
 

 

 University of Groningen

Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1
promoter
Chen, Hui; Kazemier, Hinke G; de Groote, Marloes L; Ruiters, Marcel H J; Xu, Guo-Liang;
Rots, Marianne G
Published in:
Nucleic Acids Research

DOI:
10.1093/nar/gkt1019

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chen, H., Kazemier, H. G., de Groote, M. L., Ruiters, M. H. J., Xu, G-L., & Rots, M. G. (2014). Induced
DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids
Research, 42(3), 1563-1574. https://doi.org/10.1093/nar/gkt1019

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-05-2019

https://doi.org/10.1093/nar/gkt1019
https://www.rug.nl/research/portal/en/publications/induced-dna-demethylation-by-targeting-teneleven-translocation-2-to-the-human-icam1-promoter(f06d389a-9bcd-44cd-a8c4-4c9a6868cf65).html


Induced DNA demethylation by targeting Ten-Eleven
Translocation 2 to the human ICAM-1 promoter
Hui Chen1,2, Hinke G Kazemier1, Marloes L. de Groote1, Marcel H. J. Ruiters1,3,

Guo-Liang Xu2 and Marianne G. Rots1,*

1Epigenetic Editing, Department of Pathology and Medical Biology, University Medical Center Groningen,
University of Groningen, Hanzeplein1, 9713 GZ Groningen, The Netherlands, 2The State Key Laboratory of
Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang
Road, Shanghai 200031, China and 3Synvolux Therapeutics Inc., LJ. Zielstraweg 1, 9713 GX Groningen, The
Netherlands

Received June 24, 2013; Revised and Accepted October 7, 2013

ABSTRACT

Increasing evidence indicates that active DNA
demethylation is involved in several processes
in mammals, resulting in developmental stage-
specificity and cell lineage-specificity. The recently
discovered Ten-Eleven Translocation (TET)
dioxygenases are accepted to be involved in DNA
demethylation by initiating 5-mC oxidation.
Aberrant DNA methylation profiles are associated
with many diseases. For example in cancer,
hypermethylation results in silencing of tumor
suppressor genes. Such silenced genes can be
re-expressed by epigenetic drugs, but this
approach has genome-wide effects. In this study,
fusions of designer DNA binding domains to TET
dioxygenase family members (TET1, -2 or -3) were
engineered to target epigenetically silenced genes
(ICAM-1, EpCAM). The effects on targeted CpGs’
methylation and on expression levels of the target
genes were assessed. The results indicated
demethylation of targeted CpG sites in both pro-
moters for targeted TET2 and to a lesser extent for
TET1, but not for TET3. Interestingly, we observed
re-activation of transcription of ICAM-1. Thus, our
work suggests that we provided a mechanism
to induce targeted DNA demethylation, which facili-
tates re-activation of expression of the target genes.
Furthermore, this Epigenetic Editing approach is a

powerful tool to investigate functions of epigenetic
writers and erasers and to elucidate consequences
of epigenetic marks.

INTRODUCTION

Epigenetics is the study of heritable changes of gene
expression regulation without a change in the DNA base
sequence. Epigenetic marks, including DNA methylation
to form 5-methylcytosine (5-mC) and histone modifica-
tions, play an important role in, e.g. X chromosome
inactivation, retrotransposon silencing, genomic imprint-
ing and maintenance of epigenetic memory (1–4).
Although it was originally thought to be a stable epigen-
etic characteristic, cytosine methylation is a dynamic and
reversible process (5). 5-mC demethylation occurs in many
physiological processes, such as zygotic epigenetic
reprogramming, early embryonic development, somatic
cell reprogramming, removal of gene imprinting and
developing primordial germ cells (6–13). In addition,
genome-wide analysis of DNA methylation patterns in
pluripotent and differentiated cells at single-nucleotide
resolution indicated that DNA methylation can be
dynamically regulated during cellular differentiation
(14,15). These observations suggest the existence of a
mammalian enzymatic activity, capable of erasing or
modifying pre-existing DNA methylation patterns.
However, the mechanisms of active DNA demethylation
are still poorly understood (16).
Recently, 5-hydroxymethylcytosine (5-hmC) was

discovered as a new epigenetic mark, and suggested to
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be an intermediate in the process of active DNA
demethylation (17). 5-hmC is the product of 5-mC
hydroxylation, and was first discovered in phage DNA
in 1952 (18). Later, 5-hmC was found in the brain of
Rattus norvegicus, Mus musculus and Rana catesbiana
(19), although subsequent studies have failed to reproduce
these results (20). Recently, 5-hmC was reported to exist in
the vertebrate brain and in several other tissues (21–24).
Interestingly, although 5-hmC exists in mouse embryonic
stem (ES) cells at high levels, it decreases significantly after
ES cell differentiation (17,25), to rise again in terminally
differentiated cells, such as Purkinje neurons (22), which
suggests a significant biological role for 5-hmC in mam-
malian development.
In addition to this, the Ten-Eleven Translocation

(TET1, -2 or -3) family was identified as 5-mC
dioxygenases responsible for catalyzing the conversion
from 5-mC to 5-hmC, a process dependent on 2-
oxoglutarate and iron (II) (17,26,27). The discovery of
TET proteins and their biological function provides new
insights in 5-mC demethylation mechanisms and points to
5-hmC as an important intermediate in the 5-mC
demethylation process. Recent studies suggest that there
might be multiple pathways or mechanisms by which 5-
hmC and TET proteins regulate DNA methylation
dynamics and gene transcription. A possible mechanism
involves 5-hmC deamination by activation-induced
deaminase to generate 5-hydroxymethyluracil, which can
then be recognized and excised to generate an abasic site
by thymine-DNA glycosylase (TDG) (28). The lesion is
repaired through the incorporation of an unmethylated
C by the base excision repair machinery (Supplementary
Figure S1) (29). In addition, TET proteins can also
further oxidize 5-hmC to 5-formylcytosine and 5-
carboxylcytosine, which can subsequently be recognized
and excised by TDG in vitro and in vivo, again resulting
in incorporation of unmodified C by the base excision
repair machinery (Supplementary Figure S1) (21,30–32).
Furthermore, a recent study showed that carboxy cytosine
may also be directly decarboxylated by an unknown de-
carboxylase present in mouse ES cells (Supplementary
Figure S1) (33). Taken together, these studies suggest
that the initial oxidation of 5-mC to 5-hmC by the TET
family is a prerequisite for the subsequent demethylation
processes, regardless of how the final steps are mediated,
to complete the process of DNA demethylation (30,31,34).
Because many diseases are associated with aberrant

DNA hypermethylation profiles (35–37), the removal of
methylation marks to modulate gene expression in a
gene-targeted way (Epigenetic Editing) would offer a
novel approach in biomedical research to develop
targeted epigenetic interventions (38). Although enzymes
removing certain histone methylation marks have been
well identified in the past decade (39), true DNA
demethylation enzymes are currently unknown. In this
study, we set out to demonstrate that TET proteins
function as effective DNA demethylation inducers.
Towards this aim, TET enzymes were fused to two differ-
ent DNA binding zinc fingers (ZFs), designed to bind an
18-bp sequence in the promoters of either the InterCellular
Adhesion Molecule-1 (ICAM-1) or Epithelial Cell

Adhesion Molecule (EpCAM). Previously, we demon-
strated that these epigenetically silenced model genes
could be re-expressed from their genomic loci by targeting
a transient activation domain VP64 fused to these ZFs
(40,41). In the current article, the ICAM-1- and EpCAM-
targeting ZFs were fused to the catalytic domains (CDs)
of TET1, -2 or -3 to evaluate their ability to induce TET-
mediated DNA oxidative demethylation. On one hand,
this targeting strategy provides the possibility to further
study the molecular mechanisms in the DNA demethyla-
tion process. On the other hand, we provide a mechanism
to induce targeted gene demethylation, which together with
other editing approaches of histone marks might result
in re-activation or upregulation of expression of the
target genes.

MATERIALS AND METHODS

Plasmid construction

Mouse TET1CD, -2CD and -3CD were amplified from
plasmid pcDNA3-Flag-TET1CD, -TET2CD or
-TET3CD (31) with Phusion Hot Start II High-Fidelity
DNA Polymerase (Thermo Scientific, Leon-Rot,
Germany) using forward and reverse primers introducing
MluI and PacI restriction sites at the 50 and 30 end,
respectively. These amplification products were inserted
into pMX-ZFB-VP64-IRES-GFP [encoding the ZF
recognizing the EpCAM promoter fused to a tetramer of
Herpes Simplex Virus Viral Protein (VP) 16 (VP64)] (41)
modified to include a MluI site. Using restriction enzymes
MluI (Thermo Scientific) and PacI (New England
Biolabs), the amplification product was inserted down-
stream of the ZFP by sticky-end ligation with T4 ligase
(Thermo Scientific). To obtain pMX-CD54-IRES-GFP
fusion constructs, the ZFB was replaced with the CD54
(originally named CD54-opt31) ZF (recognizing the
ICAM-1 promoter; kindly provided by C.F. Barbas III,
the Scripps Institute, La Jolla, CA, USA) (42) using the
SfiI restriction enzyme. The enzymatically inactive pMX-
CD54-TET1CD mutant and pMX-CD54-TET2CD
mutant were obtained with site-directed mutagenesis on
wild-type pMX-CD54-TET1CD and pMX-CD54-
TET2CD, respectively (Supplementary Figure S2). Each
zinc finger-effector domain (ZF-ED) construct contains a
nuclear localization signal and a terminal hemagglutinin
(HA) decapeptide tag. We verified all polymerase chain
reaction (PCR)-cloned constructs by DNA Sanger
sequencing (Baseclear, Leiden, The Netherlands).

Cell culture

The packaging cell line human embryonic kidney
HEK293T and human ovarian cancer cell line A2780
were cultured in Dulbecco’s Modified Eagle’s Medium
(BioWhittaker, Walkersville, MD, USA) supplemented
with 10% fetal bovine serum, 2mM L-glutamine and
50 mg/ml gentamicin sulfate. Cells were cultured at 37�C
in a humidified 5%carbon dioxide -containing atmosphere.
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Retroviral transductions

HEK293T cells were transfected with retroviral vector
pMX-IRES-GFP encoding the ZF-ED, together with the
accessory plasmid pMDLg/pRRE and packaging plasmid
pMD2.G using a standard calcium-phosphate protocol to
produce retroviral particles (as described previously) (43).
As a control, parallel transfections were performed with
the empty pMX plasmid. Host cells A2780 were seeded
with a density of 2� 105 cells in T25 flasks or 6.75� 105

cells in T75 flasks. Forty-eight and 72 h after transfection,
viral supernatants were supplemented with fetal bovine
serum and 5 mg/ml polybrene (Sigma, St Louis, MO,
USA) and used to transduce the A2780 cells, with the
respective ZF-ED constructs, ZF only and empty vector.
Seventy-two h after the last transduction, cells were har-
vested for sorting of GFP-positive cells, analysis of ZF-
ED protein expression, genomic DNA extraction for sub-
sequent pyrosequencing and total RNA extraction.

Detection of ZF-ED fusion protein expression by
immunoprecipitation and western blot

For the immunoprecipitation assay, one T25 flask of
infected A2780 cells was lysed in RIPA buffer (25mM
Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% sodium dodecyl sulfate, Thermo
Scientific), microcentrifuged for 10min at 4�C (14000�g)
and the supernatant was transferred to a new tube.
Then, 0.75-mg protein A magnetic beads (Life,
Bleiswijk, The Netherlands) were incubated with rabbit
polyclonal anti-HA tag antibody (Novus Biologicals,
Cambridge, UK) at room temperature for 30min.
Supernatants were added and rotated at 4�C overnight.
Immunoprecipitates were collected and washed four
times with RIPA buffer. Proteins in the immunopre-
cipitates were analysed by standard western blotting.
After blotting, the membranes were blocked 1 h with 5%
dried milk in TBS supplemented with 0.1% Tween-20
(TBST). Then, the blot was incubated with mouse mono-
clonal anti-HA tag antibody (Covance, Rotterdam, The
Netherlands) at 4�C overnight, followed by detection with
horseradish peroxidase-conjugated secondary rabbit anti-
mouse and swine anti-rabbit antibodies (Dako, Glostrup,
Denmark). Visualization was done using the Pierce ECL2
chemoluminescence detection kit (Thermo Scientific,
Rockford, USA).

Detection of transduction efficiency by flow cytometry

To evaluate the transduction efficiency of A2780 ovarian
cancer cells by pMX-ZF-ED-IRES-GFP constructs, fluor-
escence-activated cell sorting (FACS) analysis for GFP
expression was performed. A2780 cells were harvested
72 h after transduction, washed three times with cold
phosphate buffered saline, resuspended in phosphate
buffered saline and GFP expression was analyzed using
a BD FACSCalibur flow cytometer (Becton Dickinson
Biosciences, San Jose, CA, USA).

Target gene mRNA expression by quantitative real-time
PCR

Total RNA from both untreated and transduced cells was
extracted using the RNeasy plus mini kit (Qiagen) and 1 mg
was used for subsequent cDNA synthesis with random
hexamer primers using the RevertAid cDNA synthesis kit
(Fermentas). ICAM-1, EpCAM and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) expression was
quantified using 10 ng cDNA, Rox enzyme mix (Thermo
Scientific) and Taqman gene-specific primer/probes
(ICAM-1: Hs00164932_m1; EpCAM: Hs00158980_m1,
Applied Biosystems; GAPDH: Supplementary Table S1,
Eurogentec) for 40 cycles with ABI ViiA7TM real-time
PCR system (Applied Biosystems, Carlsbad, CA, USA).
GFP expression was quantified using 10 ng cDNA,
Absolute QPCR SYBR Green ROX mix (Thermo
Scientific) and gene-specific primers (Supplementary
Table S1) for 40 cycles with ABI ViiA7TM real-time PCR
system (Applied Biosystems, Carlsbad, CA, USA). Data
were analyzed with ViiA7 RUO software (Applied
Biosystems) and expression levels relative to GAPDH
were determined with the formula 2��Ct. Fold increase in
gene-expression compared with controls was calculated
with the formula 2���Ct. Samples for which no amplifica-
tion could be detected were assigned a Ct value of the total
number of PCR cycles.

Methylation analysis by bisulfite sequencing and
pyrosequencing

For DNA methylation analysis of the target regions,
genomic DNA was extracted with Quick-gDNATM

MiniPrep kit (D3007, Zymo Research via Baseclear) and
bisulfite converted using EZ DNA Methylation-Gold Kit
(Zymo Research) following the manufacturer’s protocol
(alternative 2). Bisulfite-converted DNA was amplified
with nested PCR using specific primers. The PCR
products were gel extracted using the DNA Extraction
Kit (Qiagen) and cloned into pCR 2.1 vectors (TA
cloning kit, Invitrogen), and individual clones were
sequenced by Baseclear using M13 primers.
Five and three CpG sites in the target region of ICAM

and EpCAM promoter were selected for quantitation
of methylation, respectively. Bisulfite-converted DNA
(10–20 ng) was amplified by PCR in a 25-ml reaction
using the Pyromark PCR kit (Qiagen). Pyrosequencing
was performed according to the manufacturer’s guidelines
with a specific sequencing primer on the Pyromark Q24
MD pyrosequencer (Qiagen). Analysis of the percentage
of methylation at each CpG was determined using
Pyromark Q24 Software (Qiagen). Bisulfite-specific
primers and the pyrosequencing primer information are
presented in Supplementary Table S1.

Genome-wide hydroxymethylation level detection by DNA
dot-blot

Genomic DNA samples were denatured using denatur-
ation buffer (0.4mM NaOH, 10mM EDTA) for 10min
at 100�C. Samples were rapidly chilled for 5min on wet ice
and then spotted on nitrocellulose membranes (BioRad,
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Veenendaal, The Netherlands). The membrane was baked
at 80�C for 1 h and then blocked in 5% dried milk in
TBST for 1 hour at room temperature. The membranes
were then incubated with 1:8000 dilution of polyclonal
rabbit anti-5-hmC (Active Motif, La Hulpe, Belgium)
or 1:1000 dilution of monoclonal mouse anti-5-mC
(Eurogentec, Maastricht, The Netherlands) overnight at
4�C. After three rounds of washing with TBST, mem-
branes were incubated with 1:2000 dilution of horseradish
peroxidase-conjugated anti-rabbit or anti-mouse IgG
secondary antibody, respectively. The membranes were
then washed with TBST, and visualization was done
using the Pierce ECL2 Western Blotting Substrate
(Thermo Scientific).

Detection of hydroxymethylation levels at the target
region by hydroxymethyl-DNA immunoprecipitation

Genomic DNA (4mg in 450 ml TE) was sonicated to yield a
fragment distribution of 300–1000 bp, and denatured by
10min incubation at 100�C. Samples were rapidly chilled
on wet ice. Then, 45 ml (10%) of denatured sample was
saved as input, and the remaining sample was treated with
45 ml of 10� IP buffer (100mM sodium phosphate at pH
7.0 [mono and dibasic], 1.4M NaCl, 0.5% Triton X-100)
and 1 mg of 5-hmC (Active Motif) or 5-mC (Eurogentec)
antibody. Samples were incubated overnight at 4�C with
gentle shaking. Then, 40 ml of magnetic beads (Dynabeads
Protein A; Invitrogen) in 1� IP buffer was added to each
sample to allow magnetic separation of the antibody
bound DNA from the unbound DNA. Samples were
incubated for 1 h at 4�C with rotation. Beads were col-
lected with a magnet and washed three times with
1000ml of 1� IP buffer for 10min at room temperature
with rotation. Beads were collected and resuspended in
250ml of elution buffer (50mM Tris at pH 8.0, 10mM
EDTA, 0.5% sodium dodecyl sulfate) and 10 ml proteinase
K (20mg/ml; Roche Applied Science) and incubated for
1.5 h at 50�C with constant shaking. Finally, beads were
removed using the magnet. Input and sample DNA was
purified using the QIAquick PCR Purification Kit
(Qiagen), elution volume of 40 ml of ddH2O.
Subsequently, 10 ng of input or 5-hmC (or 5-mC)–

enriched DNA was used in 20-ml qPCR reactions (in trip-
licate), each with 1� SYBR Green PCR Master Mix
(ABI), 0.5mM forward and reverse primers and water.
Reactions were run on an ABI ViiA7TM real-time PCR
system (Applied Biosystems) using standard cycling
conditions. Fold enrichment was calculated as 2��Ct,
where �Ct=Ct (5-hmC enriched)�Ct (input). Primer
sequences are provided in Supplementary Table S1.

Detection of hydroxymethylation at single-base resolution
for target CpG sites by combining oxidative bisulfite
treatment and pyrosequencing

DNA oxidative procedure as described in the article by
Booth et al. (44) was followed here. In summary, 800 ng
of genomic DNA and 50 ng synthetic double-stranded
DNA (a CpG site modified by methyl or hydroxymethyl
group, respectively, Supplementary Table S2) were
denatured in 0.05M NaOH (total volume 24 ml) for

30min at 37�C. The reaction was then snap cooled on ice
for 5min, then 1 ml of a KRuO4 (Alpha Aesar) solution
(15mM in 0.05M NaOH) was added and the reaction
was held on ice for 1 h, with occasional vortexing. The
reaction was purified with a mini quick spin oligo column
and followed by bisulfite treatment and pyrosequencing as
described earlier.

Statistics

All transduction experiments were performed independ-
ently for three times in triplicate. Data were analyzed
using Student’s t-tests (one-tailed). Data were considered
to be statistically significant if *P< 0.05, **P< 0.01 and
***P< 0.001. Data are expressed as mean±S.D.

RESULTS

Induced hydroxymethylation in A2780 ovarian cancer cells
by TET family members

Because most cultured, immortalized tumor cells display
reduced 5-hmC levels (24,45,46), we first investigated
whether TET dioxygenases CDs actually were able to
induce hydroxymethylation in A2780 cells by ectopic
overexpression of untargeted TET1, -2 or -3. All three
TET dioxygenase members induced high levels of
hydroxymethylation in A2780 ovarian cancer cells, as
shown by DNA dot-blot (Supplementary Figure S3A).
These genome-wide effects did not affect DNA methyla-
tion status or expression levels of our target genes ICAM-
1 and EpCAM (Supplementary Figure S3C, D and E).

ICAM-1-targeted DNA demethylation

To explore the possibility of inducing targeted
demethylation by TET family members, an ICAM-1-tar-
geting ZF (CD54) was fused to mouse TET1, -2 or -3 CD
or to the transient activation domain VP64 to obtain ZF-
ED fusion proteins (Figure 1A). ZF-ED fusion protein
expression was confirmed by immunoprecipitation
followed by western blot (Figure 1B). Although expression
levels for TET-fusion proteins were much lower than
observed for CD54-VP64 or CD54-noED, bands were
detected at the expected sizes, with CD54-TET1CD
being more efficiently expressed than CD54-TET2CD.
To determine if and which CpG sites could be
demethylated in the ICAM-1 promoter region after
expression of CD54-VP64 or CD54-TET1CD, bisulfite
sequencing was performed. Compared with untreated
cells, cells treated to express CD54-VP64 or CD54-
TET1CD demonstrate demethylation for CpG #10–14
(Supplementary Figure S4A). As no DNA demethylation
was observed for CpGs located further downstream, CpG
#10–14 were selected as target sites for quantitative
analysis of methylation levels in single-base resolution
by pyrosequencing (Figure 1).

For pMX-CD54-noED-transduced cells, a significant
demethylation was observed for the ZF binding site
(CpG #10: 60.0±6.0%, P< 0.01; CpG #11:
60.8%±4.2%, P< 0.01) compared with the untreated
cells (CpG #10: 80.8±0.7%; CpG #11: 83.3±2.2%)
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Figure 1. ICAM-1-targeted DNA demethylation. (A) Schematic representation of targeted DNA demethylation in ICAM-1 promoter by epigenetic
editing. The binding sites of the ZF in the promoter of ICAM-1 are depicted, and a magnification of the target region and the actual position of each
selected CpG from the transcription start site (target CpG sites are numbered #10–14, with #10 and #11 located within the ZF binding region). The
purple area represents the ZFP binding site. Gray ovals represent the ZF modules, and the red ovals represent the epigenetic effector domain. A six
ZFP is fused to candidate epigenetic effector domains or to the transcription activator VP64. The candidate effector domains are shown in the lower
right portion of the panel: the transcription activator VP64 as the well-known positive control and the CDs of the mouse Ten-Eleven Translocation
proteins (TET1, -2 and -3). Rectangular boxes display the functional domains as explained in the key box. (B) Protein expression of ZF fusion
constructs in A2780 host cells. Upper panel: conventional western blot could only detect ZF-VP64 and ZF-only (ZF-noED); middle panel: HA-tag
immunoprecipitation followed by western blot detected all ZF fusion constructs; lower panel: beta-actin was used as an input control. (C)
Quantitative analysis of the methylation levels of target CpG sites in ZF binding region by pyrosequencing after treatment with the ICAM-1-
targeted candidate demethylation effector domains in unsorted and sorted A2780 ovarian cancer cells. (D) Quantitative analysis of the methylation
levels of target CpG sites in effector domain-targeted region by pyrosequencing after treatment with the ICAM-1-targeted candidate demethylation
effector domains in unsorted and sorted A2780 ovarian cancer cells. (E) Examination of 5-hydroxymethylcytosine levels at ICAM-1 promoter target
region in unsorted A2780 ovarian cancer cells transduced to express CD54-TET1 or CD54-TET2CD. Quantitative PCR was performed on A2780
genomic DNA immunoprecipitated using anti-5-mC antibody (MeDIP) or anti-5-hmC antibody (hMeDIP) to evaluate the relative 5-hmC and 5-mC
levels (IP/input) at the ICAM-1 promoter. pMXempty serves as a negative control. (F) Quantitative sequencing analysis of methylation and
hydroxymethylation levels of target CpG sites at single-base resolution by combining oxidative bisulfite treatment and pyrosequencing in sorted
A2780 ovarian cancer cells transduced to express CD54-TET1 or CD54-TET2CD.

Nucleic Acids Research, 2014, Vol. 42, No. 3 1567

 at U
niversity L

ibrary on Septem
ber 30, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


(Figure 1C). For pMX-CD54-VP64-transduced cells, a
significant demethylation was observed for all target
CpG sites (CpG #10: 69.7±4.3%, P< 0.01; CpG #11:
66.8±1.7%, P< 0.001; CpG #12: 58.5±1.0%,
P< 0.001; CpG #13: 55.2±1.3%, P< 0.05; CpG #14:
61.2±3.8%, P< 0.05) compared with the untreated
cells (CpG #12: 68.7±0.8%; CpG #13: 61.8±0.7%;
CpG #14: 66.7±0.3%) (Figure 1C and D).
Although A2780 cells were readily transducible

with pMX-CD54-VP64 and CD54-noED (86±4% and
89±3% GFP-positive cells, respectively), CD54-
TET1CD, -TET2CD, -TET3CD as well as pMXempty
showed a low efficiency of transgene expression (ranging
from 5±2% GFP-positive cells for pMXempty to
15±3% GFP-positive cells for pMX-CD54-TET1CD)
(Supplementary Figure S5A). To enrich for cells express-
ing the ZF-EDs, the cells transduced to express ZF-
TET1CD,-TET2CD or -TET3CD and cells transduced
with pMXempty were sorted based on GFP expression
before analysis. The results showed similar GFP mRNA
expression levels for cells transduced to express CD54-
TET1CD or -TET2CD, in sorted GFP-positive as well
as in unsorted cells (Supplementary Figure S5B).
For sorted pMXempty-transduced cells, no demethyl-

ation on any of the target CpG sites was observed
compared with the untreated unsorted cells (Figure 1C
and D). Also for sorted pMX-CD54-TET3CD-transduced
cells, no significant demethylation was observed for CpG
#10–14 sites compared with the pMXempty-transduced
cells (Figure 1C and D). Interestingly, for sorted
pMX-CD54-TET1CD-transduced cells, a significant
demethylation was observed for CpG #10 and #13 sites
(CpG #10: 77.0±1.0%, P< 0.05; CpG #13:
58.0±1.0%, P< 0.05) compared with the pMXempty-
transduced cells (CpG #10: 80.2±0.3%; CpG #13:
60.7±1.3%) (Figure 1C and D). For sorted pMX-CD54-
TET2CD-transduced cells, a significant demethylation was
observed for CpG #11 (75.7±2.5%, P< 0.05), located in
the ZF binding region, and also for CpG #12 (from
67.5±2.0% for pMX to 60.3±1.7% for TET2,
P< 0.05), #13 (from 60.7±1.3% for pMX to 55.3±
2.7% for TET2, P< 0.05) and #14 (from 65.7±1.3% for
pMX to 61.5±2.5% for TET2, P< 0.05), located in
the ED target region (Figure 1C and D). To investigate
whether hydroxymethylation occurs during the
demethylation process on the targeted CpG sites, we used
hydroxymethyl-DNA immunoprecipitation (hMeDIP)
combined with real-time PCR. However, compared with
cells transduced with pMXempty, we could not detect an
increase in the level of hydroxymethylation in the ICAM-1
promoter of unsorted A2780 cells after treatment with
CD54-TET1CD or CD54-TET2CD (Figure 1E). As
an alternative, we used pyrosequencing after oxidative
bisulfite treatment to detect hydroxymethylation at sin-
gle-base resolution for target CpG sites. The results
indicated that compared with the unoxidized sample,
there was no decrease in the level of methylation on the
targeted CpG sites in sorted cells transduced to express
CD54-TET1CD or -TET2CD after oxidation treatment
(Figure 1F), despite the fact that we could easily detect
a significant increase in hydroxymethylation of our

artificially oxidized hmC control double-stranded DNA
(Supplementary Figure S6B).

Active DNA demethylation-induced ICAM-1 gene
expression

To determine whether the observed demethylation effects
were indeed caused by the catalytic activity of the TET
enzymes, we constructed catalytic inactive mutants
(Figure 2, Supplementary Figure S2A and B and
Supplementary Figure S3). Although mutant TET
variants were expressed to similar levels compared with
their wild-type counterparts (Figure 2A, Supplementary
Figure S2C, Supplementary Figure S3B and
Supplementary Figure S5C and D), they were severely
crippled in inducing genome-wide hydroxymethylation
(Supplementary Figure S2D). Upon expressing the differ-
ent CD54-fusions proteins in a separate set of experi-
ments, again demethylation was observed for CD54-
TET2 (and for CD54-TET1 on #13), whereas no
demethylation was induced by either TET mutant on the
target CpGs (#12–14) (Figure 2C). The observed
demethylation for CpG#11 is in line with the effect of
the binding of the ZF DNA binding domain (DBD), as
also observed for CD54-noED (Figure 1C and 2B).

To investigate whether the TET2-induced active DNA
demethylation was able to induce target gene transcrip-
tion, we investigated ICAM-1 mRNA levels in treated
A2780 cells by quantitative real-time PCR (qRT-PCR).
The positive control pMX-CD54-VP64 significantly
induced the transcription of ICAM-1 (457-fold±76,
P< 0.01) (Figure 2D). Interestingly, we also observed a
small but significant increase of ICAM-1 transcription
after expression of CD54-TET2 (2.0-fold±0.42,
P< 0.05), but not for CD54-TET2CD mutant
(Figure 2D). For CD54-TET1CD or -TET3CD, no
expression modulation was detected (Supplementary
Figure S4B).

EpCAM-targeted DNA demethylation

Then we set out to check whether targeted TET2CD
could also induce demethylation on another target
gene. We chose EpCAM, which is known to be
hypermethylated and silenced in A2780 cells (47). An
EpCAM-targeting ZF (ZFB) (41) was fused to mouse
TET2 CD or to the transient activation domain VP64.
For three CpG sites located 30 to the ZF binding region,
pyrosequencing primers could be developed (Figure 3A).
Significant demethylation was detected in sorted cells
expressing ZFB-TET2CD for the CpG #19 site (from
93.8±1.7% for pMX to 88.3±3.2% for TET2,
P< 0.05), which is located directly adjacent to the 3

0

side of the ZF binding site, compared with pMXempty
(Figure 3B). This demethylation was not observed for
CpG #17 and #18 (Figure 3B). Interestingly, cells
transduced to express ZFB-VP64 also showed demethyl-
ation, but only for CpG #18 (from 92.6±1.6% for
untreated to 88.7±2.3% for ZFB-VP64, P< 0.05)
(Figure 3B), despite a high efficiency of infection (data
not shown). In contrast to the data obtained for
ICAM-1, we did not observe re-activation of EpCAM
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transcription by ZFB-TET2 (Figure 3C), but also not for
ZFB-VP64, which is in line with our previous report (41).
So from these data we can conclude that induction of
target gene expression might be obtained by targeted
TET2, but that the activation of transcription is depend-
ent on the location of the demethylated target CpG sites
in the target gene promoter.

Genome-wide DNA demethylation effects by targeted
TET-fusions

To address genome-wide effects of our approach, DNA of
treated (sorted) cells was analyzed by dot-blot staining:
both CD54-TET1CD and CD54-TET2CD could induce
genome-wide hydroxymethylation (Figure 4A). To
provide some further insights into the extent of
hydroxymethylation, LINE-1 hMeDIP was performed
after overexpression of untargeted TET1CD in HEK293
cells. As LINE-1 sequences are highly repeated human
retrotransposon sequences constituting about 17% of the
human genome (48), aspecific genome-wide demethylation

levels would be directly reflected by lower DNA methyla-
tion levels in these repetitive elements. hMeDIP analyses
could clearly detect hydroxymethylation in HEK293
cells on LINE-1 by untargeted TET overexpression
(Figure 4B). Despite this seemingly permissiveness of
LINE-1 elements to TET-induced modulation, no actual
DNA demethylation could be detected by quantitative
pyrosequencing of the three core CpGs in the elements
(Figure 4C). Also no DNA demethylation was detected
for the three core CpG sites of the LINE-1 promoter
after treatment with either of the targeted candidate
effector domains (Figure 4D).

DISCUSSION

In this study, we induced active DNA demethylation by
gene-targeting ZFs fused to TET2, and to a lesser extent
by ZF-TET1, but not by ZF-TET3. For ICAM-1, the
induced loss of DNA methylation in A2780 ovarian
cancer cells was associated with a slight increase in gene

Figure 2. Active DNA demethylation-induced ICAM-1 gene expression. (A) Protein expression of ZF fusion constructs in A2780 host cells. Upper
panel: conventional western blot could only detect ZF-VP64; middle panel: HA-tag immunoprecipitation followed by western blot detected ZF-
Tet2CD as well as catalytically inactive ZF-TET2CD mutant; lower panel: beta-actin was used as an input control. The results are presented as two
biological independent experiments for each ZF-ED fusion construct. (B) Quantitative analysis of the methylation levels of target CpG sites in ZF
binding region by pyrosequencing after treatment with catalytically inactive CD54-TET1CD and CD54-TET2CD mutant in unsorted and sorted
A2780 ovarian cancer cells. (C) Quantitative analysis of the methylation levels of target CpG sites in effector domain-targeted region by
pyrosequencing after treatment with catalytically inactive CD54-TET1CD and CD54-TET2CD mutant in unsorted and sorted A2780 ovarian
cancer cells. (D) The analysis of activation of ICAM-1 gene transcription by qRT-PCR after treatment with catalytically inactive CD54-TET2CD
mutant in unsorted and sorted A2780 ovarian cancer cells. Total RNA was isolated, and reverse transcription and qPCR were carried out to assess
the expression levels relative to GAPDH.
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expression. To our knowledge, this report is the first to
actually induce TET-mediated DNA demethylation at
a hypermethylated site of interest, and describes an inter-
esting approach for further studying the mechanism of
TET-induced DNA demethylation in the endogenous
chromatin contexts. Moreover, the approach will open
up new avenues to induce sustained re-expression of
epigenetically silenced target genes, including tumor
suppressor genes.
As already reported by us (43) and others (49), we

observed that the ZF-VP64-induced upregulation of gene
expression was associated with significant demethylation
on the targeted CpG sites in the promoter. Interestingly,
here we also report a similar significant DNA
demethylation at the ZF binding site (#10, 11) for ZF-
only. The observed demethylation at the binding site
might reflect inaccessibility of the DNA or competition
with Dnmt1, due to steric hindrance by ZF binding, as
both the ZF-only and the ZF-VP64 constructs are ex-
pressed at high levels. As no DNA demethylation was
detected for ZF-only for the other CpGs (#12, 13, 14),
and as VP64 is a small domain (7.4 kDa), the VP64-
associated demethylation might also be secondary to the

re-activation of ICAM-1 expression. However, bisulfite
sequencing revealed that demethylation was limited to
the targeted 5 CpGs. In this respect, it is also interesting
to note that the TET2-induced DNA demethylation in
sorted cells is similar to the VP64-associated demethyl-
ation in unsorted cells, despite the fact that the expression
induction was only 2.0-fold compared with 457-fold for
VP64. Moreover, the induced demethylation at the ZF
binding site was less for CD54-TET1CD and CD54-
TET2CD compared with CD54-VP64 and ZF-only,
reflecting the lower expression level of the large TET-
fusions per cell. Importantly, DNA demethylation and/
or an effect on gene expression were not observed for
the catalytically inactive TET2 mutant. All together our
data demonstrated that TET2 and to a lesser extent TET1
induce active DNA demethylation, and that the TET2-
induced expression of the gene is not via an indirectly
recruited component.

Indeed, apart from the enzymatic activity of the TET
family proteins, it was demonstrated that TET proteins
might also exert functions independently of their catalytic
activity. Helin and colleagues demonstrated that TET1
associates and colocalizes with the Sin3a co-repressor

Figure 3. EpCAM-targeted DNA demethylation. (A) Schematic representation of targeted DNA demethylation in EpCAM promoter by epigenetic
editing. The binding sites of the ZFs in the promoter of EpCAM are depicted, and a magnification of the target region and the actual position of
each selected CpG from the transcription start site (target CpG sites are numbered #19, #18 and #17). The purple area represents the ZFP binding
site. Gray ovals represent the ZF modules, and the red ovals represent the epigenetic effector domain. (B) Quantitative analysis of the methylation
levels of CpGs in EpCAM promoter by pyrosequencing after treatment with the EpCAM-targeted candidate demethylation effector domains in
unsorted and sorted A2780 ovarian cancer cells. (C) The analysis of activation of EpCAM gene transcription by qRT-PCR after treatment with the
EpCAM-targeted candidate demethylation effector domains in unsorted and sorted A2780 ovarian cancer cells. Total RNA was isolated, and reverse
transcription and qPCR were carried out to assess the expression levels relative to Gapdh.
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complex in 293T and mouse ES cells (50). Importantly,
they observed upregulation of TET1 target genes on
TET1 knockdown in DNMT triple-knockout ES cells
in which both 5-mC and 5-hmC modifications are
absent (50). These results suggest that TET1 might
repress gene transcription independent of its catalytic
activity. Similarly, two recent studies showed that TET2
recruits O-linked B-N-acetylglucosamine (O-GlcNAc)
transferase (OGT) (51,52), resulting, e.g. in histone2B
O-GlcNAcylation in mouse ES cells (52), which has been

reported to positively regulate transcription (53). Besides
TET2, TET3 also interacts with OGT, indicating that
TET3 might also target OGT to chromatin for gene tran-
scription regulation (51,52). The absence of effect of TET3
in our system could be due to different characteristics of
TET3 compared with TET2, including different tissue
distribution (10,54,55), as well as catalytic activity
(Supplementary Figure S3A) (26). In addition, the
cloned CD of TET3CD was larger than the ones for
TET1CD and TET2CD; this might explain the even

Figure 4. Genome-wide DNA demethylation effects by targeted TET-fusions. (A) Fusion of the TET1 and -2 CDs to the ICAM-1-targeting DNA
binding domains CD54 did result in genome-wide induction of hydroxymethylation. DNA dot-blot assays were performed with genomic DNA
isolated from unsorted and sorted A2780 ovarian cancer cells transduced to express pMX-CD54-TET1 or -2CD. (B) 5-mC and 5-hmC levels at
human long interspersed nuclear element-1 (LINE-1) in HEK293T cells transfected with pcDNA-TET1 CD. Quantitative PCR was performed on
genomic DNA immunoprecipitated using anti-5-mC antibody (for MeDIP) or anti-5-hmC antibody (for hMeDIP) to evaluate the relative 5-hmC and
5-mC levels (IP/input) at the LINE-1. Genomic DNA from HEK293T cells transfected with pcDNAempty serves as a negative control (C)
Quantitative analysis of the methylation levels of core CpG sites in LINE-1 promoter by pyrosequencing after treatment with the untargeted
candidate demethylation effector domains TET1 and -2CD as well as catalytically inactive TET1 and -2CD mutant in A2780 ovarian cancer
cells. (D) Quantitative analysis of the methylation levels of core CpG sites in LINE-1 promoter by pyrosequencing after treatment with the
ICAM-1- and EpCAM-targeted candidate demethylation effector domains in unsorted and sorted A2780 ovarian cancer cells. The results are
shown as the mean methylation of three CpG sites.

Nucleic Acids Research, 2014, Vol. 42, No. 3 1571

 at U
niversity L

ibrary on Septem
ber 30, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

up
triple 
to
see also 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1019/-/DC1
catalytic domain
http://nar.oxfordjournals.org/


lower expression level of TET3, as a large transgene size
might hamper successful production of viral particles as
well as efficient integration into the host genome.
Moreover, a large effector domain size might also suffer
from a decrease in efficiency of accessing the chromatin
target site. All together, these considerations suggest that
compared with TET1, TET2 exists in different complexes,
which might explain our observed differences in gene
re-activation between TET1 and TET2, and require
further investigations.
In contrast to the data obtained for ICAM-1, we

observed that targeting of ZFB-VP64 led to a significant
demethylation only for CpG site #18 in the EpCAM
promoter, close to the ZF binding site. This inefficient
DNA demethylation is in accordance with the lack of
induction of gene expression, which might be explained
by the higher degree of hypermethylation on target CpG
sites of the EpCAM promoter versus the ICAM-1
promoter in these cells. Indeed, also ZFB-VP64 failed to
induce gene expression in these cells (47). Despite the
repressive EpCAM chromatin context at this side, TET2
was able to demethylate CpG #19, and this finding has
important implications for modulation of genes where
single CpGs are known to dramatically affect gene expres-
sion, e.g. for p53 (56).
As the earlier discussed pyrosequencing data might

underrepresent the actual effects of the enzymes, we set
out to directly detect induced hydroxymethylation.
Unfortunately, the T4-Beta-glucosyltransferase assay
requires a CCGG site for analysis, which is too far down-
stream from the current ZF binding site to provide
insights. Alternatively, we used hMeDIP to analyze the
hydroxymethylation level of the targeted area. Because
this method requires the presence of several
hydroxymethylated CpG sites in one DNA fragment, it
is likely that the efficiency of induced hydroxymethylation
is not enough to allow the enrichment of DNA fragment
in our study. However, also by using oxidative bisulfite
pyrosequencing (44), we could not detect 5-hmC, despite
5-hmC being easily detected in our artificially oxidized
hmC control DNA. As this study is the first to interrogate
the function of targeted TET at a hypermethylated site, no
information is available about the lifetime of 5-hmC
within heterochromatin. Also based on its low abundance
in most somatic (cancer) cells, it might be likely that
5-hmC is rapidly converted to 5-formylcytosine,
5-carboxylcytosine, e.g. by the targeted TET2 and/or
excised by, e.g. TDG.
Currently, many diseases, including cancer, have been

associated with epimutations (57,58), and epigenetic
marks are being developed as diagnostic or prognostic
markers (59–61). Importantly, epigenetic marks are re-
versible, providing new avenues for therapeutic interven-
tion, and some epigenetic drugs are currently approved for
use in the clinic for treatment of hematological
malignancies (62–64). To limit associated unwanted
aspecific effects, while fully exploiting the reversibility of
epimutations, epigenetic writers or erasers can be targeted
to specific genes by engineered DNA sequence-specific tar-
geting proteins (38). Using the Nuclear factor kB (NF-kB)
DNA binding domain, targeted DNA demethylation was

induced by TDG, a T/G mismatch repair enzyme (65),
confirming previous studies that TDG plays a role in the
DNA demethylation process (28,31,66). In that study,
targeted TDG resulted in reduction in methylation levels
of 5–10% on the target CpG sites, and an increase in gene
expression (65). Together with that study, our study indi-
cates that relatively inefficient DNA demethylation might
be sufficient to initiate gene expression re-activation. As
observed for, e.g. DNA methylation of p53, methylation
of just one CpG can be sufficient for silencing (56), sug-
gesting that the location of DNA demethylation is likely
important. Towards the goal of specifically targeting a
genomic locus, various classes of DBDs can be engineered,
such as designer ZF proteins (ZFPs), as used in the current
study. Such ZFPs have been fused to transcription
activating or repressive domains to form artificial tran-
scription factors, which recruit other proteins to induce
(43) or repress (67) the expression of the targeted gene.
Fusion of epigenetic writers to ZFPs might provide
an approach with potentially more stable gene expression
modulation (68–70). Similarly, there are studies report-
ing on designer Triplex Forming Oligos conjugated with,
e.g. DNA methyltransferases (71) and pyrrole-imidazole
polyamides conjugated with, e.g. histone deacetylase
inhibitors (72).

In other reports, we have employed Epigenetic Editing
(the targeted rewriting of epigenetic marks) to achieve
downregulation of endogenous genes (68–70). This is
the first report where an epigenetic enzyme fused to an
engineered DNA binding domain was targeted to an
endogenous gene of interest, resulting in upregulation
from an epigenetically silenced locus. Although the
level of upregulation was low, the approach might be
further improved to facilitate endogenous target gene
re-expression, while minimizing genome-wide effects. To
further increase specificity, other approaches are being
investigated, including the split-enzyme approach (73) or
by constructing cripple mutants (71). Furthermore, the
endogenous gene targeting strategy achieved through
Epigenetic Editing is uniquely suited to investigate
functions of epigenetic writers and erasers and to elucidate
consequences of epigenetic marks at any given chromatin
environment, providing insights in gene expression regula-
tion mechanisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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