scheme is essential. Let
be a noisy version of . A reconstruction error occurs when

. We examine three ways of evaluating the
probability of such an erroneous re-extraction.

First of all, for a fixed , is a random variable with distri-
bution . Hence, we might be interested
in evaluating the -dependent error probability:

(30)

Second, we can evaluate the average error probability . Let
, then

(31)

Finally, one might be interested in the maximal error proba-
bility:

(32)

Fig. 2. Partitioning the unit circle. Note that for each fixed � , large gaps exist
between each pair � � � , � � � with � �� �.

Correctness condition � can be reformulated in terms of the
average error probability as . Similarly, � is equivalent
to .

D. Toy Example: Uniform Distribution on With
Simplified Noise

In this section, we consider the simplest example. The con-
tinuous space is the unit circle . The random variable
is uniformly distributed.3 The noisy measurement is written
as . The noise is assumed to be uni-
formly distributed on the interval . This example is by no
means realistic, but it is susceptible to complete analysis and the
geometric idea—introduction of gaps to obtain robustness—is
transparent.

Construction III.2: Let be the unit interval . We con-
struct the partitions and as follows:

(33)

is an interval of length , and is a union of intervals
of length . To complete the partition scheme, we have to
specify the distance function . We let be the usual distance
on the circle (see Fig. 2). The distance between two sets
for any fixed is

(34)
with equality if and only if , i.e., when and

are neighboring intervals. Hence, we say that the gap size is

3Any one-dimensional continuous density function can be mapped to a uni-
form distribution on the unit circle. Let � ��� be the density function of � .
Let 	 � � �
��
� then 
 � ��� �� and 
 � � ��� ��, where � ��� �� is
the uniform distribution on the unit interval. Identifying the end points 0 and 1,
we get the unit circle.



VERBITSKIY et al.: KEY EXTRACTION FROM GENERAL NONDISCRETE SIGNALS 275

. Recall that the key reconstruction is based on the distance
from to the nearest

(35)

Hence, for , the set of such that assumes value is an
interval

The length of this interval is . Trivially, all key values are
equiprobable not only for noise-free measurements (achieved
by design), but for noisy measurements as well.

We will now evaluate the error probabilities. To stress the
dependence on the parameters , and on the noise

, we denote by , , and the
-dependent, maximal, and average probabilities, respectively.
Theorem III.3: Let be a random variable with uniform

distribution on the unit circle. Let the noise be uniformly
distributed on . Let , be the partitioning according
to Construction III.2. Let , and

, i.e., is the distance between
and the middle point of the interval .

i) The -dependent error probability is given by

if

if
(36)

ii) The maximal error probability
is attained at the endpoints of

, and is given by

(37)

iii) The average error-probability is given by

(38)

The proof is straightforward but laborious (see Appendix B).
The result is useful for the optimization of design parameters.

In terms of Definitions II.3–II.5, Construction III.2 for
noise produces a fuzzy extractor which is

� -correct; � on average -stochasti-
cally resilient; � worst-case -stochastically resilient,
with and as given in Theorem III.3. With
respect to security conditions, the fuzzy extractor is � on
average -secure; � worst-case -secure. Recall that
the security condition � cannot be applied in the continuous
case. However, the notion of total variation is well defined for
continuous distributions, and for the proposed scheme, one has

.

Example III.4: Suppose , i.e., we want to extract 1 bit.
If , i.e., no helper data is used, then

for all (39)

On the other hand, if , then the partition scheme with
gives no error at all.

More generally, the following proposition aids the optimal
selection of parameter . Let denote the integer part of
for .

Proposition III.5: For and , let . Then
a) If , then there exists an optimal such that

.
b) If , then for every , there exists an such that

.
c) If , then there exists an optimal such that

(40)

d) If , then independently of , .
A proof is given in Appendix C.
Remark III.6: If , then we can say that the

noise level is too large for the desired number of key values ,
and the introduction of helper data does not improve the per-
formance. Moreover, for any we can find a partition scheme
which allows errorless extraction of up to . More-
over, if we are prepared to tolerate some moderate error levels,
we can extract up to , which is roughly an in-
crease of 50% for small ’s.

IV. IMPERFECT KNOWLEDGE OF THE SOURCE

Up to this point, we have investigated the problem of ex-
tracting a secret key from a continuous source distributed ac-
cording to . In general, we cannot assume that is known
precisely. This is due to the fact that in practice one often has
to learn the distribution empirically. Hence, one obtains only
an estimate of the true distribution . From a security point
of view we have to assume that an attacker has put more effort
in learning the distribution and, therefore, has a more accurate
knowledge of than the designer. This implies of course that
the schemes that we have described before do not a priori guar-
antee complete security of the extracted key in this situation.

We give a security derivation assuming the worst-case sce-
nario: the attacker knows exactly. We prove a bound on the
min-entropy of the extracted key, taking into account the mis-
match between the empirical and the true .

The designer of the extraction scheme bases his
design on . Therefore, the induced probabilities on elements
of the partition are , i.e.,
uniform by construction. However, according to the true dis-
tribution, induces an unknown probability distribution

, which is different from uniform. If the empir-
ical estimate is good, then it will be close to uniform.

In slight abuse of notation, we write and
. By construction we have that

. We now give a lower bound on the average
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min-entropy , which tells us how secure the key is in
the case of imperfect knowledge of the true distribution.

Lemma IV.1: Suppose is a probability distribution on ,
and is the key extraction scheme ac-
cording to Construction III.1 with respect to . Suppose is a
random variable on , , and put .
Then

(41)

where

(42)

Proof: Using

(43)

and Definition II.1, we have

For a good practical fuzzy extractor, should be of order
implying that is of order

If we assume that both and are absolutely continuous
probability distributions on with respect to some reference
measure , and if , are the corresponding densities, i.e.,

(44)

then the quantity in the above lemma satisfies the following
inequalities:

(45)

We conclude this section with a simple example, namely
being the Gaussian distribution , and being the

maximal likelihood estimate of based on sample of size .
More specifically, is a Gaussian distribution with parameters

, where

(46)

It is well known that , as , and the
error is of order .

We begin with the following simple lemma, which gives an
estimate of parameter in Lemma IV.1 in case of two Gaussian
distributions in terms of the parameters of these distributions.

Lemma IV.2: Let , be normal distributions with parame-
ters , , respectively. Then for any key extraction
scheme given by Construction III.1
with respect to the empirical distribution , one has

(47)

The proof is given in Appendix E. Hence, applying this
lemma, for sufficiently large , one can conclude that will
be sufficiently small as well: . In fact, the
estimate above can be used to derive bounds on sufficient to
ensure accurate estimate of , and hence small .

Moreover, statistics [5] provide even stronger results: Since
, are random variables, it can happen with low probability

that these estimates lead to large . Nevertheless, if an inde-
pendent sample of size has been used to estimate the un-
known parameters of distribution , then for some constants

one has

(48)

hence any deviation from the order is quite improbable.

V. SUMMARY

We have extended the known definitions of the correctness
and security properties of fuzzy extractors. Our definitions apply
to continuous as well as discrete variables.

We have introduced a generic construction for fuzzy extrac-
tors for noisy continuous sources using independent partitions.
The extra freedom in the choice of quantization, which does not
exist in the discrete case, is advantageously used to give the ex-
tracted key a uniform distribution. We have analyzed the privacy
properties of the scheme and the error probabilities in a one-di-
mensional toy model with simplified noise.

We have studied the security implications of incomplete
knowledge of the source’s probability distribution . We have
derived a bound on the min-entropy of the extracted key under
the worst-case assumption, where the attacker knows exactly.
We have worked this out for the case of a normal-distributed
variable.

Finally, we conclude by observing that the proposed approach
is easily extended to produce schemes which allow for extrac-
tion of multiple keys from the same source as well with the
same security, robustness and privacy properties. This is rele-
vant for biometric applications.

APPENDIX A
MOTIVATION FOR USING SECURITY PROPERTY

Let Let . We prove that if
, then the probability is negligible of

occurring such that . Let
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be the set of “bad” helper data values,

(49)

(50)

(51)

In (49), we used the defining property of in . In (50), we
made use of the fact that . Finally,

the inequality (51) is a corollary of .

APPENDIX B
PROOF OF THEOREM III.3

Let . Let be the noisy measurement, with
. For , the error probability is

. From the uniformity of and the independence of from
, it follows that the error probabilities are independent of ,

. Without loss of generality, we consider . Let
. Let denote .

i) -dependent error probability:

(52)

Separate evaluation of this expression for different ranges of
and yields (36).

ii) Maximal error probability: We note that is an in-
creasing function of and that . Hence
the maximum is obtained at . Substitution into
(52) gives

(53)

Separate evaluation for different ranges of gives (37).
iii) Average error probability. We are now going to compute

the average error probability ,
where and . One possible
approach is to integrate with respect to the expression for

obtained in (36). However, it is easier to follow a
different approach. We observe that

(54)

where is the distribution function
of a random variable . Note that

, and hence the dis-
tribution of is also symmetric, and therefore

(55)

First of all, as was noted above, for

(56)

Suppose now . If , then . We
now can use the result of Lemma D.1 with ,
and , and conclude that for

(57)

APPENDIX C
PROOF OF PROPOSITION III.5

Proof of Proposition III.5: If , then since
, for sufficiently large we have

(58)

But then , and, by (37), the partition
scheme with parameters allows errorless extraction of

key values.
Suppose , but . Then the set

(59)

is not empty: contains at least one element . Since
, is bounded. For all , ,

and hence

(60)



278 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

(66)

The optimal choice for is clearly the maximal element in

(61)

where is the integer part, and hence

(62)

If , then the set coincides with and hence
is not bounded. Thus we are able to choose arbitrarily large ’s.
Therefore,

(63)

but the infimum is not achieved. Hence, by choosing appro-
priately we can only make less than any fixed positive
number.

Finally, if , then for any , one has
, and by (38), we can only achieve .

APPENDIX D
DISTRIBUTION OF THE SUM OF TWO INDEPENDENT UNIFORM

RANDOM VARIABLES

Proof of the following result is straightforward.
Lemma D.1: Suppose , are independent random vari-

ables, and , . Assume that .
Then takes values in , and the density is
given by

(64)

Moreover, the distribution function
is given by

(65)

APPENDIX E
PROOF OF LEMMA IV.2

Proof: For two normal distributions and
, by the Pinsker and the log-sum inequalities,

we have equation (66), shown at the top of the page, where the
Kullback–Leibler divergences are given by

(67)

Since , one concludes that

(68)
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