

University of Groningen

The flapping flight of birds

Thielicke, William

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Thielicke, W. (2014). The flapping flight of birds: Analysis and application [S.I.]: [S.n.]

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

The Flapping Flight of Birds Analysis and Application

The work presented in this thesis was carried out at the Department of Ocean Ecosystems at the University of Groningen and at the Biomimetics-Innovation-Centre (BIC) at the Bremen University of Applied Sciences.

Printing of this thesis was supported by the Central Library, the Faculty of Mathematics and Natural Sciences of the University of Groningen, GUT and BeTe.

ISBN: 978-90-367-7241-9 (printed version) 978-90-367-7242-6 (electronic version)

The Flapping Flight of Birds

Analysis and Application

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Friday 31 October 2014 at 11.00 hours

by

William Thielicke

born on 23 June 1980 in Hamburg, Germany

Supervisors

Prof. A. G.J. Buma Prof. E. J. Stamhuis

Co-supervisor

Prof. A. B. Kesel

Assessment committee

Prof. H. Bijl Prof. J. L. van Leeuwen Prof. P. R. Onck *To Line Maye and Malia Luja – you are the best I have ever made.*

CONTENTS

I	General Introduction	3	
II	Digital Particle Image Velocimetry	25	
III	The Influence of Wing Morphology on the 3D Flow Pattern of a Flapping Wing at Bird Scale	63	
IV	The Effects of Wing Twist in Slow-Speed Flapping Flight of Birds: Trading Brute Force Against Efficiency	97	
v	Micro Air Vehicles – Linking Aerodynamics With Application	127	
VI	Reliable Force Predictions for a Flapping-wing Micro Air Vehicle: A 'Vortex-lift' Approach	155	
VI	i Using Bird Flight Modes to Enhance Overall Flapping Wing Micro Air Vehicle Performance	179	
VI	II SUMMARY AND CONCLUSIONS	205	
Ne	ederlandse Samenvatting en Conclusies	219	
Re	EFERENCES	235	
Acknowledgements			
Cι	jrriculum Vitae	254	

LIST OF ACRONYMS

Acronym	Explanation	Illustration
α	angle of attack	Figure 3.3
α_{eff}	effective angle of attack	Figure 4.4
α_{geo}	geometric angle of attack	Figure 4.4
α_{in}	inflow angle	Figure 4.4
α_{ind}	induced angle of attack	Figure 6.5
Γ_z	circulation around the spanwise axis	
Ebias	bias error	Figure 2.7
€ _{rms}	random error	Figure 2.7
μ	fluid dynamic viscosity	
ν	kinematic viscosity	
ρ	fluid density	
ρ_p	density of a particle	
σ_u	standard deviation of velocity estimate	Figure 5.2
Φ	excursion angle	Figure 3.3
Ω	vorticity tensor	
ω	angular velocity of the wing	
ω_z	vorticity around the spanwise axis	
3D	three-dimensional	
A	peak-to-peak amplitude of the wing	
a	acceleration	
A_{disk}	area swept by the rotor	
A_{vort}	area of the vortex core	
A_{wing}	total wing area	
Ar	area of wing element at radius r	
AR	aspect ratio	
b	wing span	
BET	blade-element theory	
с	chord length	Figure 3.1
С	correlation matrix	Figure 2.3
'c-'	0% cambered wing	Figure 3.2
		continued on next page

Acronym	Explanation	Illustration
C _{D_o}	drag coefficient at zero degrees angle of attack	
C _{L,max}	maximum lift coefficient	
C _{Lo}	lift coefficient at zero degrees angle of attack	
CD	drag coefficient	
CL	lift coefficient	
C _V	vertical force coefficient	
'c+'	10% cambered wing	Figure 3.2
CFD	computational fluid dynamics	
CLAHE	contrast limited adaptive histogram equalization	Figure 2.2
CMOS	complementary metal-oxide-semiconductor	
COT	cost of transport	Figure 1.1
CW	constant wave mode	
d	true displacement	Figure 2.8
D	drag	
Dind	induced drag	
d _{meas}	displacement measured by DPIV	Figure 2.8
do	drag at zero degrees angle of attack	
d _p	particle diameter	
D _r	drag of the wing element at radius r	Figure 6.5
DARPA	defense advanced research projects agency	
DCC	direct cross-correlation	Figure 2.4
DCEV	discriminant for complex eigenvalues	
DFT	discrete Fourier transform	Figure 2.4
DOF	degree of freedom	Figure 4.2
DPIV	digital particle image velocimetry	Figure 2.1
DPSS	diode pumped solide state	
E _{fw}	endurance of fixed wing aircraft	Figure 5.7
$E_{k_{min}}$	minimum kinetic energy	
ei	span efficiency	
Er	endurance of rotary wing aircraft	Figure 5.7
f	flapping frequency	
F _{tot}	total aerodynamic force	
F _H	horizontal force	Figure 6.5
F_V	vertical force	Figure 6.5
	conti	inued on next page

Acronym	Explanation	Illustration
FFTW	fastest fourier transform in the west	
GPU	graphics processing unit	
h	vertical distance of rotors in coaxial configuration	
Ι	moment of inertia	
IMU	inertial measurement unit	Figure 5.9
J	advance ratio	
k	reduced frequency	
K _p	constant of proportionality in potential-flow lift term	
K _ν	constant of proportionality in vortex lift term	
L	lift	
L/D	lift-to-drag ratio	
Lcirc	total ciculatory lift	
L' _{circ}	sectional circulatory lift at mid-downstroke	
L_{circ}/D_{ind}	ratio of circulatory lift to induced drag	
l _{max}	maximum dimension	
lo	lift at zero degrees angle of attack	
L _r	lift of the wing element at radius r	Figure 6.5
LEV	leading-edge vortex	Figure 1.8
LIC	line integral convolution	Figure 2.29
m _{air}	mass of accelerated air	
MAV	micro air vehicle	Figure 5.1
MEMS	microelectromechanical systems	Figure 5.9
n	rotational speed of the rotor	
Nd:YAG	neodym-yttrium-aluminium-garnet	
P _{iner}	inertial power	
PIPM	particle image pattern matching	
Q	Q-criterion	
r	radius of a wing element	
R	rotor radius	
Re	Reynolds number	
ROA	remotely operated aircraft	
RPV	remotely piloted vehicle	
S	rate-of-strain tensor	
S	distance between motor shafts	

continued on next page

Acronym	Explanation	Illustratio
`s`	standard wing	Figure 3.2
S _{vort}	circular path around vortex core	
St	Strouhal number	
Т	thrust	
t	time	
't-'	3% thick wing	Figure 3.2
t _{lower}	lower velocity threshold	
t _{upper}	upper velocity threshold	
't+'	15% thick wing	Figure 3.2
u	(local) flow velocity	
Ugust	instantaneous gust velocity	
Ujet	velocity of propeller jet	
U _{min}	minimum flight speed	Figure 5.4
Ue	speed of maximum endurance	Figure 5.3
Uf	free flow velocity / forward speed	Figure 1.2
U _p	particle velocity	
U _r	speed of maximum range	Figure 5.3
Us	velocity lag between fluid and particle	
UAV	unmanned aerial vehicle	Figure 5.1
ν	downwash	
v _{down}	vertical velocity downstream of the wing	
v_{tip}	mean wingtip velocity	
v _{up}	vertical velocity upstream of the wing	
v _{vert}	mean vertical wingtip velocity	
vr	effective velocity of wing element at radius r	Figure 6.5
v_t	tangential velocity	
VTOL	vertical take-off and landing	
W	weight	
w	disk loading	
w _{down}	spanwise velocity downstream of the wing	
Wup	spanwise velocity upstream of the wing	
z	spanwise position	