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Abstract This paper develops a mathematical model of strategic manipulation in
complex sports competition formats such as the soccer world cup or the Olympic
games. Strategic manipulation refers here to the possibility that a team may lose a
match on purpose in order to increase its prospects of winning the competition. In
particular, the paper looks at round-robin tournaments where both first- and second-
ranked players proceed to the next round. This standard format used in many sports
gives rise to the possibility of strategic manipulation, as exhibited recently in the 2012
Olympic games. An impossibility theorem is proved which demonstrates that under a
number of reasonable side-constraints, strategy-proofness is impossible to obtain.

1 Introduction

In the 2012 London Olympics, eight female badminton players were expelled from
the doubles competition. The twin charge was “not using one’s best efforts to win a
match” and “conducting oneself in a manner that is clearly abusive or detrimental to
the sport” (Dillman 2012). The reason these players wanted to lose their match was that
this would have resulted in them being ranked second rather than first in their round-
robin competition group. The format of this competition required the second-ranked
team to play against the first-ranked team of another group, and the disqualified teams
preferred to play against this first-ranked team rather than the second-ranked team
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30 M. Pauly

which they would have had to play had they won their match. Sports commentators of
this “badminton scandal” faulted the expelled players for their lack of sportsmanship,
few if any comments considered the competition format to be at fault. In academic
circles, these events caused some thinking in particular among economists on questions
of mechanism design (Ely 2012; Kleinberg 2012; Hartline and Kleinberg 2012). For
the problem illustrated by these events at the 2012 Olympics is a pervasive one: the
competition format used there which gave rise to strategic play is also used in many
other prominent competitions, perhaps most notably the FIFA soccer world cup. So
leaving aside the question of whether the expelled badminton players were really
morally at fault for their behavior, this paper takes the view that it would be desirable
to design competition formats which do not even create room for this kind of behavior,
competition formats where “not using one’s best efforts to win a match” will never be
to one’s advantage. Such competition formats would align what is moral (or at least
considered to be moral within a particular sports community) with what is expedient.

How to solve this mechanism design problem of Olympic badminton and other
similar competition formats? A solution inspired by Parikh’s example of the two
horsemen (2002) who want to find out whose horse is the slowest (solution: exchange
horses and try to ride as fast as possible): we might consider a rule which awards the
losing team with the points usually given to the winner. Better yet, let the winning team
decide who gets the points associated with a win. The problem is that this solution is
asymmetric, in that it confers an advantage on one round-robin group over the other
(where it is already clear who is first-ranked and second-ranked). A second solution
is to let matches take place simultaneously, so that no team knows yet who will be
ranked first or second. This solution was also adopted in the 2012 European soccer
cup competition. A problem with this second solution is that the earlier problem may
repeat itself on a smaller scale: in one match, a team may have a big lead so that it
is clear that it will end up being first-ranked. The teams in the other match may learn
of this situation and change their play accordingly. Other problems with this solution
are that viewers are forced to choose which match to watch (they cannot watch both),
and that advertising revenues are reduced (probably the most relevant argument in
today’s sports world). A third solution not using simultaneous matches would be to
use a random device such as a coin toss to choose with equal probability among the
two first-ranked players of their respective groups which of the two gets to choose
the opponent from the other group. So if the coin toss selects the first-ranked player
of group A, she gets to decide whether to play the first-ranked or the second-ranked
player of group B, and the remaining two players (second-ranked player of group A
and either the first-ranked or second-ranked player of group B) are also paired in a
match. A problem with this third solution is that it makes use of a random device
which complicates the required mathematical model and also introduces a problem
of practical manipulation (Is the device really fair?). Furthermore, it introduces an
element of choice into competition formats, further complicating the required model,
and practically yielding the problem of who (in case of a team) should make that choice
and bear the responsibilities associated with that choice. Given these problems, we
shall not adopt this solution, or any of the other solutions just mentioned.

The model developed in this paper simply models competitions as functions which
take as inputs the players competing and information about who beats who. The
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Can strategizing in round-robin subtournaments be avoided? 31

function returns the winner of the competition. Requirements like anonymity, indepen-
dence of irrelevant alternatives, etc. can readily be formulated in this model. Theorem 1
shows, however, that a function satisfying these constraints will not be strategy-proof.
This is the main result of this paper. A noteworthy feature of the proof of Theorem 1 is
that it involves the use of a computer program (see Appendix as online supplementary
material). At a certain point in the proof, the aim is to find which functions satisfy a
certain number of properties. Given a particular function, these properties are easy to
verify, but given that there are 48 functions to consider, a computer program is used
to carry out the verification automatically. By now, computer-assisted proofs have
become more common in mathematics, and Sect. 2 provides references to results and
literature in this area.

This paper starts by relating the model used and the results obtained to previous
models of tournaments in Sect. 2. In Sect. 3, the formal model for complex competition
formats is presented. The notion of monotonicity will be the formal analogue of our
informal notion of non-manipulability. Section 4 will introduce knockout and round-
robin competition formats, since these are the basic ingredients which make up more
complex competition formats like the ones used in Olympic games or the soccer
world cup. Section 5 then presents examples of more complex formats, both examples
which allow for strategic manipulation and examples which do not. Section 6, finally,
will present the main result of this paper, Theorem 1, which imposes definite limits
on any attempt to obtain strategy-proofness while using second-ranked round-robin
players.

2 Related work

The work in this paper makes use of tournaments which have been well-studied in
social choice theory. Laslier (1997) provides a comprehensive overview of the use of
tournaments in social choice theory. One of the earliest papers to consider tournament
solutions which select one or more elements from a tournament was by Moulin (1986).
His tournament model as well as the tournament model employed in this paper does not
allow for ties. Tournament solutions for tournaments which do allow for ties have been
considered by Peris and Subiza (1999). Rubinstein (1980) provides an axiomatization
of a particular tournament solution, the Copeland solution.

Besides social choice theory, also artificial intelligence and computer science have
contributed to our knowledge about tournaments. The computational complexity of
computing tournament solutions has been investigated by various authors, Hudry
(2009) provides a survey. The computational complexity of manipulating round-robin
and knockout tournaments is considered by Russell and Walsh (2009). Closest to the
results presented in this paper is the work of Altman et al. (2009). They also consider
the issue of strategic manipulation in tournaments, but consider a requirement they
call pairwise non-manipulability: a tournament solution is pairwise manipulable if two
alternatives can make one of them a winner by reversing the result of their match. When
coupled with Condorcet consistency, the requirement of pairwise non-manipulability
yields an impossibility result, but when Condorcet consistency is weakened to non-
imposition, they prove a possibility result which yields tournament solutions that also
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32 M. Pauly

satisfy monotonicity, i.e. non-manipulability as considered in this paper. Altman and
Klienberg (2010) extend this framework to randomized tournament solutions which
produce lotteries over alternatives as outcomes.

The work in this paper differs from these results in a number of ways. First, the
tournaments we employ do not allow for ties. Second, this paper uses tournaments to
construct more complex competition formats which are built up from various simple
tournaments. The aim is to be able to model and analyze real competition formats
as used in practical sports competitions such as the Olympic games. Examples will
be given in Sect. 5 and will typically consist of a number of different rounds and
combinations of knockout and round-robin phases. When formally modeled, such
complex competition formats will actually involve not one but multiple tournaments,
one per round, which may interact in various ways. This requires a more complex
mathematical model, which is what is developed here. Second, this paper focuses on
a specific problem of strategic manipulation that is a real problem in actual sports
competition, the problem of round-robin competitions where players deliberately lose
a game to become the second-ranked player. To the best of my knowledge, this problem
has not been addressed so far in the academic literature.

Finally, as mentioned above, the proof of Theorem 1 makes use of a computer pro-
gram. Probably the most famous proof where a computer was used is the proof of the
four-color theorem, proved in 1977 (Appel and Haken 1977; Appel et al. 1977). For
the proof of the four-color theorem, a computer was used to check whether each one
of 1,936 maps had a particular property. Similarly, in this paper, a computer program
is used to check which functions of the 65,536 possible ones satisfy a combination
of four properties. For a discussion of the history of mechanized proof and the philo-
sophical issues involved, the reader is referred to MacKenzie (2001). More recently,
Gonthier (2008) has provided a proof of the four-color theorem formulated in the Coq
formal system.

3 Tournaments and competition formats

In this section we will formally model competition formats by functions which take
as inputs the competing players (or teams) on the one hand and a tournament relation
expressing who beats who in a direct encounter on the other hand. As output, the
function returns again a player, e.g. the player who wins the competition, or the player
who wins the silver medal. Formally we work with a finite nonempty set of players or
teams X.

The notion of a tournament has been investigated in graph theory and social choice
theory (see e.g. Laslier 1997). A tournament is a complete asymmetric binary relation
over some set. Formally, a tournament over X is any set T ⊆ X × X such that (1)
∀x, y ∈ X, (x, y) ∈ T implies (y, x) �∈ T, and (2) ∀x, y ∈ X, if x �= y then
(x, y) ∈ T or (y, x) ∈ T . We shall sometimes write xT y for (x, y) ∈ T and refer to
this as “x beats y.” Alternatively, we will write T (x, y) for the winner of the match
between x and y, i.e., T (x, y) = x if xT y and T (x, y) = y otherwise. Note that this
implies that while (x, x) �∈ T for any T, we do have T (x, x) = x . Let TX refer to
the set of all tournaments over X.
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Can strategizing in round-robin subtournaments be avoided? 33

Let π : X → X be a permutation of X, i.e. a bijection onto X. We say that
tournaments T and T ′ are isomorphic under π iff for all x, y ∈ X, (x, y) ∈ T
iff (π(x), π(y)) ∈ T ′. T and T ′ are isomorphic iff they are isomorphic under some
permutation.

We now introduce the notions of monotonicity and modulo-identity for tourna-
ments. The notion of monotonicity is adopted from the tournament literature (see
Laslier 1997, def. 2.3.1.). Given two tournaments T and T ′ over X and an element
a ∈ X, we say that T ′ monotonically improves T for a, denoted as T ′ ≥a T, iff
∀x, y ∈ X, (1) if x �= a and y �= a then (x, y) ∈ T iff (x, y) ∈ T ′, and (2)
(a, x) ∈ T implies (a, x) ∈ T ′. Given two tournaments T and T ′ over set X and
some Y ⊆ X, we say that T and T ′ are identical for Y, denoted T =Y T ′, iff they
agree on everything in Y, i.e. ∀x, y ∈ Y we have (x, y) ∈ T iff (x, y) ∈ T ′. We shall
also write T =−a T ′ for T =X−{a} T ′ and say in this case that T and T ′ are identical
modulo a. Note the following relation between the two notions just introduced: if
T ′ monotonically improves T for a then T and T ′ are identical modulo a. In short,
T ′ ≥a T implies T ′ =−a T .

Given a set of players or teams X and tournaments TX , a competition format is
a function F : Xn × TX → X. The following properties of these functions will be
needed later: we say that F is independent of irrelevant alternatives (IIR, for short) iff
for all x1, . . . , xn ∈ X and all tournaments T and T ′ such that T ={x1,...,xn} T ′ we have
F(x1, . . . , xn, T ) = F(x1, . . . , xn, T ′). F is input-selecting iff for all x1, . . . , xn ∈ X
and T ∈ TX we have F(x1, . . . , xn, T ) ∈ {x1, . . . , xn}. We call F monotonic iff
for all a, x1, . . . , xn ∈ X and T, T ′ ∈ TX , whenever F(x1, . . . , xn, T ) = a and
T ′ ≥a T then F(x1, . . . , xn, T ′) = a. F is called anonymous, if whenever T and T ′
are isomorphic under π, we have π(F(x1, . . . , xn, T )) = F(π(x1), . . . , π(xn), T ′).
A competition format F of arity 2n is symmetric iff for all x1, . . . , x2n ∈ X and T ∈
TX we have F(x1, . . . , xn, xn+1, . . . , x2n, T ) = F(xn+1, . . . , x2n, x1, . . . , xn, T ).

Finally, we call F non-imposed iff for all x1, . . . , xn ∈ X and for all i ≤ n there is
some T ∈ TX such that F(x1, . . . , xn, T ) = xi .

On some occasions we will also make use of competition formats F : Xn ×
(TX )m → X that take multiple tournament arguments. The notion of monotonicity
is easily extended to this case: F is monotonic iff for all a, x1, . . . , xn ∈ X and
T1, . . . , Tm, T ′

1, . . . , T ′
m ∈ TX , whenever F(x1, . . . , xn, T1, . . . , Tm) = a and for all

i, T ′
i ≥a Ti , then F(x1, . . . , xn, T ′

1, . . . , T ′
m) = a.

Lemma 1 If |X | ≥ n+2 then any n-ary competition format (i.e., taking n players and
a tournament as inputs) which satisfies IIR and anonymity is input-selecting.

Proof Suppose F takes n players as arguments and satisfies IIR and anonymity and
suppose that |X | ≥ n+2. Suppose by reductio that F is not input-selecting, so we
have some tournament T and x1, . . . , xn, y ∈ X for which F(x1, . . . , xn, T ) = y
and y �= xi for all i. Now given the size of X we know there is a y′ ∈ X different from
x1, . . . , xn, y. Define function π : X → X such that π(y) = y′, π(y′) = y and for
all other x ∈ X we let π(x) = x . Let T ′ be the tournament isomorphic to T under
π. By anonymity, we must have F(x1, . . . , xn, T ′) = F(π(x1), . . . , π(xn), T ′) =
π(F(x1, . . . , xn, T )) = y′. But by IIR, we must also have F(x1, . . . , xn, T ′) =
F(x1, . . . , xn, T ) = y, a contradiction. 
�
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34 M. Pauly

Note that the lower bound on the set of players is a true lower bound: for |X | = n+1,

there are n-ary competition formats satisfying IIR and anonymity without being input-
selecting. To see this, consider the binary function G over X = {a, b, c} defined as
follows: G(x1, x2, T ) = x1 if x1 = x2, and otherwise we define G(x1, x2, T ) to be
the element of X not among the inputs. G is not input-selecting while satisfying IIR
and anonymity.

4 Basic competition formats

Arguably, the two most basic competition formats used in sporting events are
round-robin (all-play-all) and knockout (single-elimination). Let the function R1

n :
Xn × TX → X return the winner of a round-robin competition among the argu-
ments according to the given tournament. Formally, for Y ⊆ X, a ∈ X and
tournament T ∈ TX , the (Copeland) score of a in T restricted to Y is defined
as score(a, Y, T ) = |{b ∈ Y |aT b}|. Then we define the round-robin compe-
tition format by R1

n(x1, . . . , xn, T ) = xi iff i is the smallest index for which
score(xi , {x1, . . . , xn}, T ) ≥ score(x j , {x1, . . . , xn}, T ) for all j ≤ n. Note that
such a smallest index always exists, so R1

n is well-defined. The need to refer to the
smallest index arises because of the possibility of ties, i.e. there may be multiple players
beating the same number of opponents. It is easily verified that R1

n is monotonic, inde-
pendent of irrelevant alternatives and input-selecting. On the other hand R1

n is not sym-
metric due to the tie-breaking mechanism. Note also that R1

2(x1, x2, T ) = T (x1, x2).

When the arity of the function is clear from the context or arbitrary, we usually omit
it from the function, writing R1 instead of R1

n .

We will later also use the second-ranked player of a round-robin competi-
tion. For this purpose, let R2

n(x1, . . . , xn, T ) = xi iff there is some k such that
R1

n(x1, . . . , xn, T ) = xk with k �= i and i is the smallest index for which
score(xi , {x1, . . . , xn}, T ) ≥ score(x j , {x1, . . . , xn}, T ) for all j �= k. Note that
for n ≥ 2, such an i always exists, e.g., R2

2(a, a, T ) = R1
2(a, a, T ) = a. Note also

that R2 fails to be symmetric and also fails to be monotonic: let T = {(a, b)}, then
R2

2(a, b, T ) = b but R2
2(a, b, T ′) = a if T ′ = {(b, a)}. Intuitively, by winning

more matches, a silver medal winner may lose her silver medal (and instead win a
gold medal).

While round-robin competitions can involve an arbitrary number of players, knock-
out competitions are restricted to n = 2k players for k ≥ 1. Formally, we define the
knockout competition format K 1

n : Xn × TX → X recursively by repeated application
of round-robins as follows:

K 1
2 (x1, x2, T ) = R1

2 (x1, x2, T ) = T (x1, x2),

K 1
2 j+1

(
x1, . . . , x2 j+1, T

) = R1
2

(
K 1

2 j

(
x1, . . . , x2 j, T

)
, K 1

2 j

(
x2 j +1, . . . , x2 j+1 , T

)
, T

)
,

= T
(
K 1

2 j

(
x1, . . . , x2 j , T

)
, K 1

2 j

(
x2 j +1, . . . , x2 j+1 , T

))
,

for j ≥ 1. Thus, in the case of K 1
8 , the arguments x1, . . . , x8 are distributed over the

tree underlying the knockout competition as depicted in Fig. 1.
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Fig. 1 The knockout
competition format
corresponding to K 1

8

Fig. 2 A knockout competition
K 1

16 in abbreviated form

Note that K 1
n is independent of irrelevant alternatives and input-selecting for all

n. However, knockout competitions are not necessarily monotonic. Consider X =
{a, b, c, d}, tournament T = {(a, b), (b, d), (d, c), (d, a), (c, a), (c, b)} and the
knockout competition K 1

16(a, a, a, a, a, a, a, a, b, b, b, b, c, c, a, d) depicted
in an abbreviated form in Fig. 2.

According to T, a will be the winner of the competition and will be returned by
the function. Now consider T ′ which is just like T, except that (d, a) is replaced by
(a, d). Thus, T ′ ≥a T . But in spite of a winning more matches in T ′, it now fails to
win the competition as a whole, since the function now returns c. The reason is that
in T, a avoids meeting its nemesis c, but in T ′, due to winning against d, a faces c
and loses not only the match against c but also the competition as a whole.

The properties of round-robin and knockout competitions are summarized in
Lemma 2.

5 Strategizing in complex competition formats

This section will illustrate the problem of strategic manipulation in some complex
competition formats. As a first example, consider the competition format

F (x1, . . . , x8, T1, T2) = K 1
(

R1 (x1, x2, x3, x4, T1) , R2 (x5, x6, x7, x8, T1) ,

R1 (x5, x6, x7, x8, T1) , R2 (x1, x2, x3, x4, T1) , T2

)
,

under tournaments

T1 ⊇ {(x1, x3), (x1, x4), (x2, x1), (x2, x3), (x3, x4), (x4, x2)}
∪ {(x5, x6), (x5, x7), (x5, x8), (x6, x7), (x6, x8), (x7, x8)} ,

T2 ⊇ {(x1, x6), (x2, x5), (x2, x1), (x6, x2)}.

Given these tournaments, the two semi-finals pair x1 against x6 and x5 against x2,

resulting in F(x1, . . . , x8, T1, T2) = x2. But modifying T1 by simply reversing the
relationship between x2 and x4 yielding T ′

1, we have T ′
1 ≥x2 T1 and new semifinals
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x2 against x6 and x5 against x1, yielding F(x1, . . . , x8, T ′
1, T2) �= x2. Hence, this

example demonstrates that monotonicity can fail once second-ranked players of round-
robin tournaments are allowed to continue in a competition. The source of the problem
illustrated by the example is that by moving from second rank to first rank, x2 will
face in the semifinal a different opponent from the other group to which it may lose in
the knockout competition (even though that other opponent was ranked lower in the
other group). It was precisely the fear of this scenario which caused strategic behavior
in the badminton matches of the 2012 Olympics.

On first sight, it may seem that this problem of strategic manipulation can be solved
by replacing the second-stage knockout competition by a round-robin competition.
This, however, is not so. Consider function

F ′ (x1, . . . , x8, T1, T2) = R1
(

R1 (x1, x2, x3, x4, T1) , R2 (x5, x6, x7, x8, T1) ,

R1 (x5, x6, x7, x8, T1) , R2 (x1, x2, x3, x4, T1) , T2

)
,

under tournaments

T1 ⊇ {(x1, x3), (x2, x1), (x3, x2), (x3, x4), (x4, x1), (x4, x2)}
∪ {(x5, x6), (x5, x7), (x5, x8), (x6, x7), (x6, x8), (x7, x8)} ,

T2 ⊇ {(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x1, x6)}
∪ {(x4, x2), (x4, x3), (x4, x5), (x4, x6)}.

Given these tournaments, we have F ′(x1, . . . , x8, T1, T2) = x4. But modifying T1 by
reversing the relationship between x3 and x4 yielding T ′

1, we have T ′
1 ≥x4 T1 but also

F ′(x1, . . . , x8, T ′
1, T2) = x1, so monotonicity fails. With second-round round-robin,

the source of the manipulability is different from what we encountered with second-
round knockout. Now, the problem arises because when x4 moves from second rank
to first rank, the previously first-ranked alternative x3 moves out of the first two ranks
and is hence not present anymore for the second round-robin round. Instead, a new
alternative x1 moves into second place which was not present before in the second
round-robin and which defeats x4 to become the winner.

Both of the examples just presented pertain to situations where a second-ranked
player may move into first rank when winning honestly but chooses to remain in second
place. There is, however, also a possibility of manipulation for a first-ranked player
who by losing remains in first place but can change who becomes the second-ranked
player. Consider again the complex knockout function F considered earlier in this
section, and the following situation:

T1 ⊇ {(x2, x1), (x1, x3), (x1, x4), (x2, x3), (x4, x2), (x4, x3)}
∪ {(x5, x6), (x5, x7), (x5, x8), (x6, x7), (x6, x8), (x7, x8)} ,

T2 ⊇ {(x1, x6), (x1, x5), (x5, x2), (x4, x5), (x4, x1)}.
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Can strategizing in round-robin subtournaments be avoided? 37

Given these tournaments, we have F(x1, . . . , x8, T1, T2) = x1. But modifying T1 by
reversing the relationship between x1 and x2 yielding T ′

1, we have T ′
1 ≥x1 T1 but also

F ′(x1, . . . , x8, T ′
1, T2) = x4, so monotonicity fails. So in this case, if x1 strategically

loses against x2, this will keep x1 first-ranked in the round-robin group, but it changes
who continues on to the next round as a second-ranked player. By losing, x1 can make
sure that an easier opponent continues on to the next round, x2 rather than x4.

Since the commonly used complex competition formats are thus vulnerable to dif-
ferent kinds of strategic manipulation, the question arises which complex competition
formats can avoid manipulation and preserve monotonicity. Consider the new mix
function M : X4 × TX → X defined in Fig. 3. Intuitively, this function can be visual-
ized by the decision tree depicted in Fig. 4. There are various note-worthy features of
this function: the function is asymmetric, input-selecting, monotonic and satisfies IIR.

Fig. 3 The mix function M (where 1 indicates that the given tournament relation holds, 0 that it does not
hold)

Fig. 4 The mix function M
visualized as a decision tree
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The mix function can now be used to obtain complex competition formats that make
use of second-ranked players of round-robin tournaments. We define the cross-play
function Ci

j as follows:

Ci
j

(
x1, . . . , xi , xi+1, . . . , xi+ j , T

) = M

(
R1 (x1, . . . , xi , T ), R2 (x1, . . . , xi , T ) ,

R1 (
xi+1, . . . , xi+ j , T

)
, R2 (

xi+1, . . . , xi+ j , T
)
, T

)
,

where i, j ≥ 2. Note that this function can do with just one tournament argument,
since in the second round of the mix function, players will not play anyone they played
in the first round-robin round. As will be shown in Lemma 2, this function does satisfy
monotonicity, so it is an example of a competition format that uses second-ranked
round-robin players while preserving strategy-proofness. There are, however, two
problems with this function: first, as the decision tree in Fig. 4 shows, if matches take
place sequentially and if it comes to a game between x1 and y2, x1 has no incentive to
win the game, since its own success in no way depends on it. This does not contradict
strategy-proofness, as x1 has no incentive to lose the game, either, but it is certainly
not very desirable for a competition format. Second, and more importantly, the com-
petition format is asymmetric. This means that players in the first round-robin group
have a big advantage over players in the second group. x1 wins in eight cases, y1 only
in four, and x2 wins in three cases, whereas y2 only wins in one case. This raises the
question whether we cannot find a strategy-proof use of second-ranked round-robin
players which is symmetric. As Theorem 1 will show, the answer turns out to be
negative. The following lemma summarizes the properties of not just the cross-play
function, put also of the other functions we have encountered so far.

Lemma 2 The following table expresses the properties of various competition for-
mats, where 1 represents true and 0 false.

R1
n R2

n K 1
n M Ci

j

IIR 1 1 1 1 1

Input-selecting 1 1 1 1 1

Anonymous 1 1 1 1 1

Symmetric 0 0 1 0 0

Non-imposed 1 1 1 1 1

Monotonic 1 0 0 1 1

Proof Most of the properties are easily verified, and some have been proved already
earlier in this paper. A few comments on less obvious aspects of these proofs:

R1
n is not symmetric: consider R1

4(x1, x2, x3, x4, T ) where x4 is beaten by all other
players and x1T x2, x2T x3 and x3T x1. Then R1

4(x1, x2, x3, x4, T ) = x1 whereas
R1

4(x3, x4, x1, x2, T ) = x3.
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R2
n is not symmetric: consider R2

4(x1, x2, x3, x4, T ) where x1 beats all other play-
ers and x2T x3, x3T x4 and x4T x2. Then we have R2

4(x1, x2, x3, x4, T ) = x2 whereas
R2

4(x3, x4, x1, x2, T ) = x3.

Ci
j is monotonic: let a1 = R1(x1, . . . , xi , T ), a2 = R2(x1, . . . , xi , T ), b1 =

R1(xi+1, . . . , xi+ j , T ) and b2 = R2(xi+1, . . . , xi+ j , T ). Suppose further that
Ci

j (x1, . . . , xi+ j , T ) = c and that T ′ ≥c T . There are four cases to consider:

(i) c = a1: making a1 win more matches in the round-robin round will keep him
first-ranked, and M will also still return a1 if it wins more matches.

(ii) c = a2: this means that a2 wins against b1 in the second round. Now there are
two possibilities. Either a2 still remains second-ranked in the round-robin phase
under T ′, or it becomes first-ranked. If it becomes first-ranked, then simply by
beating b1, it will remain the winner also under T ′. If it remains second-ranked,
then the first-ranked player of the round-robin round must also remain unchanged,
including its tournament results. The only possible difference between T and T ′
is then that a2 may now beat b2 as well (whereas it did not do so in T ), but this
will keep a2 as the winner of the competition.

(iii) c = b1: this means that b1 in T wins against both a1 and a2, and making b1 win
more matches (in the round-robin phase) will not change this fact.

(iv) c = b2: this can only occur in one situation, where b2 beats both a1 and a2. If b2
remains second-ranked in T ′, also the round-robin winner will remain unchanged
and the relevant tournament relations in T ′ will be as in T . If b2 becomes first-
ranked in T ′, then since it wins both its matches against the other group it will
also be the winner of the competition under T ′. 
�

6 An impossibility result

The problem with the cross-play function is that since it is not symmetric it treats the
two round-robin groups differently. The following impossibility result shows, however,
that we cannot hope to do much better than that.

Theorem 1 If |X | ≥ 6, there is no function G : X4 × TX → X which is symmetric,
non-imposed, anonymous and IIR and for which the function

Hi
j

(
x1, . . . , xi , xi+1, . . . , xi+ j , TA, TB, T

)

= G

(
R1 (x1, . . . , xi , TA), R2 (x1, . . . , xi , TA) ,

R1 (
xi+1, . . . , xi+ j , TB

)
, R2 (

xi+1, . . . , xi+ j , TB
)
, T

)
,

is monotonic for all i, j ≥ 2.

Proof For a proof by contradiction, suppose there is such a function G. Note that by
Lemma 1, we know that G is input-selecting. The following four claims hold for all
pairwise distinct x1, x2, y1, y2, z ∈ X and T ∈ TX :
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Claim 1a: if G(x1, x2, y1, y2, T ) = x1 then G(x1, z, y1, y2, T ) = x1.

Claim 1b: if G(x1, x2, y1, y2, T ) = y1 then G(x1, x2, y1, z, T ) = y1.

Claim 2a: if G(x1, x2, y1, y2, T ) = x2 then G(x2, z, y1, y2, T ) = x2.

Claim 2b: if G(x1, x2, y1, y2, T ) = y2 then G(x1, x2, y2, z, T ) = y2.

We shall only prove claims 1a and 2a, the other two claims are proved analogously.
As for claim 1a, suppose G(x1, x2, y1, y2, T ) = x1 and consider tournaments TB =
{(y1, y2)} and TA = {(x1, z), (z, x2), (x2, x1)}. Then we have

G
(
R1 (x1, x2, z, TA), R2(x1, x2, z, TA), R1 (y1, y2, TB), R2(y1, y2, TB), T

)
,

equal to G(x1, x2, y1, y2, T ) = x1.Now consider T ′
A = {(x1, z), (z, x2), (x1, x2)}.

Note that T ′
A ≥x1 TA. Hence, since H is monotonic, we must have

G
(
R1 (

x1, x2, z, T ′
A

)
, R2(x1, x2, z, T ′

A

)
, R1(y1, y2, TB), R2(y1, y2, TB), T

)
,

equal to G(x1, z, y1, y2, T ) = x1 which proves claim 1a. As for claim 2a, suppose
G(x1, x2, y1, y2, T ) = x2, and consider the tournaments TB = {(y1, y2)} and TA =
{(x1, x2), (x2, z), (z, x1)}. Then we have

G
(
R1 (x1, x2, z, TA), R2(x1, x2, z, TA), R1(y1, y2, TB), R2(y1, y2, TB), T

)
,

equal to G(x1, x2, y1, y2, T ) = x2.Now consider T ′
A = {(x2, x1), (x2, z), (z, x1)}.

Note that T ′
A ≥x2 TA. Hence, since H is monotonic, we must have

G
(
R1 (

x1, x2, z, T ′
A

)
, R2(x1, x2, z, T ′

A

)
, R1(y1, y2, TB), R2(y1, y2, TB), T

)
,

equal to G(x2, z, y1, y2, T ) = x2 which proves claim 2a. In what follows, we will
use the following variants of these claims, together with a variant of the symmetry
condition: for all pairwise distinct x1, x2, y1, y2 ∈ X and T ∈ TX :

1a: ∀T ′ = {x1,y1,y2}T : if G(x1, x2, y1, y2, T ) = x1 then G(x1, x2, y1, y2, T ′) =
x1.

1b: ∀T ′ ={x1,x2,y1} T : if G(x1, x2, y1, y2, T ) = y1 then G(x1, x2, y1, y2, T ′)
= y1.

2a: ∀T ′ ={y1,y2} T such that for all i, x1T ′yi iff x2T yi : if G(x1, x2, y1, y2, T )=
x2 then G(x1, x2, y1, y2, T ′) = x1.

2b: ∀T ′ ={x1,x2} T such that for all i, y1T ′xi iff y2T xi : if G(x1, x2, y1, y2, T )

= y2 then G(x1, x2, y1, y2, T ′) = y1.

Sym: G(x1, x2, y1, y2, T ′) = π(G(x1, x2, y1, y2, T )), where π(x1) = y1, π(x2)

= y2, π(y1) = x1, π(y2) = x2 and aT b iff π(a)T ′π(b).

To verify this last claim, since T and T ′ are isomorphic under π, note that by
anonymity we have π(G(x1, x2, y1, y2, T )) = G(y1, y2, x1, x2, T ′) which by
symmetry equals G(x1, x2, y1, y2, T ′).
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As for the other four claims, we will prove only the variants of claims 1a and 2a.
As for variant 1a, suppose T ′ ={x1,y1,y2} T and G(x1, x2, y1, y2, T ) = x1. Now take
any x3 �∈ {x1, x2, y1, y2} and define tournament T ′′ such that T ′′ ={x1,x2,y1,y2} T and
for all z ∈ {x1, y1, y2}, x3T ′′z iff x2T ′z. By IIR, G(x1, x2, y1, y2, T ′′) = x1,

and by claim 1a, G(x1, x3, y1, y2, T ′′) = x1. But G is anonymous and satis-
fies IIR, so since T ′′ and T ′ are isomorphic wrt the relevant arguments, we have
G(x1, x2, y1, y2, T ′) = x1.

As for variant 2a, suppose T ′ ={y1,y2} T and x1T ′yi iff x2T yi for all i. Let
G(x1, x2, y1, y2, T ) = x2. Now take any x3 �∈ {x1, x2, y1, y2} and define tourna-
ment T ′′ such that for all z, x3T ′′z iff x2T ′z, and for all z, z′ ∈ {x1, x2, y1, y2}, zT ′′z′
iff π(z)T π(z′) where π(yi ) = yi and π(x1) = x2 and π(x2) = x1. Now by
anonymity and IIR, G(x2, x1, y1, y2, T ′′) = x1. Applying claim 2a, we have
G(x1, x3, y1, y2, T ′′) = x1 and by definition of T ′′, anonymity and IIR, we have
G(x1, x3, y1, y2, T ′′) = G(x1, x2, y1, y2, T ′).

Now consider any x1, x2, y1, y2 ∈ X which are pairwise distinct. Since G satisfies
IIR, the value of G(x1, x2, y1, y2, T ) will depend only on the six tournament pairs
concerning x1, x2, y1, y2. Hence, since G is input-selecting, there is a function g :
{0, 1}6 → {x1, x2, y1, y2} such that for all T we have

g (b1, b2, b3, b4, b5, b6) = G (x1, x2, y1, y2, T ) ,

where

b1 = 1 iff x1T x2,

b2 = 1 iff y1T y2,

b3 = 1 iff x1T y1,

b4 = 1 iff x1T y2,

b5 = 1 iff x2T y1,

b6 = 1 iff x2T y2.

Now we can translate the five earlier conditions into this new format, using the g
function, obtaining the following: for all b1, . . . , b6, c, c′, c′′ ∈ {0, 1}:

Condition 1a: if g(b1, . . . , b6) = x1 then g(c, b2, b3, b4, c′, c′′) = x1.

Condition 1b: if g(b1, . . . , b6) = y1 then g(b1, c, b3, c′, b5, c′′) = y1.

Condition 2a: if g(b1, . . . , b6) = x2 then g(c, b2, b5, b6, c′, c′′) = x1.

Condition 2b: if g(b1, . . . , b6) = y2 then g(b1, c, b4, c′, b6, c′′) = y1.

Symmetry: π(g(b1, . . . , b6)) = g(b2, b1, 1−b3, 1−b5, 1−b4, 1−b6).

Note that there are 4(26) = 464 > 1037 possible g functions to consider. Since this
is computationally infeasible, we will analyze the function space in stages. Consider
first the following functions g1, g2 : {0, 1}4 → {x1, x2, y1, y2}:

g1 (b3, b4, b5, b6) = g (1, 1, b3, b4, b5, b6),

g2 (b3, b4, b5, b6) = g (0, 0, b3, b4, b5, b6).
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The five conditions for g now yield the following conditions for the these two new
functions as consequences (for both i = 1 and i = 2): for all b3, . . . , b6, c, c′ ∈
{0, 1}:

Condition 1a: if gi (b3, b4, b5, b6) = x1 then gi (b3, b4, c, c′) = x1.

Condition 1b: if gi (b3, b4, b5, b6) = y1 then gi (b3, c, b5, c′) = y1.

Condition 2a: if gi (b3, b4, b5, b6) = x2 then gi (b5, b6, c, c′) = x1.

Condition 2b: if gi (b3, b4, b5, b6) = y2 then gi (b4, c, b6, c′) = y1.

Symmetry: π(gi (b3, b4, b5, b6)) = gi (1−b3, 1−b5, 1−b4, 1−b6).

Note that for both g1 and g2, we have 4(24) = 416 possible functions to
consider, but if we build symmetry into the functions from the start, we only
have 4(23) = 48 = 65, 536 functions to consider which is easily manage-
able by computers. A C-program checking which of the 65,536 possible sym-
metric functions satisfy the four conditions is provided in the Appendix (see
online supplementary material). It turns out that of the 65,536 symmetric func-
tions, 322 functions satisfy condition 1a and b and 348 functions satisfy condition
2a and b, but there are only two symmetric functions gα and gβ satisfying both
conditions:

gα (b3, b4, b5, b6) = x1 if b3 = 0 and y1 otherwise,

gβ (b3, b4, b5, b6) = y1 if b3 = 0 and x1 otherwise.

This means that for all b3, . . . , b6, c ∈ {0, 1} we have g(c, c, b3, b4, b5, b6) = x1
or g(c, c, b3, b4, b5, b6) = y1. The last step of our proof establishes that for
any b3, . . . , b6, c ∈ {0, 1} we have either g(c, 1−c, b3, b4, b5, b6) = x1 or
g(c, 1−c, b3, b4, b5, b6) = y1. So consider any b3, . . . , b6, c ∈ {0, 1}. It suffices
to consider the following two cases:

(i) g(c, c, b3, b4, b5, b6) = y1: then by condition 1b, g(c, 1−c, b3, b4, b5, b6)

= y1 and we are done.
(ii) g(c, c, b3, b4, b5, b6) = x1: then by condition 1a, g(1−c, c, b3, b4, b5, b6) =

x1. Furthermore, we must also have g(1−c, 1−c, b3, b4, b5, b6) = x1 (for
otherwise we would have g(1−c, 1−c, b3, b4, b5, b6) = y1, and by condition
1b, g(1−c, c, b3, b4, b5, b6) = y1, a contradiction). Again applying condition
1a we obtain g(c, 1−c, b3, b4, b5, b6) = x1.

Hence, we have shown that for all b1, . . . , b6 ∈ {0, 1} we have g(b1, . . . , b6) =
x1 or g(b1, . . . , b6) = y1. But this means that for any tournament T, we have
G(x1, x2, y1, y2, T ) = x1 or G(x1, x2, y1, y2, T ) = y1 which violates our assump-
tion of non-imposition, hence we have obtained a contradiction. 
�

In the remainder of this section, I shall comment on the necessity of the various
conditions involved in the result obtained. I shall start by considering the various
competition format conditions and afterwards I will comment on the size of the player
set X.

First, note that symmetry is not implied by the remaining conditions: the mix func-
tion M satisfies all conditions except symmetry (see Lemma 2). Second, monotonic-
ity is not implied by the remaining conditions: the standard knockout competition
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format G(x1, x2, y1, y2, T ) = K 1(x1, y2, y1, x2, T ) satisfies all conditions except
monotonicity (recall the discussion in Sect. 5). Third, non-imposition is not implied by
the remaining conditions: consider function G defined as G(x1, x2, y1, y2, T ) = x1
if x1T y1 and y1 otherwise. This function satisfies all conditions except non-imposition.
Fourth, IIR is not implied by the other conditions: consider the function G defined as
follows:

G (x1, x2, y1, y2, T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 if for all z ∈ X−{x2} we have x2T z (1),

y2 if for all z ∈ X−{y2} we have y2T z (2),

x1 if neither (1) nor (2) holds and x1T y1,

y1 if neither (1) nor (2) holds and y1T x1.

This function satisfies all conditions except independence of irrelevant alternatives.
Fifth, regarding anonymity, unfortunately the question whether there are any functions
satisfying all the conditions except anonymity remains open.

Finally a few remarks concerning the number of players needed for these
results, the size of X. The impossibility theorem is formulated for situations where
|X | ≥ 6. In terms of applicability, this lower bound is good enough since in
practice, a complex competition format using two or more round-robin groups
will only be used with at least six players, at least three players per group. For-
mally, Theorem 1 makes use of Lemma 1 which induces this lower bound. If
we add input-selection as an extra condition to Theorem 1, we can reduce the
lower bound to five players, for the proof of the theorem only makes use of the
monotonicity of H3

2 and H2
3 (the latter for conditions 1b and 2b) to obtain a

contradiction.
Also, we actually could have chosen a stronger but less elegant formulation of the

theorem referring explicitly to H3
2 and H2

3 rather than to all Hi
j . However, there is

nothing special about this pair: larger round-robin groups could have been used in the
proof, where additional arguments of the round-robin functions could have been filled
by dummy players. The pair H3

2 and H2
3 does, however, form the lower limit where

monotonicity becomes impossible: there are G functions satisfying all the conditions
of the theorem for which monotonicity of H2

2 is achievable. Consider, for instance,
the following function G∗:

G∗ (x1, x2, y1, y2, T ) =

⎧
⎪⎪⎨

⎪⎪⎩

x1 if x1T y1 and (x1T y2 or x2T y1 or x2T y2),

y1 if y1T x1 and (y1T x2 or y2T x1 or y2T x2),

x2 if y1T x1 and x2T y1 and x1T y2 and x2T y2,

y2 if x1T y1 and y2T x1 and y1T x2 and y2T x2.

Intuitively, a second-ranked player wins the competition only if it wins both its matches
against the other group and each first-ranked player wins exactly one match. If none
of the second-ranked players wins, then the winning first-ranked player is the one who
wins the match against the other. Note first that G∗ is non-imposed, input-selecting,
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anonymous, IIR and symmetric. Furthermore the function

H2
2 (x1, x2, y1, y2, TA, TB, T )

= G∗ (
R1 (x1, x2, TA), R2(x1, x2, TA), R1 (y1, y2, TB), R2(y1, y2, TB), T

)
,

is monotonic. The reason monotonicity is possible in this case is that the kind of
manipulation illustrated in the third (and second) example of Sect. 5 is impossible if
the round-robin group has only two players: if a player is first-ranked and wins more
matches, the second-ranked player can never be replaced by a third player, since there
are only two players in the group. This means that monotonicity is less demanding in
trivial round-robin groups.

7 Conclusions

To summarize, this paper has analyzed strategic manipulation in complex compe-
tition formats that are used in sports events like the Olympics or the soccer world
cup. In the beginning of this paper, the necessary mathematical notions were devel-
oped to analyze examples of such competitions, with monotonicity capturing the
notion of strategy-proofness. We looked in detail at the competition format that
produces a failure of monotonicity, a format that uses second-ranked players of
round-robin competitions. For this format, an alternative cross-play function was
proposed that does satisfy monotonicity. The disadvantage of this function was,
however, that it does not treat the two round-robin groups equally. As the impos-
sibility theorem showed, monotonicity and symmetry are in conflict with each
other.

How reasonable are the conditions the impossibility result imposes? The remarks
following Theorem 1 can help us to answer this question, since they discuss a num-
ber of competition formats which almost meet all the conditions. None of these
candidates seems desirable, however. A further option might be to allow for par-
tial functions, competition formats which do not always yield a winner. It can be
shown that if one is willing to accept that competitions fail to yield a winner in
a small number of cases, the other conditions of Theorem 1 can be met. Again,
it seems questionable, however, whether such a competition format is desirable in
practice.

This paper raises many further research questions concerning competition formats.
On the theoretical level, the open question remaining is the status of anonymity in
the impossibility theorem: is anonymity already implied by the other conditions, or
are there examples of non-anonymous competition formats which meet all the other
requirements? Going beyond the formal model of this paper, we might want to allow
for ties (as these are possible in many real-life competitions), and we might gen-
eralize competition formats to produce not players but lotteries over players. Also,
there are competition formats and competition properties we have not looked at in
this paper. An example of such a competition format is the so-called repechage
or double elimination contest where players who lose are moved into a repechage
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bracket and still maintain a small possibility to win (or at least obtain a bronze
medal). Such a competition format was used, e.g., for the Olympic Judo compe-
titions in 2012. Furthermore, while this paper has focused on strategy-proofness,
there are other important properties of competition formats. Neutrality is an exam-
ple of such a property: it expresses that a competition format provides equal entries
into the competition, in the sense that it does not matter for a player what start-
ing place in the competition the player is assigned to. In this sense, round-robin is
more equal than knockout, since starting places in round-robin groups only deter-
mine the order in which opponents are played but not the opponents themselves, in
contrast to knockout competitions. In general, this line of research is closely related
to the characterization of tournament solutions in social choice theory, but looking
at more complex solutions (in our terminology: competition formats) and possibly
also somewhat different (combinations of) properties. For instance, we might want a
competition format to be forgiving (losing one match does not eliminate the player
from the competition), or that it does not pair players against each other more than
once.

Finally, and maybe most interestingly, we might also decide to weaken our notion
of strategy-proofness. As was shown in Sect. 6, there are competition formats that
are symmetric and allow for a limited form of strategy-proofness, where all we
care about is that the two top-ranked players do not exchange places strategically.
In fact, the function G∗ introduced in that section would have avoided this kind
of manipulation as well as the Badminton scandal of the 2012 Olympics. How-
ever, as this paper has demonstrated in Sect. 5, competition formats also allow
for more subtle forms of strategic manipulation, and these are not avoided by
any reasonable competition format. This is the content of the impossibility result
obtained. Hence, the impossibility theorem can be seen as a a theoretical expla-
nation for why frequently used competition formats like the soccer world cup for-
mat which use second-ranked players of round-robin tournaments are strategically
manipulable.
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