

 University of Groningen

Dynamic Rule-Based Reasoning in Smart Environments
Degeler, Viktoriya

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Degeler, V. (2014). Dynamic Rule-Based Reasoning in Smart Environments [S.l.]: [S.n.]

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/dynamic-rulebased-reasoning-in-smart-environments(4a91c00f-ee9a-4f73-87ca-6aa4a1fe2ee5).html

Dynamic Rule-Based Reasoning
in Smart Environments

Viktoriya Degeler

ISBN: 978-90-367-7286-0

ISBN-Electronic: 978-90-367-7285-3

Printed by PrintSupport4U / www.printsupport4u.nl

Cover design by Elena Tarasova

Cover image ©itestro - Fotolia.com

Dynamic Rule-Based Reasoning
in Smart Environments

Proefschrift

ter verkrijging van de graad van doctor aan de

Rijksuniversiteit Groningen

op gezag van de

rector magnificus prof. dr. E. Sterken

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

maandag 29 september 2014 om 14.30 uur

door

Viktoriya Degeler

geboren op 1 augustus 1984

te Charkov, Oekräıne

Promotor

Prof. dr. M. Aiello

Copromotor

Dr. A. Lazovik

Beoordelingscommissie

Prof. dr. Krzysztof Apt

Prof. dr. Michael Beigl

Dr. Amedeo Cesta

To Ukraine,

my Motherland

Contents

Acknowledgements xi

1 Introduction 1

1.1 Reasoning in Smart Environments 2

1.2 A case of a smart environment: the GreenerBuildings project 6

1.3 Thesis Scope and Organization . 8

1.4 Publications . 13

2 Related Work 15

2.1 Smart Environments . 15

2.2 Context Awareness . 17

2.3 Context Inconsistency . 19

2.4 Constraint Satisfaction in Smart Environments 20

2.5 Dynamic Constraint Satisfaction . 21

2.6 Scheduling in Smart Environments 22

3 Architecture pattern for context-aware smart environments 25

3.1 Architecture Overview . 27

3.1.1 Physical Layer . 29

3.1.2 Ubiquitous Layer . 30

3.1.3 Reasoning Layer . 33

3.1.4 User Layer . 35

3.2 Operational Flows . 37

3.2.1 Environment-generated . 37

3.2.2 User-generated . 38

vii

Contents

3.2.3 System-generated . 38

3.3 Challenges . 39

3.4 Case Studies . 40

3.4.1 MavHome . 41

3.4.2 SmartLab . 42

3.4.3 Smart Homes for All . 44

3.4.4 GreenerBuildings . 45

4 Dynamic Constraint Reasoning in Smart Environments 47

4.1 Rule Satisfaction in Smart Environments 48

4.2 Environment Definition as CSP . 49

4.3 Rule Transformations . 51

4.4 Dynamic Dependency Graph . 53

4.5 Evaluation . 59

4.5.1 Architecture . 59

4.5.2 Living Lab . 62

4.5.3 Performance . 66

5 Interpretation of Inconsistencies via Context Consistency Dia-

grams 69

5.1 System model . 70

5.2 Context consistency diagram . 72

5.2.1 Context . 72

5.2.2 Context consistency diagram 74

5.3 Calculation of probabilities . 77

5.3.1 CCD Example . 80

5.4 Maintaining CCD . 81

5.4.1 CCD complexity . 85

5.5 Evaluation . 86

5.5.1 Living Lab Description . 86

5.5.2 CCD implementation . 87

5.5.3 Environment model . 88

5.5.4 Results . 90

6 Reduced Context Consistency Diagrams for Resolving Data In-

consistencies 97

6.1 Reduced context consistency diagram 97

6.2 RCCD maintenance . 101

6.3 RCCD reasoning . 104

viii

Contents

6.3.1 Unfolding of RCCD to CCD 104

6.4 CCD vs RCCD complexity . 105

6.5 Evaluation . 107

6.5.1 Sensors description . 110

6.5.2 Interdependencies rules . 111

6.5.3 System’s run . 112

6.5.4 Results . 113

6.5.5 Performance . 114

7 Policy-Based Resource Scheduling 117

7.1 Scheduling optimization problem . 118

7.2 Policies definition . 121

7.3 Scheduler Core . 124

7.3.1 Feasibility check . 126

7.3.2 Alternatives check . 127

7.4 Evaluation . 128

7.4.1 Economic savings . 129

7.4.2 Energy Savings . 132

7.4.3 Discussion on System Performance 132

7.5 Digression: Scheduler Service Interface for

Clouds . 135

8 Conclusions 139

Bibliography 153

Samenvatting 155

ix

Acknowledgements

The date of my defense comes closer. As I am sitting here in Cardiff, where a new

chapter of my life recently started, it is fascinating to look back over another life

chapter that is about to be completed, the time of the PhD studies in Groningen,

the time that started with my first working day as a new PhD student of the

Distributed Systems group, and ended four years and two months later, with the

internal thesis defense tryout that marks the final preparations of a PhD student

who is about to defend.

I am deeply grateful to my supervisors, Alexander Lazovik and Marco Aiello,

who guided me though the fascinating, unparalleled and sometimes puzzling ex-

perience of the PhD research.

Alexander Lazovik has everything PhD students can hope for in their direct

supervisor. When I am thinking about stating here all accounts of his help and

guidance, I quickly give up and regard this as simply impossible to list. His help

is invaluable in every result and every paper I had over the course of this PhD. He

is always there to discuss a new research idea or critically look at existing ones.

Even when I was ready to throw away parts of my work as useless, he was the one

who could spend hours, discussing with me the applicability of them, being able

to see many points of interest I overlooked, and reigniting my passion to continue

the research.

Marco Aiello is always ready to give a wise guidance when further direction

is unclear. His broad views and timely advice helped me many times to choose a

better course of actions, and many times things would have been so much harder

without his knowledge and experience. He always carefully considers not only

the content of one’s own research, but also its place within the whole research

community. I have learned much from Marco.

xi

Acknowledgements

Research is almost never done alone. I would like to thank everyone who shared

parts of this journey with me. I was lucky to have co-authors with extremely diverse

knowledge. It is marvelous to see the results that a good collaboration can bring.

Over the years of my PhD studies, my co-authors included Alexander Lazovik,

Marco Aiello, Ilc̆e Georgievski, Tuan Anh Nguyen, Andrea Pagani, Doina Bucur,

Faris Nizamic, Francesco Leotta, Massimo Mecella, Rosario Contarino, Luis Ignacio

Lopera Gonzalez, Mariano Leva, Paul Shrubsole, Silvia Bonomi, Oliver Amft, and

Rix Groenboom.

Without any doubt, the research group of a PhD student has enormous impact

on the quality of the time spent during their PhD years, and surely on the quality

of the thesis itself. I consider myself very lucky to be a part of such lively and

diverse group as is the Distributed Systems. I would like to thank all people from

the group for being there and sharing our adventures together: on oberseminars,

on Schiermonnikoog retreats, on group meetings, on all our off-hour activities.

The group has had many members over the years: Mahir Can Doğanay, Elie El-

Khoury, Eirini Kaldeli, Ando Emerencia, Andrea Pagani, Pavel Bulanov, Heerko

Groefsema, Ehsan Ullah Warriach, Saleem Anwar, Ilc̆e Georgievski, Tuan Anh

Nguyen, Faris Nizamic, Fatimah al-Saif, Nick van Beest, Doina Bucur, Alexander

Lazovik, and leading it, Marco Aiello. It amazes me to see how the group changes

when a new person joins, always bringing a new unexpected sparkle with them. Or

when a fellow PhD student moves on, taking away a part of the group’s memory

and character. And yet, I truly feel the connection with every person who has

been a part of our group. I remember, Marco once said that if you have been a

member of the group, you always remain a group member, wherever you are now.

I guess, this is what they call a distributed system. I have had an amazing four

years and two months in our everchanging group, and I want to thank each and

every one person of the group for this! And to those who are now in the midst of

their journey, good luck with the thesis writing!

An extra mention is reserved to my office mates, Eirini Kaldeli and Fatimah al-

Saif. I remember our conversations, exchange of ideas, our laughs and even silent

times full of work immersion. I appreciate Eirini for being an older PhD mate

and inviting me to be a paranymph at her defense. I am amazed by openness and

cheerfulness of Fatimah.

I would like to respectfully thank the reading committee of the thesis, Krzysztof

Apt, Michael Beigl, and Amedeo Cesta, for their time and efforts in evaluating this

dissertation.

My special thanks goes to people who helped me in the final moments of the

thesis preparation. I would like to thank Ando Emerencia for giving his time to

xii

Acknowledgements

translate the abstract of the thesis to Dutch. My paranymphs Ilc̆e Georgievski and

Tuan Anh Nguyen not only shared much of research work and publications with

me, but also agreed to stand with me on the front line of the defense, and I am

truly grateful for it.

I want to thank to Esmee Elshof, Ineke Schelhaas and Desiree Hansen, our

secretary team who provided the much needed administrative support and advice.

I remember with joy the time of my internship in the Sapienza University of

Rome. I would like to thank Massimo Mecella for supervising my work there.

He provides a great guidance and support to his own PhD students, and I was

happy to be a part of his group during my time in the University of Rome. I

would like to thank Francesco Leotta for our fruitful collaboration that resulted

in a joint publication. And also to all the people who made my time in Rome

brighter: Riccardo De Masellis, Alessandro Russo, Andrea Marrella, Donatella

Firmani, Marco Ruzzi, Jonas Neivelt.

There were many more who played important roles in my life during the times of

living and working in Groningen, in the University and outside of it. It is almost im-

possible to mention everyone, yet all have my memories and my thanks for making

the life more interesting and full: Aree Witoelar, Kerstin Bunte, Petra Schneider,

Ioannis Giotis, George Azzopardi, Charmaine Borg, Ahmad Waqas Kamal, Dan

Tofan, Ben Lewis Evans, Alzbeta Talarovicova, Elena Lazovik, Alexander Solovyov,

Oleg Pidsadnyi, Olena Palaguta, Antoni Gostynski, Dmitrijs Milajevs, Nick Ruiz,

Jenn Ruiz, Renato Higa, Ralf van den Broek, as well as everyone from our Improv

group and Ralf’s boardgames gatherings.

The unfortunate consequence of doing your work in a foreign country is the

necessity of being away from your family. But no matter where I am, I always know

that I have support of my parents, Oleksandr Tarasov and Valentyna Tarasova, and

I feel that they are never too far away. My father Oleksandr is the one who first

showed me the mesmerizing world of programming and computer science. He is

also the one responsible for my earliest hacking experience, when I taught myself to

break computer passwords to be able to play videogames outside of allowed hours

at the age of nine. My mother Valentyna supported me in many adventurous ideas,

and it is extremely reassuring to know that I can always talk to her during harder

hours of my life, and receive support, advice, and understanding.

With my dear sister, Elena Tarasova, we not only shared the time of our many

games as children, but also remain close now. She is a person with whom I can

always share the joys and sorrows. I look with delight at her many artist skills,

and it is always very exciting to see how the mathematical background of mine

complements the artistic one of hers. She is the one who designed the cover of this

xiii

Acknowledgements

thesis.

It is customary to finish the acknowledgements with the one’s closest person,

and I am not the one to break this rule. In my heart and in my life, Andrii, my dear

husband, takes the first and the greatest place. We came to Groningen together,

and together we lived the Groningen chapter, sometimes joyous, sometimes rough

and sad, sometimes rewarding, sometimes difficult. Yet difficulties we overcame. I

cannot imagine doing this PhD without Andrii’s support. And at the end of every

our chapter, as always, we encounter these words: To be continued. . .

Viktoriya Degeler

Cardiff

August 25, 2014

xiv

Chapter 1

Introduction

On one winter morning a family is woken up by the alarm clock. The house is

already prepared by the Smart Home system. The boiler that was turned off for

the night, started heating water about 15 minutes prior to this, and the coffee

machine is turned on to prepare a cup of coffee.

As it is an early winter morning, it is still pitch black outside when inhabitants

wake up, therefore the artificial lights are turned on in rooms with someone inside

to provide enough light for people to do their morning tasks. But while inhabitants

are busy with their usual morning routine, it is gradually getting brighter outside.

The artificial lights are gradually dimmed in response, so that the total light level

stays the same over time.

Barbara sits to read her morning newspaper, and the desk lamp is automatically

turned on to provide optimal reading conditions. David starts to check his e-mails,

therefore the artificial lights near the PC screen are dimmed and the window blinds

are automatically closed to avoid reflections on the screen. Several minutes later

David finishes his task and leaves the PC. There is a problem however, which David

does not know about: a presence sensor that detects his presense in front of the

screen started to behave unreliably lately. The sensor readouts still claim that

David sits in front of the PC. Thankfully, the Smart Home system can use the

readouts of other sensors to verify the situation. Other sensors show the absense of

the pressure on the chair, no typing sounds, or PC controls manipulations. Even

though the situation is ambiguous for the Smart Home, the calculated probability

of David’s leaving is higher as several other sensors all consistently support it.

Therefore the system reacts by turning off the screen to conserve energy, and

opening window blinds again. The reliability status of all contradicting sensors is

lowered, but the presence sensor is being hit the most, as it contradicts to all other

sensors that are consistent with each other As such situations already happened

a couple of times, the Smart Home system generates a warning about the sensor,

so that people will be able to call a technician or to change the unreliable sensor

themselves.

After consulting inhabitants’ agendas, the Smart Home system gets the time

2 1. Introduction

when the last person should leave the house. The heating is turned off twenty

minutes before this time, to produce the biggest energy saving without hindering

occupants’ comfort. However, the temperature and air quality conditions are mon-

itored in real time, and if something suddenly changes, a person stays at home

longer than planned, or the temperature is about to drop below comfortable levels

earlier, the Smart Home reacts by recalculating the heating trajectory for new

conditions in advance and turning the HVAC system back on. This goes largely

unnoticed for people inside the house.

After everyone goes to work, a house is immediately put into slumber, with

most of devices that may have been turned on earlier, such as a TV, a radio,

lamps, a clock, being turned off immediately, as there is no one in the house to use

them at this time. A dishwasher is turned on an hour later. When the dishwasher

finishes its work, a washing machine is turned on. These devices could have been

turned on at practically any other time, but during cold and dark winter mornings,

when lots of people get ready to work, many devices are used simultaneosly across

neighboring houses, and the morning energy prices are thus usually very high.

By using devices with low dependency on surrounding conditions outside of busy

hours, and only one after another, the Smart Home is able to get the cheapest

energy price, as well as to use to their fullest potential cheap renewable energy

from solar batteries that are installed on the roof and a small residential-grade

wind turbine outside.

This thesis describes the work done towards the realization of such a smart

home, and the presented scenario introduces the most important topics that will

be discussed in the dissertation.

1.1 Reasoning in Smart Environments

Smart homes, and in general other types of smart environments, can be defined by

several important characteristics. The most important is undoubtedly the ability

to be context-aware, to sense the physical surroundings and to understand the

context of the current situation. Also smart environments should be able to reason

using this information and to deduce valuable knowledge. And finally, they should

have the ability to act intelligently in response to changing situations, according

to certain goal criteria. Smart environments are often ubiquitous, which means

their sensing and acting capabilities come from devices that are embedded in the

physical world.

1.1. Reasoning in Smart Environments 3

There are several criteria according to which the intelligence of smart envi-

ronments can be judged. Most smart environments are designed to increase the

comfort and quality of life of their users, e.g. inhabitants of a building. The auto-

mation of surrounding devices usually goes towards this goal, for example by under-

standing current user goals and problems and performing actions directed towards

solving it. In most of the cases, however, this should not lead to situations where

users are unable to override system’s decisions, as this not only severely decreases

their comfort levels, but also may be dangerous in some unaccounted situations.

Therefore the ability of users to control the smart environment is also an important

criterion. Many smart environments are designed particularly to help elderly or

disabled people, thus supporting healthy ageing. And, of course, increasing energy

prices and adoption of renewable energy sources bring forth the topic of energy

awareness and energy savings in smart environments.

Most of current commercial smart environment products present only partial

solutions, such as automated lighting or energy awareness. Several factors that

slow the commercialization of full-scale smart home solutions include the neces-

sity to greatly fine-tune the solution to every new location, the integration and

coordination efforts between different components, efforts to keep consistent model

across sub-systems that come from different sources, and so on. To summarize,

the great amount of efforts that are needed to transfer the solution from one loc-

ation to another hinders the deployment streamlining possibilities. Therefore this

thesis takes great efforts to produce solutions that are fault tolerant, are easy to

evolve when new requirements appear, require minimum information and configur-

ation to be useful, and which allow to reuse the solution in other similar situations

with minimal or no changes. As examples, Chapter 3 investigates a pattern that

most of smart home architectures inevitably follow, while Chapter 7 shows, how

the scheduler, which was originally implemented for scheduling devices in order to

minimize energy price, is easily reusable to schedule the deployment of services to

cloud environment by only creating an additional interface to the module.

Next we discuss several important scientific challenges for current pervasive

systems, smart homes in particular. We also present specific research questions

(marked with “RQ”) related to these challenges that were addressed in this dis-

sertation.

Over twenty years have passed since the first context-aware project Active

Badge [Want et al., 1992] was developed. Over these years many different context-

aware projects took place and many unique smart environments were designed and

constructed, such as those described in Section 2.1 of this thesis. It is import-

ant for new projects to gain maximum benefits from the knowledge of the former

4 1. Introduction

projects. One of the areas where such benefits can be gained is knowledge reuse

in architecture design, components construction, their communication and integra-

tion. However, it is challenging to discern if a similarity indeed represents a certain

pattern in smart environments design or it is peculiar to only some of them. On

this basis we present the first research question.

RQ1. What are the commonalities in the design and development process of

smart environments? Can any pattern be derived from technical architectures of

such systems? How can the process be streamlined, made easier? Which knowledge

from existing projects can be reused in new projects?

One of the most important components of any smart environment system that

has actuators is the reasoning module which finds the actions to be performed by

the system in any moment in time. Depending on the project, reasoning engines

can have different functional and non-functional requirements. Among the most

common ones is the requirement to be scalable, so that the system can grow beoynd

several devices within a single room up to a big multi-story building. High levels

of fault tolerance and robustness are also required for any system that has to

be operational on a 24/7 basis. The reasoning module should be able to return

real-time responces to any changes in the environment which require immediate

attention. Another important requirement for commercial success of smart homes

is to be dynamically adaptable, which means the system should not require large

reconfiguration efforts when a new device is added or the old one is changed or

removed. Among the non-functional requirements the computationally efficiency

should be mentioned, i.e. the ability of a reasoning engine to perform only the

necessary minimum of computations. This requirement is strongly connected to the

scalability requirement, since in a fast-changing environment with many events per

second, unnecessary computations may severely slow down and stress the system.

While several domain-independent techniques, such as AI planning [Kaldeli

et al., 2013], have been used to reason in smart environments, the proper util-

ization of a domain structure may help to greatly increase the performance of a

reasoning engine. However, this must be balanced to avoid fine-tuning a reasoning

engine so that it will require considerable additional efforts during redeployment

in other smart environments, potentially of different types. This formulates the

requirements for the second research question.

RQ2. What is an effective approach to design a reasoning engine for smart

environments that fulfills all important requirements (e.g. scalability, robustness,

dynamic adaptation, computational efficiency, real-time response, and so on)? Is

there any specific structure or some distinguished features of smart environment

1.1. Reasoning in Smart Environments 5

domains? If yes, can this specific structure be exploited to increase the performance

and/or reasoning capabilities of a reasoning engine operating with such domains?

The reasoning in decisions making for smart systems is very vulnerable to errors

and incompleteness of sensor data. If an incorrect sensor reading gives a wrong

impression of the current situation, the corresponding actions are likely to be not

the optimal ones, and may in some situations even be harmful. Therefore, a very

important challenge for smart environments is to detect as many sensor errors as

possible on all levels of the system. Some errors, however, cannot be confidently

detected. In this case, obtained data may be partially conflicting. The third

research question is intended to mitigate this problem.

RQ3. How can the effect of sensor errors be minimized with respect to decision

making? Can a reasoning engine work with incomplete and/or conflicting sensor

data? If there is no definite answer on which data is incorrect, can the system

operate correctly in presence of conflicting data?

Energy saving potential is one of the important benefits that smart environment

systems help to achieve. Recent research [Kok et al., 2008; Taqqali and Abdulaziz,

2010] shows the shift towards differentiated energy prices, adoption of smart grids,

and future possibilities for buildings to choose their own energy providers dynam-

ically. If this is the case, how can a reasoning engine for a smart system use the

information about energy providers and internal information about devices and

their expected consumption, in order to achieve lower energy prices and energy

consumption savings? This forms the final research question of this thesis.

RQ4. How can a smart system utilize the existence of diverse energy providers

in order to minimize the cost of energy over time? Does this smart system affect

total energy consumption? Which information should be available to a reasoning

engine in such a case, and how to use it in the optimal way?

These are the questions that are investigated in this dissertation. In particular,

the question RQ1 is answered in Chapter 3, where the pattern of the general archi-

tecture of such a smart home system is described. The question RQ2 is answered

in Chapter 4, which describes the Rule Maintenance Engine that handles real-time

system’s reactions to people’s activities, such as turning on coffee machine just

before the alarm time, turning lights, closing blinds when someone works with PC,

etc. Chapters 5 and 6 give an answer to the question RQ3 by describing context

consistency diagrams that can resolve ambiguous, conflicting and incomplete sensor

data based on information from other sensors. Chapter 7 addresses to the question

RQ4 by presenting the mechanism for devices’ scheduling to provide the minimum

energy consumption and price.

6 1. Introduction

Most of the work in this thesis is done as a part of the GreenerBuildings

European FP7 project, where several ideas on smart building systems have been

researched, implemented and tested in real living lab conditions.

1.2 A case of a smart environment: the Greener-

Buildings project

GreenerBuildings1 is a European FP7 project that aims to create a smart auto-

mated environment that combines automation for user satisfaction with energy-

efficient adaptation. As a part of the project, an intelligent office is constructed

on the premises of the Eindhoven University of Technology, The Netherlands. The

project allows its users (i.e. people within a building) to establish and modify

the rules of the building’s behavior, so that the system automatically adapts to

their needs by using the context information. The project features advancements

in many research areas, including wireless sensor networks, smart grids, activity

recognition, thermo-fluid dynamics, etc.

The GreenerBuildings project architecture is shown in Figure 1.1. The archi-

tecture is divided into three layers: the Physical layer, the Ubiquitous layer and

the Composition layer.

The Physical layer is responsible for handling the devices of the system, in-

cluding sensors and actuators, and for the underlying low-level protocols. There

are many types of devices, among those are Plugwise devices, KNX controllers

for blinds and heating system, motion, light, CO2, and temperature sensors, etc.

Though devices are operated via different protocols, the Sensors and Actuators

Gateway service collects all information from raw devices and presents it in a uni-

form manner to higher levels of the system. The Interconnection with Smart Grid

service provides the ability to be aware of the external energy pricing, and internal

vs. external energy availability (e.g. from an internal wind turbine vs. external

energy providers). The awareness about energy supply helps the GreenerBuildings

system to adjust its demand and reduce the energy costs of the building operation.

The Ubiquitous layer ensures the proper operation of the whole system. The

Repository is the database of the system. It contains all information about devices,

their configuration, states, available actions that are represented as web services,

and energy consumption. It also logs historical information about environment

state which can be retrieved later for detailed analysis. The Context component

collects information from sensors and transforms it into a high-level domain know-

1http://www.greenerbuildings.eu/

http://www.greenerbuildings.eu/

1.2. A case of a smart environment: the GreenerBuildings project 7

Figure 1.1: GreenerBuildings Architecture

ledge. This includes activity recognition, to represent such high-level activities as

“a person is working with the computer”, “there is a meeting/presentation in the

room”, etc. The Orchestration service is responsible for properly executing actions

in a concurrent asynchronous way.

The Composition layer contains the Control service, which represents the sys-

tem’s interface to its users, including web interface, smartphone applications, dash-

boards, etc., and the Composition service, which is the main reasoning and decision

making component of the system. The Composition, in turn, contains the Rule

Maintenance Engine, which gathers information about user preferences, and de-

cides which goal state the system should be transformed into to ensure the max-

imum user comfort and the minimum energy consumption; the Planner, which

finds the actions to be executed to transform the system to this goal state, and

the Computational Fluid Dynamics (CFD), which handles the heating part of the

building, including HVAC, air quality, etc.

8 1. Introduction

1.3 Thesis Scope and Organization

The main goal of this thesis is to design and develop a constraint-based reasoning

module for smart environments. The thesis starts by describing an architecture

pattern for smart environments that shows, where and how the reasoning module

should fit in the full system. Then the thesis describes two reasoning modules: one

that immediately reacts on environment changes, and the other to schedule the

work of devices for the future. The correctness of sensor information for the first

type of a reasoning module is very important for correct decisions, therefore the

thesis also describes a way to detect and probabilistically resolve sensor errors.

Chapter 2 gives an overview of other works that are related to this thesis. The

chapter starts by describing important existing and past smart environment pro-

jects and their main goals and achievements. Then the chapter moves on to context-

aware systems and describes how they have appeared and their most important

progress landmarks. The issue of inconsistencies within context data is the next

topic of the chapter. It will present different works done to mitigate the errors

in sensor data and consequences of inconsistent data. The constraint satisfaction

techniques that have been used in other smart environment research before are

described next. The chapter especially describes other approaches to dynamic con-

straint satisfaction problem, as this is the problem that CSP engines for smart

environments face. And finally, the chapter describes different usage of scheduling

techniques in smart environments.

Chapter 3 of the thesis analyses existing and past smart home systems and pro-

jects. As will be seen from this chapter, many common patterns emerge in archi-

tectures or during the construction of such systems. Even though many projects

design architectures from scratch, the knowledge of past projects can be reused to

make architecture design easier, or, in some cases, a project can completely reuse

existing architecture solutions.

It is noted in the chapter that a layered approach often works best for smart

environments architectures. The reason for this is that there are several natural

layers in such systems. The physical layer that contains physical devices and the

protocols to communicate with them inevitably exists in every smart environment,

as the main feature of such an environment is to be able to sense and interact with

the outside world. The ubiquitous middleware layer contains the knowledge base

of the system, and the software that is required in order to intelligently process the

sensor information and issue proper commands to actuators. The reasoning layer

contains the intelligence of the system, whether these are learning capabilities, data

1.3. Thesis Scope and Organization 9

analysis, decision making about the proper actions to react on changes in physical

world, etc. Finally, most systems contain dedicated software that is able to interact

with people directly, and such software is a part of the user layer.

When analysing architectures of existing projects, it can be seen that these

layers are often recreated in similar ways in many of them, and contain similar sets

of components. The main contribution of the chapter is therefore the creation of an

architectural pattern for smart environments. The pattern describes the common

layers that most smart home projects have and their interconnections. Then the

chapter goes deeper into each layer, and discusses common components that can

be contained within these layers. There are some essential components, which

inevitably exist in almost all smart home projects, but other specific components

may appear or dissappear depending on the exact needs of a project. For example,

projects that mind energy saving will often contain capabilities to measure the

energy consumption. Other projects may deal specifically with certain types of

interfaces, such as a Brain-Computer Interface [Aloise et al., 2011], and therefore

will contain a corresponding component as well. The chapter describes the essential

as well as some of the most common optional components, and their place in the big

picture of the full project architecture. The chapter finishes with some examples

of existing projects and how their architectures fit into the described pattern.

Chapter 3 shows the necessity of a proper reasoning component for a smart envi-

ronment. Chapter 4 goes into details to describe a reasoning component that is

based on dynamic constraint satisfaction principles. The chapter shows why the

constraint satisfaction model is good for modelling decision making in smart envi-

ronments that must react to changing environmental conditions. The chapter also

shows that straightforward representation of the constraint satisfaction problem

leads to a great number of excessive calculations. The main contribution of the

chapter is therefore to propose a method of modelling the task as a constraint sat-

isfaction problem in a way that avoids unnecessary recalculations with new events

in the environment.

The intuition that most of sensor events, as well as most of environmental beha-

vior rules (that act as constraints), affect only a small part of the environment has

led to the design of a method that can detect the affected parts of the environment

for every event, given current rules. The dependency graph data structure, which

is a bipartite graph between constraints and actuators, contains information about

potential interdependency between them. The dependency graph is a dynamic

data structure that changes with time and shows, whether a constraint affects cur-

rent environment (in this case the constraint is active), or not. The chapter also

shows that by finding unaffected parts of the environment, these parts may be

10 1. Introduction

removed from the next constraint satisfaction task, and even affected parts may

sometimes be split into several independent subparts. This leads to much smaller

solution space for every consecutive CSP task, thus much bigger scalability of the

system. The chapter creates a formal model of the dependency graph representa-

tion, and formally proves that partial recalculation of affected parts still keeps the

full environment globally satisfied and globally optimal.

The evaluation part of the chapter describes the development of the appropriate

system module, and its usage in the real living lab environment. The evaluation

shows that for all environmental events recalculations took just a few milliseconds.

The chapter further extends performance analysis by performing simulations with

different conditions that may affect the performance of the system. The depend-

ency graph approach is shown to consistently outperform the straightforward CSP

representation. The experiments also showed that the clusterization of the envi-

ronment has a noticeable effect on the performance. The clusterization parameter

shows how pronounced are the clusters of variables within the full environment,

i.e. the subsets of variables, which are highly interdependent, but only loosely de-

pendent on variables outside of the cluster.

Most kinds of reasoning in smart systems, such as the one described in Chapter 4,

are susceptible to making incorrect decisions due to erroneous input information,

e.g. the one from faulty sensor readings. Therefore Chapter 5 describes a way to

detect incorrect sensor readings in probabilistic manner by using interdependency

rules between sensor variables and a context consistency diagram data structure as

a way to find the most probable situation of the current environment, when sensor

readings give ambiguous, incomplete, or conflicting information.

The chapter defines the notion of a context, the partial extended interpretation

of a current situation based on a sensor reading by using interdependency rules

between sensors. If sensors are interdependent, a value of one of them may tell us

something about possible values of another one. This idea is used to combine sensor

readings to form several interpretations of an environment. Extended contexts are

combined in a context consistency diagram. This diagram is a directed acyclic

graph that shows which contexts are consistent with each other and support each

other, i.e. they all may imply the same actual situation in the environment; and

which contexts are conflicting, i.e. there is no situation that is consistent with all

these contexts.

In case when sensor errors are absent and there is enough information to sense

the whole environments, the context consistency diagram (CCD) has only one leaf

node, which describes the most probable situation. In case there are sensor errors,

or there is not enough information available, the CCD may have several leaves, each

1.3. Thesis Scope and Organization 11

of them representing a possible situation. The chapter describes, how the CCD

can be utilized in order to calculate probabilities of every possible situation. By

calculating these probabilities, several questions may be answered at any moment

in time, such as: (i) what is the most probable current situation? (ii) What is

the most probable value of a certain sensor? (iii) Assuming that one sensor has a

certain value, what is the probability distribution of values of another sensor?

The contributions of this chapter are several. The chapter formally defines the

CCD and related notions. The properties of a CCD are defined and proven. Then

the chapter shows, how the probabilities of situations can be calculated by using

CCD. The chapter also describes, how the CCD can be efficiently maintained in

real-time, and provides associated algorithms.

The evaluation is done in a living lab that contains two working rooms and

a coffee corner. 19 sensors were used in total, together with three days of sensor

readings. 11 rules were defined to capture interconnection between variables. Res-

ults showed that using CCD resolves more than 40% of errors, and improves the

correct situation detection rate by up to 11%.

While CCD, that is described in Chapter 5, provides extensive querying possibilities

to the interpretation of the environment with possible sensor errors, sometimes it

requires extensive computations, thus limiting the size of every single CCD that

can be created within an environment, though still allowing multiple CCDs to

be present in the same environment (in this case variables in different CCDs are

regarded as independent). Therefore Chapter 6 describes a way to reduce a classic

CCD, while still keeping the possibility to calculate the most probable situation.

The reduced context consistency diagram (RCCD) removes intermediate nodes that

contain common child, therefore severely decreasing the size of an original CCD, as

well as the time to update it. The drawback being the reduced querying capabilities

comparing to the original full CCD.

The chapter provides a formal definition of the reduced context consistency

diagram, formalizes its properties together with prodiving respective proofs, and

provides algorithms to maintain the CCD in real-time, and to unfold a reduced

CCD into a full one.

The chapter also presents evaluation based on a working desk with six sensors

and five dependency rules. The evaluation showed that RCCD resolved 49% of er-

rors in the input data, and is therefore consistent with the evaluation on a different

living lab setup described in Chapter 5. The chapter also provides performance

characteristics of the RCCD, and compares the RCCD with the original CCD.

Chapter 4 describes the system to react to sudden changes in the environment in

12 1. Introduction

real-time in energy-efficient manner. But some devices have loose dependency on

the outside conditions, while consuming considerable amount of energy. Examples

of such devices are fridge or boiler. To cater for such a case, Chapter 7 deals with

scheduling of devices over time for houses that are connected to a smart grid.

The smart grid assumes the limited amounts of cheap energy, with increasing

price when bigger amounts of energy are needed at once. The cheapest energy

usually comes from internal renewable sources, such as a solar panel or a small

wind turbine. When more energy is needed than these devices are able to provide,

the energy may be bought from different energy providers, which may be a neigh-

boring house or a large industrial-scale energy provider. The prices from energy

providers usually change over time, due to higher demand at peak hours (morning

and evening hours), and lower demand at out-of-peak hours.

In such a setting, when cheap energy is limited and the price changes over

time, it is important to schedule devices that are largely independent from human

interaction in a way that reduces simultaneous usage and mostly shifts the work

of devices to off-peak hours. Chapter 7 presents the algorithm to do exactly this.

Each device is given associated policy of operation. The policy describes con-

straints over the work of devices. For example, a fridge must be turned on for at

least several minutes every hour in order to keep the temperature inside always

cold enough. A laptop, in order to fully charge, must be turned on for a certain

total amount of time, but the exact time is irrelevant, etc. The chapter describes

several such types of policies that devices may have.

Then the chapter formally defines an optimization problem, that uses changing

smart grid prices and policies of devices in order to create a schedule that obeys

all policy constraints, and keeps the energy price at minimum.

The chapter describes the Scheduler, the module that solves this optimization

problem. For every policy the chapter describes additional optimization checks

that reduce the search space of a problem. The two types of checks are a feasibility

check, which shows is a partial schedule still satisfies the policy constraint, and

an alternatives check, which defines, if another partial schedule which produces

similar symmetrical results has been already checked.

The evaluation was done in a living lab that contains two working rooms, a

printer corner and a coffee corner. Six devices were a part of the evaluation: a

projector, a laptop that must be charged, a fridge, a boiler, a microwave, and a

printer for batch jobs.

The evaluation was carried out during four weeks. First two weeks no schedul-

ing was done, and the information about unscheduled energy consumption and

price was collected. At the third and the fourth week the Scheduling was carried

1.4. Publications 13

out. The chapter contains results from economic, energy saving, and performance

perspectives. The results showed savings in energy price up to 50%, and savings

in energy consumption up to 15% for scheduled periods.

The Scheduler module was constructed in a way to be domain-independent and

reusable for other domains that contain similar policies. Therefore the module was

reused for the setting of services deployment to a cloud environment. The chapter

contains the description of how the module can be used in such a setting.

Finally, Chapter 8 summarizes the work done in the thesis, and presents some

general conclusions and reflections for future work.

1.4 Publications

The content of this thesis has been published in several scientific venues. The

work is done in collaboration with various people, in particular Alexander Lazovik,

Marco Aiello, Tuan Anh Nguyen, Ilche Georgievski, Giuliano Andrea Pagani, Faris

Nizamic, Luis Ignacio Lopera Gonzales, Mariano Leva, Paul Shrubsole, Silvia

Bonomi, Oliver Amft, Rosario Contarino, Doina Bucur, and Rix Groenboom.

Table 1.1 gives an overview of the respective publications.

14 1. Introduction
C

h
a
p

te
r

V
e
n
u

e
C

ita
tio

n
N

o
te

s

1
IE

E
E

In
tern

ation
al

C
on

feren
ce

on

S
erv

ice
O

rien
ted

C
om

p
u

tin
g

an
d

A
p

p
lication

s
(S

O
C

A
)

[D
egeler

et
a
l.,

2
0
1
3
]

G
reen

erB
u

ild
in

gs
p

ro-

ject
d

escrip
tion

3
C

reatin
g

P
erson

al,
S

o
cial

an
d

U
rb

an

A
w

aren
ess

th
rou

gh
P

ervasive
C

om
-

p
u

tin
g

[D
egeler

a
n

d
L

a
zov

ik
,

2
0
1
3
a
]

F
u

ll
ch

ap
ter

4
IE

E
E

In
tern

ation
al

C
on

feren
ce

on

T
o
ols

w
th

A
rtifi

cial
In

telligen
ce

[D
egeler

a
n

d
L

a
zov

ik
,

2
0
1
3
b]

M
a
in

ch
ap

ter
con

ten
t.

B
est

S
tu

d
en

t
P

ap
er

A
w

a
rd

IE
E

E
C

on
tex

t
M

o
d

elin
g

an
d

R
eas-

on
in

g
(C

oM
oR

ea)

[D
egeler

a
n

d
L

a
zov

ik
,

2
0
1
2
a
]

5
IE

E
E

In
tern

ation
al

C
on

feren
ce

on

P
ervasive

C
om

p
u

tin
g

an
d

C
om

m
u

-

n
ica

tion
s

(P
erC

om
)

[D
egeler

a
n

d
L

a
zov

ik
,

2
0
1
1
]

M
a
in

ch
ap

ter
con

ten
t

IE
E

E
In

tern
ation

al
S

y
m

p
osiu

m
on

U
b

iq
u

itou
s

In
telligen

ce
an

d
A

u
to-

n
o
m

ic
S

y
stem

s

[N
gu

yen
et

a
l.,

2
0
1
3
]

L
iv

in
g

lab
evalu

ation

6
IC

S
T

T
ran

saction
s

on
U

b
iq

u
itou

s

E
n
v
iron

m
en

ts

[D
egeler

a
n

d
L

a
zov

ik
,

2
0
1
2
b]

F
u

ll
ch

ap
ter

7
IE

E
E

T
ran

saction
s

on
S

m
art

G
rid

[G
eorg

iev
sk

i
et

a
l.,

2
0
1
2
]

S
ch

ed
u

ler
d

escrip
tion

.

M
a
in

ch
ap

ter
con

ten
t

S
ca

lab
le

C
om

p
u

tin
g:

P
ractice

an
d

E
x
p

erien
ce

(S
C

P
E

)

[N
iza

m
ic

et
a
l.,

2
0
1
2
]

S
ch

ed
u

ler
in

terface
for

clo
u

d
resou

rces
d

ep
loy

-

m
en

t

T
a
b
le

1
.1

:
O

v
erv

iew
of

p
u

b
lication

s
th

at
are

p
resen

ted
fu

lly
o
r

p
a
rtia

lly
w

ith
in

ch
a
p

ters
of

th
e

th
esis.

Chapter 2

Related Work

2.1 Smart Environments

In the last years many projects were dedicated to intelligent buildings automation.

Exhaustive reviews of such projects are given in [Cook and Das, 2007; Nguyen and

Aiello, 2013]. Here we present the history of smart environment projects that are

the most relevant to the research questions of this thesis.

The conception of smart environment systems started with the Active Badge

[Want et al., 1992] as early as in 1992. Though Active Badge is the most commonly

cited as the beginning of context-aware computing area, it can be seen that the

main part of the project was concerned with making the environment (particularly,

stationary phones) smarter. Thus Active Badge is as well the first project that was

concerned with the smart environments, and implemented them.

One of the earliest projects aimed at full building automation was MavHome1,

which started in 2000 [Youngblood et al., 2004]. The project was oriented at

discovering patterns of device usage and occupants’ behavior by utilizing several

learning algorithms. The project produced many datasets of activities and sensor

data, which were used to provide predictions on future usage. The conclusion of

the MavHome project was also a starting point for the currently ongoing successful

CASAS Smart Home project by the same university.

The iSpace project, which started as iDorm2 in 2002 [Callaghan et al., 2004],

features a room in a dormitory of the University of Essex (United Kingdom) campus

fully equipped with sensors and actuators. The project uses full range of devices,

featuring temperature, humidity, and light sensors, door locks, infrared sensors,

video cameras, as well as HVAC system, motorized blinds, window openers, and

light dimmers. The system can remember the user’s habits and automatically

adjust its behavior accordingly, so that explicit requests for actions from the user

can be minimized, unless, of course, the user changes his or her habits.

1http://ailab.wsu.edu/mavhome/
2http://cswww.essex.ac.uk/iieg/idorm.htm

 http://ailab.wsu.edu/mavhome/
 http://cswww.essex.ac.uk/iieg/idorm.htm

16 2. Related Work

The SmartLab Research Laboratory3 [López-de Ipiña et al., 2008] was con-

structed in 2006 to create a model of interactions between people and the context

aware environment that surrounds them. This laboratory is used in several research

projects, including Assistive Display, ubiClassRoom, and Eldercare.

The CASAS (Center for Advanced Studies in Adaptive Systems) Smart Home

project4 [Kusznir and Cook, 2010] started in 2008 and has since produced many

publications both in academic press and in mass media. The smart environment

for the project is a duplex apartment at the premises of the Washington State

University. The apartment is equipped with a grid of sensors, including motion,

temperature, and power meters. The project heavily relies on Artificial Intelligence

techniques such as Machine Learning in order to automatically recognize patterns

of occupants behaviour and automate the building to provide help and increase

occupants’ comfort.

As a part of the Smart Homes for All (SM4All) project5 [Aiello et al., 2011]

that also started in 2008, a smart apartment was constructed in Rome, Italy.

The project implemented sophisticated AI planning techniques, which produce a

set of actions to adapt the house to user needs in every possible situation. The

breakthrough of the project was the application of the Brain-Computer Interface,

a great help for many disabled people, which features the ability to read brain

impulses of a smart home user and transform them into a certain desire about the

smart home state, which in turn can be transformed into a set of actions for smart

home actuators.

The e-Diana project6 started in 2009 and was concerned with creation of a

unified platform for all possible sub-systems of a smart building, such as security,

lighting, power consumption, HVAC, etc. The project also aimed to improve energy

consumption efficiency of such buildings and to provide better situation awareness

for infrastructure owners.

The GreenerBuildings project7 [Degeler et al., 2013] started in 2010 and imple-

ments the intelligent office, constructed on premises of the Technical University of

Eindhoven, The Netherlands. The project features the ability of users to modify

the rules of office’s behavior, which will then automatically adapt itself to their

needs based on the context information. The project gives special attention to

such issues of smart solutions as fault tolerance and scalability, which are essential

for realization of smart solutions on a large scale, given hundreds of separate offices

3http://www.smartlab.deusto.es/
4http://ailab.wsu.edu/casas/
5http://sm4all-project.eu/
6http://www.artemis-ediana.eu/
7http://greenerbuildings.eu/

http://www.smartlab.deusto.es/
http://ailab.wsu.edu/casas/
http://sm4all-project.eu/
http://www.artemis-ediana.eu/
http://greenerbuildings.eu/

2.2. Context Awareness 17

per building, or thousands of smart homes within a combined smart city.

2010 is also the start year of the ThinkHome project [Reinisch et al., 2010],

aimed at optimization of the energy efficiency while maintaining user comfort. The

project uses knowledge ontologies for reasoning about the home states, and plans to

provide a comprehensive knowledge base for evaluation of control strategies based

on relevant building data.

There are also many specialized projects, for example EnPROVE8 [Neves-Silva

et al., 2010] or BeyWatch9 [Perdikeas et al., 2011] that mostly deal with energy

saving part of the smart environments, however, we mentioned here only some of

the general broad-purpose context-aware smart environments.

2.2 Context Awareness

Context-aware research includes all applications that can discover relevant in-

formation about the surroundings and base their decisions on it. Traditionally

most context-aware research includes ambient physical devices or mobile personal

devices, though strictly speaking, context-awareness may be applicable also to a

purely virtual world. The first most influential vision description of context-aware

applications is given in [Weiser, 1991]. The work also introduced the commonly

used now term “ubiquitous computing”, which describes smart devices and ap-

pliances that are integrated into the everyday life. Users do not have to think

consciously when interacting with those devices, focusing on their own tasks in-

stead.

The already mentioned Active Badge system [Want et al., 1992; Schilit et al.,

1994] was the first successful context-aware application. The personal badge with

infrared transmitter was used to localize people within a building, forward calls to

them, perform automatic identification, etc. Years later and severely transformed

for commercial usage, similar systems can be seen in multi-purpose smart cards,

such as Octopus smart cards in Hong Kong [Pelletier et al., 2011].

Though originally in [Schilit et al., 1994] context-awareness was mostly treated

as location awareness, further works gradually extended the notion of a context.

Almost simultaneously several works [Brown et al., 1997; Ryan et al., 1998; Frank-

lin and Flaschbart, 1998; Rodden et al., 1998] proposed to generalize context to

include more and more additional parameters, such as time, weather conditions,

surrounding people’s identification, and other aspects of the environment.

8http://www.beywatch.eu/
9http://www.enprove.eu/

http://www.beywatch.eu/
http://www.enprove.eu/

18 2. Related Work

This trend culminated in the seminal work [Abowd et al., 1999], which stated

that context should include any information relevant to the particular situation or

entity. Particularly, they stated that “Context is any information that can be used

to characterize the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application,

including the user and applications themselves.” According to them, the context-

aware application is then defined as follows. “A system is context-aware if it uses

context to provide relevant information and/or services to the user, where relevancy

depends on the users task.”

In [Dey et al., 2001] a deep analysis of a conceptual framework for context-

aware applications is proposed. The work discusses the main functions of such

applications, the important requirements and abstraction, such as context stor-

age and resource discovery, and finally, presents the implementation of a context

framework, the Context Toolkit.

Since context awareness is such a broad and extensive research area, numerous

surveys of the related research have been published over the years. Overview

of pre-XXI century context-aware mobile computing research and the list of the

most important implemented applications is given in [Chen et al., 2000]. More

recently, a thorough review of different approaches to context-aware systems is

presented in [Baldauf et al., 2007]. The work summarizes different context design

and modelling techniques. It also mentions the concept of a layered architecture

framework, which is similar to the layered architecture pattern that is given the

full attention in Chapter 3 of this thesis.

Since by nature, the context information must be gathered from different places

and by different types of sensors, well-agreed interfaces and protocols are essential

for success of large-scale context-aware applications. Therefore, in [Truong and

Dustdar, 2009] the usage of web services to enhance such applications is surveyed.

Over the years of context-aware systems research many different ways to model

the domain-level information were devised, some general, some more specific to a

particular task that the system was designed to solve. Among the most known high-

level context representations are Resource Description Framework (RDF) [Lassila

et al., 1998], W4 (Who, What, Where, When) Context Model [Castelli et al., 2006],

the RDF-based Web Ontology Language (OWL) [Antoniou and van Harmelen,

2009], and Context Modelling Language (CML) [Bettini et al., 2010]. An extensive

survey of different context representation models is presented in [Bettini et al.,

2010].

Ontological representation with OWL language is particularly suited for web

setting, and enables different context applications to communicate using the stand-

2.3. Context Inconsistency 19

ardized context representation. For example, [Zhang et al., 2005] presents a layered

Context Stack, which uses ontology on different levels to facilitate semantic context

web sharing.

2.3 Context Inconsistency

Correct context determination is a crucial component of any serious pervasive sys-

tem and has been extensively studied in the literature. In particular, various

authors address the issue of inconsistent sensor readings for the problem of precise

context determination.

The detection of contradictions in context based on predefined constraints is

researched in [Xu and Cheung, 2005; Xu et al., 2006, 2010]. The authors propose

to convert each constraint into a tree with constraint operators as vertices and

contexts as edges. Then they introduce a partial constraint checking algorithm

that is capable of re-checking only those parts of the constraint tree that may be

affected by a new context. The work is extended in [Huang et al., 2008], where

authors propose to check branches of the tree with probabilities. This enables fast

processing of large trees and adds scalability to partial constraint checking, however

it reduces the percentage of correctly found inconsistencies. The papers aim at

fast detection of context contradictions, but do not concentrate on the problem of

context interpretation when inconsistencies (contradictions) are present.

In [Bu, Gu, Tao, Li, Chen and Lu, 2006; Bu, Chen, Li, Tao and Lu, 2006]

the context reasoning is performed by modeling the context ontology and then

finding inconsistencies using ontological reasoning. The context is modelled as

RDF-triples using OWL-lite language. They also present a context lifecycle, where

new context starts at the “beginning” phase, can be “updated” during its lifetime,

stagnate at the “inert” phase and finish its life as “disappearing”. In the presence

of a conflict they propose to discard one of the conflicting contexts based on their

relative frequencies. Other techniques for resolving inconsistencies are proposed

in [Xu et al., 2008]. They define several possible resolution strategies, among

which are drop-latest, drop-all, drop-random, and drop-bad. The latter heuristic

counts the number of conflicts for each context and drops the one with the biggest

number. While those techniques can be used to successfully resolve straightforward

inconsistencies, they may lead to retaining an incorrect interpretation in cases when

proposed heuristics cannot confidently resolve the conflict.

In [Henricksen and Indulska, 2004] context properties are classified and initial

ideas on handling several inconsistencies are outlined. While introducing a classi-

fication, they do not provide precise algorithms for dealing with possible context

20 2. Related Work

inconsistencies. In [Lu et al., 2008] a mechanism for detecting failures in context-

aware applications is provided, as well as means to test such applications. In [Huang

et al., 2009] the detection of inconsistencies that may emerge due to asynchronous

arrival of concurrent events is investigated. The proposed algorithm detects the

original order of concurrent events based on the happen-before relation.

In [Kong et al., 2009] authors propose to extend the OWL ontology with fuzzy

membership to tolerate inconsistencies. Their proposal involves manual assignment

of membership values and does not propose a way to retrieve useful information

from it.

A similar fuzzy approach is discussed in [Marcelloni and Aksit, 2001]. The au-

thors try to minimize the impact of early incorrect decisions made during software

design. They show that wrong classification of an entity to one of the mutually ex-

clusive classes, if done early, may lead to further incorrect or suboptimal design of

the software system. They propose to improve the process by deferring decisions

about entity’s classification as long as possible, instead of assigning fuzzy mem-

bership values to each of possible classes. However, the solution is not applicable

to context reasoning, as it is based on human decisions about entity’s properties

membership values that have to be updated with each information change. This

is acceptable for prolonged and slow software development process, but impossible

in highly dynamic automated context-aware systems.

Context lattice [Ye and Dobson, 2010] is a data structure similar to the context

consistency diagram in Chapter 5. Nodes of the lattice are logical context predic-

ates, such as inLivingRoom or remoteControlAccessed, and they can be combined

to create an intersection of predicates. Conflicting predicates all combine into a

single FALSE node. The context lattice can be used on semantical level to show

which contexts are compatible and derive more high-level semantics.

Similarly, [Mittal et al., 2012] propose to derive probabilistic association rules

by using a concept lattice, which combines a set of contexts to represent a situation

that matches the description of those contexts.

2.4 Constraint Satisfaction in Smart Environments

In the field of smart environments, several studies propose to use constraint satis-

faction techniques to solve reasoning problems. For example, multi-agent coordin-

ation in smart homes is modelled as distributed constraint optimization problem

in [Pecora and Cesta, 2007]. The coordination is fully distributed, i.e. every agent

relies only on communication with other agents and manages one or more variables.

In this scenario constraints model the desired minimum-cost concurrent behavior

2.5. Dynamic Constraint Satisfaction 21

of agents.

On the other hand, [Petersen et al., 2013] propose a solution with centralized

command post for mission-critical environments, such as search and rescue opera-

tions with robot teams. They present a method for efficient task assignment, where

constraints that are added by humans via a dedicated interface are combined with

physical constraints of the environment, and are solved by a modern Mixed Integer

Linear Programming (MILP) solver.

In [Koes et al., 2006] authors present a first order logic constraint language

for such search and rescue domains for robots. They also introduce a goal-oriented

Constraint Optimization Coordination Architecture (COCOA), which aims to trans-

form the original problem by formulating it as a constraint optimization problem.

The solution to this problem will generate a schedule that can be executed by a

robot with some level of abstraction.

In [Cesta et al., 2001] a problem solving environment is described that deals

with complex scheduling problems, which are represented as constraints. They

present O-OSCAR, a CSP-based object-oriented scheduling framework.

CSP-based AI planner is used in [Kaldeli et al., 2010, 2013] to compose services

for smart home scenarios. The planner allows the expression of extended goals

and uses the latest advancements in the CSP field to make the search faster using

enhanced inference techniques.

2.5 Dynamic Constraint Satisfaction

The formulation of the dynamic constraint satisfaction problem (DCSP) as a set of

successive static CSPs with addition or removal of constraints was first proposed

in [Dechter and Dechter, 1988], and subsequently elaborated in many other works.

In [Bessiere, 1991] the application of arc-consistency algorithms for Dynamic

CSPs is investigated. Bessiere considers binary constraints, i.e. those that involve

only two variables. The original arc-consistency algorithms do not solve static CSP

completely, but eliminate all values that are mutually inconsistent and are definitely

not part of the solution, but that otherwise would be discovered by backtracking

procedures over and over [Mackworth, 1977; Dechter and Pearl, 1987]. For the Dy-

namic CSP the original arc-consistency cannot be reused if a constraint is relaxed,

because the reasons for marking values inconsistent are not being tracked, and

inconsistency marking cannot be removed without fully rerunning the algorithm.

Bessiere therefore proposed an extention to the algorithm to track the original

reasons for marking inconsistent values, which allows to make incremental changes

to arc-consistency values when constraints are changed. An improved algorithm

22 2. Related Work

with lower space complexity is proposed in [Debruyne, 1996].

Algorithms based on nogood recording that may be used in both static and

dynamic CSPs are proposed in [Schiex and Verfaillie, 1994; Verfaillie and Schiex,

1994]. Similarly to arc-consistency, a nogood is a pair of value assignments that

cannot be contained in any solution of the CSP. A set of nogoods is built during a

backtrack search.

An algorithm to solve each CSP in a sequence of consecutive CSPs by using

previous solutions is proposed in [Roos et al., 2000]. To avoid big differences in

successive solutions, which are often undesirable in practice, they propose a repair-

based algorithm RB-AC, which performs a local search in the neighborhood of an

infringed solution to find a new nearby solution which is the most similar to the old

one. The results however show that repairing a solution may be much harder than

creating a new one from scratch if several constraints are changed simultaneously.

Therefore [Ran et al., 2002] propose an approximate algorithm that reduces the

time complexity of a repair by relaxing the optimality requirement with respect to

number of changes made.

An alternative definition of DCSP was formulated in [Mittal and Falkenhainer,

1990], where DCSP defines a single CSP with different additional sets of variables

and constraints depending on variable values. In this dissertation we use the defin-

ition as stated in [Dechter and Dechter, 1988], when referring to the DCSP. A

comprehensive survey of the DCSP related research is presented in [Verfaillie and

Jussien, 2005].

2.6 Scheduling in Smart Environments

There is a number of works that investigate the usage of automated scheduling

techniques for smart environments.

In [Kreucher et al., 2006] authors consider the problem of scheduling sensors to

better detect and track “smart targets”, i.e. those that can realize they are being

under survelliance and react in order to conceal themselves. They consider active

and passive mode of sensors, where active mode has much more efficient tracking

characteristics, but is also much easier detectable by targets in question. They

argue for the necessity of a non-myopic approach for such scheduling, the one that

maximizes long-term benefit as opposed to maximizing immediate gains.

Timing constraints to specify scheduling of tasks for automonous search and

rescue robots are investigated in [Petersen et al., 2013].

Scheduling for smart homes in order to conserve energy is a very important

usage of scheduling methods, and recently several studies have appeared on this

2.6. Scheduling in Smart Environments 23

topic.

A decision-support tool that residents can use to optimize their usage of energy

is proposed in [Pedrasa et al., 2010]. The tool allows its users to define the benefits

they get from every energy service, and then by calculating the energy cost of these

services, schedules them in a way to maximize gains and minimize losses. They use

particle swarm optimization algorithm to solve the optimization task. Though it

does not produce optimal solution, it is known to produce good enough solutions

within manageable time.

A smart meter with changing electricity prices is considered in [Xiong et al.,

2011]. They consider two types of devices, “real-time” that may consume energy

when they require it and “schedulable” that can be scheduled by the system to

consume energy at a later time. Given such a setting, the system aims to reduce

demand peaks.

Similarly, in [Du and Lu, 2011] authors propose to schedule appliances based

on forecasts of energy price and consumption, and on specified objectives of users’

comfort. They propose a two-part algorithm, where the first part creates a sched-

ule for the day ahead based on forecasts and the second part makes real-time

adjustments to it.

Chapter 3

Architecture pattern for context-aware
smart environments

The ability of pervasive systems to perceive the context of the surrounding envi-

ronment and act accordingly proves to be an enormously powerful tool for raising

immediate users’ satisfaction, helping them to increase their own awareness, and act

in a more informed way. Recent years marked many smart environment solutions

hitting the market and applying latest pervasive computing research advancements

on an industrial scale.

Magnitude of context-aware smart spaces applications is enormous. On the one

side such applications include telephones that redirect calls to the room where the

recipient is currently located, e.g. the Active Badge system [Want et al., 1992],

and simple coffee machines with the possibility to schedule the time of coffee pre-

paration exactly to the time when you wake up. On the other side there are the

whole building automation systems with complex rules of behavior and planning

techniques that are just waiting for your wink to launch the complex artificial

intelligence reasoning that will understand and fulfill your unvoiced demands.

Going even further, smart environments matter not only on the personal and

the social scale, but on the bigger urban scale as well. Sometimes whole neighbor-

hoods can be considered as smart spaces, as shown by many Smart Grid enabling

projects [Georgievski et al., 2012; Capodieci et al., 2011]. By introducing small

scale energy generating facilities, such as wind turbines or solar panels, it is pos-

sible for individual buildings to produce more energy than they consume at certain

points in time. To avoid losing this precious energy (which becomes even more

precious considering its “green” sustainable origin), peer-to-peer-like energy trans-

fer connections are introduced between buildings, with full featured automated

negotiation techniques that enable one building to sell excessive energy to another

neighboring building. First field-testing projects, such as PowerMatching City

project in the Netherlands [Bliek et al., 2010], which features 25 interconnected

households, show that not only such energy comes with a cheaper price, but also

the “transfer overhead” is severely reduced, as the average energy travel distance

26 3. Architecture pattern for context-aware smart environments

is much shorter.

As can be seen, context-aware smart environments come in many different fla-

vors and on many different scales, but the underlying idea remains the same: the

system is aware of its context, i.e. the environment around, is able to act accord-

ingly in an intelligent, predefined, learned, or automatically inferred way, and is

able to communicate to its users, thus increasing their comfort and awareness level

as well. Seng Loke in his book [Loke, 2006] defines this as three main elements of

the context-aware pervasive system: sensing, thinking, acting.

In just a few years after the first introduction of smart environments, the topic

became booming, and many projects both in research and in industry were dedic-

ated specifically to advancements in this area. As happened in many other research

fields where a big number of different research groups and industrial companies

started to work separately on the same topic, in the context-aware environments

area the problems that the groups face are to a large extent similar, and some of

them were solved several times, sometimes in a similar manner.

One of such problems, and an important one, is the high-level architecture

design of the smart context-aware systems. Since the beginning of the 2000s,

many projects have been designing and implementing the smart environment sys-

tems from scratch. However, when looking post-factum at the architectures of

these systems, one can notice many similarities among them. With the same basic

structure, the biggest differences usually arise at the level of individual components,

aimed to satisfy different functional requirements.

Naturally appeared the idea to unify the architecture design for such smart

environments projects. Taking many successful and undergoing projects as case-

studies, we tried to find the common structure, the common patterns, and in some

sense the “best practices” that can help future projects to reduce the efforts spent

on the general system frame, and redirect those efforts to more specific requirements

that are unique in every project. The work of Preuveneers and Novais surveys

similar efforts to find and study best practices on different levels of smart pervasive

applications that were already done in previous studies, including requirements

engineering, context modelling, development acceleration and code reuse. In this

chapter, on the other hand, we focus on a pattern for architecture design of smart

environment systems [Preuveneers and Novais, 2012].

We will introduce several layers of the architecture that inevitably exist in

one form or another, and discuss the possible components that may be parts of

these layers. We will then discuss the common information flows within such

architecture and mention the most notable problems, such as scalability and fault

tolerance. Finally, we will present several case studies, successful or undergoing

3.1. Architecture Overview 27

smart building projects, and show that the presented pattern can be easily mapped

to their architectures.

3.1 Architecture Overview

In this section, we present the design pattern of the smart environment archi-

tecture. The overview of the pattern is shown in Figure 3.1. We split the full

architecture into four layers, with several distinct components in every layer. Most

component patterns arise from the architecture design similarities due to require-

ments that are common for all context-aware smart environments. It is important

to note that components are not exhaustive in terms of components’ availability to

the system. The components here are the backbone, but it is often the case that

the actual implementation dictates for some support components, which either

establish communication between other components, act as watchdogs, proxies,

monitors, or solve other complementary functions. Also, if the system features

a certain specific ability, such as a specific handling of heating mechanisms, or a

special support for disabled users, more often than not this will require a separate

component. Thus the system that is described in this chapter should be viewed

as extensible, with the ability to plug-in more components, if needed. And, to

the opposite, some presented components and flows are sometimes simplified, com-

bined, or removed altogether in projects of smaller scale. This possibility will be

highlighted at the level of components.

The Physical layer contains all hardware parts of the system, which include

all wired and wireless sensors, actuators, network topology, low-level protocols

associated with them, etc. One of the main tasks of the Physical layer is to collect

information about the environment and transfer it to higher layers. Low-level

protocols may be implemented to provide a common gateway, which allows to

unify interfaces, hide the specific hardware differences, and/or reduce bandwidth

requirements by bundling the information. The second main task of the Physical

layer is to invoke actuators in the environment based on commands sent from higher

layers.

The Ubiquitous layer acts as an intermediary to the system components, and

has several distinct responsibilities. First of all, the layer contains system’s data

storage, which means it collects and stores all the current and historical information

about the environment, system configuration, system capabilities, user preferences,

etc. The layer also should contain an information processing component, capable

of detecting simple sensor errors or faults, transform information from low-level

sensor values to high-level logical state of the environment, and enrich sensor in-

28 3. Architecture pattern for context-aware smart environments

Figure 3.1: Smart System Architecture Pattern

3.1. Architecture Overview 29

formation. On the actuation side the Ubiquitous layer is responsible for transform-

ing commands from the Reasoning layer to low-level commands that the Physical

layer is capable to execute, and making sure they are passed to the Physical layer

in a concurrent non-blocking way.

The Reasoning layer is the layer where system’s logic resides. It contains all

components that are responsible for decisions on system’s actions, be it a simple

logic defined through strict if-then rules, or sophisticated AI techniques, such as

planning or scheduling actions. The layer may also contain activity recognition or

learning components, which should improve the automated system’s response.

The User layer presents information about the system to its users. It contains

two main parts. The first one presents information about the environment, current

user preferences, the reasons for certain decisions that the system makes, and allows

a user to modify the configuration of the system according to her or his needs, enter

new rules of execution, or overrule system’s decisions. The second part provides

meta-information about the system itself, such as the status of all components,

whether they are working properly, statistics, and resources consumption.

We will now describe each layer in detail.

3.1.1 Physical Layer

The main part of the Physical layer is, as the name hints, physical, i.e. devices that

are embedded in the environment. All groups that decide to implement a smart

environment face an unavoidable issue from the very beginning: the heterogeneity

of the devices they plan to use. Even now, while some companies started to spe-

cialize on providing combined sets of sensors and actuators, there are still many

special devices tailored to a particular need with distinct and possibly proprietary

interfaces and communication protocols.

Thus, it is essential to unify the interface and data gathering before sending

the data further into the system. Not only such unification follows the famed

low-coupling architecture principle, and makes it easy to add, remove, or change

devices both individually, and as a whole type, but it also keeps all other parts of

the system device-insensitive, so in its pure form the change of a device will not

require a single line of code to be changed anywhere past the Physical layer.

The essential part of the Physical layer is the Gateway, the component that

initially collects data from devices and applies low-level transformation to it in

order to send it further into the system in a uniform way. Note that the Gateway

is highly hardware dependent, and will usually require changes in case of any

changes of device types.

30 3. Architecture pattern for context-aware smart environments

Of course, conceptually some other parts can be also treated as physical devices,

especially information-providing ones, such as person’s agenda, a call event over

VoIP, or some electronic message from outside the system. Often such events are

initially processed and entered into the system from the “top”, i.e. from the User

layer, or even via some other distinct entrance point, directly into the Ubiquitous

or the Reasoning layers. But we argue that with a good level of abstraction, which

a well-implemented Gateway provides, adding such events to the system from the

“bottom”, i.e. from the Physical layer, is also a perfectly viable solution that serves

well to the unification of the event processing and information flows. In this case

such event generators are commonly viewed and regarded as virtual or logical

sensors.

3.1.2 Ubiquitous Layer

The Ubiquitous layer is the backbone of the whole system, the main support of all

other components. It also contains main channels of information flow and storage,

and in some sense the layer connects and helps in the interpretation of two different

worlds: the device-level Physical layer and the domain-abstracted Reasoning layer.

Knowledge Base

We start with the Knowledge Base component. The database of the system belongs

to this component, and for some systems the component will also be synonymous

to the database. However, there is much more to it, first and foremost with respect

to the types of information it handles. There are at least three types of information

that are usually stored in the Knowledge Base, Figure 3.1 summarizes them.

The first type is the static information about devices. This includes the types

of devices the system has, their communication protocols, whether they are sensors

or actuators, the structure of readings they provide or states they can be set into.

For configurable devices it also contains the configuration information. Though

the name “static” implies that the information does not change frequently, it is

nevertheless possible that the information will change automatically during the

course of system’s operation. For example, the SM4All smart home environment

provides an automatic device discovery feature [Aiello et al., 2011].

The second type of the Knowledge Base information is the dynamic one, and

this represents the information that changes with high frequency, for example the

current state of the environment, devices, or executed commands. Many systems

prefer to send this type of information directly to relevant components (for example

in the Reasoning layer) instead of sending it to the Knowledge Base, and letting

3.1. Architecture Overview 31

the Knowledge Base handle further distribution. This makes sense, since direct

communication is also the fastest, and time of reaction is of utmost importance

for the intelligent environment. However, the need for historical data collection

is almost always a requirement, whether it is to update the training of a learning

mechanism, to diagnose errors, or to show the history to a user. This means that

even if the direct link for dynamic information transfer is outside the Knowledge

Base, there should be a duplicate link which sends the data also to the Knowledge

Base for storage and further retrieval and processing.

Finally, the last type of information in the Knowledge Base is almost exclus-

ively used by the Reasoning layer, as it contains all the information, required

for high-level reasoning. The exact model of information here depends heavily

on what kind of reasoning the system uses. For ontology-based systems such as

ThinkHome [Reinisch et al., 2010], this will be the ontology of the system and the

environment. For rule-based behavior the reasoning rules will be stored. Training

data and learning results will be present for all systems that use machine learning

in one way or another.

Context

The next component of the Ubiquitous layer is the Context. The main task of the

context is to transform low-level raw data gathered from devices into higher-level

information suitable for the Reasoning layer.

One type of such processing is data packaging. Some sensors, for instance an

acoustic sensor, send information with a very high frequency. It may be the case

that the higher level components do not need such detailed information. Some

simplified systems may only need to know if there is a sound or not or its volume,

thus large amounts of data transfer may be avoided by combining the information

on the Context level and only sending the results higher into the system. Not only

the bandwidth is saved, but also it removes the need for the Reasoning level to have

a lower level representation of the device, and allows it to think in “domain-level”

terms. Other examples include simple error filters that work nicely for such sensors

as motion or light sensors, which for the most part send correct readings, but may

occasionally send faulty ones. Such outliers are easily detectable by comparing

them with neighboring readings.

It should be pointed out here that the Context component in its pure form does

not involve any kind of domain level reasoning, such as activity recognition. The

Context instead must prepare the data for the high-level reasoning by abstracting

some devices and transforming the data from other devices. As an example, let us

take the presence detection. Though in its basic form it is a simple mapping with

32 3. Architecture pattern for context-aware smart environments

the motion sensor, the recognition of presence in the room already reasons and

operates in domain level terms. To increase the sophistication level, other sensors

may be used in later versions of the system in order to get better recognition rate

(such as RFIDs on entering people, video stream, etc.). This will change trivial

mapping into intricate reasoning system. Thus from the beginning such reasoning

should be placed into the Activity Recognition component of the Reasoning level.

Execution

The Execution component is in some sense the exact opposite to the Context. The

task of the Execution is to transform action goals received from the Reasoning

layer into executable actions that can be sent to devices. An important addition

to the task is also to oversee the correct execution of the commands by devices.

It should be noted that the Execution in its pure form, as well as the Context,

has absolutely no domain-level reasoning, i.e. it should not decide which command

to execute out of several possibilities (any form of such reasoning belongs to the

Reasoning layer). A good example is that the command to the Execution to “turn

on a lamp” should also specify exactly which lamp should be turned on in case

there are several of them. If, on the other hand, the command is general, as in

“turn on anything that provides light”, the Execution then also assumes some

responsibilities of the Reasoning layer components as there may be several ways to

satisfy the request (e.g. turning any one out of several available lamps in a room),

and the Execution component must be able to choose one of these several available

executions by using some criteria. In practice, it still may be a viable solution, in

order to reduce the complexity or simplify the architecture, but the system architect

in this case should always be aware of this mixing of responsibilities, understand

the reasons for them, and evaluate alternatives.

Even with this being said, the Execution has (and must have) some form of

reasoning on the level of particular devices. For example, it must be able to match

the correct execution action with the desired end-state of the device. Also, if

some command always involves actuation of several distinct devices in a uniform

manner, such a command can be abstracted on the Reasoning layer to a single

atomic action and only inside the Execution component it will be transformed into

a series of commands applicable to each device.

Diagnosis

The last component of the Ubiquitous layer is the Diagnosis component. This

component is optional, i.e. some systems choose not to implement it explicitly,

3.1. Architecture Overview 33

especially in the early stages of smart environment development.

The task of the component is to monitor readings from sensors and execution

results, check the correctness of the devices, and detect any anomalies, if possible.

For example, many battery-powered devices tend to send erratic data when the

battery is low. This may cause large problems at the reasoning level, if not detected

earlier.

The diagnosis may also have its counterpart at the reasoning level, which will

use domain data together with the information from the Diagnosis to forbid the

usage of faulty devices, until fixed, thus restricting the available domain.

3.1.3 Reasoning Layer

The Reasoning layer contains the domain-level logic of the system. This is the

most diverse layer as well, as every smart environment project has its own ideas on

how the environment should reason and make decisions about the actions it should

perform.

The choice of the exact context representation model influences heavily the

capabilities for system’s learning, activity recognition, and decision making, thus

it is among the most important choices to be done during the early design of

the smart environment system. The Web Ontology Language (OWL) [Antoniou

and van Harmelen, 2009] and the Resource Description Framework (RDF) [Lassila

et al., 1998] are the most popular choice for context representation at the moment,

but the possibilities are certainly not bound to them.

We split this layer into three main components. However, we note that smart

environment projects can have any combination of these components or their sub-

components.

Learning

The Learning component is responsible for automatic learning of the best possible

decisions and actions based on input data, which can either be a real-time data,

or previously gathered training data.

The Learning component has a bit special place among all other components

of the system. On the one hand, this component is optional, i.e. it is possible

to construct a smart environment system without any learning incorporated, for

example if it is a rule-based system. On the other hand, if the component exists,

it takes one of the most important places in the system.

Machine learning methods are numerous: artificial neural networks, support

vector machines, decision trees, genetic algorithms, reinforcement learning, differ-

34 3. Architecture pattern for context-aware smart environments

ent clustering techniques, etc. They are all applicable for usage in smart environ-

ment systems.

Of course, when we speak about the learning capabilities of the system, usually

it implies that the system has the ability to re-learn and re-train automatically

when initial data changes, e.g. a user develops a new habit. However, there is

also another possibility, a “semi-learning” system, so to say. In such a system

the Learning component is not an integral part of the day-to-day system opera-

tion. Instead, the learning is performed using a standalone learning module at

the beginning on some initial existing data, and results are entered to the system

as unalterable rules. They are often represented by Bayesian networks or hidden

Markov models. In such cases the Learning component may often be omitted from

the operational architecture, as it indeed is not involved in the operational flows.

When the need arises to relearn or retrain the system due to considerable changes

in the outside world, the standalone learning module may be launched again, and

the new operational rules will be entered to the system to replace the obsolete ones.

Activity Recognition

The Activity Recognition gets the information about the current state from the

Context, and applies internal knowledge to classify and define more high-level

information about the environment. For example, while the Context may send

a reading from a motion sensor that there is motion in the room, the Activity

Recognition will recognize that it corresponds to someones presence in the room.

Given the stream of video from the Context, the Activity Recognition may define a

whole set of the new domain-level information, such as whether a person is working

with PC, thinking, eating, moving around, etc.

Theoretically this component is not obligatory, as it is possible to make decisions

directly based on the information from the Context. However, without the Activity

recognition the complexity of decisions is severely limited, as they lack a big part

of high-level domain information.

The activity recognition may include sound, image, or video recognition. Often

it uses results obtained from the Learning component in order to classify and recog-

nize the activity. Sometimes activity recognition may contain stricter definitions

of what a certain activity means (such as a certain state of sensors corresponds to

a certain activity), in which case the recognition itself checks the correspondence

of the definition to the current state of environment.

The results of the Activity Recognition component will go to the Decision Mak-

ing component, where, combined with the information from the Context, will de-

pict the full knowledge about the current state, which in turn will be used to make

3.1. Architecture Overview 35

decisions.

Decision Making

The Decision Making component is what turns the intelligent environment from a

silent observant into a resolute actor: it decides which actions should be performed

in a given situation with a given knowledge.

As with the Activity Recognition and the Learning components, the Decision

Making component comes in many different forms, at least as many as there are

fields in artificial intelligence and systems automation research areas. Some us-

able techniques include optimization theory, planning and scheduling, constraints

satisfaction, search techniques, logical reasoning, ontological reasoning, reasoning

under uncertainty, and many more.

The important difference to note is that decision making may be split into two

types: instant and continual. Instant decision does not mean instant execution.

However, it means that the decision, once it is made and sent to the Execution

component, cannot be revisited and changed. Instead, the feedback from the envi-

ronment (even if it is a feedback about errors in execution) goes to the “new cycle”

of decision making, and requires new decisions to be made. The instant decision

making is easier from the architectural point of view, particularly it goes well with

stateless components, because every new decision can be made independently from

previous ones.

However, sometimes instant decisions are not enough. Continual decision mak-

ing usually involves several steps of execution within one decision. It also involves

remembering the decision and revisiting it after receiving new feedback, possibly

alternating some steps. Unlike instant decisions, continual ones usually require

stateful components, thus are more demanding with respect to fault tolerance and

general architectural cleanness.

3.1.4 User Layer

Though many projects opt not to give particular attention to interfacing with users,

instead specifying UI as a part of some other architecture layer or component, we

argue that it deserves a separate dedicated layer in the architecture.

The User layer provides a view of the system to the user, and, which is even

more important, it gives the ability to change and fine-tune the system, to debug

errors, to override system’s decisions and much more.

In this section, we specify different parts of the system that require a separate

monitoring and control mechanisms.

36 3. Architecture pattern for context-aware smart environments

The first component of the layer is the environment information. This is a mon-

itoring component which receives its information from two sources: the Context

and the Activity Recognition. First of all, the component provides an important

hint to the user about the view of the environment within the system, as generally

it may be different from the actual state of the environment. Causes of this may

be numerous: an erroneous reading of the sensor, a mistake of the Activity Recog-

nition, missing information due to hidden changes that are not detected, etc. If

the view within the system differs from the actual environment state, the decision

may be incorrect or not optimal as well. Thus it is important for a user to be able

to see the view within the system in order to be able to compare it with the actual

state.

There is another important benefit of the environment information component:

the increased user’s awareness. Many studies show that just by increasing users’

awareness about the amount of energy they consume at certain times and when

using certain devices, it is possible to reduce the total energy consumption, because

users are more likely to decrease their usage of heavy-consuming devices [Weiss and

Guinard, 2010].

The second component of the User layer is the knowledge base information and

update feedback module. The static information about devices, their configuration,

possible actions, etc., is a great reference for a user about the capabilities of the

system. Whether or not the component should provide the ability to update static

information depends on the general architecture of the system, particularly on

where the entry point of such information to the system is located. For example,

if the system should be able to automatically detect and configure the device for

work, it may be wiser to restrict the ability to tamper with the device parameters

through the user layer. More often than not, incorrect detection may highlight

deeper problems or bugs with device detection, which should be fixed, instead of

just concealed by the manual correction.

The next component of the layer is the reasoning and decision making results

module. This information helps to understand the origins of system’s actions. It

shows the reasons why a particular decision was made by the system. For example,

if the system decides to perform a certain action, this component will highlight

exactly which rules were activated. It is important to note that this includes in-

formation from all components of the Reasoning layer: the Decision Making, the

Learning, and even the Activity Recognition. There is, however, no duplication of

information with the environment information component, as the meaning of the

information in these two cases is completely different. The environment informa-

tion component must show the results of the activity recognition in order to show

3.2. Operational Flows 37

how the system perceives the state of the environment. The reasoning results com-

ponent, however, explains how and why the decision was made. Therefore it will

show in details why the recognition algorithm classified the original information

into exactly this activity, and not some other one. This knowledge helps the user

to tweak the recognition algorithms if needed.

Finally, the last component of the User layer is the system monitor. Contrary to

all previous components, instead of showing the information about the domain and

the environment, this component shows the information about the system itself:

health status of all components, their performance indicator, any detected status

changes and/or errors, etc. This also includes detected errors in devices, which

may require user’s intervention in order to check if device is working properly or

indeed needs to be changed or repaired.

3.2 Operational Flows

Intelligent building systems are reactive, i.e. their behaviour is a direct consequence

of the information they get from outside. There are three general operational flows

within the system, and every flow corresponds to a single information entrance

point.

Of course, in our description it is assumed that all components are present in the

system, which is not true for the general case, as many components are optional.

If some component is missing, then every piece of information that should pass

through the component is passed as it is (so we may assume that the transformation

is the identity), and the component generates no new information.

3.2.1 Environment-generated

This flow is the most common one, as it starts with any registered change in the

environment, and partially with every new sensor reading.

The sensor reading is generated in the Physical layer and is sent to the Com-

mon Gateway where it is converted to a uniform format. From the Gateway the

transformed reading goes to two places: to the Knowledge Base for storage and

further retrieval as historical data, and to the Context for immediate processing.

In the Context the reading is assessed and transformed from raw data reading

into a higher-level information about the current state of the environment. It may

be the case that the reading corresponds to no changes in a state, in which case,

depending on the system, the flow may either stop here (if further components are

only interested in changes), or go further as usual. Either a state or a raw reading

38 3. Architecture pattern for context-aware smart environments

data (depending on the system) is also sent to the Diagnosis component, where it

is checked for correctness.

The state is further sent from the Context to the Reasoning layer, starting with

the Activity Recognition component, where recognition is performed to generate

domain level knowledge. Then it is sent to the Decision Making component, where

it is combined with all other available information and the system decides, whether

a certain action should be performed.

In case there is a need for a certain action, the action is sent from the Reasoning

layer to the Execution component, where it is transformed to a set of device-level

commands. And finally, those commands are sent to the Common Gateway in

order to be distributed among the corresponding devices. They are also sent to

the Diagnosis component for further checks.

Of course, in parallel with the flow described above, the information is sent to

the User layer to be displayed in a timely manner. As soon as the Knowledge Base

receives the new state, it is reflected on the corresponding dashboard. The envi-

ronment information dashboard shows the results of the Context and the Activity

Recognition components, and the reasoning dashboard shows the decisions made.

3.2.2 User-generated

The alternative flow is the user-generated one. This flow starts when a user shows

the desire to change something in the way the system currently operates. For

example, a user may override a certain decision, or change the priority of rules, or

manually change a state of the environment, in case it was recognized incorrectly.

The flow starts from one of the informational components of the User layer.

When a user enters the change, it is processed and is sent to the respective com-

ponent. For a manual change of the environment it would be either the Context,

or the Activity Recognition, for a rule change it will be the Reasoning component,

for a decision override it will be either the Reasoning, or the Execution component,

etc. From there the flow goes further normally.

3.2.3 System-generated

The first type of the system-generated flows concerns the normal system operation,

for example, when executing scheduled events. In such a flow, on earlier stages a

plan or a schedule has been generated that required certain actions to be performed

in the future. In such a case, the internal clock is set, and when the time comes,

the action is automatically launched. The event usually starts from the Reasoning

component, and goes further to the Execution normally.

3.3. Challenges 39

Another type of system-generated flows concerns the re-learning and re-training

mechanisms. Usually the Learning component is updated during the course of sys-

tem’s operation, in order to correspond to changing conditions and requirements.

Updating after every state change may be too cumbersome, especially for computa-

tionally expensive machine learning methods. Thus, the re-learning happens either

at some intervals of time, or when a certain condition is met (such as a threshold

for amount of changes is achieved).

3.3 Challenges

For an intelligent environment that features a single room or a few rooms with no

more than a couple of dozens of devices, the already described architecture will

normally satisfy all demands of the architects and users combined. However, when

a system becomes larger and grows to include several floors, a whole apartment

or office building, or even several houses, new issues emerge that may render the

intelligent environment almost non-operational until properly solved.

The scalability of the system is the first of such issues. First of all, a single

server’s CPU or storage power will be quickly outgrown. Currently, many efforts

are spent in the area of database systems on development of distributed fault tol-

erant databases, such as Hadoop [White, 2012], MongoDB [Chodorow and Dirolf,

2010], Redis1, Cassandra [Lakshman and Malik, 2009], and other noSQL data-

bases. Such databases make a good foundation for extendable intelligent environ-

ments, as they already solve distribution, data replication, fault tolerance, and

availability problems out of the box. However, not only the Knowledge Base needs

proper scalability. The amount of sensor data grows with the number of devices

as well, and at some point concurrency, queue processing speed and bandwidth

issues may stop the system from further expansion. Thus it is also important to

use proper solutions not only for data storage, but also for high-volume fast data

processing. Such solutions as Twitter Storm2 or RabbitMQ3 [Videla and Williams,

2012] provide reliable ways for sending and processing large streams of data.

The Reasoning layer is the one that may suffer most from system’s expansion.

The reason is that most of the machine learning, search and reasoning algorithms

within the layer may be computationally expensive with at least exponential solv-

ing time. While the parallelization and distribution on several servers may partially

alleviate the problem, sometimes more fundamental changes to the algorithm will

1http://redis.io/
2http://storm-project.net/
3http://www.rabbitmq.com/

http://redis.io/
http://storm-project.net/
http://www.rabbitmq.com/

40 3. Architecture pattern for context-aware smart environments

be required. One of possible changes is the usage of approximate algorithms (for

example, the greedy or genetic algorithms) instead of exact ones for the optimiza-

tion reasoning. Another possible change is the splitting of the system into several

independent subsystems of smaller size and the application of the algorithms within

subsystems. While with this approach some dependency between parts from dif-

ferent subsystems may be permanently lost, if the subsystems have only weak and

not important dependencies between each other, this may be a big improvement

in terms of system’s reaction time with only minor consequences in terms of the

optimality of reasoning results.

Another direct consequence of scaling the system into several distributed servers

is the need to increase the fault tolerance level. If the system works only in one room

and on one server, crashes and other unrecoverable faults are rare and restarting

the system is an unpleasant, but fast procedure that has overall light consequences.

However, when servers become numerous, the rate of errors and crashes increases as

well. The system should be designed in such a way that any single error will cause

only a minor outage. So, for example, the system should be fully operational on

fifth floor of the building even if the server that manages the second floor crashes.

This may be achieved through the addition of special system-level components,

i.e. components that manage the system itself. Monitoring and configuration com-

ponent may keep track of all running instances of components and their servers,

check their health status through heartbeats, and keep track of their configuration.

In case a component dies, the configuration component will automatically re-

start it either on the same server, or on a different one, and reconfigure other

components so that now they contact a new instance. The configuration compon-

ent may also perform load balancing and other utility tasks. As with databases

and data streams, there are solutions that may come handy for such component

implementation, such as Apache Zookeeper4 or Doozer5.

3.4 Case Studies

In this section we showcase several prominent smart environment projects as case

studies and discuss how their architecture maps to the general pattern just de-

scribed. These projects are chosen due to several factors. First of all, their focus

is on the creation of a fully featured general intelligent building which influences

all aspects of building’s operations, as opposed to specifically targeted projects,

such as those that aim to create a smart lighting system, or those that only target

4http://zookeeper.apache.org/
5http://github.com/ha/doozer

http://zookeeper.apache.org/
http://github.com/ha/doozer

3.4. Case Studies 41

efficient system’s infrastructure. Secondly, all chosen projects have constructed,

implemented and tested an actual real environment, thus the architectures of these

projects have proved their feasibility and validity. And finally, they mostly feature

clear distinction of architecture modules, as opposed to several smaller projects,

where some modules can be seamlessly combined, or removed altogether, due to

their reduced functionality.

Even though the presented pattern is the most commonly used one for smart

buildings, sometimes specific requirements may induce other constraints on the

project and its architecture. For example, an emerging view of smart home ar-

chitectures is viewing smart building environments as multi-agent. [Cook, 2009]

defines four different directions in multi-agent research of smart environments:

(a) multi-intelligent software agents, (b) tracking multiple residents, (c) profiling

multiple residents, and (d) multi-agent negotiations. The first direction usually

assumes viewing every module of the system as a separate agent, with commu-

nication protocols guiding interactions between them. Surprisingly, such a view

of multi-agent architecture can be very well combined with the pattern presen-

ted here. In fact, in the same work Cook uses the MavHome project, which is

one of our case studies as well, to describe how the agents can be organized in a

hierarchical layered configuration. Other research directions view as agents either

different people (in which case the smart system itself remains unified, but has to

incorporate additional intelligence for distinguishing people), or different devices.

In the latter case, especially if devices are highly mobile and autonomous, thus

may be viewed as a complete system by themselves, the proposed pattern may be

inapplicable or sub-optimal, and other agent based architectures may be explored,

for example as described in [Spanoudakis and Moraitis, 2006].

In the project case studies below, to avoid confusion, we refer to the layers

of the architecture pattern, which is described in this chapter, as “the pattern

architecture”, and to the layers of respective projects as “the project architecture”.

3.4.1 MavHome

The Managing An Intelligent Versatile Home (MavHome) project was one of the

first scientific projects to create a functioning smart environment [Das et al., 2002].

The home system in the project acted as a rational agent, whose goal was to maxim-

ize comfort of its users and minimize costs of operation. The project used learning

and prediction techniques heavily to predict mobility patterns of the inhabitants

and adapt to them in a timely manner.

The architecture of the MavHome project is described in details in [Young-

blood et al., 2004]. It is divided into four main layers: Physical, Communication,

42 3. Architecture pattern for context-aware smart environments

Information, and Decision.

The Physical layer of the MavHome exactly maps to the Physical layer as

described in the pattern: it contains physical components, i.e. physical devices,

and hardware interfaces between devices and higher-level components, reminiscent

of the Common Gateway of the pattern.

The Communication layer contains many utility components that help to make

the system operational, such as device drivers, operating system, proxies, and

middleware. When comparing to the pattern, the Execution component is a part

of this layer of the MavHome. As we mentioned at the beginning of the Section 3.1,

we avoid to include any implementation details and support components into the

pattern, as they are very specific to every system, however they may very well

be present in the high-level architecture overviews of particular projects. The

Middleware sub-layer of the Communication layer of the MavHome project contains

such components, as Bootstrap for component mobility, ZeroConf for naming and

discovery, and CORBA as a point to point publish/subscribe system. One thing

to note is that all device and hardware related utility software, such as drivers,

operating system, or proxies, may also be conceptually viewed as a part of the

Physical layer of the pattern.

The Information layer of the MavHome contains aggregator, prediction, data

mining and database services. It combines into a single layer parts of both the

Ubiquitous and the Reasoning layers of the pattern. Namely, the Knowledge Base

and the Context from the Ubiquitous layer, and the Learning and the Activity

Recognition from the Reasoning layer.

Finally, the Decision layer of the MavHome project corresponds to the Decision

Making component of the pattern, and contains component applications such as

Decision Maker, Learning, and Policy.

In the MavHome architecture there is no specific component or layer, respons-

ible for interfacing with the user, even though such interfaces (including mobile

interface on PDA) actually exist. In case of their inclusion into the architecture

picture, they may constitute the next layer, similar to the User layer of the pattern.

3.4.2 SmartLab

The SmartLab is another project that has created a functioning smart environ-

ment [López-de Ipiña et al., 2008]. The uniqueness of the project lies in the fact

that the project itself features a hardware and middleware parts of the environment

(the Physical and the Ubiquitous layers in the pattern), with common interfaces

for other projects to use and to create their own reasoning on top of it (the Reas-

oning layer of the pattern).The SmartLab environment was already used as a base

3.4. Case Studies 43

for several other research projects, including Assistive Display6, ubiClassRoom7,

Eldercare8.

The architecture of the project is described in details in [López-de Ipiña et al.,

2008]. The architecture contains four main layers: Sensing and Actuation (devices),

Service Abstraction (embedded platform), Semantic Context & Service Manage-

ment (SmartLab server), and Programming, Management & Interaction (applica-

tions).

The Sensing and Actuation layer contains all devices within the environment.

They include EIB/KNX bus for lightning, HVAC, presence, temperature and mo-

tors on doors and windows, VoIP and VideoIP, Indoor Location System, etc. The

next layer is the Service Abstraction layer, which transforms functionality of the

devices from the first layer into software services. Together these two layers rep-

resent the Physical layer of the pattern, with the second layer representing the

Common Gateway.

The Semantic Context & Service Management layer contains the Service Man-

ager, which monitors the environment for activation and deactivation of devices

thus for availability of services, the Semantic Context Manager, which stores know-

ledge about devices and rules in the common ontology, and the Web Gateway Mod-

ule, which produces interfaces for third-party programs wishing to interact with

the environment. This layer corresponds to the Ubiquitous layer of the pattern,

with the Service Manager behaving as the Context component, the Semantic Con-

text Manager behaving as static storage of the Knowledge Base component, and

the Web Gateway behaving as the Execution component.

Finally, the Programming, Management and Interaction layer provides web-

based interface for users of the SmartLab laboratory. The Environment Controller

allows a user to manually operate the environment through a set of widgets, while

the Context Manager Front-End offers a web interface for management of devices

configuration, ontology, rule behavior, and tracking the system log and statistics.

As can be seen, the layer closely resembles the User layer of the pattern.

Note that there is no layer similar to the Reasoning layer. As we already

mentioned, the project provides capabilities for external programs to use the envi-

ronment and middleware while applying their own reasoning. Thus such external

programs will represent the Reasoning layer, when attached. Instead, the Semantic

Context & Service Management layer provides all interfaces needed for external

programs.

6http://www.smartlab.deusto.es/assistive_display/
7http://www.smartlab.deusto.es/ubiClassRoom/
8http://www.smartlab.deusto.es/eldercare/

http://www.smartlab.deusto.es/assistive_display/
http://www.smartlab.deusto.es/ubiClassRoom/
http://www.smartlab.deusto.es/eldercare/

44 3. Architecture pattern for context-aware smart environments

3.4.3 Smart Homes for All

Smart Homes for All (SM4All) was a European-wide research project that created a

smart apartment in Rome, Italy [Aiello et al., 2011]. The project featured several

innovative ideas within smart environments, including usage of brain computer

interfaces for issuing the commands, using planning techniques for finding a set of

actions for complex commands, and sophisticated execution mechanisms to avoid

concurrency issues when executing the commands.

Figure 3.2: SM4All Architecture

The architecture of the project as described in [Aiello et al., 2011] can be seen

in Figure 3.2.

There are three main layers. The Pervasive layer contains all devices and gives

the possibility for devices to be added or removed dynamically through the usage

of the common Universal Plug and Play (UPnP) protocol. The layer has the direct

correspondence to the Physical layer of the pattern.

The Composition layer contains five major components. The Repository repres-

ents the Knowledge Base component of the pattern, and contains a database, which

includes registry of current devices and their abstract types, description of available

services, and information about the layout of a house. The Context Awareness col-

lects sensed data and represents the logical image of the environment, thus being

3.4. Case Studies 45

the Context component of the pattern. Though there is no specific Activity Re-

cognition component from the pattern included in the SM4All architecture, some

parts of it are also included in the Context Awareness.

The Orchestration component controls the execution, i.e. it invokes the physical

services and receives feedback about the status of invocations. As such it corres-

ponds to the Execution component of the pattern. The Rule Engine component

contains rules of the environment behavior and constantly checks, based on inform-

ation from the Context Awareness component, whether those rules are satisfied; if

so, it invokes the Composition component, which applies AI planning techniques

to create a set of actions which are sent to the Orchestration. The Rule Engine

and the Composition combined constitute the Decision Making component of the

pattern.

The User layer provides access to the home system to its users. Users may issue

direct commands either through the touch interface or through the Brain Computer

Interface. The User layer corresponds to the Reasoning results component of the

User layer of the pattern.

3.4.4 GreenerBuildings

The GreenerBuildings project is the project that is dedicated to creation of smart

offices in a green and energy-efficient way, while maintaining the high level of

occupants’ comfort [Degeler et al., 2013]. Occupants’ behavior and activities are

the key for adaptation to maximize the comfort, while choosing the most energy

efficient state. The living lab setting is constructed on the premises of Eindhoven

University of Technology, the Netherlands. The project focuses on the creation of

a scalable, distributed, and fault tolerant solution. The architecture of the project

is shown in Figure 1.1.

The Physical layer contains all devices connected to the Sensors and Actuators

Gateway, which sends the values further into the system. As such the Physical

layer of the project resembles closely the Physical layer of the pattern. Note that

the project layer contains one more component: the Interconnection with Smart

Grid. Since the project puts many efforts in energy saving, the Smart Grid com-

ponent provides the energy consumption and energy costs information. It also

provides prices of energy from different energy providers, so that it is possible to

choose the best price and the best time of task executions when the prices are the

cheapest. The Interconnection with Smart Grid is a component, specific to the

implementation of the GreenerBuildings, so there is no corresponding component

in the pattern. However, since it provides information, as other devices do, it can

be viewed as a part of the usual Physical layer subsystem.

46 3. Architecture pattern for context-aware smart environments

The Ubiquitous layer contains three main components: The Context, the Re-

pository and the Orchestration, each having more subsystems within it. The Repos-

itory contains information about device types, device instances, and saves historical

data for further retrieval. It corresponds to the Knowledge Base component of the

pattern. The Context component collects information from sensors and transforms

it to offer a consistent view of the environment. It also performs activity recog-

nition and as such it combines two components of the pattern: the Context and

the Activity Recognition. The Orchestration performs execution of commands and

also diagnoses errors on the Physical layer. Therefore it combines the Execution

and the Diagnosis components of the pattern.

The Composition layer contains two main components: the Control and the

Composition component. The Composition component contains the reasoning of

the system. The Rule Maintenance system within the component uses constraint

satisfaction techniques to constantly check all rules that users have added to the

system, and finds the state of the environment which satisfies all the rules. Planning

component creates a set of actions to be executed by the Orchestration, and the

CFD is the special system for optimal handling of the heating mechanisms and

air quality within the rooms. Thus the Composition component is the Decision

Making component of the pattern.

The Control component is the main system interface to a user. It shows system’s

parameters, and allows a user to issue direct commands or overrule decisions of the

system. It also collects information about the users’ satisfaction levels. As such it

partially corresponds to the User layer of the pattern.

Chapter 4

Dynamic Constraint Reasoning in Smart
Environments

In any smart environment, the autonomy and reasoning power should be counter-

balanced by the ability of users to fully understand the reasons of the system’s

automated operations and their ability to fully control the system’s decisions, ad-

apting them to their goals and desires at any moment. Therefore, flexible and

adaptable reasoning mechanisms are essential for environment automation.

Our approach, implemented in the GreenerBuildings project, is to specify scen-

arios of the building’s operations via sets of logical rules. The predefined sets of

rules for standard behavior may always be modified or fully overridden on global

or local levels by facility managers or particular users.

The rules combine context information about the environment with the desired

behavior of actuators, and must at all times be satisfied whenever it is possible, or

be able to communicate failure to relevant users when impossible.

This behavior can be modelled as a constraint satisfaction problem (CSP).

In particular, the model falls into the dynamic constraint satisfaction problems

(DCSP) [Verfaillie and Schiex, 1994] category, due to the necessity to solve the

satisfiability problem over and over again, every time with small changes (due to

changing context) from the previous task. If costs are involved, for example the

desire to find the most energy efficient way to satisfy the current set of rules, the

usual CSP task may need to be solved as an optimization CSP.

In this chapter, we present the dynamic constraint satisfaction solution for

the GreenerBuildings project. First of all, we explain why the straightforward

encoding of the problem to the (D)CSP task brings suboptimal efficiency, and how

the specific structure of the smart environments domain can be exploited in order

to make CSP models smaller and decrease amount of computations required to

solve every subsequent CSP task. In particular, the existence of context variables

(information from sensors) and controllable actuators, and the uneven dependency

of variables are exploited. By uneven dependency we mean the existence of highly

dependent subsets of variables (for example, devices that are part of a common

48 4. Dynamic Constraint Reasoning in Smart Environments

area within a single room) with many interconnecting rules, which have very loose

or no dependency on another subset of variables (e.g. devices from a different

room). The main contribution involves the formulation of the dependency graph

data structure, which makes it possible to split CSP into dynamically independent

subtasks, and to find only the affected parts of the problem every time a new event

arrives to the system, which severely reduces the size and complexity of the CSP to

be solved at every subsequent step. We also present a specific method to transform

rules into a form which makes the dependency graph possible.

4.1 Rule Satisfaction in Smart Environments

The GreenerBuildings project aims to increase the overall users’ comfort by ad-

apting to their needs. Usually there are several ways to satisfy them. Therefore,

the additional goal of the project is to assure the minimum energy consumption

of the building, without sacrificing user comfort. The reasoning is handled by the

Rule Maintenance Engine (RME) component. Via the web interface the users are

able to access the current rules, modify them, add new rules, or delete obsolete

ones. The information about the current state of the environment comes from the

Context component as new sensor readings events. Informally, the RME goal can

be defined as follows:

Given a set of user-defined rules of the building’s behavior, and information

about the current environment state, the Rule Maintenance Engine must ensure

that:

1. The rules are satisfied and adhered to. If there are some rules which cannot

be satisfied at a given moment, the user must be presented with sufficient

information to identify the cause.

2. While satisfying all rules, the energy consumption of the building should be

minimal.

3. Decisions should be made in real-time and be scalable with respect to the

environment size.

In general, rules are entered to the system by its users. However, there are

certain “ready-made” presets of rules that users may use. The system gives the

ability to modify sets of rules or switch between different sets.

Rules describe the expected and desired behavior of the smart building. In

general there are two different types of rules. The RME system itself handles

those types equivalently, but for the users of the system they represent a difference

between what is necessary and what is desirable.

4.2. Environment Definition as CSP 49

The first type represents a dependency between variables. For example, a rule

desk1.monitor = active⇒ desk1.pc = on tells the system that it is not possible to

have a monitor in an active state if the PC to which the monitor is connected is off.

The second example is ¬(room1.blinds1 = down∧room1.window1 = open), which

represents a physical constraint that blinds can only be put into down position if

the window is closed.

The rules of the second type are in essence user preferences. They describe

the desired behavior of the system. For example, a rule room1.presence > 0 ⇒
room1.ceilinglamp = on ∨ room1.desklamp = on represents a desire to have a

light on in the room, if there are people inside.

The rules are defined as formulas in a predicate logic over finite domains. Every

atomic predicate represents a certain condition over a variable, and should result

in true or false. There are several available operations in predicates. The equality

represents that a variable should be equal to a given value for a predicate to be

true. For example: room313.dimmer1 = 0. Opposite to it, the inequation is used

to forbid a variable to be equal to a certain value, e.g. room313.dimmer1 6= 0.

It is also possible to use a set of values instead of a single value in both cases,

e.g. room313.dimmer1 ∈ {0; 10; 20} or room313.dimmer1 /∈ {0; 10; 20}. These

operations are available for all types of variables. For ranged variables, i.e. integer

or real ones, it is also possible to use inequalities, i.e. greater (or equal) / less (or

equal) than. For example: room313.dimmer1>50; room313.dimmer2 ≤ 200. To

summarize, the rule with only a single atomic predicate is represented as:

P ::= (vi = d) | (vi 6= d) | (vi ∈ {di}) | (vi /∈ {di})
P ::= (vi < d) | (vi > d) | (vi ≤ d) | (vi ≥ d), vi ∈ R

Of course, atomic predicates can be combined together to form logical formulas of

any additional complexity, using the standard logical operators:

R ::= P | ¬R | R ∧R | R ∨R | R⇒ R | R⇔ R

4.2 Environment Definition as CSP

The environment 〈V,D〉 is defined by a set of context variables V = S
⋃
A;

S
⋂
A = ∅, where S = {s1, s2, ..., sn} is a set of uncontrollable variables, and

A = {a1, a2, ..., am} is a set of controllable variables. Uncontrollable variables S

represent sensors, they provide information about the environment, and cannot be

directly influenced by the system. They do not necessarily represent a physical

sensor. A variable can represent a combined value of several sensors, or a result of

a certain activity recognition task.

50 4. Dynamic Constraint Reasoning in Smart Environments

On the other hand, controllable variables A can be seen as actuators that can act

in the environment in an automated way, i.e. by receiving appropriate commands

from the system. We assume that it is possible to change the state of every actuator

independently from other actuators, and that it is possible to transform an actuator

from any state of its domain to any other state of its domain.

Every variable v ∈ V varies over a finite states domain d(v) with size kv,

which can be either a range of integer or real values, a boolean, or a set d(v) =

{dv1, dv2, ..., dvkv
}. Each variable v has a cost function cv(di), associated with its

state domain d(v) that shows the cost of keeping the variable in this state. For

the GreenerBuildings project the cost is associated with the energy consumption

of corresponding devices.

The original set of rules Ro contains a set of logical formulas over variables in V .

Every rule r ∈ Ro can be represented as a constraint to the classical CSP model,

which corresponds to a subset of variables Vr = {vr1, vr2, . . .}, and represents a

subset Xr of a Cartesian product over their respective domain values d(vr1) ×
d(vr2)× . . ., which specifies the sets of values of those variables that are compatible

with each other. This subset can be trivially constructed by constructing the full

truth table for a set of variables Vr, and retaining only those values from a table,

for which the rule evaluates to true.

It is possible to use the original set of rules Ro as a set of constraints to the CSP

task, though we also need to add the knowledge about the current sensor values to

the problem definition, since we know their values from the context environment

information, and we cannot influence them directly. For every sensor s ∈ S, if its

current value is ds, one more rule s = ds is added to restrict the sensor. In this

case, the natural constraint satisfaction problem for the smart environment will be

defined as follows:

Find a valuation for a set of variables V = S
⋃
A which satisfies all constraints

C = Ro

⋃
Rs, where Ro is the original set of predefined rules, and Rs is a set of

sensor constraints for every sensor: ∀s ∈ S : s = ds, where ds is the current sensor

value of the sensor s, obtained from the context information. We will refer to this

CSP definition as CSP (V,Ro

⋃
Rs).

Such CSP representation, however, is very inefficient in practice with respect

to the amount of required computations. The reasons for this are the following:

� In order to keep the solution valid and up to date, the CSP task should

be solved for every new sensor change event. For the smart buildings with

hundreds of sensors several of such events arrive every second. Solving the

CSP for the full environment is a computationally heavy task, and doing it

for every new sensor change event can represent a big strain on resources.

4.3. Rule Transformations 51

Such solution has a very low scalability potential.

� Every sensor change affects only a small part of the environment, therefore

solving from scratch every time produces a large amount of duplicate work.

Using dynamic constraint satisfaction techniques is more computationally

efficient.

� In practice, many rules (constraints) for intelligent environments are only

applicable for a particular situation, which may occur only a small percentage

of the time. For most of the time the constraints will not be applicable,

however they will still need to be added as a part of the CSP over and over

again.

The classic definition of Dynamic Constraint Satisfaction Problem [Dechter and

Dechter, 1988; Bessiere, 1991] defines it as a set of successive CSPs, where every

next CSP is created from the previous one by adding or removing a variable or

a constraint. Though in our case most of the changes to the environment do not

involve direct addition or removal neither of a variable, nor of a constraint, we

can still represent a problem in such a way, by representing a change of a sensor

value s ∈ S from dsold to dsnew as removal of a constraint s = dsold and addition of

a constraint s = dsnew.

In the classic definition the domain remains of the same size. On the other

hand, our solution for dynamic constraint satisfaction of smart environments al-

lows to make the problem domain smaller for every subsequent CSP, by reusing

dynamically independent parts of the previous problem.

4.3 Rule Transformations

Users may enter rules in any form they like, but to make the automated processing

easier, the rules are transformed into a special uniform way. Transformations are

done only once at the time of addition of a new rule by users (or after a rule has

been modified), and should ensure that the least amount of processing is kept for

the real-time system’s operation. There are two reasons for transformations.

First of all, we split the rule into as many independent sub-rules as possible. For

example, a rule chair = occupied⇒ pc = on ∧ lamp = on should be split into two

different rules: chair = occupied ⇒ pc = on and chair = occupied ⇒ lamp = on.

This will not change the overall rule satisfaction logic, as all the rules should be

satisfied, however, such splitting ensures that we do not register a false dependency

between two variables “pc” and “lamp”, as it can be seen that, at least if using

only this rule, they may be satisfied or not satisfied independently.

52 4. Dynamic Constraint Reasoning in Smart Environments

The second reason is that at the end we want all resulting rules to have a form

Fs(S)⇒ Fa(A), i.e. some function of sensors implies a function of actuators. The

benefits we achieve with this are twofold. First of all, the sensors S cannot be

influenced by the system, thus they represent the situation that is given to us.

There is no possibility to directly influence the antecedent of the equation Fs(S);

with the given context in the current situation it is either satisfied or not. If it

is not satisfied, or let us rather say “the situation described in Fs(S) does not

occur”, then we do not need to do anything about the consequent of the equation,

the Fa(A), which contains actuators, as the full equation is already satisfied. The

rule is then in the “inactive” state, i.e. it is possible to skip it in the constraint

satisfaction problem, which can help us to severely reduce the search space and

decrease dependencies. If, on the other hand, the Fs(S) is met, i.e. results to

true, then we must ensure that the consequent, which contains actuators Fa(A),

is satisfied. Thus the second benefit. Since we can only control actuators, only

actuator variables are meaningful for the CSP search space. When we use such a

form, we can only put Fa(A) part of the formula to the CSP description, and only

when we actually need it to be satisfied.

Finally, to ensure the fastest processing the functions Fs(S) and Fa(A) are

transformed into the form
∧

s(P (S)) =>
∨

a(P (A)). Here P (S) and P (A) are

atomic predicates with respective variables. The form
∧

s(P (S)) ensures that with

every new sensor reading s = ds it is possible to recheck only a single atomic

predicate P (s). The form
∨

a(P (A)) is the easiest for CSP solvers to work with.

It is always possible to transform any human-defined rule into such a form.

The actual transformation is done in the following steps. First of all, the original

rule is transformed into the CNF form. Every conjuncted clause (the disjunction)

in the CNF form is connected by ∧-clause and, since all rules must be satisfied,

may be regarded individually. Therefore every such a clause will represent a single

separate rule in the resulting set, so often an original rule will result in several final

rules. Every resulting rule is a disjunction of atomic predicates (possibly negated).

On the second step it is transformed into an implication by taking those atomic

predicates that contain only sensors, and putting them (in negated form) into the

antecedent of the implication. The next step is not necessary, and is done only for

convenience, in order to unify further representation and processing of transformed

rules: negation is removed from all negated atomic predicates by flipping the opera-

tion. For example, the ¬(room1.dimmer1 > 100) becomes room1.dimmer1 ≤ 100,

and ¬(desk1.pc = on) becomes desk1.pc 6= on.

For example, let us assume we have a rule that requires to have light in the

room if there are people inside. Light can be achieved either by turning on the

4.4. Dynamic Dependency Graph 53

lamp, or by opening the blinds, but only in case there is enough light outside:

room1.presence > 0 ⇒ room1.lamp = on ∨
outsidelux > 1000 ∧ room1.blinds = open

(4.1)

Sensors here are room1.presence and outsidelux. So, by putting it into CNF,

splitting it into two distinct rules, putting the sensors to the antecedent, and re-

moving the negation from atomic predicates we obtain the following two rules:

room1.presence > 0 ⇒ room1.lamp = on ∨ room1.blinds = open (4.2)

room1.presence > 0 ∧ outsidelux ≤ 1000⇒ room1.lamp = on (4.3)

If someone is present in the room, the first rule will be “active” and the sys-

tem will need to either turn on the lamp or open the blinds. In practice, since

optimization CSP is used, if both choices are not restricted the system will choose

to open the blinds as more energy efficient choice. But if the outside light level is

sufficiently small, the second rule will also become active, which means the only

choice left will be to turn on the lamp, as it will satisfy both rules.

4.4 Dynamic Dependency Graph

The environment size for pervasive smart buildings may become considerably large,

easily reaching hundreds of variables. One of the goals of the RME component is

to ensure that such environments can be handled in real-time, thus rechecking

all variables after every event registered by one of the sensors is definitely a non-

practical solution.

It is better to recheck only parts of the environment, which are actually affected

by a change. This is, however, not always a straightforward task. Dependencies

are introduced via rules, but it is not enough to recheck all the rules that contain

the changed sensor to find a new optimal state of the environment, as easily shown

by the earlier example that requires either the lamp to be on or the blinds to be

open during the day, if people are inside the room. Let us assume that rules (4.2)

and (4.3) compose our ruleset. When it is still dark someone enters the room, so

sensor values are room1.presence > 0 and outsidelux = 500. The only way to

satisfy both rules is to turn on the lamp, so the system does it, while keeping the

blinds shut. Now the outside light gradually increases, and at some point becomes

bigger than our threshold: outsidelux = 1100. At this moment only the sensor

54 4. Dynamic Constraint Reasoning in Smart Environments

from the rule (4.3) is changed, and the rule is not active anymore. But because of

this change the first rule (4.2) can now be satisfied in a different way, by opening

the blinds, which is more energy efficient, so it also needs to be rechecked.

Another option is to transitively consider all variables affected, if they are a part

of the affected rules. However, this will largely overestimate the amount of rules

and variables to be rechecked. For example, assume we have a rule (desk1.chair =

occupied ∧ desk1.paperwork = true) ⇒ desk1.lamp = on, and the chair becomes

occupied, while the paperwork does not change and remains false. In this case the

total antecedent of the rule has not changed, it is still not satisfied, thus we should

not even trigger the rechecking of the lamp and all other variables, which may be

dependent on it.

The dynamic dependency mechanism, which is realised via the use of the De-

pendency Graph is specifically the mechanism designed to keep track of the actual

dependencies between the variables, based on the context information, and only

invoke re-optimization tasks for the smallest subsets of the variables which are

actually affected.

As shown in Section 4.3, after performing rule transformations, we obtain an

internal set of rules R, where every rule r ∈ R is in a form Fs(S) ⇒ Fa(A),

specifically
∧

s∈S(P (s))⇒
∨

a∈A(P (a)).

First of all, sensor variables should be removed from the CSP model. At every

moment in time sensor variables have a particular valuation, based on the context

environment information, and represented by a set of rules Rs: s = ds, ∀s ∈ S.

Therefore, while the sensor values influence the valuation of actuators, the sensors

themselves are not decision variables, as only a single value is applicable to them,

and we know this value in advance.

The rule form Fs(S)⇒ Fa(A) helps to construct an equivalent CSP model that

does not contain sensor variables. For this, we define an active property of rules:

Definition 1 (Active/inactive rule). A rule r = (F r
s (S)⇒ F r

a (A)) is active in the

current state of the environment, i.e. with a given valuation of sensors Rs, if the

antecedent part of the rule F r
a (A) valuates to true, and inactive otherwise.

Let R∗ ⊆ R represent an active subset of rules R.

If the rule is inactive, it poses no constraint for the actuator values, as the full

rule is already satisfied regardless of them. So the rule may be removed from the

CSP model at this moment in time. The activeness of a rule changes with time

and different sensor values.

Using the notion of rule activeness, we change the previous CSP definition:

CSP (V,Ro

⋃
Rs) ≡ CSP (A,FR

A),

4.4. Dynamic Dependency Graph 55

where FR
A = {F r

a (A)}, ∀F r
a (A) of r ∈ R∗

Not only such definition removes all sensor variables from every consecutive CSP

task, but also many original rules are removed, leaving only those that are actually

relevant to the current situation and state of the environment. Given the nature

of smart environment rules, it is usually a small subset of the original rules at any

moment in time.

The next step in transforming the task definition is to find sets of dependent

variables. For this, we formally define dependency of variables and rules:

Let X(Vx) represent the set of full Cartesian product of values for a variable

set Vx: d(vx1)× d(vx2)×
Let r(x) for r ∈ R and x ∈ X(A) identify the result of evaluation (true or

false) of the consequent actuator part Fa(A) of a rule r with actuator values in

valuation x.

If Br = {ar1, ar2, . . .} is a subset of actuators Br ⊆ A, then let NBr be a

complement subset: NBr = A\Br.

Definition 2 (Dependency). The rule r ∈ R is said to introduce a dependency

over a subset of actuator variables Br = {ar1, ar2, . . .} (or, alternatively, a rule r

depends on variables ar1, ar2, . . .), iff:

1. ∀x ∈ X(NBr) : ∃w1, w2 ∈ X(Br) s.t.: r(x× w1) 6= r(x× w2)

2. @anb ∈ NBr s.t. ∃d1, d2 ∈ d(anb), ∀x ∈ X(NBr\anb), ∀w ∈ X(Br) : r(d1 ×
w × x) 6= r(d2 × w × x)

3. @ab ∈ Br s.t. ∀d1, d2 ∈ d(ab), ∀w ∈ X(Br\ab), ∀x ∈ X(NBr): r(d1×w×x) =

r(d2 × w × x)

The first part ensures that the result of a rule evaluation will indeed change

with different valuations of variables in Br.

The second part ensures that the set Br is complete, i.e. there is no variable

outside of this set, s.t. changing a value of this variable will still result in a change

of a rule evaluation result.

The third part ensures that the set Br is minimal, i.e. there is no variable in

this set, which does not influence the evaluation result irrespectively of its value.

We use the dependency relation to find subsets of dependent variables and rules.

To do it, we introduce a dependency graph:

Definition 3 (Dependency graph). The dependency graph for a set of actuators

A and a ruleset R is a bipartite graph G = 〈A,R,E〉, where A and R are two sets

56 4. Dynamic Constraint Reasoning in Smart Environments

(a) All rules are active (b) r1 is inactive (c) r3–r5 are inactive

Figure 4.1: Dependency graphs

of vertices, and E ⊆ A × R is a set of edges, (a, r) ∈ E iff the consequent part

Fa(A) of the rule r depends on a.

Figure 4.1a shows a dependency graph example. Two disconnected subgraphs in

the figure represent a static independency, i.e. there is no rule that may potentially

make the variables from different connected subgraphs dependent on each other.

Every rule and every variable are a part of only a single subgraph, and it is clear (see

Lemma 1 for proof) that instead of having a single big CSP with all variables and

rules combined, it is possible to “divide and conquer” by creating several smaller

CSPs for every independent subgraph.

But most of the division benefits are gained not from static, but from dynamic

independency, which exists when there are no active rules that make the vari-

ables mutually dependent. This dependency changes over time and with different

sensor values, so two variables may be dynamically dependent at one moment, and

independent at the next one.

Definition 4 (Active subgraph). At a certain moment in time, an active subgraph

of the dependency graph G is a connected subgraph of G that consists only of

active vertices.

Examples of active subgraphs are shown in Figures 4.1b and 4.1c. By using this

notion, we show that our solution to the DCSP of smart environments is globally

optimal even with partial environment rechecking. First, we prove a lemma that

smaller-sized CSPs for connected active subgraphs can be solved independently.

Then, we prove the main theorem, stating that at every subsequent step it is

possible to only recheck those subgraphs that changed their structure.

Lemma 1. For any set of solutions xi ∈ X(Ai) for all connected active subgraphs

Gi ⊂ G, Gi = 〈Ai, R
∗
i , E〉 s.t.

⋃
i(Gi) = G,

⋃
i(Ai) = A,

⋃
i(Ri) = R∗, their

4.4. Dynamic Dependency Graph 57

combination x =
⋃

i(xi) is a solution of the full CSP (A,FR
A), ∀r ∈ R∗. And vice

versa, if x ∈ X(A) is a solution to the full CSP, when split into subsets of variables

per active subgraph, these values will be a solution to smaller CSPs for connected

active subgraphs: CSP (A,FR
A) ≡

⋃
i CSP (Ai, F

Ri

Ai
)

Proof. We split the proof into two parts. First we prove that if x ∈ X(A) is a

solution to CSP (A,FR
A), then all xi which are parts of the x that contain variables

from active subgraphs Gi, are solutions to respective CSP (Ai, F
Ri

Ai
). Then we

prove that if ∀i: xi is a solution to the CSP (Ai, F
Ri

Ai
) of the subgraph Gi, then

x =
⋃

i(xi) is a solution to the full CSP (A,FR
A).

1. Assume x ∈ X(A) is a solution to CSP (A,FR
A). Then x must also be a

solution for a CSP (A,FRi

A), ∀i, since these CSPs contain the same set of variables

A, but only a subset of original constraints Ri ⊆ R∗, therefore are less restrictive.

From Definition 2 and Definition 4 it follows that the satisfaction of constraints Ri

from active subgraph Gi depends only on variables from subset Ai, irrespectively

of values of variables A\Ai, thus the rules Ri are satisfied by valuation of xi ∈
X(Ai), xi ⊆ x, therefore the smaller CSP (Ai, F

Ri

Ai
) must also be satisfied ∀i.

2. Assume that ∀i: xi ∈ X(Ai) is a solution to CSP (Ai, F
Ri

Ai
). If we add new

variables A\Ai (to the total set of A) for every such CSP to obtain CSP (A,FRi

A),

it will be satisfied for any valuation of new variables, since by Definitions 2 and 4 no

constraint out ofRi changes its satisfaction status no matter the values of a ∈ A\Ai.

Therefore we can use valuation x = x1 × x2 × . . . to satisfy all CSP (A,FRi

A). So,

the valuation x satisfies all rules in every set Ri. Therefore it must satisfy all rules

in a combined set R∗ =
⋃

iRi, ∀i, which means the valuation x must be a solution

to the CSP (A,FR
A).

Since every cost function only depends on a single variable, if x is optimal for

CSP (A,FR
A), all xi ⊆ x must also be optimal for the respective smaller CSPs.

Otherwise, if a valuation x′i is better for CSP (Ai, F
Ri

Ai
), following the chain of

reasoning from part 2 of the proof, we arrive to conclusion that valuation x′ =

x\xi ∪ x′i must also be a solution to CSP (A,FR
A), and it must be better than x,

which contradicts the premise. And vice versa, if all independent subsets xi are

optimal, the full set x must also be optimal.

During the operation of the smart environment system, new sensor readings

arrive as events. The change in a sensor value may potentially cause some rules

to change their activeness status. The check takes constant time for every rule,

as the form
∧

s∈S(P (s)) ⇒
∨

a∈A(P (a)) ensures that only a single atomic predic-

ate P (s) for a sensor s may change, and needs rechecking. Only the change in

activeness status affects the actuators, and only a small percentage of new sensor

58 4. Dynamic Constraint Reasoning in Smart Environments

readings actually change the activeness of a rule, which saves the system from many

unnecessary CSP solution invocations.

The change of activeness status changes the structure of active subgraphs

around the rule. Either a single subgraph has one more (one less) constraint,

or two or more subgraphs may join into one (one subgraph split into two or more).

We now prove the main theorem for DCSP in smart environments:

Theorem 1. For every event in the system, only active subgraphs that changed

their structure must be rechecked for the whole valuation of actuators to remain

satisfied and optimal.

Proof. Let xt be the optimal solution found for the CSP (A,FRt

A) at time t, with

active rules Rt. Let Gt represent a set of active subgraphs Gt
i at time t. Let xt+1,

CSP (A,FRt+1

A), Rt+1, Gt+1 represent same notions for the time t+ 1.

We split xt to a set of valuations {xti} that correspond to active subgraphs Gt
i.

As proven in Lemma 1, every xti is a solution to a corresponding CSP (Ai, F
Rt

Ai
).

Let a sensor change at time t+ 1 make ruleset Rt+1
− inactive and ruleset Rt+1

+

active. The total active ruleset at time t+ 1 is thus Rt+1 = Rt\Rt+1
− ∪Rt+1

+ , and

the rules Rconst = Rt\Rt+1
− are active at both times t and t+ 1.

Since variable vertices are always active, active subgraphs that consist only of

rules in Rconst are defined by Gconst and are the same for both times: ∀Gi s.t.

Ri ⊆ Rconst: G
t
i = 〈Ai, Ri, E〉 = Gt+1

i . Since we know that xti is a solution for Gt
i,

it must also be a solution for Gt+1
i . Let us denote the set of valuations for Gconst

as xconst.

Let xt+1
nc represent (newly found) solutions for all active subgraphs Gt+1\Gconst.

As proven in Lemma 1, the combined xt+1 = xconst × xt+1
nc must be a solution for

the CSP (A,FRt+1

A). Therefore it is proven that it is possible to reuse solutions

xconst from Gconst in a global solution.

In the case of a usual CSP instead of an optimization CSP, i.e. if the cost of the

solution is not relevant and any solution that satisfies the rules is equally good, the

dynamic rechecking can be made even smaller, as the rechecking will be required

only if the constraint is added (i.e. the rule becomes active), but not if the rule

becomes inactive, as in this case the previous solution is still valid.

Algorithm 9 presents the reaction of the system to a new sensor reading s = ds.

For all rules from a ruleset R that depend on s, the system checks the status

of the rule (active vs inactive), and if the status is changed, the rule is marked

accordingly.

While a changed rule r exists, the system finds a set of adjacent active sub-

graphs for this rule. If rule changed to inactive there may be more than one.

4.5. Evaluation 59

Algorithm 1 Event processing

1: function processChange (s,ds)

2: for all rule← R s.t. rule.Fs contains s do

3: Update rule status

4: Mark rule as changed if status is changed

5: end for

6: while ∃rule ∈ R s.t. rule is changed do

7: subGraphs← findActiveSubGraphs(rule)

8: for all sg ← subGraphs do

9: newstate← OptimizeCSP (sg)

10: for all vc ∈ sg.vars s.t. vc 6= newstate.vc do

11: createAction(vc,newstate.vc)

12: end for

13: Unmark changed status from all r ∈ sg.rules
14: end for

15: Unmark changed status from rule, if still marked

16: end while

The optimization CSP is invoked for every such subgraph. For all actuators that

changed their state an action is created and is sent further to be executed. Finally,

the system removes changed status from all rules in checked subgraphs and the

original rule.

4.5 Evaluation

4.5.1 Architecture

The internal architecture of the Rule Maintenance Engine implementation is shown

in Figure 4.2.

The Web User Interface presents all information about the RME system and

its decisions to users. The RME itself runs as a back-end server, and provides a

REST interface to show and modify the data [Fielding and Taylor, 2002]. The

REST interface is used by the front-end of the system, which consists of a client

web interface which runs on the Play Framework1 and an HTML5-based interface

for building context information and immediate manual control via mobile devices,

such as Android based smartphones and tablets. The REST interface can also be

1http://www.playframework.com/

http://www.playframework.com/

60 4. Dynamic Constraint Reasoning in Smart Environments

Figure 4.2: Rule Maintenance Engine Architecture

used by other applications to make modifications to the system programmatically.

The initial configuration of the RME system is loaded at startup from the

Repository. The Repository contains all required information about the devices,

services, or virtual variables, which together form an environment description for

the RME. The Repository also contains the latest values of the sensors, so it is

immediately possible for the RME to make the initial check of the environment

and issue any state goals. This also makes the system tolerant to failures and

crashes, as it automatically returns to its latest state after restart. Users can

override any part of the environment configuration via the dedicated Web UI. The

reconfiguration, as well as addition of new devices or modification of existing ones

can be done dynamically, without the need of restarting the system.

Another part of the RME system is the Rule Manager, which manages the set

4.5. Evaluation 61

of rules of the building behavior. The initial set of rules is loaded at the start

of the system. It is also possible to switch between sets, and a user can modify

any rule, add new ones, or remove obsolete ones through the dedicated Web UI.

Every rule is a formula in predicate logic, it can be added in any form by the users,

then it will be checked for correctness, consistency and it will be transformed to

the internal constraint form, which is used by the Rule Maintenance Engine. The

transformation is done once every time the rule is added or changed, and it may

result in several internal constraints from a single initial rule.

Devices and rules are combined in the Dependency Graph Manager (DG). It

contains the current environment state; the commands, issued to the actuators, and

their execution status; warnings about currently unsatisfiable rules; which manual

goals were set by system’s users previously, etc. All this information is shown on

a “Current Environment State” dashboard of the Web UI. This is one of the main

dashboards available to users, through which they can control the system and keep

track of its status.

Sensors are the main source of events. The Context component collects raw

sensor data, processes it, performs activity recognition [Amft and Lombriser, 2011;

Wahl et al., 2012], and sends results to the RME. For the RME effectively both

low-level sensors and high-level activities are represented through environment vari-

ables. Since there can be many events per second, the scalable and highly reliable

messaging system is used to transfer this information. For the GreenerBuildings

project the RabbitMQ2 [Videla and Williams, 2012] messaging framework is used.

The RME subscribes to the updates it is interested in, and receives them as soon

as they are published by the Context. When the event arrives, the Dependency

Graph Manager checks, which parts of the environment may be affected by this

change, and whether any actuators’ states should be rechecked. If this is the case,

the Solver is invoked, which finds the new optimal states of affected actuators. The

search problem for the Solver is represented as an optimization constraint satis-

faction problem (CSP). We use the CHOCO2 Solver3 library for the task [Jussien

et al., 2008].

The second way of obtaining events is from the User Control (UI), where users

may set their goals manually. For example, the current rules may say that a tem-

perature in a certain room may be as low as 19 degrees Celsius, but if a user specifies

that she wants the temperature to be 22 degrees, the event will be generated and

sent to the Dependency Graph Manager.

Finally, when it is calculated that some actuator should perform a certain action

2http://www.rabbitmq.com/
3http://www.emn.fr/z-info/choco-solver/

http://www.rabbitmq.com/
http://www.emn.fr/z-info/choco-solver/

62 4. Dynamic Constraint Reasoning in Smart Environments

Table 4.1: Living Lab actuators details

Number of

Type Name Datatype States/Range variables

Misc Blinds angle Float -90.0..90.0 3

Misc Blinds height Float 0..265 3

TFD PMV comfort Float -2.0..2.0 1

Misc Table lamp Boolean true/false 4

Misc Light dimmer Integer 0..1000 10

TFD Policy Set comfort/economy 1

Misc Screen Boolean true/false 4

TFD Temperature Float 16.0..27.0 1

Total number of actuators: 27

or change its state, the goal is generated by the Dependency Graph Manager and

is sent further to the GreenerBuildings system for execution.

4.5.2 Living Lab

The system was evaluated in the living lab constructed on the premises of the

Technical University of Eindhoven, the Netherlands. In this section we will describe

the implementation details of the living lab.

The living lab features two large spaces: a working room with four work-

ing desks, and a meeting room, with a meeting table and a presentation area.

The sensors include Plugwise power meters4, CO2 and humidity, passive infrared

(PIR) motion, temperature, light, ultrasound (USR), acoustic. The actuators in-

clude Plugwise switches for devices such as projectors and lamps, dimmers for fine-

grained control of ceiling lamps’ light levels, motor controllers for blinds heights

and angles, HVAC system.

As variables, the Rule Maintenance Engine contains both raw sensor data and

activity recognition results. Tables 4.1 and 4.2 show the description of the variables

within the RME system. In total there are 135 variables. Among them 82 represent

physical sensors and contain raw sensor data, 26 represent virtual sensors with

higher level recognized activity, and 27 represent actuators, 3 of which belong to

the thermo-fluid dynamics (TFD) system.

Rules changed over time, with the original preset having 39 rules that are

transformed as described in Section 4.3 into 62 internal constraints. The rules

are designed for different adaptation scenarios, which include the adaptation for

4http://www.plugwise.com/

http://www.plugwise.com/

4.5. Evaluation 63

Table 4.2: Living Lab sensors detailed

Number of

Type Name Datatype States/Range variables

Raw Projector Boolean true/false 1

Raw CO2 level Float 100..3000 1

Raw Outdoor CO2 level Float 100..3000 1

Raw Computer status Boolean true/false 4

AR Computer work Boolean true/false 4

AR Desk work Boolean true/false 4

Raw Door Boolean true/false 2

AR Energy balance Float -10000..10000 1

AR Heat losses Float -10000..10000 1

AR PMV Status Float -2.0..2.0 1

AR Policy Status Set comfort/economy 1

Raw Humidity Float 0..100 4

Raw Outdoor Humidity Float 0..100 1

Raw HVAC heat production Float -10000..10000 1

Raw HVAC status Boolean true/false 2

Raw Lamp status Boolean true/false 4

Raw Light power consumption Integer 0..400 4

Raw Lux level Float 0..30000 5

Raw Outdoor lux level Float 0..30000 3

Raw Lights status Boolean true/false 4

Raw Lights switch Set 0, 1, 2 4

AR Meeting brainstorming Boolean true/false 1

AR Presentation Boolean true/false 1

Raw Power consumption Float 0.0..1320.0 15

Raw Distance Integer 0..100 9

Raw Motion Boolean true/false 4

AR Number of people Integer 0..50 2

AR Area presence Boolean true/false 9

Raw Status screen Boolean true/false 4

Raw Outdoor temperature Float -10.0..80.0 1

AR Indoor temperature mean Float 16.0..27.0 1

Raw Indoor temperature Float -10.0..80.0 4

Raw Window Boolean true/false 4

Total number of sensors: 108

64 4. Dynamic Constraint Reasoning in Smart Environments

natural and artificial lighting, different activity types in a meeting room, rules for

working space personalization, heating system, etc. Control UI allows users to

override system’s decisions, and set any actuator manually. Here we present the

main ideas of several rule adaptation scenarios.

The first scenario concerns adaptation of natural lighting, and contains rules

for blinds control (except those that are defined for the meeting and presentation

activities, see below). It is usually beneficial for a room to get natural light and

warmth from the outside, but when the natural light outside is too bright, it causes

glares inside, so the system must ensure that the blinds angle is enough to give

sufficient light inside, but not that small to enable sun glare, which decreases

people’s comfort. The total number of human-defined rules for this case was 5,

and these rules translated into 15 internal rules. The examples of these rules are:

room313.presence1 = false⇒ room313.blinds.height1 = 0

room313.presence1 = true⇒ room313.blinds.height1 = 100

light.luxlevelout1 > 5000⇒ room313.blinds.angle1 > 70

The next scenario is the activities in the meeting room and adaptation to them.

It is possible to have a normal brainstorming meeting inside, or to give a present-

ation, or even none of the above, as the room is open for occasional presence.

If people are present inside, but there is no presentation, the total lighting level

should be sufficient (at least 500 lux). If the brainstorming meeting is taking place,

the light levels should be even higher. There are several different dimmers on the

ceiling, so there are many different ways to achieve such conditions. If people use

manual control to set certain dimmers to their preferred level, it is possible to use

dimmers in other areas to satisfy the rule.

If the presentation is in progress, special lighting conditions should follow. First

of all, the dimmable light spot directly above the presentation screen should be fully

off, otherwise the visibility of the screen severely decreases. Other dimmers should

keep certain level of light, which, however, should stay low, so not to decrease the

screen visibility. The 3 human-defined rules are translated into 10 internal rules.

Examples are:

room313.presence1 = true ∧ room313.meeting.presentation 6= true⇒
room313.light.dimmer1 > 200 ∧ room313.light.dimmer2 > 200 ∧

room313.light.dimmer4 > 100

room313.meeting.brainstorming = true ∧ room313.meeting.presentation 6= true

⇒ room313.light.dimmer2 > 600 ∧ room313.light.dimmer3 > 600 ∧
room313.light.dimmer4 > 600

4.5. Evaluation 65

room313.meeting.presentation = true⇒ room313.blinds.angle1 > 80 ∧
room313.light.dimmer2 = 0 ∧ room313.light.dimmer1 < 300 ∧

room313.light.dimmer4 < 300

The heating mechanism of GreenerBuildings is based on the Computational

Fluid Dynamics (CFD) module5, which calculates the air quality, temperature,

humidity, and other climate conditions within the room, and uses available actu-

ators for fine-grained control of the climate comfort levels. As there is a dedicated

module which does the required complex computations, the RME does not invoke

heating actuators (such as HVAC module) directly, and instead has abstracted

actuators, namely mean temperature, policy (economy or comfort) and PMV (pre-

dicted mean vote) comfort level. When the best value of abstracted actuators is

calculated, it is sent to the CFD component, which performs the necessary fine-

grained control of physical devices. The RME rules include having a comfort policy

only when there are people inside (otherwise it is automatically set to economy),

and stopping all fine-grained control if windows are open. Most of the time, people

add their own rules for the temperature levels, which they deem comfortable to

them, so the temperature rules are not included in the preset. The 2 rules that are

included correspond to 5 internal rules:

room313.window1 = true ∨ room313.window2 = true⇒
room313.pmv = unmanaged ∧ room313.temperature mean = unmanaged

room313.presence1 = true⇒ room313.policy = comfort

Working areas are the areas where most of the “personalized” rules appear,

as naturally the area is owned by one person. The preset rules use standardized

approach, by turning off the screen, when the person is not around, distingushing

the lighting conditions for desk work and computer work, etc. The human-defined

preset rules include 17 rules, which translate to 20 internal rules. Examples are:

room326.presence1 = true⇒ room326.screen1 = true

room326.desk1.deskwork = true⇒ room326.light.dimmer1 > 700

room326.presence1 = true ∧ room326.desk1.computerwork = false

⇒ room326.light.dimmer1 > 500

room326.desk1.computerwork = true⇒ room326.light.dimmer1 < 500

There is a special type of rules, introduced for smooth continuous operation of

the system: trigger rules. The initial reason for them is the capability of the people

5Fluid Solutions - @lternative, http://fluidsolutions-a.com/

http://fluidsolutions-a.com/

66 4. Dynamic Constraint Reasoning in Smart Environments

inside the building to manually control some of the actuators. For example, lamps

or the temperature setting is generally controlled by the system via the defined

rules. However, a person has the ability at any moment to press the lamp switch

or to set a certain temperature level on the thermostat. Such ability to manually

set the state of the building even in contradiction with previously defined rules is

very important to retain even in highly automated buildings, as it keeps people in

full control increasing their overall satisfaction level. So, once a person sets some

actuator manually, this actuator should be forbidden to be changed by the system.

It may still be possible to satisfy existing rules in a different manner. For example,

for the rule (4.1), if a person prefers to keep the blinds closed, it is still possible

to turn on the lamp, which will satisfy the rule. But then another problem arises.

Once a certain actuator is activated manually, when is it possible for the system to

“take it back”, i.e. to remove the restriction on its state modification? For example,

once a person turned on a lamp, if she goes away from the room, we may assume

that the restriction is no longer valid. Trigger rules are designed specifically for

such case. The rule may be specified, as usual, but it must be specifically marked

as a trigger rule, and two additional things must be provided: (1) the actuator, for

which the restriction is removed once the rule is satisfied, and (2) the type of the

restriction that is removed. The current implementation of the system supports

two types of restriction: the manual user input, and the error in the device (which

marks the device as broken, and stops the control of it until fixed). In the preset,

all devices are released from their user restriction if the room becomes unoccupied.

There are 12 preset trigger rules, an example of such a rule is:

actuator : room326.light.dimmer3

type : user feedback

rule : room326.presence1 = false

The operation of the living lab showed that our module solves all resulting

CSPs in a matter of milliseconds, returning real-time commands to actuators. The

next step of the project is to extend the system to more rooms, and the whole

building, so the next section discusses the performance and scalability potential of

our solution in depth.

4.5.3 Performance

To evaluate the effectiveness of our solution with greater flexibility, we also made

performance experiments that were running on Windows 7, Intel Core2Duo E7400

@2.8GHz, 4 Gb RAM, Java7 machine. As a baseline, we used random instances

with boolean variables. Note that any instance with arbitrary sizes of domains

4.5. Evaluation 67

(a) CSP vs. DG, log scale, clusterization values of 0.9, 0.6, 0.3, 0.0

(b) DG-only close-up

Figure 4.3: Average solution times of CSP and DG representations

can be converted into an equivalent instance with boolean variables, one per each

domain value. Every instance has half of its variables as sensors, and half as

actuators. For every set of parameters we generate 50 different instances. Every

instance ran for 100 sensor change events. For every event the time to find a

solution is recorded, and the average time across these runs is presented in the

figures. Every rule is a random constraint between two sensors and two actuators,

and the number of rules equals to the 120% of the number of variables.

We also analyzed the impact of clusterization on the performance of the DG

solution. In smart environments most variables are naturally split into clusters

of highly-dependent variables, e.g. by location, with loose dependency between

clusters. Thus we introduce clusters of variables in our instances, with varying

degrees of clusterization. For example, for a degree of 0.6, 60% of rules will connect

variables within a cluster, and remaining rules connect any variables, also across

clusters. We used clusterization values of 0.9 (very distinctly defined clusters), 0.6,

0.3 and 0.0 (no clusters, every rule connects variables fully randomly). The number

of clusters is
√
|V |, so an instance with 40 variables has 6 clusters with 6-7 variables

68 4. Dynamic Constraint Reasoning in Smart Environments

each, while an instance with 400 variables has 20 clusters with 20 variables each.

Figure 4.3 compares solution times using a natural CSP definition (as given in

Section 4.2), and using the Dependency Graph data structure. The time of rule

activeness rechecking and graph traversals is included into the resulting time for the

DG, i.e. results include all overhead, associated with using the DG data structure.

It can be seen that for all cases DG severely outperforms the natural CSP definition,

staying at around 10 milliseconds time for over 200 variables, while CSP already

goes to over 1000 milliseconds solution time for such cases. The clusterization

parameter has no influence on CSP solution time, which is expected, since CSP

takes the full environment into account. However, for DG it is shown, that the

bigger the clusterization is, the lower the solution time will be, which also means

much bigger scalability potential for implementing the solution in smart buildings.

Table 4.3: Random instance run, 100 variables, 0.0 clusterization

Event 1 2 3 4 5 6 7 8

CSP Time 45.68 41.38 71.06 36.05 25.24 32.93 34.02 66.47

DG
Time 8.71 12.11 8.47 10.62 7.86 6.71 5.69 4.19

Size(s) 1;21 22;1;1;8 1;1;20 26;2 3;25 25;5 1;26 1;1;3

Event 9 10 11 12 13 14 15

CSP Time 29.42 31.18 31.04 56.98 29.20 29.10 66.16

DG
Time 8.33 7.83 4.88 0.08 18.04 2.80 4.46

Size(s) 1;1;23;1 22;1;2;1 2;20 - 2;1;2;1;1;20 21 3;5;17

For better insight we included the detailed data from one of the runs of the

system on an instance of 100 variables with 0.0 clusterization in Table 4.3. Every

event corresponds to a single sensor change. The size of the CSP definition is always

the same (100 variables, among which 50 are decision variables, i.e. actuators),

while the DG size varies, depending on the current size of active subgraphs. As

every sensor can be a part of several rules, it is customary that a single sensor

change triggers re-optimization of several subgraphs. E.g. event 6 triggers two DG

tasks, one with 25 variables, and the other with 5 variables. Event 12 has no impact

on active subgraphs, so no re-optimization occurs.

Chapter 5

Interpretation of Inconsistencies via
Context Consistency Diagrams

The ability of pervasive context-aware systems to perform efficiently fully relies on

the ability to obtain the most detailed, specific, and correct information about the

environment.

However, before applications may use the information to make appropriate

decisions and adjust their behavior, several steps are required to obtain context

information in a proper form. First of all, raw sensor readings should be gathered

by a system’s middleware from surrounding sensors. Then they should be pre-

processed, converted to a logical form, and combined together to obtain a view

of the current environment. Afterwards the information should be converted to a

form that can be understood by applications.

Several challenges arise during this process. The sensors are often noisy, im-

precise, and their readings are easily corrupted, which may lead to inconsistencies

and conflicts in gathered data. Also, the full information about the environment

is practically impossible to obtain. Some portions of the environment can not

be physically read by given technology, and there is always something happening

that sensors miss to detect, e.g. [Jeffery et al., 2006] showed that in dynamic en-

vironments the percentage of correctly read RFID tags may be as low as 60-70%.

Another issue of sensor readings gathering is that information becomes obsolete

rapidly. The data that was correct at the time of reading may be already obsolete

when it reaches the system’s middleware and gets processed. The asynchronous

nature of sensor readings leads to alterations in the order of readings’ arrival to

the middleware. Finally, the automated processing of sensor readings into an in-

terpretation of the environment may introduce errors itself. Classical examples of

such errors are image recognition mistakes.

In the presence of a conflict among sensor readings, the conventional research [Bu,

Gu, Tao, Li, Chen and Lu, 2006; Xu et al., 2008] suggests to discard one of the

readings that is deemed as incorrect based on some heuristic strategy. Different

heuristics have been proposed, among which the removal based on relative fre-

70 5. Interpretation of Inconsistencies via Context Consistency Diagrams

quency [Bu, Gu, Tao, Li, Chen and Lu, 2006], drop-latest, drop-oldest, drop-all, or

drop-random [Xu et al., 2008] strategies.

Such a removal is usually done as soon as a conflicting sensor reading is re-

ceived, to keep the full interpretation of an environment without conflicts. The

removal of sensor readings in an ambiguous situation may, however, cause even

more problems, in case a correct sensor reading is removed instead of an incorrect

one. A more cautious approach that removes all conflicting sensor readings may

drastically reduce the available amount of information, which is used by high-level

applications to make decisions.

In this chapter, we propose a mechanism of reasoning about sensor information

to define possible context interpretations. This includes both the ability to reason

about a context with incomplete knowledge, as well as the ability to cope with

erroneous contexts that may lead to false beliefs. We propose a data structure

called context consistency diagrams (CCD) that allow to efficiently represent ac-

quired context information together with all possible context inconsistencies and

interpretations. CCDs can be efficiently maintained and queried in real-time, and

can be used to obtain information about the likelihood of particular context inter-

pretations, sensor values or relations between sensors.

5.1 System model

Context-aware reasoning systems are complex software that produce an application-

friendly interpretation of given raw sensor data. A possible high-level architecture

for such systems is given in Figure 5.1. Often, an optional rule-based pre-processing

of raw sensor data is performed. In Figure 5.1, a rule (TV sound = max =⇒
TV channel ∈ {sports, shows}) is applied to a sensed value (TV sound = max).

The resulting pre-processed context (TV sound = max, TV channel ∈ {sports,
shows}) is then passed to a context subsystem (“CCD representation” layer, see

Section 5.2) that is responsible for efficient storage of acquired context inform-

ation, resolving inconsistencies, answering to queries, or triggering events to the

subscribed top-level applications.

To deal with inconsistencies, we use context consistency diagrams. A CCD is

considered inconsistent if there is no single interpretation that is confirmed by all

sensed (and then pre-processed) data. Such conflicts are caused by sensor impre-

cision, incomplete, missed or obsolete data. Ideally, conflicts caused by a failed

sensor or by data expiration should not stop the system from providing the best

possible interpretation for the acquired context information. Several techniques

exist to resolve an ambiguous conflict in favor of one interpretation. But if the res-

5.1. System model 71

Figure 5.1: Context reasoning using CCD

olution is incorrect, further interpretations of a situation will also be wrong, even

if further information may show that another solution was preferable. To deal with

this, a CCD keeps several interpretations, each with its own probability of being

true.

To resolve a conflicting context, we associate a likelihood of a certain context

information to be true to each acquired chunk of data. Whenever several portions of

contexts “support” each other (that is, there is an interpretation of a situation that

is consistent with all of them), their mutual truth likelihood is higher comparing to

the conflicting ones. Additionally, each arrived pre-processed context information is

sharing a certain degree of truth likelihood, thus compensating the effect of a faulty

sensor over the inferred information received from that particular sensor. The

most probable interpretation is then the one that is “supported” by the majority

72 5. Interpretation of Inconsistencies via Context Consistency Diagrams

of individual contexts.

Even if a particular context does not support the most “popular” interpretation,

it is still stored in a CCD. Thus a CCD query may return several interpretations,

each with its own probability of being true. It might happen that with the acquisi-

tion of new sensor data, another interpretation is considered more likely, if the new

data support it.

Note that with such structure the context interpretation is never final, as new

data may change the interpretation by contributing to an interpretation previ-

ously considered wrong. However, explicit description of different interpretations

can grow in space exponentially to the number of found inconsistencies. In this

case, CCD reasoning should discard contexts that support the most “unlikely”

interpretations, as, most probably, they represent faulty or imprecise sensors.

5.2 Context consistency diagram

5.2.1 Context

A server that processes contexts obtains information from the underlying layer,

shown in Figure 5.1 in a form vi = d, i.e., a variable vi has value d. More precisely,

Definition 5 (Environment). An environment is defined by a set of context vari-

ables V = {v1, v2, ..., vn}. Each variable vi varies over a domain Di = {di1, di2, ...,
dimi} with size mi.

It is also possible that the sensors (pre-processing layer) return a range of values,

i.e., vi ∈ {dj}. For example, a location variable may be sensed by many location

sensors (e.g. RFID are known to be imprecise).

However, many variables either cannot be directly observed, or can only be

partially sensed. If the heating mechanism is broken, we sense that the heater was

turned on, but we cannot observe if it has actually started to heat the room, unless

we have a temperature sensor. Fortunately, many variables influence each other.

For example, it is impossible to have a light turned on, if there is no electricity in

the house; a location of the person and a location of the tool that she works with

must be in the same room, etc. If these correlations are taken into account, even

a few observed variables may give an overall (yet possibly incomplete) knowledge

about the environment.

Definition 6 (Context, Interpretation). For a given environment 〈V,D〉, a context

c is a valuation of all variables in V with a non-empty subset Dc of D. If all

5.2. Context consistency diagram 73

Table 5.1: Variables example

Variable Domain

Electricity off, on

Light off, on

TV off, news, sports, shows

TV sound 0, 1, 2, 3

Table 5.2: Dependency rules example

¬(E = off ∧ (L = on ∨ ¬(TV = off))) Light and TV can be turned on

only if electricity is on.

¬(TV = off ∧ TV s ∈ {1, 2, 3}) Non-silent TV sound means TV

is turned on.

TV = shows⇒ L = off If TV channel is shows, light

should be turned off.

variables vi are assigned one and only one specific value in Di, a context is called

an interpretation.

Non-emptiness of a subset Dc ensures that a context is always possible in prac-

tice, i.e. each variable has at least one possible value.

We represent a context by enumerating possible context variables’ values:

{Dc
1, D

c
2, . . . , D

c
n}, or, alternatively, as vi ∈ {dil, . . . , dik}. We write c.vi to refer to

i-th variable of context c.

Our knowledge about the environment is described by a set of contexts {c1, ..., cn}.
If for any two interpretations x, y such that ∀ci : x ∈ ci ∧ y ∈ ci, it follows that

x = y, then we have complete and unambiguous knowledge about the given en-

vironment. More than one interpretation represents an ambiguity or incomplete

knowledge of the environment. Intuitively, each new sensor reading adds some

more knowledge about the environment, thus it reduces the number of possible

interpretations. Faulty contexts can be detected when an impossible situation is

created, i.e. when there is no interpretation x, such that ∀ci : x ∈ ci.
In Table 5.1 a portion of a smart home is modeled by four context variables.

In Table 5.2, few pre-processing rules are defined that represent the inter-relation

between the context variables. Note though that it is not important how these

rules are defined, as far as they result in a context information (similar to the

74 5. Interpretation of Inconsistencies via Context Consistency Diagrams

one shown in Table 5.3). The first two rules represent basic physical laws: there

must be electricity in the house for the light and TV to be turned on, and the TV

volume must be higher than null if the TV is turned on; and the third rule is set

specifically by a smart house’s resident: if the channel is set to ‘shows,’ the room’s

light should be turned off. Using these rules, from a single reading that the light

is on, we infer that the electricity is on, and if the TV is on as well, the channel is

definitely not ‘shows.’

A set of contexts C = {ck} is consistent if there exists at least one interpretation

x : x.vi = diji ,∀i ∈ 1..n such that diji ∈ ck.vi, ∀ck ∈ C, ∀i ∈ 1..n. A set of contexts

is inconsistent otherwise.

Additionally, we define two relations over contexts:

� Inclusion: c1 ⊂ c2 iff ∀i ∈ 1..n : c1.vi ⊂ c2.vi Inclusion can be viewed as a

relation of a more precise and less precise contexts. If c1 ⊂ c2 then context

c1 is more precise than c2, in other words, each variable of c1 contains less

values that are possible.

� Intersection: cu =
⋂k

j=1 cj = c1 ∩ c2... ∩ ck iff ∀i ∈ 1..n : cu.vi = c1.vi ∩
c2.vi... ∩ ck.vi An intersection of inconsistent contexts always equals to ∅.

An intersection of consistent contexts is a context, that is at least as precise

as any of the originals: ∀j ∈ 1..k cu ⊆ cj .

5.2.2 Context consistency diagram

To compactly represent all possible interpretations for a given set of contexts, we

use relations defined in the previous section, thus forming a diagram with arrows

representing the inclusion relation. Any two contexts ci, cj are connected in the

diagram if ci ⊂ cj , and there is no such ck such that ci ⊂ ck ⊂ cj .
The idea of putting contexts into the diagram structure is essentially an intro-

duction of a compact representation of all possible interpretations of the environ-

ment. The “full domain” context is always at the top, meaning “no information

is known; any situation is possible”. Starting from the top and going down, con-

texts become more and more precise, with the most restrictive (as well as the most

knowledgeable) contexts at the bottom. Formally, CCD is defined as follows:

Definition 7 (Context consistency diagram (CCD)). Given an environment 〈V,D〉
and a set of contexts C0 = {ck}, k ∈ 1..N , a context consistency diagram (CCD)

is a tuple 〈C,E, r〉, where:

� r = D, is a special context, the root;

5.2. Context consistency diagram 75

Table 5.3: Example of sensor readings and contexts

ID Sensor reading Context

c1 TV = Sh E : 1 | L : 0 | TV : Sh | TV s : 0123

c2 TV s = 2 E : 1 | L : 01 | TV : NSpSh | TV s : 2

c3 L = 1 E : 1 | L : 1 | TV : 0NSp | TV s : 0123

c4 TV ∈ {Sp, Sh} E : 1 | L : 01 | TV : SpSh | TV s : 0123

� C = C0 ∪Cu ∪ r where Cu is the full set of intersections of a power set of C0.

� E ⊆ C × C, such that (c2, c1) ∈ E iff ∃c1, c2 ∈ C : c1 ⊂ c2 and @cm ∈ C :

c1 ⊂ cm ⊂ c2.

Contexts from a set C are vertices of the diagram and E is a set of directed

edges. In a relationship (c1, c2) ∈ E, c1 is called a parent, and c2 is called a child.

cp is called a predecessor of cc, and, respectively, cc is called a descendant of cp
if either of the following holds:

1. (cp, cc) ∈ E

2. ∃{ci} ∈ C, i ∈ 1..k s.t. (cp, c1) ∈ E ∧ (ck, cc) ∈ E ∧ (ci, ci+1) ∈ E,∀i ∈ 1..k−1

We write ψ(c) to denote the full set of descendants of c and Ψ(c) to denote the

full set of predecessors of c. Several important characteristics of the CCD directly

follow from its definition:

1. An intersection of two consistent contexts c1 ∈ C and c2 ∈ C is a descendant

of both contexts. ∃cu ∈ C, cu = c1 ∩ c2 s.t. cu = ψ(c1), cu = ψ(c2).

If c1 ∈ C and c2 ∈ C are inconsistent, then they do not have common

descendants. @c ∈ C s.t. c = ψ(c1), c = ψ(c2).

2. If a set of contexts is empty, then CCD has only one root context. C0 = ∅⇒
G = 〈r;∅; r〉

3. There is no context that is a predecessor of the root. A root is a predecessor

of all other CCD contexts. ∀c ∈ C : @(c, r) ∈ E , r ∈ Ψ(c)

For a set C0 = {c1, c2, c3}, the corresponding set of intersections of its power

set is equal to Cu = {c1 ∩ c2, c1 ∩ c3, c2 ∩ c3, c1 ∩ c2 ∩ c3}.
For a set of contexts listed in Table 5.3 the corresponding CCD is shown on

Figure 5.2.

76 5. Interpretation of Inconsistencies via Context Consistency Diagrams

Figure 5.2: Example of context consistency diagrams

5.3. Calculation of probabilities 77

We assume that all variables in a context are dependent on each other (Sec-

tion 5.2.1). For independent variables, we can split a context into non-intersecting

subgroups and, therefore, we instead produce the CCDs of smaller sizes for each

subgroup.

5.3 Calculation of probabilities

When the CCD results in more than one interpretation, it is important to assess

the likelihood of each interpretation. For a query (Figure 5.1), we provide answers

for the following three possible requests:

1. The probability that a particular situation is true.

2. The probability that a variable has a certain value.

3. The dependency of variables on one another. In other words, the conditional

probability that a certain variable has a certain value in case another variable

has an a priori known value.

We now describe how the CCD is used to address all above queries at any

given moment. To calculate the probabilities mentioned above, we first need to

introduce the concept of initial weight function w0(c). The initial weight function

shows the importance of each original context c ∈ C0. The weights depend on many

things, among which are the infrastructure of sensor network; the importance of

each sensor (the more important is the sensor, the more important is the context,

associated with the sensor reading); and the number of times a particular context

has been read. The set C0 contains only unique contexts, but if one context was

read two times (by two different sensors, or by the same sensor at subsequent time

steps), usually it should be regarded as more important than the one that was read

only once. By default, or when the initial probabilities are unknown, we assume

a uniform distribution, that is, any sensed information is equally likely. In the

presence of additional information, other strategies for assigning weights may be

chosen. The strategy for assigning weights should be chosen at the initial setup.

The example in Figure 5.3 assigns the weight 1 uniformly to all contexts.

For all contexts that are not in C0 the initial weight function equals to 0:

∀c /∈ C0 : w0(c) = 0

The full weight function w(c) for each context in a CCD is defined as

w(c) = w0(c) +
∑

∀cp∈Ψ(c)

w0(cp)

78 5. Interpretation of Inconsistencies via Context Consistency Diagrams

Figure 5.3: Assigning weights to the CCD

The full weight function takes into account that contexts that are consistent with

each other should weigh more than inconsistent ones. The idea is that consistent

contexts form a consistent view on the situation, thus they all can be correct. But

in the set of inconsistent contexts some are certainly faulty. So the full weight

function rewards contexts for being consistent with others by increasing the weight

of their descendants.

The full weight of the CCD is the sum of weights of all its contexts:

w(G) =
∑
c∈C

w(c)

To calculate the probability that a variable has a certain value, we adapt the weight

of the context to calculate the weight of each value of the variable inside a context.

The context with several values of some variable assumes that each of these values

is equally probable, so we divide the weight of the context among all values for

each variable:

w(c.vi = dij) =
w(c)

|c.vi|
, ∀dij ∈ c.vi

However, we do it only if the context actually knows something about the variable

vi. For example, if we got a sensor reading that the light is on, it tells nothing about

the TV sound, so we do not split the context weight among TV sound values. But

if later we receive a context that tells us both that the light is on and TV sound is

2, then the first context supports the second one (since they are consistent), so we

transfer the weight of the TV sound of the first context to the second one. For this

we introduce the ? value for a variable weight. This value means that the weight

5.3. Calculation of probabilities 79

is transferred to the children of the context. Taking this into account, the weight

of each value of each variable in a context is given by the following formula:

w(c.vi = dij) =

{
? if c.vi = Di
w(c)+t(c.vi)
|c.vi| otherwise

where t(c.vi) is a transfer (or carrying) value from the parents of the context:

t(c.vi) =
∑

∀cp∈Ψ(c) & w(cp.vi)=?

w0(cp)× |c.vi|
|cp.vi|

? also contributes towards the efficiency during CCD updates. To calculate the

final probabilities, we treat ? differently depending on the context having children

or not. If the context has children, the weight of a variable is fully transferred

to them. Otherwise, we have no knowledge whatsoever about the value of the

corresponding variable, so each domain value gets equal share of the full weight:

(w(c.vi) = ?)⇔

w(c.vi = dij) = 0

if ∃(c, cc) ∈ E
w(c.vi = dij) = w(c)+t(c.vi)

|c.vi|
if @(c, cc) ∈ E

∀dij ∈ Di

Now we can calculate the probability for each variable that it has a certain value:

pr(vi = dij) =

∑
∀c∈C w(c.vi = dij)

w(G)

As an example, we describe the calculation of weights on context 6 (grayed out)

in Figure 5.3. The full weight of the context is 2, and is obtained from its two

parents w(1) and w(2). This weight fully goes to the sole value of the variable E,

so w(E = 1) = 2. But for values of the variable TV , this weight is split equally

in two, so each value TV = Sp and TV = Sh gets half of the full weight, or 1.

The weight of the variable TV s is equal to 2.25, because it combines the weight

of the context 6, and a fourth part of a transfer value from the context 1. The

weight of the variable L is equal to ?,because this variable allows any value of the

corresponding domain. So, this context does not assign any weight to values of L,

but instead transfers it to its two children.

If we want to calculate the conditional probability that a certain variable has a

specific value in case another variable has a particular value pr(vi = dij/vc = dc),

we need to reduce weights in a CCD in such a way that only contexts that are

80 5. Interpretation of Inconsistencies via Context Consistency Diagrams

Figure 5.4: CCD example. Every node is in [LCD|PC|PIR|PR] format

compatible with vc = dc have weights higher than 0. Also, for contexts that allow

other values for vc we need to correspondingly reduce their weight.

The conditional weight of each context is equal to

w′(c) =

{
w(c)
|c.vc| if dc ∈ c.vc
0 otherwise

Similarly, the conditional weight of each variable is

w′(c.vi) =

{
w(c.vi)
|c.vc| if dc ∈ c.vc

0 otherwise

Finally, conditional probability is equal to

pr(vi = dij/vc = dc) =

∑
∀c∈C w

′(c.vi = dij)

w′(G)

where w′(G) =
∑

c∈C w
′(c)

5.3.1 CCD Example

A portion of environment is modelled by four boolean variables with different

weights: PC with weight 1, LCD with weight 1, PIR for (K)eyboard with weight

0.7, and (PR)essure on the chair with weight 0.8.

We need to establish rules on their dependency. First of all, the monitor cannot

be turned on if the PC is off. Next, if the PIR near the keyboard detects movement,

it must be typing or moving a mouse, and this means that the chair is occupied.

Finally, the monitor is designed to turn off after a minute of inactivity, so it’s only

5.4. Maintaining CCD 81

active if someone is present and actively works with PC (thus uses keyboard or

mouse). So the rules are the following:

LCD = true⇒ PC = true

PIR = true⇒ PR = true

LCD = true⇒ PIR = true ∧ PR = true

When we receive a sensor reading, we apply rules to it to obtain an extended

context. For example, if we receive a reading PIR = false, the context after all

rules are applied is {LCD = false;PIR = false}. Sometimes it is possible to have

more than one context, for example for the reading LCD = false we still need to

account for the second rule, which gives us two contexts: {LCD = false;PIR =

false} and {LCD = false;PR = true}.
Figure 5.4 shows the CCD constructed if the following four sensor readings are

received: LCD = true;PC = true;PIR = false;PR = true. We have three

possible situations, but they all have different weight. The [F |T |T |T] has weight

1.8, while [F |T |F |T] has weight 2.5, and [T |T |T |T] has weight 2.8, which means

that most probably the reading PIR = false was an incorrect one.

5.4 Maintaining CCD

Next, we describe the algorithms for maintaining the CCD while new sensor data

arrives. We start by introducing a few properties of the CCD that make the

maintenance possible.

Property 1. For a given set of contexts there is one and only one non-isomorphic

representation of its CCD.

It follows directly from the rules of construction. Cu is only dependent from

C0, and the root is always the same for the same variables and theirs domains. So

C = C0 ∪ Cu ∪ r is always the same for the same C0. For each pair of contexts in

the CCD c1, c2 ∈ C we use the rules 2 and 4 to determine if they are connected

(one is a parent and the second is a child) or not, i.e. if ∃(c1, c2) ∈ E. So, for each

C0 there is only one way to construct a tuple G = 〈C;E; r〉.
The actual context information changes rapidly and the CCD should be updated

in real-time to always conform to it. Sensor readings arrive independently, and the

CCD must be reconstructed to accommodate new information. After some time,

obsolete contexts should be removed from the CCD to eliminate obsolete situations.

82 5. Interpretation of Inconsistencies via Context Consistency Diagrams

Obviously, the CCD should not be constructed from scratch with each change

in a contexts set. Instead, with an arrival of a new context it should be added to

the existing diagram (by only changing the affected nodes), and when the context

becomes obsolete, it and other obsolete nodes must be removed without affecting

other parts of the diagram.

From the fact that for the given set of contexts there is only one CCD follow

two more important properties:

Property 2. The order of contexts addition does not change the resulting CCD.

According to this property we can handle contexts updates one by one, without

taking into account the order of their arrival, which can vary for asynchronous

updates.

Property 3. Adding and then removing a context does not change the resulting

CCD.

The properties 2 and 3 follow from the fact that the set C0 is not ordered.

Algorithm 2 contains the pseudocode of the addition of a new context to the

diagram. It is started by running AddContext(context, root, weight) (trying to

add a new context directly under the root) and recursively descends to check all

contexts that are consistent with a new one.

The functionAddContext(context, parent, weight) is called only when a context

should be a descendant of a parent. Firstly it checks if a context is already present

as a child of a parent (lines 3-5), if it is a child of a child (lines 6-8), or if some

existing children of a parent should become children of a new context (lines 9-11).

If the context is not yet present and not a child of a child, then it is added as

a new child, and all existing children are checked for consistency with it. If they

are consistent, their intersection is created and recursively added to both contexts

(lines 15-21). Note that an intersection context receives no initial weight.

Algorithm 3 shows the removal of an outdated context from the diagram. CCD

has to be changed only if there are no other similar contexts and if it has only

one parent (line 3), otherwise it must stay in the diagram as an intersection of its

parents.

The reduction of the CCD starts with removing a link from a parent to a

context (line 5) and from a context to all its children (line 7). We want all children

of the removed context to be added to its parent directly. But we do not want to

add a link from a parent to a child, if they are already linked through different

path. So on lines 8-10 we check if this is the case, and if not, we add a link (line 9).

To be sure that no child without initial weight is left with a single parent, we

recursively check all children of a context for deletion (line 11).

5.4. Maintaining CCD 83

Algorithm 2 Adding context to CCD

1: function AddContext(context, parent, weight)

2: for all child ∈ parent.children do

3: if child = context then

4: W0(child)←W0(child) + weight

5: return

6: else if context ⊂ child then

7: AddContext(context, child, weight)

8: return

9: else if child ⊂ context then

10: Remove link from parent to child

11: Insert link from context to child

12: end if

13: end for

14: Add link from parent to context

15: for all child ∈ parent.children\context do

16: if isConsistent(context, child) then

17: x← context ∩ child
18: AddContext(x, child, 0)

19: AddContext(x, context, 0)

20: end if

21: end for

Algorithm 3 Removing context from CCD

1: function RemoveContext(context, weight)

2: W0(context) = W0(context)− weight
3: if W0(context) = 0 and |context.parents| = 1 then

4: parent← context.parents

5: Remove link from parent to context

6: for all child ∈ context.children do

7: Remove link from context to child

8: if @brother ∈ child.parents s.t. brother ⊂ parent then

9: Add link from parent to child

10: end if

11: RemoveContext(child, 0)

12: end for

13: end if

84 5. Interpretation of Inconsistencies via Context Consistency Diagrams

Algorithm 4 Retrieve probabilities

1: function RetrieveProbabilities(conditions)

2: Set all WG,W (c.vi),W (dij), t(c.vi) to 0

3: Set all W (c) to W0(c)

4: queue← root

5: while queue is not empty do

6: c← queue.poll()

7: coeff ← CalcCoefficient(conditions, c)

8: WG ←WG + coeff ∗W (c)

9: for all c.vi do

10: W (c.vi)← coeff ∗W (c) + t(c.vi)

11: if c.vi = Di then

12: for all ch← ψ(c) s.t. ch.vi 6= Di do

13: t(ch.vi)← t(ch.vi) +W0(c.vi) ∗ |ch.vi|/|Di|
14: end for

15: end if

16: end for

17: Mark c as calculated

18: for all child ∈ ψ(c) do

19: if child satisfies conditions then

20: W (child)←W (child) + coeff ∗W0(c)

21: if all child.parents are calculated then

22: queue.add(child)

23: end if

24: end if

25: end for

26: end while

27: return prob(dij)←W (dij)/WG for all dij

5.4. Maintaining CCD 85

Algorithm 4 calculates the probabilities in the CCD as described in Section 5.3.

The important part is line 7. conditions is a context that contains a con-

ditional situation, if we want to calculate a conditional probability. For find-

ing unconditional probabilities, we put to conditions the full domain context,

similar to root. When we want to obtain probabilities in case that a certain

variable has a certain value vc = dc, we produce a context conditions in such

a way, that we only allow one value for vc, but all values for other variables:

conditions = {vc = dc;∀vi ∈ v\vc : vi = Di}. This can be combined, to create

more sophisticated conditions.

coeff contains a share of a context c that is contained in conditions. Later a

weight of c and all its variables is reduced to this percent.

Lines 11-15 check the applicability of the ? value to a variable. The context

transfers its weight to its children in that case (line 13).

Lines 18-25 go through all children of a context and increase their weight. In

case all parents are calculated, they are also added to the queue. Each context

of the CCD will be queued exactly once, but only in a case it satisfies conditions

(otherwise its conditional weight is 0).

5.4.1 CCD complexity

Explicit description of different interpretations in a CCD can potentially grow in

space exponentially with the size of the environment. However, there are several

considerations that help to keep the size of a CCD reasonable.

The biggest growth of a CCD results from faulty contexts. While correct con-

texts tend to have the same descendants, faulty contexts will generate many new

CCD nodes. With the growth of a CCD, one may discard contexts that support the

most unlikely interpretations, as most probably they represent faulty or imprecise

sensors.

Each environment in a CCD should only contain interdependent variables (i.e.

associated by dependency rules, as in Table 5.2). We split independent variables

into non-intersecting subgroups and produce a smaller CCD for each subgroup.

Finally, in the next chapter we introduce Reduced Context Consistency Dia-

grams (RCCD). Reduced CCD remove the need to generate most of the interme-

diate nodes, keeping the size of a CCD within tractable bounds. The trade off is

the decreased querying power.

86 5. Interpretation of Inconsistencies via Context Consistency Diagrams

5.5 Evaluation

The CCD was tested in a living lab constructed on the premises of the University

of Groningen. In this section, we describe the living lab setup, the implementation

of the CCD component, and the final results.

5.5.1 Living Lab Description

As the setup has an important influence on the rule set of CCD and activity

reconginition ontology, we present here the description of our living lab. In our

prototype implementation, we make a study in our own offices at the University of

Groningen as the living lab. The test site consists of two working rooms that are

occupied by two PhD candidates and one coffee corner. The layout of the three-

room test site is illustrated together with the ZigBee mesh network of electricity

measuring plugs attached to electrical appliances and multi-hop network of simple

sensors in Figure 5.5. In particular, we use electricity measuring plugs to detect

the power state of five available devices (two PCs, two PC monitors inside two

private offices, and a microwave at the coffee corner). Sensors are used to gather

other crucial information, pressure sensor for chair’s occupancy, acoustic sensor for

human voice, and PIR sensor for motion detection.

Figure 5.5: Simplified scheme of the living lab setup

5.5. Evaluation 87

5.5.2 CCD implementation

The CCD component contains two main parts: the Web User Interface, which can

be used by users of the building to control the rules and variables, and the CCD

Manager, which actually creates and manages CCDs, gets sensor readings from

the RabbitMQ1 and sends the results of correction to the Activity recognition

component.

The Web UI is quite straightforward. There are three main parts of the com-

ponent that must be controllable/accessible by users. The first one is the variables

configuration of the system. The user can access to see, which variables are cur-

rently present in the system, can add/remove variables, and can configure their

information, such as the location of a device, the sensor weight, the available states,

etc.

The second part that the user can control is the set of rules for the system. The

rules are entered as formulas in predicate logic, where every atomic predicate is in

a form vi = dij or vi ∈ {dij1 , dij2}, and takes true if the variable vi currently has

one of the specified values, and false otherwise. The user has the ability to alter

the existing rules, add new ones, or remove the obsolete ones.

Finally, the last part of the Web User Interface is the environment information.

The most probable interpretation gets automatically calculated after every sensor

readings update, it is always kept in the system and is available for automatic

queries or to be shown to a user. In a sense, this is the same information that is

presented to the Activity Recognition component, but shown in a human-readable

way.

The CCD Manager component manages all system’s CCDs and is a common

entry point of all input and output information. Potentially, every system can

have more than one Context Consistency Diagram. As the diagram only helps to

improve information about interdependent variables, there should be a single CCD

for every subset of interdependent variables. The variables are interdependent if

there are rules which restrict certain values combinations of these variables, or if

there is another variable, with which both variables are dependent. For example,

variables for PC and monitor are dependent, because the monitor cannot be on

if the monitor is off. And two different chairs in the same room are dependent,

because if somebody is working with PC, at least one of the two chairs should be

occupied, thus there is another variable that combines the two chairs. But a chair

in one room is independent from the chair in another room, as there are no rules,

no common variables that combine them.

1http://www.rabbitmq.com/

http://www.rabbitmq.com/

88 5. Interpretation of Inconsistencies via Context Consistency Diagrams

For the full set of variables the CCD Manager first identifies the subsets of in-

dependent variables, and the corresponding rules. Then the CCD Manager creates

a CCD structure for every such subset of variables. When a new variable or a new

rule is added or removed via user interface, the affected CCD is reconstructed.

The CCD Manager registers itself with the RabbitMQ server, and subscribes

for the events of sensors, which are represented as variables. When the CCD

Manager receives a new sensor reading, it finds the appropriate CCD based on the

variable and sends the reading to this CCD for addition. When the lifetime of a

sensor reading expires, the CCD Manager contacts the CCD in order to remove

the reading.

The CCD Manager provides a REST interface as well for the activity recognition

component (or any other component which may be interested in corrected sensor

data). When contacted, it generates a message with a JSON2 object that contains

the current most probable interpretation.

5.5.3 Environment model

The full environment, as modelled in CCD, contains 19 variables. Since not all

sensors are equally trustworthy, we introduced initial weights for all sensors, presen-

ted in Table 5.4. For example, the Plugwise are the most trustworthy ones, and

they have the biggest relative weight, while there are relatively many situations

when PIRs fail to detect movement or catch occasional reflection of the sun in an

otherwise still environment, so the PIR sensors have the lowest weight. The pres-

sure and acoustic sensors fall inbetween. The weights were assigned based on the

empirical evaluation of sensors and several smaller scale experiments to evaluate

their accurance rate. Even though in this setting the weights range in the region

0.5-1.0, this does not correspond to the actual probability of the sensor sending a

correct value. I.e. sensors with the weight 1.0 still occasionally return erroneous

values, while sensors with the weight 0.5 give correct results much more frequently

than 50% of the time. The weight of sensors only matters on relative scale, i.e.

w.r.t. other sensors, and the absolute value of the sensor weight is not important.

We established eleven rules about the environment for the CCD to construct

expanded contexts. For every office 5 rules were designed, and one more rule for

the coffee corner. We will now describe all of them.

The first rule was already mentioned as example of sensor dependencies. It is

not possible for the monitor to be on if the computer is turned off, therefore the

rules are:

2http://json.org/

http://json.org/

5.5. Evaluation 89

Table 5.4: Sensor weights in the CCD

Variable Weight Variable Weight

1AcousticKeyboard 0.8 2LCD 1.0

1Acoustic 0.7 2PC 0.9

1LCD 1.0 2PIRKeyboard 0.5

1PC 0.9 2PIRMotion 0.5

1PIRKeyboard 0.5 2Pressure1 0.8

1PIRMotion 0.5 2Pressure2 0.8

1Pressure1 0.8 3Acoustic 0.7

1Pressure2 0.8 3Microwave 1.0

2Acoustic 0.7 3PIRMotion 0.5

2AcousticKeyboard 0.8

1LCD = true⇒ 1PC = true

2LCD = true⇒ 2PC = true

The monitor was configured to turn off after 1 minute of inactivity, thus we could

ensure that it is running only when people are actually working with the computer.

A working person should be sitting on the chair and the PIR sensor that catches

only the keyboard and mouse area should actually catch the respective activity.

If the PIR Keyboard detects a movement of the mouse or above the keyboard,

someone must be sitting and moving the mouse or typing.

1LCD = true⇒ (1Pressure1 = true ∨ 1Pressure2 = true)∧
1PIRKeyboard = true

2LCD = true⇒ (2Pressure1 = true ∨ 2Pressure2 = true)∧
2PIRKeyboard = true

1PIRKeyboard = true⇒ (1Pressure1 = true∨
1Pressure2 = true)

2PIRKeyboard = true⇒ (2Pressure1 = true∨
2Pressure2 = true)

The Acoustic Keyboard sensor can be easily enabled on the same device that

contains the PIR Keyboard sensor. Thus, we have an additional source of inform-

ation. Therefore, the Acoustic Keyboard sensor acts as a backup for the main

acoustic sensor in the room:

1AcousticKeyboard = true⇒ 1Acoustic = true

90 5. Interpretation of Inconsistencies via Context Consistency Diagrams

2AcousticKeyboard = true⇒ 2Acoustic = true

During our experiment the acoustic sensors were configured to catch human

voices. We also ensured the working atmosphere in the offices, i.e. no music running

in the background when no one is around. Given the setting, the recongnition of a

sound inside a room meant people speaking inside, which gives enough movement

for the PIR sensors to recognize it. To ensure this the following rules were added:

1Acoustic = true⇒ 1PIRMotion = true

2Acoustic = true⇒ 2PIRMotion = true

When the meeting is taking place, conversations are expected, which should be

caught by the acoustic sensor:

1Pressure1 = true ∧ 1Pressure2 = true⇒ 1Acoustic = true

2Pressure1 = true ∧ 2Pressure2 = true⇒ 2Acoustic = true

Finally, for the coffee corner, if people are around and either speaking or using

the microwave, we expect the PIR sensor to detect them:

3Acoustic = true ∨ 3Microwave = true⇒ 3PIRMotion = true

The CCD is constructed based on those rules, and every sensor reading increases

the probability only of those situations that are consistent with these rules and this

reading. The weight of the sensor is added to these situations (CCD leaves) with

every reading and removed when the reading becomes obsolete. When contacted

by AR component, the situation with the biggest weight is returned.

5.5.4 Results

We performed an experiment in three separate days in a week, that is, daily from

10:00 to 17:00, on March 26, March 29, and April 3, 2013 to verify the accuracy

of the proposed architecture and approach in terms of activity classification, but

also the error correction rate of CCD. The experiments concern the recognition

of six different activities performed by two PhD candidates in WorkingRoom-1,

WorkingRoom-2, and CoffeeCorner. During the experiment, the users take accur-

ate notes of actual activities happening in the offices every minute, which is used

as golden truth for the evaluation. Table 5.5 summarizes the actual occurrences

of activity instance at each activity area, that is then used as ground truth for

evaluation. These ground truth occurences were collected by PhD students that

5.5. Evaluation 91

Table 5.5: Ground truth of the occurrences of activity instances

Area
Activity

A B W Wpc M C

WorkingRoom-1 70 232 256 640 3 0

WorkingRoom-2 129 112 139 754 67 0

CoffeeCorner 843 0 0 0 0 358

A = Absence; B = Being present; W = Working

without PC; Wpc = Working with PC;M = Having a

meeting/discussion; C = Coffee break

were working in these rooms by recording manually all activities they performed

thoughout the days of the experiment. By using 1 minute time interval, the col-

lected ground truth is composed of 1201 activity instances.

In order to evaluate how CCD is able to detect and correct the errors in sensor

readings and how the CCD corrections affect the accuracy of our recognition solu-

tion, we implement another system which uses the same architecture except the

CCD-based fault correction component. Instead, to correct the faults in sensor

readings, we implement a simple major voting algorithm, that is, the value of a

sensor reading (TRUE or FALSE) is decided based on the most probable obser-

vation for a given combination of five readings collected in a minute. We call our

algorithm Averaged in order to distinguish it from a CCD solution.

The Gateway provides raw sensor readings for both CCD and Averaged com-

ponents. After processing to correct the errors, CCD and Averaged provide correc-

ted sensor readings as inputs for Activity Recognition component. The recognition

results by using CCD and Averaged sensor readings are stored to make comparis-

ons.

The overall success rates of the system for each monitored area are shown in

Table 5.6. The first impression is that CCD significantly helps to correct the faults

in sensor readings, thus the success rates notably increase, compared to Averaged

ones. In particular, CCD helps to correct 90 minutes of wrong recognition at

WorkingRoom-1, equivalent to 40%, improving the success rate for this room by

7.66%. The CCD corrections for WorkingRoom-2 are even more significant with

46.83% of faults corrected, thus the accuracy of the recognition reaches 87.42%.

That means it is 11.07% better compared to 76.35% returned by Averaged correc-

tion. One witness the most remarkable corrections at CoffeeCorner, where 82.60%

of faults are corrected by CCD component. The high number of corrections can

92 5. Interpretation of Inconsistencies via Context Consistency Diagrams

be explained by investigating the raw readings from sensors at the CoffeeCorner.

Because CCD helps to correct PIR sensor readings with the following rule:

3Acoustic = true ∨ 3Microwave = true⇒ 3PIRMotion = true

Table 5.6: Success rates at each area

Area

∑
∀activities FN % of errors

Averaged CCD fixed

WorkingRoom-1 230 138 40.00%

WorkingRoom-2 284 151 46.83%

CoffeeCorner 46 8 82.60%

Tall = 1201 minutes

Area
Success rates

Averaged CCD Improvement

WorkingRoom-1 80.85% 88.51% 7.66%

WorkingRoom-2 76.35% 87.42% 11.07%

CoffeeCorner 99.17% 99.33% 00.16%

The improvement of success rates is also reflected in the Figure 5.6, which shows

comparison between actually happened activities in each monitored area and the

recognized activities from Averaged result and CCD result.

Table 5.7 to Table 5.9 illustrate the result in more detail by showing recall

and precision of all activities and all areas. Recall of an activity is the ratio of

correctly identified activity occurences to all actual occurences of this activity.

Precision is the ratio of correctly identified activity occurences to the number of all

occurences that were identified as this activity. In all three areas, CCD improves

recall of Working with PC, Having a meeting/discussion, and Having a coffee break

activities, making sure that PC/meeting-related devices are working while the users

are really working with the PC or having a meeting. These satisfy one of the

important criteria of a smart building that is the user comfort has higher priority

than energy saving. For example, recall of Working with PC at WorkingRoom-1

improves from 94.53% to 99.06%, while this improvement at WorkingRoom-2 is

from 81.69% to 97.61%.

During the experiments, we also measure the running time of our system. The

results show that our current system, which includes three activity areas (two

5.5. Evaluation 93

T
a
b
le

5
.7

:
R

es
u

lt
s

fo
r

w
o
rk

in
g

ro
o
m

1

(a
)

C
on

fu
si

on
m

at
ri

x

R
ec

og
n

iz
ed

as
→

W
p

c
W

M
B

A
U

A
ve

r.
C

C
D

A
ve

r.
C

C
D

A
ve

r.
C

C
D

A
ve

r.
C

C
D

A
ve

r.
C

C
D

A
ve

r.
C

C
D

W
or

k
in

g
w

it
h

P
C

6
0
5

6
3
4

8
2

0
0

2
4

0
0

2
5

0

W
or

k
in

g
w

it
h

ou
t

P
C

1
9

2
5
5

2
4
7

0
0

0
0

0
0

0
0

H
av

in
g

m
ee

ti
n

g/
d
is

cu
ss

io
n

1
1

2
2

0
0

0
0

0
0

0
0

B
ei

n
g

p
re

se
n
t

1
6

12
17

0
0

4
6

1
1
7

1
6
8

9
2

5
0

A
b

se
n

ce
0

0
3

5
2

3
0

0
6
5

6
2

0
0

(b
)

P
re

ci
si

on
/R

ec
al

l

A
ct

iv
it

y
P

re
ci

si
on

(%
)

R
ec

a
ll

(%
)

A
ve

r.
C

C
D

A
ve

r.
C

C
D

W
or

k
in

g
w

it
h

P
C

99
.5

0
9
7
.5

4
9
4
.5

3
9
9
.0

6

W
or

k
in

g
w

it
h

ou
t

P
C

91
.0

7
9
0
.4

7
9
9
.6

0
9
6
.4

8

H
av

in
g

a
m

ee
ti

n
g/

d
is

cu
ss

io
n

0
0

0
0

B
ei

n
g

p
re

se
n
t

95
.8

3
9
6
.6

9
1
9
.8

2
5
0
.4

3

A
b

se
n

ce
27

.8
9

4
0
.2

5
9
2
.8

5
8
8
.5

7

W
p

c
=

W
or

k
in

g
w

it
h

P
C

;
W

=
W

or
k
in

g
w

it
h

ou
t

P
C

;
M

=
H

av
in

g
a

m
ee

ti
n

g
/
d

is
cu

ss
io

n
;B

=
B

ei
n

g
p

re
se

n
t;

A

=
A

b
se

n
ce

;
U

=
U

n
re

co
gn

is
ed

m
in

u
te

s

94 5. Interpretation of Inconsistencies via Context Consistency Diagrams

T
a
b
le

5
.8

:
R

esu
lts

for
w

o
rk

in
g

ro
o
m

2

(a)
C

on
fu

sio
n

m
a
trix

R
eco

gn
ized

a
s
→

W
p

c
W

M
B

A
U

A
ver.

C
C

D
A

ver.
C

C
D

A
ver.

C
C

D
A

ver.
C

C
D

A
ver.

C
C

D
A

ver.
C

C
D

W
ork

in
g

w
ith

P
C

6
1
6

7
3
6

14
14

0
0

3
4

1
0

120
0

W
ork

in
g

w
ith

ou
t

P
C

4
4

1
3
0

1
3
1

0
0

3
2

2
2

0
0

H
av

in
g

m
eetin

g/d
iscu

ssion
12

37
4

5
0

2
5

0
0

0
0

51
0

B
ein

g
p

resen
t

0
2

6
17

0
0

4
4

3
2

6
2

61
0

0

A
b

sen
ce

0
2

0
0

0
0

1
1

1
2
7

1
2
6

1
0

(b
)

P
recisio

n
/R

eca
ll

A
ctiv

ity
P

recision
(%

)
R

ecall(%
)

A
ver.

C
C

D
A

ver.
C

C
D

W
ork

in
g

w
ith

P
C

97.16
9
4
.2

3
8
1
.6

9
97.61

W
ork

in
g

w
ith

ou
t

P
C

84.41
7
8
.4

4
9
3
.5

2
94.24

H
av

in
g

a
m

eetin
g
/
d

iscu
ssion

0
0

-
37.31

B
ein

g
p

resen
t

86.27
7
6
.9

2
3
9
.2

8
26.78

A
b

sen
ce

66.14
6
6
.3

1
9
8
.4

4
97.67

W
p

c
=

W
o
rk

in
g

w
ith

P
C

;
W

=
W

ork
in

g
w

ith
ou

t
P

C
;

M
=

H
av

in
g

a
m

eetin
g
/
d

iscu
ssio

n
;B

=
B

ein
g

p
resen

t;
A

=
A

b
sen

ce;
U

=
U

n
recogn

ised
m

in
u

tes

5.5. Evaluation 95

Table 5.9: Results for coffee corner

(a) Confusion matrix

Recognized as → C A

Aver. CCD Aver. CCD

Having a coffee break 312 350 46 8

Absence 0 0 843 843

(b) Precision/Recall

Activity Precision (%) Recall(%)

Aver. CCD Aver. CCD

Having a coffee break 100 100 87.15 97.76

Absence 94.82 99.06 100 100

C = Having coffee break; A = Absence

working rooms and a coffee corner) and 19 sensors (15 simple sensors and five

electricity measuring plugs), can run in a distributed manner with the running

time of less than 5ms.

96 5. Interpretation of Inconsistencies via Context Consistency Diagrams

(a) Result day 1

(b) Result day 2

(c) Result day 3

Figure 5.6: Experiment in three days

Chapter 6

Reduced Context Consistency Diagrams
for Resolving Data Inconsistencies

Context consistency diagrams (CCD) are capable of storing sensor data and de-

fining several possible context interpretations in the presence of a conflict or an

ambiguity, either because of incomplete knowledge about the environment, or be-

cause of erroneous sensor readings. If no information is discarded, further sensor

readings help to refine the knowledge and make more informed decisions about the

correctness of certain sensor readings. In this chapter, we extend the notion of a

context consistency diagram and introduce a reduced context consistency diagram

(RCCD) for dealing with inconsistent and incomplete data, which severely reduces

the resulting diagram size comparing to the original full CCD. This is done by

removing intermediate nodes with no initial weight during the diagram generation,

and the trade off is the reduced querying capabilities of the diagrams. Both full

and reduced CCDs are capable of storing all the information without discarding

anything, even if the data has conflicts. RCCD, while having a less extensive query-

ing capabilities than CCD, requires much less computational and storage power.

Pervasive systems can implement either CCD or RCCD mechanism to deal with

ambiguous or conflicting context data.

6.1 Reduced context consistency diagram

While CCD provides a full picture of the information together with existing incon-

sistencies, it is an extensive structure that shows all the possibilities of environment

knowledge explicitly, thus at the expence of computational and storage power.

For this we devise a way to reduce a CCD while still keeping the knowledge

about existing inconsistencies intact. The reduced context consistency diagram

(RCCD) uses the fact that some of those nodes that are not created directly from

sensor readings, but are created as intermediate ones, are combined together to

create a more knowledgeable common descendant. If this is the case, those interme-

diate nodes can be truncated from the diagram, while still keeping the information

98 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

(a) Full CCD of three contexts

(b) Reduced CCD of the same contexts

Figure 6.1: Example of a full CCD (a) and a corresponding reduced CCD (b)

about the most probable situation.

For example, in the case described in Figure 6.1a, a full CCD is shown for the

following three contexts:

c1 = (v1 ∈ (0, 1, 2); v2 = 1; v3 ∈ (1, 2))

c2 = (v1 = 0; v2 ∈ (0, 1); v3 ∈ (0, 1, 2))

c3 = (v1 ∈ (0, 1); v2 ∈ (0, 1, 2); v3 = 2)

However, the three generated nodes of the second tier can be reduced, as they all

are combined in the more knowledgeable context (v1 = 0; v2 = 1; v3 = 2). The

corresponding reduced CCD is shown in Figure 6.1b.

6.1. Reduced context consistency diagram 99

Notice that RCCD can reduce only nodes that were not originally obtained

from sensor readings (in other words, those nodes that do not belong to C0 group

and do not have associated initial weight w0(c)). In the same example, the full

CCD will be exactly the same as reduced CCD (both shown in Figure 6.1a) in case

we also receive three more sensor readings that account for the following contexts:

c4 = (v1 = 0; v2 = 1; v3 ∈ (1, 2))

c5 = (v1 ∈ (0, 1); v2 = 1; v3 = 2)

c6 = (v1 = 0; v2 ∈ (0, 1); v3 = 2)

The formal definition of RCCD goes as follows:

Definition 8 (Reduced context consistency diagram (RCCD)). Given an

environment 〈V,D〉 and a set of contexts C0 = {ck}, k ∈ 1..N , a reduced context

consistency diagram (RCCD) is a tuple Gr = 〈C,E, r〉, where:

� r = D, is a special context, the root ;

� C = C0 ∪ Cr ∪ r where Cr is defined as Cr =
⋃
cp ∈ Cu\(C0 ∪ r) s.t. @cc ∈

Cu ∪ C0 : (cc ⊂ cp))

� E ⊆ C × C, such that (c2, c1) ∈ E iff ∃c1, c2 ∈ C : c1 ⊂ c2 and @cm ∈ C :

c1 ⊂ cm ⊂ c2.

The only difference with the Definition 7 of CCD is the definition of a context

set C, which, however, drastically changes the resulting diagram.

To describe properties of the RCCD we split the contexts of the CCD into the

two categories: solid and non-solid. A set of solid contexts Cs consists of the root

and all contexts out of the original context set C0. Non-solid contexts Cns are all

the contexts out of a full set of intersection of a power set Cu that are not included

into a solid set (thus that are not among original contexts).

Cs = C0 ∪ r (6.1)

Cns = C\Cs (6.2)

As in CCD, vertices of the RCCD include all the solid contexts. However, unlike

in CCD, where all non-solid contexts are also kept, in RCCD they are kept in the

diagram only in case they are the most knowledgeable contexts.

This leads us to the first property of the RCCD:

100 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

Property 4. All non-solid nodes of RCCD do not have children.

Proof. If a node c ∈ C has a child, then by the definition of a context set C, this

node may not be the part of Cr, because ∀c ∈ Cr : @cc ∈ Cu ∪ C0 : (cc ⊂ c)).

From facts that C = C0 ∪ Cr ∪ r, and c ∈ C, but c /∈ Cr, follows that c ∈ C0 ∪ r,
and by definition of a solid node from equation 6.1, c must be solid. Thus if a node

of RCCD has a child, it is always a solid node. Thus non-solid nodes do not have

children.

The second property of RCCD is:

Property 5. If all nodes with children of a full CCD are part of the original

context set C0, then a corresponding reduced CCD is equal to the full CCD.

Proof. Solid nodes C0 ∪ r are always part of both CCD and RCCD context sets,

thus only non-solid nodes differ. We are given that all nodes of CCD with children

are in C0 set, thus for the remaining nodes the following holds:

∀c ∈ Cu\(C0 ∪ r) : @cc ∈ Cu ∪ C0 : (cc ⊂ c))

which is exactly the definition of corresponding Cr from RCCD. So

∀c ∈ Cu\(C0 ∪ r) : c ∈ Cr

or

Cu\(C0 ∪ r) = Cr

Thus,

Cfull = Cu ∪ C0 ∪ r = (Cu\(C0 ∪ r)) ∪ C0 ∪ r =

= Cr ∪ C0 ∪ r = Creduced

The fact that Cfull = Creduced also means that Efull = Ereduced by definition

of edges construction. So CCD and RCCD under the given conditions are equal.

All the original properties of CCD also hold for RCCD. Those are:

Property 6. For a given set of contexts there is one and only one non-isomorphic

representation of its RCCD.

Property 7. The order of contexts addition does not change the resulting RCCD.

Property 8. Adding and then removing a context does not change the resulting

RCCD.

The proof of these three properties for RCCD is exactly the same as for CCD

and is presented in Section 5.4.

6.2. RCCD maintenance 101

6.2 RCCD maintenance

In this section we present algorithms to add and remove a context to the RCCD.

The addition of a new context to the RCCD is shown in Algorithm 5. The al-

gorithm is split into two parts: AddContext recursively searches predecessors of the

context to find its parents, i.e. contexts, to which the new context should be added

as a child. As soon as those parents are found, the second part, CheckChildren,

recursively checks if a context is consistent with its siblings, and a child should be

generated.

The first part, AddContext, checks if a parent is a parent of a context. It starts

by checking if there is a child of a parent equal to the context. If this is the case,

a corresponding weight is added to the initial weight of a child and the algorithm

ends.

Otherwise it checks if there are any non-solid children of a parent that are more

general than the context. In this case, all the parents of such children are moved

and become parents of the context. Note that this effectively deletes those children

from the diagram, because they do not have parents anymore, and non-solid nodes

never have their own children.

If no suitable children are found yet, the algorithm checks if there are solid

children of a parent that are more general than the context. In case they are

found, the algorithm repeats recursively for them.

Otherwise we found a parent of the context. The second part of the algorithm,

CheckChildren, is then called and the parent adds the context as a child.

The CheckChildren function receives two nodes as input, a context, which is

a newly added to the diagram node, and another node, for which we suspect that

its children may be consistent with a context. We process all the children of the

node in the following manner:

If a child is included into a context, we add it as a descendant to a context and

remove it as a child from node, in case a context is already a child of a node.

Otherwise we check for consistency of a context and a child. If they are consist-

ent and a child is non-solid, we remove it from the diagram, and put an intersection

of a child and context in its place. We also add a link from a context to the new

node.

If a child is solid, however, we check if there is already (or should be created)

a common descendant between a child and a context by calling CheckChildren

recursively on those nodes. If it returns negative result, we add a new node (their

intersection) to the diagram by adding it as a child to a context and a child.

Algorithm 6 describes the removal of an outdated context from RCCD.

102 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

Algorithm 5 Adding context to RCCD

1: function AddContext(context, parent, weight)

2: if ∃ch ∈ parent.children s.t. ch = context then

3: W0(ch)←W0(ch) + weight

4: exit

5: else if ∃child ∈ parent.children.nonsolid s.t. context ⊂ child then

6: ∀child :Move parents from child to context

7: else if ∃child ∈ parent.children.solid s.t. context ⊂ child then

8: ∀child :AddContext(context, child, weight)

9: else

10: CheckChildren(context, parent)

11: Add link from parent to context

12: end if

13:

14: function CheckChildren(context, node):boolean

15: result← false

16: for all child ∈ node.children do

17: if child ⊂ context then

18: if node is a parent of context then

19: Remove link from node to child

20: end if

21: Add child to context as descendant

22: result← true

23: else if isConsistent(context, child) then

24: x← context ∩ child
25: if ¬isSolid(child) then

26: Move parents from child to x

27: Add link from context to x

28: else if ¬CheckChildren(context, child) then

29: Add link from context to x

30: Add link from child to x

31: end if

32: result← true

33: end if

34: end for

35: return result

6.2. RCCD maintenance 103

Algorithm 6 Removing context from RCCD

1: function RemoveContext(context, weight)

2: W0(context) = W0(context)− weight
3: if W0(context) = 0 then

4: if context has children then

5: for all parent ∈ context.parents do

6: Remove link from parent to context

7: Add all context.children to parent as descendants

8: end for

9: nodes← context.children.nonsolid

10: Remove links from context to all its children

11: else

12: nodes← context

13: end if

14: for all node← nodes do

15: x←
⋂
node.parents

16: if x 6= node & @brth ∈ node.brothers s.t. brth ⊂ x then

17: Add link from all node.parents to x

18: Remove links from all node.parents to node

19: end if

20: end for

21: end if

First of all, the context can only be removed in case the context becomes non-

solid after reducing the initial weight by the amount, corresponding to the outdated

sensor reading. I.e. in case there are no more other sensor readings that support

this context.

If a context has children, we first remove a link from context parents to it, and

then add links from context parents to its children, connecting them directly.

After this, on lines 14-20 we check non-solid children of a context, or a context

itself in the absence of children, for the maximum generality. That means that each

such node should stay on the diagram only if it still has more than one parent, and

if the intersection of all its current parents is exactly equal to a node. It may be

the case that after the removal of a parent, a non-solid node is now less general

than it should be. In this case we create a new node x, which is the intersection of

all its current parents, and move all the parents of a node to x, effectively removing

a node from the diagram.

104 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

6.3 RCCD reasoning

In Section 5.4 we describe a way to calculate probabilities of all the interpretations

possible using CCD. The method is applicable and very useful in situations where

sensor readings are highly erroneous, so the system must account for interpretations

that are second- or third- most probable. The RCCD can not be used for these kinds

of queries, because second-, third-, etc. most probable interpretations are often

reduced in favor of the single most probable one. However, RCCD is capable of

answering to the question “What is the most probable situation at this moment?”.

To prove this, we use the fact that the most probable situation is always the one

among the most knowledgeable situations, i.e. those that do not have children.

Indeed, let’s assume that a context that contains the most probable situation has

a child. A child is always more knowledgeable than a parent, in other words it

contains a subset of interpretations that a parent contains. As a child has its own

weight, only those interpretations of a parent that are also contained in a child gain

this additional weight. Which by itself means that they become more probable,

than the others. So, we proved that interpretations that are contained in a child will

always be more probable than interpretations of a parent, which are not contained

in any of its children. Which means that the most probable interpretation of a

situation is always the one among nodes with no children.

RCCD by Definition 8 never reduces nodes that do not have children, so they

are always present on a diagram. Moreover, all the initial weights from original

contexts are also transferred to these nodes, and all the consistency among original

nodes is kept, as the way of inheriting nodes in RCCD is the same, as in CCD.

Due to these facts the most probable interpretation has the biggest weight among

all interpretations. The probability calculation, presented in Section 5.4, still can

be used in RCCD for finding the most probable interpretation.

As well as CCD, RCCD never discards any information from sensors, and if

the most probable interpretation changes with the arrival of a new context, RCCD

immediately catches this change.

6.3.1 Unfolding of RCCD to CCD

The previous subsection shows that for systems that are mostly concerned with the

question “What is the most probable situation at this moment in time?” RCCD is

a more preferable choice of a diagram than CCD. However, even for such systems

sometimes there are cases when additional information about other possible situ-

ations or conditional probabilities is important. Fortunately, the choice of RCCD

over CCD does not permanently hinder the ability to obtain the answers to these

6.4. CCD vs RCCD complexity 105

queries. We present Algorithm 7 that allows to unfold a RCCD to obtain a full

CCD.

The function UnfoldNode will be called for every node of the diagram. At the

beginning of the algorithm the queue contains all the most knowledgeable nodes

(described by RCCD.lastnodes), i.e. nodes that do not have children. In other

words, the algorithm unfolds nodes from the bottom to the top. The last node to

be unfolded is always the root.

UnfoldNode is called either for all or for a subset of node parents. When a

node is polled from a queue, the function is always called for all node parents, but

later it can be recursively called for a subset of them. The function checks if there

is only one parent among the input parents. If it is the case, it checks if all the

children of a parent are already marked, and if it is the case, it adds a parent to

the queue. If there are more than one parent in parents subset, the function tries

to remove a single parent from this subset one by one, and checks, if the remaining

parents can create a more general consistent child x, than a node. If it is the case,

the link from all such parents to the node is removed, and x is added as a child to

them instead. Also each parent checks if it has other children that either should

now be the children of x (in this case the link from parent to child is removed, and

a link from x to child is added instead), or that have a consistent child y with x (y

is than added as descendant to both child and x in this case). After this is done,

the link from x to node is added and a new node x is put to the queue.

6.4 CCD vs RCCD complexity

Explicit description of different interpretations in a CCD can potentially grow

in space exponentially with the number of distinct contexts in the original set.

However, there are several considerations that help to keep the size of a CCD

reasonable.

The biggest growth of a CCD results from faulty contexts. While correct con-

texts tend to have the same descendants, faulty contexts will generate many new

CCD nodes. With a growth of a CCD, one may discard contexts that support the

most unlikely interpretations, as most probably they represent faulty or imprecise

sensors.

Each environment in a CCD should only contain interdependent variables. We

split independent variables into non-intersecting subgroups and produce a smaller

CCD for each subgroup.

RCCD, on the other hand, produces a much smaller diagram. First of all, notice

that RCCD does not generate new nodes, unless they are the most knowledgeable.

106 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

Algorithm 7 Unfold RCCD to CCD

1: function UnfoldRCCD

2: queue← RCCD.lastnodes

3: while queue is not empty do

4: node← queue.poll()

5: UnfoldNode(node, node.parents)

6: end while

7:

8: function UnfoldNode(node,parents)

9: Mark node

10: if parents.size = 1 then

11: if parents(0).children are marked then

12: queue.add(parents(0))

13: else

14: for all par ∈ parents do

15: x←
⋂

(parents\par)
16: if x 6= node then

17: for all parent ∈ parents\par do

18: Remove link from parent to node

19: for all child ∈ parent.children do

20: if child ⊂ x then

21: Remove link from parent to child

22: Add link from x to child

23: else if isConsistent(x, child) then

24: y ← x ∩ child
25: Add y as descendant to child

26: Add link from x to y

27: end if

28: end for

29: Add link from parent to x

30: end for

31: Add link from x to node

32: queue.add(x)

33: else

34: UnfoldNode(node,parents\par))
35: end if

36: end for

37: end if

38: end if

6.5. Evaluation 107

In case all the contexts are correct, the maximum number of nodes in RCCD will

be Nc + 2, where Nc is the number of distinct nodes in the original context set,

and the number 2 corresponds to the root and a possibly generated single child.

The child is single, because if all contexts are correct, they are all consistent with

each other, thus they all have the same most knowledgeable descendant.

Each erroneous context potentially adds Nv new children (alternative “most

knowledgeable” nodes), one per each variable, where Nv is the number of variables.

Thus with the presence of erroneous contexts the maximum number of nodes in

RCCD is equal to Nc + Nv ∗ Nerr + 2 where Nerr is the number of erroneous

contexts. Notice that normally we assume a situation, where Nerr � Nc, thus we

expect small sizes of RCCD in practice. If this is not the case, with bigger numbers

of errors the RCCD size will grow as well.

In table 6.1 we compile all the previously given information to present a concise

comparison between the two structures. That should help to decide, which of the

structures is better suited for given projects.

6.5 Evaluation

Our evaluation section is split into two parts. We start by showing a sample run of

the system and discuss it in details. Then we make a general overview of system’s

performance based on several experiments, and study the dependence of system’s

performance on several system parameters.

To evaluate the system in real conditions, we performed an experiment with

several sensors. The setup of the experiment can be seen in Figure 6.2.

We used six sensors altogether: 2 acoustic sensors, 2 PIR motion sensors, and

2 pressure sensors. The sensors are produced by Advantic Systems1. They are

IEEE 802.15.4 compliant wireless sensors that use open-source “TelosB” plat-

form [Nguyen and Aiello, 2012]. All sensors are equipped with ultra low-power

16bit microcontroller MSP430. The pressure sensor uses the Tekscan® A201-100

FlexiForce® sensor, which provides force and load measurements for both static

and dynamic forces (up to 100lb or 400N). The Passive InfraRed (PIR) motion

sensor uses the Perkin Elmer Optoelectronics® LHI878 sensor to detect motion in

the given direction. The SE1000 acoustic sensor has a mini-microphone (20-16000

Hz, SNR 58 dB) that is designed to detect the presence of sound. All sensors

were configured to measure intensity of corresponding signals and thresholds were

applied to readouts of each sensor in order to return a higher-level boolean value

(presence or absence of sound/motion/pressure) once every second. The data was

1http://www.advanticsys.com

http://www.advanticsys.com

108 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

C
C

D
R

C
C

D

C
o
m

p
u

ta
tio

n

e
ff

o
rt

Is
rath

er
com

p
u
tation

ally
h

eav
y,

th
ou

gh
w

ay
s

ex
ist

to
keep

th
e

C
C

D
w

ith
in

a
given

size,

w
h

ile
losin

g
som

e
in

form
ation

.

C
o
m

p
u

ta
tio

n
a
lly

lig
h
t,

ca
n

b
e

m
ain

tain
ed

a
n

d
u

p
d

a
ted

m
u

ch
fa

ster
th

an
C

C
D

,
an

d
is

ca
p

a
b

le
o
f

h
a
n

d
lin

g
m

o
re

d
a
ta

w
ith

ou
t

losin
g

in
fo

rm
a
tio

n
.

In
fo

rm
a
tio

n

h
a
n

d
lin

g

K
eep

s
all

th
e

arrived
in

form
ation

,
an

d
h

a
n

d
les

in
co

n
sisten

cies
w

ith
th

e
ex

istin
g

in
form

ation
.

F
u

rth
er

in
form

ation
u

p
d

ates
can

ch
an

ge
th

e
m

o
st

p
ro

b
a
b

le
situ

a
tio

n
.

Q
u

e
rin

g
a
n

d

re
a
so

n
in

g

C
an

b
e

u
sed

to
fi

n
d

th
e

m
ost

p
rob

ab
le

situ
-

ation
.

A
lso

can
ran

k
oth

er
situ

ation
s

b
y

th
eir

p
rob

ab
ility,

an
d

an
sw

er
to

d
iff

eren
t

k
in

d
s

o
f

q
u

eries,
su

ch
as

“W
h

at
are

th
e

situ
ation

s
th

a
t

are
at

least
20%

p
rob

ab
le?”,

“W
h
at

is
th

e

secon
d

,
th

ird
,
etc.

m
ost

p
rob

ab
le

situ
ation

?”
,

“W
h

at
is

th
e

p
rob

ab
ility

d
istrib

u
tion

of
va

l-

u
es

of
th

e
certain

variab
le?”,

etc.

H
a
s

a
sim

p
le

a
n

d
fa

st
w

ay
to

fi
n

d
th

e
m

ost

p
ro

b
a
b

le
situ

a
tio

n
.

A
n

sw
ers

to
th

is
q
u

estion

m
u

ch
fa

ster
th

a
n

C
C

D
.

In
te

r-

d
e
p

e
n

d
e
n

c
e

If
n

eed
ed

,
R

C
C

D
can

b
e

u
n

fold
ed

in
to

a
fu

ll
C

C
D

a
t

a
n
y

m
o
m

en
t

in
tim

e.

T
a
b
le

6
.1

:
C

C
D

v
s

R
C

C
D

co
m

p
a
riso

n

6.5. Evaluation 109

(a) Overview on the experiment’s location setup

(b) Acoustic and PIR motion sensors

(c) Pressure sensor

Figure 6.2: System’s experimental setup

110 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

then sent to the RCCD structure, which in turn returned the current most probable

situation.

Figure 6.2a shows the general placement of the sensors. The setup shows the

office of a single person and the idea of using such sensors is to be able to recognize

current activity of a person. Among those activities we assume work with or

without PC, meeting with another person, or absence from the working desk. While

each of the sensors occasionally produces faulty readings, their mutual dependencies

that we described in terms of rules, help RCCD to recognize the correct situation.

First we describe what each sensor is aimed to recognize, then we describe their

mutual interdependecies, and afterwards we show the results of the experimental

run of such a system.

6.5.1 Sensors description

Pressure sensor 1 (PR1) is located on a chair of the main person in front of the

PC, and is triggered if someone is sitting on this chair.

Pressure sensor 2 (PR2) is located on a “guest” chair, and is triggered if

someone is sitting on it.

Acoustic sensor 1 (AC1) is placed near the keyboard and is aimed to detect

the sound of keys being pressed, in order to recognize the typing activity.

Acoustic sensor 2 (AC2) is a general acoustic sensor that is aimed to recognize

a sound in a room. It is placed in between the two chairs, because the sound usually

means the conversation between the two people.

Keyboard typing, while triggering sound detection on AC1, is not loud enough

to trigger sound detection on AC2, thus AC2 remains silent in this case. However,

when two people are speaking with each other, both acoustic sensors detect sound.

So we can only definitely recognize the keyboard typing when AC2 is silent, while

AC1 is detecting sound.

PIR motion sensor 1 (M1) is directed exactly at the front of the PC (looking

directly at the first chair), and is aimed to detect any motion in this direction. The

sensor gives us additional information and can help to recognize inaccuracies of

other relevant sensors.

PIR motion sensor 2 (M2) is looking directly at the guest chair, and is

aimed to detect any motion on or around this chair. This sensor as well gives

us additional information and can help to recognize inaccuracies of other relevant

sensors.

6.5. Evaluation 111

Table 6.2: Experiment results

Sen- Number of errors Error rate,% % of errors fixed

sor Latest Aver. RCCD Latest Aver. RCCD Latest Aver. RCCD

M1 631 563 77 35.06 31.28 4.28 0.0 10.78 87.80

PR1 270 259 274 15.00 14.39 15.22 0.0 4.07 -1.48

AC1 398 336 314 22.11 18.67 17.44 0.0 15.58 21.11

M2 132 116 11 7.33 6.44 0.61 0.0 12.12 91.67

PR2 18 8 9 1.00 0.44 0.50 0.0 55.56 50.00

AC2 160 126 123 8.89 7.00 6.83 0.0 21.25 23.13

Total 1609 1408 808 14.90 13.04 7.48 0.0 12.49 49.78

6.5.2 Interdependencies rules

As already noted, sensors in our case study have common dependencies. For ex-

ample, when AC2 is detecting sound, AC1 is also detecting sound (but not the

other way around). When a person is sitting in a chair, both pressure PR1 and

motion M1 sensors will detect activity. These and other dependencies are captured

by creating the following rules:

“Pressure implies motion.” Both motion sensors are directed exactly on

the chairs, and located very closely to them. When someone is sitting on a chair,

in most cases the motion sensors detect small motions of a person in it. We help

our system to detect the faulty readings of no motion by adding these two rules:

PR1 =⇒ M1 (6.3)

PR2 =⇒ M2 (6.4)

“Who is typing, if no one is there?” If we detect no motion, and no

pressure on the chair in front of the PC, and there is no general sound in the room,

the keyboard acoustic sensor should also remain silent. Hence the third rule:

¬PR1 ∧ ¬M1 ∧ ¬AC2 =⇒ ¬AC1 (6.5)

Note that given Rule 6.3, we can cancel out the variable PR1 from this formula.

However, we prefer to keep it in this format both for ostensive purposes and for

each rule to remain completely independent from other rules.

“I heard something. Did you hear it?” The first acoustic sensor is placed

very close to the keyboard in order to detect soft noise of typing, which second

112 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

sensor is unable to detect. The second sensor, however, is placed just in the middle

of the meeting area in order to detect all loud noises in the room, the most common

noise being human speech. The first sensor is able to detect all those loud noises

as well, which means it should always be triggered when the second acoustic sensor

detects something:

AC2 =⇒ AC1 (6.6)

“Room is busy.” If we detect sound by the keyboard acoustic sensor, and a

motion in general area, but no pressure on the chair in front of the PC, it means

the sound comes from somewhere else in the room, so the second acoustic sensor

should also be able to detect it.

AC1 ∧M2 ∧ ¬M1 =⇒ AC2 (6.7)

6.5.3 System’s run

We did an experimental run of the system with the abovementioned setup to eval-

uate to which extent RCCD is able to detect the correct situation. The system

was collecting data for 30 minutes, during which the situation was the following:

1. For the first 10 minutes a person was working with the computer. Thus the

expected correct values of sensors would be:

M1 = true; PR1 = true; AC1 = true;

M2 = false; PR2 = false; AC2 = false

2. Then the short meeting with another person was held for 5 minutes. The

expected values are:

M1 = true; PR1 = true; AC1 = true;

M2 = true; PR2 = true; AC2 = true

3. After this the person was reading papers silently for 10 minutes. Correspond-

ing expected sensor values:

M1 = true; PR1 = true; AC1 = false;

M2 = false; PR2 = false; AC2 = false

4. Last 5 minutes the room was empty:

M1 = false; PR1 = false; AC1 = false;

M2 = false; PR2 = false; AC2 = false

6.5. Evaluation 113

6.5.4 Results

The experiment was running for 30 minutes with sensors sending their readings each

second. The lifetime of sensor readings was set to 5 seconds, so for each sensor

at any moment in time we had 5 latest readings that were to be considered. This

was done in order to smoothen the readings, as many sensors occasionally return

incorrect readings (e.g. for a motion sensor it is common to return sequences such

as “1; 2868; 2852; 1; 1; 2861; 2853”, where high values indicate movement, and 1

indicates no movement).

We compared the results of three possible sensors interpretations: first inter-

pretation always takes the latest sensor reading and considers it correct; second

one takes all readings with valid lifetime and chooses the most common (average)

value; third one uses RCCD in order to find the expected correct sensor readings.

The results can be seen in Table 6.2. All sensors were returning faulty readings

from time to time, with M1 sensor being the least reliable (35% of erroneous

readings), and PR2 sensor being the most reliable with only 1% of readings being

erroneous. While averaging the value of sensors over their lifetime helped to reduce

the number of erroneous sensors readings by 12.49%, the usage of RCCD to get

the most probable situation reduced the number of errors by 49.78%, going from

1609 total erroroneous readings, to just 808.

The most important metric, however, is not just the total number or erroneous

readings, but the total number of times the situation was detected correctly. The

correctly recognized situation is the one where we know the correct values of all

sensors. In our case, we update our knowledge about the environment each second,

and the situation is detected correctly, if we are able to detect the correct state

of all six sensors during this second. Table 6.3 shows the total number of times

certain sensors gave correct readings. At no point all six sensors were giving the

wrong data, but there were at least two moments, when only one out of six sensors

was providing the correct data (both of which RCCD was able to detect and fix),

etc. The number of times when the situation was detected fully correctly by latest

sensor readings was 713 (thus sensors were fully correct 39.61% of the total time).

Averaging sensor reading didn’t help much, with 769 number of times (thus provid-

ing fully correct readings 42.72% of the total time). RCCD, however, was able to

detect the fully correct situation 1234 number of times, which accounts for 68.56%

of the total time, and is a considerably higher and better value.

114 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

Table 6.3: Times seen each number of correct sensors

Correct

sensors Latest Averaged RCCD

0 0 0 0

1 2 1 0

2 11 1 1

3 89 54 44

4 303 262 151

5 682 713 370

6 713 769 1234

Figure 6.3: Dependence of update time on number of sensors

6.5.5 Performance

In this section, we describe how the system’s performance depends on parameters

of a system. The experiments were performed on a Intel Core2Duo P7370 2GHz

PC with 3 GB RAM running OS Ubuntu 10.04. The software is written in Java

JDK 1.6. The simulated test environment consists of a test generation part that

generates situation and contexts, and a middleware part that collects contexts and

maintains a diagram.

The most important among all the parameters is the size of the environment,

6.5. Evaluation 115

Figure 6.4: Dependence of update time on frequency of a situation change.

which is described by a number of sensors, or variables. We performed several

experiments with the same parameters, while varying the number of sensors. The

context arrival rate is set to 0.01 seconds; the context lifetime is set to 4 seconds

in the first experiment and 6 seconds in the second one. The test generation

part creates a situation. Contexts are generated based on it with a 5% error rate

and are sent to the middleware part. The results can be seen in Figure 6.3. As

can be seen in this figure, the average time needed to update the RCCD with

each new context increases linearly with the increase of the number of sensors,

until it reaches a point (in this case 700 variables) after which the time remains

on the same level. This can be explained by the fact that while environments

are relatively small, the increase in the environment size leads to an increase in

RCCD number of nodes. However, for a certain context arrival rate and a certain

context lifetime there is a certain maximum number of contexts that are usually

present on a diagram simultaneously. When new contexts arrive, old contexts

are removed, so the number stays on the same level. If the environment is big

enough, this maximum level is reached, and beyond this the RCCD will not grow,

even if environment has bigger size. Increasing the context arrival rate, or context

lifetime, on the other hand, may increase this threshold. To prove it we did the

same experiments, but used the context lifetime 4 seconds instead of 6 seconds, so

116 6. Reduced Context Consistency Diagrams for Resolving Data Inconsistencies

there was generally a smaller number of contexts on a diagram. As can be seen

in Figure 6.3, the threshold was reached with smaller environment, around 500

variables, for the smaller context lifetime with the same arrival rate.

The last but not the least important parameter is the dynamicity of environ-

ment, in other words, the rate at which the situation changes. We performed

several experiments with the same parameters, while changing only the frequency

of situation alteration. The results can be seen in Figure 6.4. The average time of

update for 2, 3 and 5 seconds is higher, while for all others, from 10 to 30 seconds,

it stays approximately on the same level. The reason for this is that in all those

experiments lifetime of a context was set to 6 seconds, and in the first three ex-

periments the situation changed faster, thus leaving many obsolete contexts in a

diagram and increasing its complexity. The proper solution for such cases is to

decrease contexts lifetime.

Chapter 7

Policy-Based Resource Scheduling

The ability of a system to react to sudden changes in the environment, as described

in Chapter 4 of this thesis, is important for any smart environment system. How-

ever, equally important is the ability to plan ahead the work of devices whenever

it is possible to do so.

There are several points to think about when planning the work of devices for

the near future. One of such points is the requirement to achieve the minimum

necessary on-time of every device given the proper execution of device’s functions.

A good example is the usage of heaters only at times when they are actually needed.

This achieves the minimum energy consumption while keeping users’ comfort at

the same level. Another point to think about is the economic impact of shifting the

time of devices’ activity. Questions on the economic impact are raised by advances

of the research and commercialization of smart grids. There are many definitions

of what is a smart grid [Morgan et al., 2009]. In a broad sense, it is an energy

network where smart meters that report and control energy consumption in a fine-

grained way are combined with presence of several energy providers and the ability

of customers to choose the exact provider they want to get energy from.

In a system that is connected to a smart grid, the exact time of energy con-

sumption and the exact chosen energy provider affect the total price that should

be paid for consumed energy.

The system we propose utilizes an envisioned building’s interface to a smart

grid. In the presence of several competing energy providers and volatile prices on

energy, dynamic scheduling of devices during the hours of the cheapest energy costs

may considerably decrease energy bills.

The devices in the office, such as heaters, fridges, printers, projectors, are en-

riched with controlling modules so that their energy consumption can be measured

and collected for further analysis, and devices can be controlled by an automated

smart system. The system has the information about all possible device states and

transitions between them that can be represented as a state machine, and the cor-

responding energy consumption of devices in these states. For example, a typical

fridge consumes about 10−3 kWh when idle, but about 0.63 kWh when actively

118 7. Policy-Based Resource Scheduling

cooling. At any moment the system has full access to the current state of a device

and can trigger a state transition.

For each device, there is an associated policy. A policy is a set of consistent

rules that must hold for proper device operations. For example, “a fridge must

work at least 15 minutes per hour” to be able to maintain its internal temperature

below a certain threshold temperature level.

The Scheduler receives the information from the smart grid energy providers

about the available supply and price of energy. Also, the Scheduler receives the

information about controllable devices, their levels of energy consumption, and

their policies (rules of operation). Given this information, the Scheduler then finds

the optimal solution with the minimum price paid for the total energy consumed

over a certain period of time, such that all policies are adhered to.

Prices on the market change regularly, say each hour, so the Scheduler takes

into account varying prices over the course of the day and tries to schedule devices

to operate at times when the price per consumed kWh is the lowest. Generally,

those prices vary from provider to provider, and the system can choose a provider

to buy energy from. However, since providers have a finite energy supply, if many

devices are scheduled to operate at the same time, their total energy consumption

will likely be bigger than the cheapest energy supplier is ready to provide. That

will lead to the necessity to buy energy from a more expensive energy provider.

To summarize, the Scheduler needs to balance the varying prices over the course

of the day and not to schedule too many devices at the same time; thus it can avoid

purchasing the more expensive energy, but at the same time keep all device policies

satisfied.

7.1 Scheduling optimization problem

Let EP (t) = {epi} denote a set of energy providers at the time unit t, where each

energy provider is represented by a tuple epi = 〈cost, energy〉, cost is the cost of

1 kWh of energy, and energy is the maximum amount of energy that the current

provider can provide at the time unit t.

To calculate the accumulated cost that the intelligent building needs to pay for

the energy it consumes in a certain time unit, we sort energy providers by their

price. Since we assume that a Smart Meter can choose, which provider to buy

energy from, it first buys energy from the cheapest providers, and then continues

to more expensive providers, if the amount of energy the building needs to consume

is bigger than the amount offered by the cheapest energy providers. Thus the total

cost that the building pays at time unit t if it needs to consume an amount of

7.1. Scheduling optimization problem 119

Table 7.1: Example of energy providers and prices

Provider Energy supply Price per kWh

Internal Wind Turbine 0.214292 0.0

Internal Solar Panel 0.302314 0.122916

COMED 2.755946 0.282973

ATSI 3.154828 0.357123

AEP 2.411659 0.360658

more providers . . .

energy e is

cost(t, e) = min(

|EP (t)|∑
i=1

(ki ∗ epi.energy ∗ epi.cost))

s.t.
|EP (t)|∑
i=1

(ki ∗ epi.energy) = e

where ki is the coefficient that shows a fraction of energy bought from energy

provider epi. In practice, ki will be equal to 1 for the cheapest providers, then

be in a region [0, 1] for one of the other providers, and be equal to 0 for all more

expensive providers.

Table 7.1 shows examples of energy distribution and costs from several energy

providers. Due to the absence of an actual connection to a smart grid, this data is

simulated by an internal smart meter. To make a realistic simulation, the data that

is used is obtained from real energy providers and prices that are provided by PJM

Interconnection1, a regional US organization that coordinates the transmission of

energy in more than 13 states. The prices are obtained via a web service and

are real prices for each hour of the day for the next day negotiated by energy

companies.

An example of costs for the energy providers of Table 7.1 is shown in Figure 7.1.

The total price to be paid equals to the area under the graph. For the consumption

level of 2.1 kWh, the intelligent building can use energy from owned Wind Turbine

and Solar Panels, and also buy some energy from the cheapest provider COMED,

resulting in a total of $0.485217 per hour.

The algorithm to compute the cost (Algorithm 8) goes as follows. Let D denote

a set of devices in the building that are connected to a Smart Meter. Each device

1http://www.pjm.com/

http://www.pjm.com/

120 7. Policy-Based Resource Scheduling

Figure 7.1: Price per kWh given the energy consumption

Algorithm 8 Cost depending on energy consumed

1: function getCost(time, energy):Double

2: provs←getProvidersAt (time)

3: sortedprovs← Sort provs by provs(i).cost

4: energyleft← energy

5: totalcost← 0

6: while energyleft > 0 do

7: prov ← sortedprovs.next

8: totalcost← totalcost + min(energyleft, prov.energy) ∗ prov.cost
9: energyleft← energyleft− prov.energy

10: end while

11: return totalcost

di ∈ D is represented by a tuple di = 〈did, Si〉, where did is the unique identifier

of a device that in our case is equal to the device’s MAC address, and Si is a set of

states that the device di can take (for example, “on” and “off”), where each state

sij ∈ Si is a tuple sij = 〈sid, energy〉, sid being the unique identifier of a state,

and energy being an amount of energy that the device consumes while being in

this state. dit denotes the state that the device di takes at time unit t ∈ T
Let P denote a set of policies that apply to the devices in the building. Each

policy pi ∈ P is a tuple pi = 〈did, type, params〉, where did is the unique identifier

of the device the policy is applied to, type is the type of policy, and params is a

set of parameters. Parameters differ per type of policy. Each policy has different

conditions that must be fulfilled in order for it to be satisfied. Specific policies that

are used in this work are specified and discussed in details in Section 7.2. Here we

7.2. Policies definition 121

define a general boolean function isSatisfied(p,X) that takes true, if the policy

p is satisfied in the schedule X, and false otherwise.

Over time period T , where t ∈ T is a time unit in the time period T , the

schedule X = {xtd} is a set of values, where each value xtd ∈ Sd represents the

state that the device d takes at the time unit t. Now we can present the scheduling

optimization problem:

Schedule X = {xtd}, ∀t ∈ T, ∀d ∈ D is optimal iff∑
t∈T

cost(t, et)→ min, ∀p ∈ P : isSatisfied(p,X)

where et =
∑

d∈D xtd.energy.

Thus the optimal schedule is the one where price paid for all consumed energy

is minimal, and the constraints for the schedule are the policies of device operation,

which must be fulfilled for all devices during the scheduling period.

7.2 Policies definition

A policy is a constraint over device operation times, which must hold in order for

the device to operate correctly. Examples include a fridge that must operate with

certain periodicity in order to stay properly cold, or a laptop that must be plugged

in for at least a certain amount of time to become fully charged.

Policies can have different parameters, a few of which are common to all, spe-

cifically (tBegin, tEnd) – time period, when the policy is active; and sid – state

ID that the policy is applied to. State IDs are unique per device. In general, we

assume several possible states per device, together with associated actions to move

a device to these states. In the presented setting, each device has two states: “on”

and “off,” and two associated actions: “turn on” and “turn off.”

In this work, we define and use seven types of policies which represent common

rules for widely deployed devices. These policies are summarized in Table 7.2 and

are defined next.

TOTAL. Specifies the total amount of time tOn that a device should be put in

the state sid. An example is a laptop that needs recharging for two hours. The

exact time when it is going to happen does not matter, as long as it stays within

(tBegin, tEnd) bounds. This policy also assumes that the time when a device is in

the state sid can be split into several parts. For example, we can charge a laptop

for half an hour, then for another hour a little later, and for another half an hour

122 7. Policy-Based Resource Scheduling

Table 7.2: Device policies

Policy Associated Description

type device

TOTAL Laptop Device should operate for at least a

certain amount of time.

CONTINUOUS Device should operate for at least a

certain amount of time uninterrup-

ted.

REPEAT Fridge, Boiler Device should be put to a specified

state repeatedly with a certain peri-

odicity.

MULTIPLE Printer Device should operate for the time

that allows for all scheduled jobs to

be performed.

STRICT Projector A strict schedule is given in advance.

PATTERN Microwave An expected external pattern of

device operations.

SLEEP Any device No demand for device during the

scheduling period.

even later.

∀i, pi.type = TOTAL :

tEnd∑
t=tBegin

(dit = sid) = tOn

CONTINUOUS. Similarly to the total policy, this one specifies the total amount

of time tOn that a device should be put in the state sid. However, the continuous

policy is stricter, as it requires that the device may not temporarily change to

another state while fulfilling the policy, i.e. it must be continuously in the state sid

for the required amount of time.

∀i, pi.type = CONTINUOUS : ∃k : tBegin ≤ k ≤ tEnd− tOn+ 1

s.t. ∀t = tBegin..tEnd : dit = sid ⇔ k ≤ t < k + tOn

REPEAT. The device must be operated cyclically by entering the state sid re-

peatedly with a certain periodicity. For example, a fridge that should operate for

15 minutes each hour is specified using this policy. Parameters specific to this

7.2. Policies definition 123

policy are: tCycle – a total cycle time; and tOn – a time during this cycle, when

the device should be in a state sid.

∀i, pi.type = REPEAT : (

tCycle∑
t=1

(dit = sid) = tOn)
∧

(∀j = tBegin + c..tEnd : dij = di,j−c)

MULTIPLE. Devices that schedule a number of jobs over a certain period of time

use the multiple policy. It has two specific parameters: nJobs – a total number of

jobs to be scheduled; and tDuration – a time needed to complete a single job. An

example is a printer that processes large batch jobs (e.g. printing a book): each

job needs 15 minutes to be completed, and a total of three jobs are required to

be performed. With such a policy it does not matter when a particular job is

scheduled, but it is important that the device is not turned off in the middle of

performing a job.

∀i, pi.type = MULTIPLE : ∀l = 1..n ∃kl :

tBegin ≤ kl ≤ tEnd− tDuration+ 1 , @(ku, kv) : |ku − kv| < tDuration

s.t. ∀kl , ∀j = 0..tDuration − 1 : di,kl+j = sid

STRICT. To enforce a state sid to be active from tBegin to time tEnd, the strict

policy is used. An example is a projector that should be turned on at the beginning

of a meeting and turned off when the meeting ends. The policy firmly defines the

schedule for this device, as times are strict, so the scheduler has no possibility to

change the energy consumption time of the device.

∀i, pi.type = STRICT : ∃Fi(t) s.t. ∀t = tBegin..tEnd : dit = Fi(t)

PATTERN. The pattern policy provides information about a way the device con-

sumes energy. Instead of offering the possibility of controlling the device, it provides

information on expected energy usage that can help to schedule other devices. For

example, while a microwave is never completely turned off, the energy consumption

in stand-by mode is much lower than the energy consumption when it is actively in

use. Historical data that is collected during non-scheduled baseline periods shows

that a higher level of energy consumption is expected during lunchtime, so the

scheduler takes this into account when scheduling other devices.

This policy is similar to the strict one, but has some important differences.

While strict defines exact way a device should be controlled by the system, the

124 7. Policy-Based Resource Scheduling

pattern policy is used when device is controllable outside of the system, and only

expected (statistical) information about the device operation is known. This in-

formation can be used in order to control other devices better, e.g. try to avoid

turning on other devices during lunchtime, when microwave is used the most.

SLEEP. For a device for which there is no demand for operation during a given

period, the sleep policy can be used. The policy is used mostly at night, when

there is no activity in the office and many devices can be turned off in order to

save energy. There are no additional parameters for this policy.

∀i, pi.type = SLEEP, ∀t = tBegin..tEnd : dit = 0

The scheduling problem that is defined in this way is domain-independent at

its core, so it can be used for other domains as long as they can be specified

using similar policies as constraints to the schedule optimization. For example,

in Section 7.5 we show that the core of the Scheduler can be used to schedule

the deployment of different services to a cloud. The interface to the Scheduler is

different for that case, and also transforms the scheduling task to the same data

structure. Section 7.5 contains the details of the Schedule Interface for the clouds

scenario.

7.3 Scheduler Core

The Scheduler Core is the actual implementation of the scheduling algorithm. To

solve the scheduling problem, we implement a priority queue with the Breadth-

First Search optimization algorithm [Russell and Norvig, 2002]. Each search state

of the algorithm is a partially fulfilled schedule, and the total energy prices of

partially fulfilled schedules define the search layers. We start by creating possible

solutions for the first time slot and putting them to the queue. Then, at each

iteration, we expand the state with the least energy cost. With each expansion,

we add only those solutions that are compliant to all policies. To decrease the

search space, we extensively use domain knowledge (per policy). For example, if a

device has the total policy and should be turned on for a certain period of time,

we automatically restrict from the search space all schedules where this device is

turned on for more or less than the required time; this is because having it turned

on more than it is absolutely necessary will only increase the energy consumption

and price, and having it turned on less than absolutely necessary will not satisfy

our policy. Another example is the multiple policy, where there are multiple jobs

for a certain period of time each. We remove from the search space all schedules

7.3. Scheduler Core 125

Algorithm 9 Scheduler Core searching algorithm high-level overview

1: q ← PriorityQueue[search node]

2: q.add(〈0; 0; []〉) //initialise queue with empty schedule

3: while !q.isEmpty do

4: 〈c; t; ps〉 ← q.pop()

5: Rf ← resources s.t. for the next time unit t+ 1: isFeasible(Rf , t+ 1, ps)

6: for rf ← PowerSet(Rf) do

7: if !isAlternative(rf) then

8: q.add(〈c+ cost(rf); t+ 1; ps+ rf 〉)

9: end if

10: end for

11: end while

where time of being turned on for a device is not equal to a multiple of the time

it takes to complete a single job. For example, if a single job of a printer takes

30 minutes to complete, we remove from the search space all schedules where the

printer is turned on for 45 minutes, as it means the printer will definitely be idle

for 15 minutes and unnecessarily consume energy.

The high-level overview of our search strategy can be seen in Algorithm 9. We

create a priority queue with a search node that corresponds to a partially fulfilled

schedule. Each search node has the following structure and is prioritized by its

cost:

search node = 〈cost, time units, partial schedule〉

partial schedule is a state matrix partial schedule = T×R, where T ∈ 1..time units,

and R is a set of devices. The matrix shows, for each time slot, in which state the

device should be at this time slot.

The queue starts with an empty schedule. During each search step it takes the

schedule with the least cost and tries to add possible distribution of resources to

the next time slot. Our main contribution to scheduling strategies lies in definition

of policies in such a way to drastically reduce search space. In the algorithm this

is defined by two functions: isFeasible, which prevents from searching all schedules

that breach at least one policy, and isAlternative, which finds if several different

partial schedules actually both have the same outcome, which means that we only

need to continue searching one of them, and safely drop all others.

126 7. Policy-Based Resource Scheduling

7.3.1 Feasibility check

We decrease the search space by extensive usage of policy restrictions. For example,

if a request has the total policy, it means it should have the available resources for a

certain number of time slots, so we automatically restrict the search space to only

those schedules that have this request satisfied for exactly the required number

number of time slots, and remove those that have a request satisfied for more or

less. Because having a request satisfied for fewer time slots means the request is not

fully fulfilled. While having it satisfied for more time slots means we unnecessarily

schedule more resources for usage, thus such a schedule is intrinsically not optimal.

Thus, for the resource with the total policy we have two constraints. The first

one is that the current number of time slots with scheduled resource should not

exceed total expected time for resource scheduling. The second constraint is that

the number of time slots left unsheduled should not exceed the difference between

total expected time and current scheduled time. So, for a time slot t:

CTOTAL :

t∑
j=tBegin

dij ≤ tOn
∧
tEnd− t ≥ tOn−

t∑
j=tBegin

dij

For the continuous policy, while searching for the optimal schedule we remove all

partial schedules that assume a number of continuously used slots not equal to the

total number of required time slots. All restrictions of the total policy are also

applied to the continuous policy.

CCONTINUOUS : CTOTAL

∧
(dit = 0)⇒ ((

t∑
j=1

dij) = 0 ∨ (

t∑
j=1

dij) = tOn)

For the multiple policy the total uninterrupted time should be divisible to the

duration of one job. For example, if a job lasts two hours, and we found a partial

schedule that proposed to schedule the request for three hours, we can immediately

see that for one hour the request will unnecessarily occupy resources. Restrictions

of the total policy are applicable here as well.

CMULTIPLE : CTOTAL

∧
(dit = 0)⇒ ((

t∑
j=1

dij) mod tDuration = 0)

7.3. Scheduler Core 127

The repeat policy is checked as the total one within the first cycle, and for all time

slots after the first cycle, the full periodicity is applied.

CREPEAT : (t < tBegin+ c)⇒
t∑

j=tBegin

dij ≤ tOn
∧
tEnd− t ≥

tOn−
t∑

j=tBegin

dij ; (t ≥ tBegin+ c) ⇒ (dit = di,(t−c))

The strict policy does not need any feasibility checking, because it is already strictly

defined. There is only one way to satisfy the strict policy, which means it doesn’t

add complexity to the search space.

CSTRICT : dit = Fi(t)

The pattern and sleep policies, while providing information about a device, do not

require any actions to be performed on devices with these policies. Therefore such

devices are removed from the search space and do not need accociated constraints.

7.3.2 Alternatives check

If the total cost of two different partial schedules is the same (which may be or

not be the case, depending on energy cost for different time slots), for the purpose

of finding the schedule for the next time period those two schedules are identical,

if both of them contain the same number of time slots and the same number of

assigned time slots for all devices. Which means we should only continue searching

one of the schedules, and we can safely drop the other, as it will not produce better

result.

We can only drop one of two partial schedules if (1) they have the same total

cost; (2) they have the same number of scheduled time slots; (3) for each device

we determine that both schedules arrive to the same current situation. The way

to determine it differs per policy.

For the total policy, only the number of already assigned time slots matters,

but not their exact position. For example, if after 30 time slots we determine that

both schedules schedule a certain device for six time slots, we can regard them as

the same for this request, no matter when were the exact slots when this device

was scheduled. The continuous policy and the multiple policy are the same as the

total one, we only check the total assigned time slots. The additional restrictions

to the schedule are already checked at the feasibility check point, so we already

know that both schedules are feasible.

128 7. Policy-Based Resource Scheduling

We can only regard two schedules for a device with the repeat policy as similar

in case the distribution of the assigned time within a cycle is completely the same.

The reason is the distribution may matter later in the schedule, but it cannot be

changed, once created during the first cycle. So two schedules for a device with the

repeat policy are checked in the same way as for the total policy during the first

cycle, and for all other cycles they are regarded as the same only when they really

have the same assignment distribution within the first cycle.

Finally, the strict policy has only one possible way of being satisfied, so there

is no need for additional alternatives check for this policy.

7.4 Evaluation

We have deployed the system in our own offices at the University of Groningen in

order to assess the possible economic and energy savings obtainable with such a

system. Our offices are located on the fifth and last floor of a more than 10000

m2 recently erected building.2 The test site consists of three offices occupied by

permanent and PhD staff, a coffee corner/social area, and a printer area. The

layout is illustrated together with the ZigBee network and the electrical appliances

in Figure 7.2. In particular, we include in our testing six available devices (a

fridge, a laptop, a printer, a projector, a microwave, and a water boiler). The

rated power plate consumptions of the fridge and the laptop are 70 W and 90

W respectively, while that for the printer is 100 W. The projector consumes 252

W when working, while the microwave 1500 W. The water boiler consumes when

heating up to 2200 W. Four other sensor nodes are also comprised in the network to

strengthen the mesh network connections. We use a set of Plugwise plugs forming

a wireless ZigBee mesh network around a coordinator (called “Circle+”). The

network communicates with the BaseStation through a link provided by a USB

stick device (called “Stick”).

We have used the system over three weeks in the months of October and Novem-

ber 2011, and one week in the month of March 2012, performing measurements from

Monday to Friday (as in the weekend there is irregular presence). In particular, in

the first 2 weeks (W1-W2) we measured energy use in order to define a baseline.

The third week (W3) in 2011 and the fourth week (W4) in 2012, we let the schedul-

ing component control the environment in order to measure the actual savings. We

used the repeat policy for the fridge (turn on for 15 minutes each hour) and the

boiler (turn on for 15 minutes each two hours). The printer used the multiple

policy, and was assigned three jobs over the course of four hours. The microwave

2http://nl.wikipedia.org/wiki/Bernoulliborg

http://nl.wikipedia.org/wiki/Bernoulliborg

7.4. Evaluation 129

Figure 7.2: Living lab setup

used the pattern policy, so we used the statistical information from the previously

collected data to calculate the expected level of microwave consumption at each

hour of the day. The laptop used the total policy, so it had to be charged for a

total of one hour during four hours scheduled slots. During week W3, we used the

laptop each day. During week W4, we introduced variability of policies usage, so

the laptop was used during Tuesday and Thursday. Projector used the strict policy

to strictly follow the agenda of presentations. During week W3, presentations were

given each day from 2 p.m. to 3 p.m. During week W4 presentations were given

on Tuesday and Wednesday from 2 p.m. to 4 p.m., thus two hours each.

Next, we present the results in terms of economic savings (due to the varying

prices of the smart grid) and of energy savings (due to the introduction of device

policies).

7.4.1 Economic savings

The goal of the system is to save money for the office by taking advantage of the

smart grid. Therefore, the first evaluation we make is based on taking the energy

bill for a week using the system versus a week without it. We have considered

two situations for office environments to evaluate the economic benefits of the

proposed device scheduling policy: (1) an intelligent office building that interacts

with the smart grid demand-response tariff service and has small scale renewable

installations in its premises that provide power (W3 simulation), and (2) a more

130 7. Policy-Based Resource Scheduling

Figure 7.3: Price of energy ($ per kWh) during non-scheduled day October 27th

ordinary office that has no renewable-based power installations that provide power

(W4 simulation) and that benefits only from the tariff differentiation of the smart

grid. To obtain a fair comparison in the two simulations, we use the energy prices

of the third week (W3) and fourth week (W4) and apply those same retrieved

prices for the energy consumed in the other two weeks (W1-W2).

In the first set of simulations (office with on site small-scale renewable sources),

the difference between each working day of the two weeks (average) without schedul-

ing policies and the week where the policy has been applied is considered. The

chart is shown in Figure 7.5 (top chart). It is interesting to notice the difference

in the average price paid for each kWh of energy in the situation without device

scheduling and, on the other hand, considering scheduling. On average, the price

in $ per kWh drops by more than 27% in the two situations. An interesting day

where the savings on energy expenses are particularly significant is between the

three consecutive Thursdays monitored (October 20th, 27th, and November 3rd).

Comparing these three days, the money savings are on average more than 50%. A

comparison between the price paid for energy in each hour between the situation

in October 27th and November 3rd is shown in Figures 7.3 and 7.4, respectively.

In particular, one can see the cut-off of unnecessary energy expenses related to

those consumptions that happen during non-working time (late evening or during

the night) by devices that are not strictly necessary (most notably the hot water

boiler). Another optimization the system achieves is the most efficient schedule

of devices, when the energy generated by photovoltaic panel is more intense and

whose cost is generally smaller than energy provisioning on the market.

To validate the scheduling policy, in W4 we consider an office without renewable

energy sources (whose price is generally cheaper than energy provision market).

Results comparing the day-by-day average price between the scheduling situation

7.4. Evaluation 131

Figure 7.4: Price of energy ($ per kWh) during scheduled day November 3rd

Figure 7.5: Average price ($ per kWh) comparison between scheduled (continuous

line) and non-scheduled (dashed line) situations (top is W3, bottom is W4)

and the non-scheduling one are shown in Figure 7.6, while the daily average is

shown in Figure 7.5 (bottom chart). One can see that the average price paid

when scheduling is active is usually lower than the non-scheduled situation (cf. the

continuous and dashed line in Figure 7.5); the overall economic savings between the

situation when the schedule is implemented and when it is not is about 22%. The

lower savings compared to the W3 experiment are due to the absence of renewable

sources in the energy mix of the office, which we have assumed cheaper than the

traditional energy market provider prices.

132 7. Policy-Based Resource Scheduling

Figure 7.6: Average price ($ per kWh) comparison between non-scheduled (upper

chart) and scheduled (lower chart) appliances for each work day (W4 experiment)

7.4.2 Energy Savings

Although energy use reduction is not the primary aim of the system, but rather

economic savings based on dynamic pricing, the use of policies for devices alone

provides for energy saving in absolute terms. The scheduling reduces the consump-

tion of devices that are not used during non-working hours and that do not impact

the habits of the users (e.g. keeping the hot water boiler working at night); in addi-

tion, the Scheduler tries to use at best the cheap electricity coming from the solar

panels during daylight hours. Figure 7.7 visually reinforces the idea of reducing

loads when unnecessary among the normal (first upper chart) and the scheduled

solutions (the middle and bottom charts): one notices a more compact chart in

which energy is used mostly during daytime (8 a.m.-6.30 p.m.) in each day of the

week. The average savings of energy consumed between the situation without the

scheduling policy and the situation considering it, is more than 15% (W1-2 versus

W3 experiment) and about 11% (W1-2 versus W4 experiment), respectively. We

ascribe the small difference in percentage to the unpredictable usage of equipment

in the actual living lab between the two weeks (e.g. microwave use).

7.4.3 Discussion on System Performance

Finding the optimal schedule for a set of devices is a computationally expensive

problem and while there exist many tools that can solve such problems reasonably

fast for practical domain sizes, we took a set of measures to ensure that our solu-

tion will remain within practical bounds for bigger lab settings. There are three

dimensions that determine the input size of the scheduling task: number of energy

providers, time period of the schedule, and number of devices.

7.4. Evaluation 133

Figure 7.7: Energy (per kWh) comparison between non-scheduled (upper chart)

and scheduled appliances (middle and bottom chart respectively W3 and W4)

Figure 7.8: Scheduler performance dependence on the schedule time period

Figure 7.9: Scheduler performance dependence on the number of devices

134 7. Policy-Based Resource Scheduling

The increase in the number of energy providers has negligible impact on the

performance of the Scheduler. The reason for this is that the function of price

levels has to be computed only once at the beginning of the scheduling task, as

described in Algorithm 8. During the actual schedule search, we refer to the pre-

calculated function, and the time for such a referring does not depend on the

original number of energy providers.

The time it takes for the Scheduler to find the optimal schedule grows with

the number of time units, for which we are obtaining a schedule. We tried to vary

the time period of the schedule from 1 hour to 12 hours; the average length of the

Scheduler running time is shown in Figure 7.8. As can be seen in this figure, even

for 12 hours period it takes only about 1.4 seconds to find the optimal schedule for

our living lab setting.

The number of devices causes the biggest strain on the system’s performance.

Since in the living lab we had only 6 devices, to test the Scheduler with a larger

number of them, we simulated devices by creating multiple copies of the available

devices. We determined that a search for the optimal schedule can take an imprac-

tically large amount of time for large centrally controlled buildings. This is less of a

problem that it might initially appear to be. In fact, one can dynamically relax the

requirement for optimality and search instead for a “good enough” schedule. For

our scheduling algorithm, we implemented a gradual approach. For a large number

of devices, we divide them into groups of approximately equal size. We run the

Scheduler for the first group, and find the optimal solution for it. Then, given this

schedule for the first group (which we do not change while scheduling the other

groups), we calculate the increased amount of energy used at each time unit, and

we run the Scheduler for the next group of devices, finding the optimal solution for

them. After this, we recalculate the increased amount of energy again and run the

Scheduler for the third group, and so on, until all devices are scheduled. Note that,

while this approach follows a greedy practice, the schedule provided is still quite

efficient in terms of price savings and smart distribution of devices working time.

If the devices from the first group were scheduled to run at a certain time unit,

the amount of energy already consumed at this time will be large; this will prevent

the Scheduler from placing more devices from the second group in the same time

slot. So the Scheduler is still able to distribute the working time of devices across

different time units even for devices from different groups. In Figure 7.9, we show

the averaged running time of the Scheduler for a different number of devices.

7.5. Digression: Scheduler Service Interface for
Clouds 135

7.5 Digression: Scheduler Service Interface for

Clouds

The core of the Scheduler that is described in Section 7.3 is designed to be domain-

independent. Due to this we were able to utilise the Scheduler in a different setting,

namely for optimizing deployment of services to the cloud, i.e. a distributed com-

puting network.

The Scheduler is responsible for optimization of the total number of resources

required to satisfy requests of different services to be deployed to the cloud with

particular resources available to them. The Scheduler service has a REST interface

and is invoked at the beginning of the time interval to be scheduled (usually a week),

with all requests for the following time interval. The requests are stored and passed

in Google Protocol Buffers3 format.

The Scheduler service has two parts: Cloud Schedule Interface (CSI) and

Scheduling Core. Cloud Schedule Interface is a wrapper on top of the Sched-

uler Core and is specific to the cloud scheduling optimization problem. The task of

this component is to transform cloud schedule requests to the domain-independent

representation within Scheduling Core, and to transform back the resulting sched-

ule to the required form. The Scheduling Core itself is domain-independent, and

can be used within any domain, as long as constraints of scheduling are specified

in similar policy types. Therefore, the same software module that was used for the

smart environment devices was reused for this task.

As input to the optimization task, the Scheduler receives a list of requests.

Definition 9 (Request). A request is a full specification of the number and type

of resources needed to satisfy a certain task, together with the policy of resources

usage.

The informal examples of requests may be “five servers are needed for a total

of eight hours running time to execute Services X, Y, and Z”, or “three servers

are needed to run continuously for twelve hours to execute Service K as a shared

service.” To satisfy the request, the requested number of resources should be

available for the required amount of time. Partial satisfaction of a request is not

possible (since partially satisfied request means an incomplete task). A request

should either be satisfied fully, or not at all.

Thus, to fully define the request, we first need to define its two most important

parts: the list of resource demands and the execution policy.

3code.google.com/apis/protocolbuffers

code.google.com/apis/protocolbuffers

136 7. Policy-Based Resource Scheduling

Definition 10 (Resource demand). A resource demand is the specification of a

resource that is needed to complete the task, which includes the specification of

the type of service which should be running, the number of services, and whether

the service can be shared with other tasks, or must be run exclusively.

The data model uses Google Protocol Buffers format, where all variables in a

message are described as a tuple: “modifier, type, variable name = parameter id”.

In the code presented here, we omit parameter id for clarity purposes.

The data for resource demand written as follows:

message ResourceDemand

optional uint32 resId;

optional uint32 number;

optional bool shared;

Here the “resId” uniquely represents the service to run, “number” is the number

of such services that should be started, and a boolean value “shared” represents

whether the service can also be used by other requests, or should be run exclusively

by this request.

While by using a list of resource demands we can specify all the resources

that we need, we also should specify the time frame for them to run, and the

execution policy. For example, one task may require for services to be run for

twelve consecutive hours, while another task may require them to run for twenty

four hours, while not caring whether those hours are consecutive or split apart.

Therefore we use the same policies as for the Smart Home scenario, as described

below. For all policies, we define T as the total number of time slots, pij as the

scheduled status of request ri at time slot j (pij = true, if request ri is scheduled

for the time slot j, and pij = false otherwise).

Total. The policy has an additional parameter d (“duration”), and assumes

that resources should be available for the total number of time slots, equal to the

“duration” value. How the time slots are split over the whole scheduling period is

not important, thus the task can be split and, for example, it can run on Monday,

Wednesday, Friday, or on Monday to Wednesday.

Continuous. The policy is stricter, and guarantees that once the request

is started, it will run uninterrupted for the required number of time slots, also

specified by the parameter d (“duration”).

Multiple. The policy allows for more that one job to be scheduled within the

same request. Each job must have resources within uninterrupted period of time,

but jobs themselves may be split in time, for example, one job can be executed on

7.5. Digression: Scheduler Service Interface for
Clouds 137

Monday, and two more on Thursday. In addition to the d (“duration”) of the job

parameter, the policy also has a n (“number of jobs”) parameter.

Repeat. The policy has two parameters: c (“cycle duration”) and d (“total

time to be scheduled within a cycle”), and assumes that a resource should be avail-

able cyclically with a certain periodicity. Example are regression tests that must

be run for an hour every day (to test nightly builds).

Strict. The policy firmly defines the specific schedule for certain resource

requests. Thus these resource requests cannot be moved to different time slots, but

the knowledge about them allows Scheduler to schedule other requests to share

resources with the strictly defined requests, whenever possible.

Note that we do not use the pattern and the sleep policies for the services

to cloud deployment scenario. The pattern policy represents statistical expected

behavior of a device. A service request, on the other hand, can always be scheduled

exactly the way the system wants, and therefore the strict policy is used for these

purposes. The sleep policy represents absense of any specific deployment needs,

i.e. a service does not require to be scheduled for deployment at all. As such, a

particular request for this service can be fully removed from the scheduling (unlike

a device, which cannot be easily removed from the system), i.e. there is no need

for the sleep policy for service to cloud deployment setting.

Thus, the data model to specify the policy is the following:

enum PolicyType

TOTAL;

CONTINUOUS;

MULTIPLE;

REPEAT;

STRICT;

message Policy

required PolicyType type;

optional uint32 duration;

optional uint32 numberJobs;

optional uint32 cycleDuration;

repeated uint32 strictTimeOn;

Now that we have specified both the policy data model and the resource de-
mands data model, we can fully specify the request:

message Request

required uint32 reqId;

optional Policy policy;

repeated ResourceDemand demand;

138 7. Policy-Based Resource Scheduling

Note that each request can contain a list (specified by the keyword “repeated”)

of different resource demands, and to satisfy the request, all resource demands

must be satisfied at the same moment in time.

To create a schedule of requests, some additional information is also needed in

addition to a list of requests. First of all, the number of available time slots over

the whole scheduling period should be given. Furthermore, the total number of

resources available at the same time should be specified. If resources represent a

single server instance in a cloud, it is usual for the cloud providers to charge more

per server, if many servers are used at the same time. Additional costs can be

avoided in case we limit our execution by not using more than a certain number of

machines at each moment in time. For a different scenario, if we execute services

not in a cloud, but on actual physical servers that are available to us, the number

of such servers is also limited, which should be taken into account by the Scheduler.

Thus, the schedule request data model is the following:

message ScheduleRequest

repeated Request reqList;

required uint32 numSlots;

required uint32 numResources;

“reqList” is the list of requests, “numSlots” is the number of available time

slots (usually an hour, but can also be any other time interval), “numResources”

is the maximum number of resources that can be used at the same time.

As a result of the Scheduler execution we obtain a full schedule of requests

distributed over available time slots. For each time slot, the Scheduler presents a

list of request IDs to show which requests should run at this time. The data model

for the Scheduler response is the following:

message ScheduledTimeSlot

repeated uint32 reqList

message Schedule

repeated ScheduledTimeSlot schedule;

We can optimize the resource usage by maximizing the reuse of shared resources.

If requests require same shared resources, placing them at the same time slots will

enable maximum reuse.

Chapter 8

Conclusions

In this dissertation we investigated the usage of constraints and logical rules for

reasoning and decision making in smart environments. We presented an imple-

mentation of the corresponding system, and showed its results in several living lab

experiments.

We started by overlooking past and present smart environment projects, and

their architectures in particular. We documented the observed architecture pat-

terns in Chapter 3. These patterns helped to define a place of a reasoning module

within a big picture of the whole system.

In Chapter 4 we presented a reactive reasoning module that is based on dynamic

constraint satisfaction principles. Because the module can dynamically keep track

of parts of the environment and behavior rules that are affected by sensor changes,

the module can only recheck those affected parts, while still keeping the global

environment satisfied and globally optimal. This approach is proved to consistently

outperform straightforward CSP approach, which allows to scale the reasoning

system to much bigger sizes of environments.

Most reasoning systems are vulnerable to missing or faulty sensor data. There-

fore in Chapters 5 and 6 we investigated the data structure which can help us to

use interdependency rules between sensors to resolve contradictions in data, and

to reduce ambiguity if the data is incomplete.

And finally, to augment the immediate reactions to the changes in the en-

vironment with a behavior that produces smarter solutions over time, we also

investigated the scheduling of devices in a building connected to a smart grid.

Based on this dissertation we can now answer the research questions that were

raised in Section 1.1.

RQ1. What are the commonalities in the design and development process of

smart environments? Can any pattern be derived from technical architectures of

such systems? How can the process be streamlined, made easier? Which knowledge

from existing projects can be reused in new projects?

As was shown in Chapter 3, many independently constructed smart environ-

140 8. Conclusions

ments nevertheless share a large amount of common features in technical architec-

tures of their projects. Layered approach to the architecture structure is arguably

the most natural way to arrange different modules by their responsibilities and

interconnections. We have described four main layers that are inevitably present

in some form in most of smart environment projects. The composition of these

components can be presented as a commonly used technical architecture pattern

for such projects.

By the nature of smart environments, physical sensors are an inherent part of

them. Therefore the Physical layer is a mandatory part of the architecture and

contains all hardware devices and low-level software protocols to deal with these

devices. Often a multi-faceted smart environment requires diverse sensors and

actuators to function properly. These diverse devices all operate via their own

protocols, therefore a common gateway that hides the complexity from all other

parts of the system and unifies the collection of information, while strictly speaking

being optional, is also a very common sight as a part of the Physical layer.

The Ubiquitous layer is the backbone of the system and oversees main inform-

ation flows, acts as a storage for knowledge base, and supports other components

by providing access to the parts of the system they need. It is customary for

higher-level layers of smart systems to use a high-level domain information and

representation for reasoning. The components that are responsible for collecting

raw sensor data and translating it to the domain-level representation are a part of

the Ubiquitous layer. Common components for this layer include Knowledge Base

and Context component for processing sensor data. For systems that have actuat-

ors, the Execution component that issues the low-level commands to the actuators

is also a part of this layer.

The Reasoning layer is a very diverse layer among smart environment projects.

The components from this layer are what makes a smart environment smart. They

come in many different flavors, and include components for learning, activity re-

cognition, decision making, planning and scheduling, etc. The exact composition

of components is dictated by the requirements of the project, however the common

information flow patterns include communication with the Ubiquitous layer for

data collection and external events processing and communication with the User

layer for reporting and system’s goals updates.

The User layer contains all components that are responsible for domain-level

communication with users, presenting them with information about system’s status

and decisions, and allowing them to change the goals and behavior of the system

according to their requirements.

The architecture pattern that is described in Chapter 3 can be used by new

141

smart environment projects as a proven foundation to build upon and add features

that are unique to these project. By reusing this knowledge, the design and devel-

opment process of new smart environment projects may be streamlined and made

easier.

RQ2. What is an effective approach to design a reasoning engine for smart

environments that fulfills all important requirements (e.g. scalability, robustness,

dynamic adaptation, computational efficiency, real-time response, and so on)? Is

there any specific structure or some distinguished features of smart environment

domains? If yes, can this specific structure be exploited to increase the performance

and/or reasoning capabilities of a reasoning engine operating with such domains?

This research question investigates the problem of finding the best environment

state that conforms to all constraints that appear due to physical environment con-

figuration and due to different preferences of users. Chapter 4 showed that such a

problem can be easily modelled as a constraint satisfaction problem (CSP). How-

ever, the straightforward CSP task does not fulfill the requirements for scalability

and computational efficiency, because of multiple unnecessary computations that

need to be performed after every new sensor change. Since in a dynamic environ-

ment there may be many sensor changes per second, the system may not be able

to respond to changes in real-time.

Therefore Chapter 4 introduced the dependency graph data structure that dy-

namically keeps track of interdependent parts of the environment. After every

sensor change, the dependency graph provides information on which parts of the

environment and which rules are affected by it. It is formally proven in the chapter

that it is possible to only recheck the affected part while still keeping the full

environment globally satisfied and optimal.

The experiments performed in a real living lab environment and in simulations

proved that the usage of dependency graph consistently outperforms the straight-

forward CSP task. The solution for real environments is able to compute the

optimal answer in real-time, therefore it complies to the requirements of scalability

and computational efficiency.

The description of real smart environments shows that such environments con-

tain clusters of variables, with high level of dependency among variables within a

cluster, and loose dependency of those variables on variables outside the cluster.

Clusters usually contain variables within a single physical space, such as a room or

a single working desk, and sometimes clusters can be split by nature of variables,

for example variables that affect lighting system can form a cluster. The exper-

iments performed with the solution based on the dependency graph showed that

the performance increases with more distinctly defined clusters.

142 8. Conclusions

RQ3. How can the effect of sensor errors be minimized with respect to decision

making? Can a reasoning engine work with incomplete and/or conflicting sensor

data? If there is no definite answer on which data is incorrect, can the system

operate correctly in presence of conflicting data?

Chapter 5 introduced a context consistency diagram, a data structure that

allows to reason about the current state of the environment even in a presence of

sensor errors, incomplete or conflicting sensor data. By explicitly capturing the

dependencies between different sensors it is possible to understand if several sensor

readings support the same view on the current situation, or if some sensor readings

contradict each other. The chapter showed that in order to minimize the effect of

sensor errors, it is important to keep all incoming data even if there are conflicts

or inconsistencies in it. If the inconsistency is resolved incorrectly, the correct data

may be discarded instead of the incorrect one, worsening the initial situation and

decision making capabilities. The context consistency diagram allows to store all

incoming data, and to see, which sensor readings support each other, and which

are inconsistent with each other. By assigning weights to initial sensor readings,

and rewarding them for being consistent, it is possible to calculate probabilities

for all possible situations of being correct at the current moment. Since no data

is lost, if further sensor readings support the situation that initially had a lower

probability, this situation may become the most probable one with time and new

information.

The context consistency diagrams allow different type of queries, and can

provide the probability that a particular situation is true, the probability that a

variable has a certain value, or the conditional probability of a certain situation or

a certain value of a variable if another variable has a priori known value. Chapter 6

described a reduced context consistency diagram, which is much smaller than the

full one, but has lower querying capabilities and can only answer to a question

which situation is the most probable at this moment in time.

The cautious approach of the context consistency diagrams that keeps the

data about all possible interpretations, allows also to include precautionary ac-

tions about critical situations even if they are not the most probable ones, for

example, raise an alarm if the probability of fire is more than 20%.

Several experiments performed with real sensor data showed that the CCD

can solve around 40% of initial sensor reading errors, effectively improving the

recognition rate of the actual situation.

RQ4. How can a smart system utilize the existence of diverse energy providers

in order to minimize the cost of energy over time? Does this smart system affect

143

total energy consuption? Which information should be available to a reasoning

engine in such a case, and how to use it in the optimal way?

As shown in Chapter 7, smart buildings contain a lot of devices with loose

dependency on immediate outside conditions, which may be activated at the smart

system’s discretion at different times as long as their activity conforms to certain

constraints, or device policies, such as the fridge must be turned on and actively

cooling at regular intervals, or the laptop must be plugged in and charging for a

certain total amount of time in order to be fully charged.

A building that is connected to a smart grid can obtain energy from diverse

energy providers, which may change the amount of available energy and its price

at different times. Chapter 7 describes the scheduling mechanism that can utilize

information from different providers in order to create a schedule for controllable

devices of the system such that this schedule conforms to all restrictions of partic-

ular devices and their policies of operation are satisfied, and the price paid for the

energy consuption of those devices is minimal.

The Scheduler is designed as an optimization task with additional constraints

given by the policies of devices. Every policy has associated feasibility check and

a check for alternatives, where the feasibility check answers if the partial schedule

conforms to the policy of the device, and the check for alternatives keeps only one

partial schedule out of several that all provide the same total results. These checks

allow to restrict the search space of the optimization algorithm, making it more

scalable.

The experiments on the real environments showed that scheduling allows to

reduce the price paid for the energy by up to 50%. Due to scheduling all devices

for the minimum uptime that still keeps their policies satisfied, the scheduling also

allows to save up to 10% of energy consumption comparing to an environment

without automated scheduling.

Most of the topics covered by this thesis are open to further research. For

example, the system that is described in Chapter 4 of the thesis does not cover the

automated learning of rules, even though such learning may greatly reduce efforts

needed for initial system’s deployment. In this respect, our further works [Degeler

et al., 2014] that do investigate this topic can be seen as further extension of the

research done in this dissertation.

Bibliography

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M. and Steggles, P.,

(1999). Towards a better understanding of context and context-awareness, in

Handheld and ubiquitous computing, Springer, pp. 304–307.

Aiello, M., Aloise, F., Baldoni, R., Cincotti, F., Guger, C., Lazovik, A., Mecella,

M., Pucci, P., Rinsma, J., Santucci, G. et al., (2011). Smart homes to improve

the quality of life for all, in Engineering in Medicine and Biology Society, EMBC,

2011 Annual International Conference of the IEEE, IEEE, pp. 1777–1780.

Aloise, F., Schettini, F., Aricò, P., Salinari, S., Guger, C., Rinsma, J., Aiello, M.,

Mattia, D. and Cincotti, F., (2011). Asynchronous p300-based brain-computer

interface to control a virtual environment: Initial tests on end users, Clinical

EEG and Neuroscience 42(4), 219–224.

Amft, O. and Lombriser, C., (2011). Modelling of distributed activity recognition

in the home environment, in Int. Conf. Engineering in Medicine and Biology

Society (EMBC), IEEE, pp. 1781–1784.

Antoniou, G. and van Harmelen, F., (2009). Web ontology language: Owl, in

Handbook on ontologies, Springer, pp. 91–110.

Baldauf, M., Dustdar, S. and Rosenberg, F., (2007). A survey on context-aware

systems, International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–

277.

Bessiere, C., (1991). Arc-consistency in dynamic constraint satisfaction problems.,

in AAAI, Vol. 91, pp. 221–226.

146 BIBLIOGRAPHY

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,

A. and Riboni, D., (2010). A survey of context modelling and reasoning tech-

niques, Pervasive and Mobile Computing 6(2), 161–180.

Bliek, F., van den Noort, A., Roossien, B., Kamphuis, R., de Wit, J., van

Der Velde, J. and Eijgelaar, M., (2010). Powermatching city, a living lab smart

grid demonstration, in Innovative Smart Grid Technologies Conference Europe

(ISGT Europe), 2010 IEEE PES, IEEE, pp. 1–8.

Brown, P. J., Bovey, J. D. and Chen, X., (1997). Context-aware applications: from

the laboratory to the marketplace, Personal Communications, IEEE 4(5), 58–64.

Bu, Y., Chen, S., Li, J., Tao, X. and Lu, J., (2006). Context consistency manage-

ment using ontology based model, 4254, 741–755.

Bu, Y., Gu, T., Tao, X., Li, J., Chen, S. and Lu, J., (2006). Managing quality of

context in pervasive computing, in QSIC ’06: Proceedings of the Sixth Interna-

tional Conference on Quality Software, IEEE Computer Society, pp. 193–200.

Callaghan, V., Clarke, G., Colley, M., Hagras, H., Chin, J. and Doctor, F., (2004).

Inhabited intelligent environments, BT Technology Journal 22(3), 233–247.

Capodieci, N., Pagani, G. A., Cabri, G. and Aiello, M., (2011). Smart meter aware

domestic energy trading agents, in Proceedings of the 2011 workshop on E-energy

market challenge, ACM, pp. 1–10.

Castelli, G., Rosi, A., Mamei, M. and Zambonelli, F., (2006). The w4 model and

infrastructure for context-aware browsing the world., in WOA.

Cesta, A., Cortellessa, G., Oddi, A., Policella, N. and Susi, A., (2001). A constraint-

based architecture for flexible support to activity scheduling, in AI* IA 2001:

Advances in Artificial Intelligence, Springer, pp. 369–381.

Chen, G., Kotz, D. et al., (2000). A survey of context-aware mobile computing

research, Technical report, Technical Report TR2000-381, Dept. of Computer

Science, Dartmouth College.

Chodorow, K. and Dirolf, M., (2010). MongoDB: the definitive guide, O’Reilly

Media.

Cook, D. and Das, S., (2007). How smart are our environments? An updated look

at the state of the art, Pervasive and Mobile Computing 3(2), 53–73.

BIBLIOGRAPHY 147

Cook, D. J., (2009). Multi-agent smart environments, Journal of Ambient Intelli-

gence and Smart Environments 1(1), 51–55.

Das, S., Cook, D., Battacharya, A., Heierman III, E. and Lin, T., (2002). The

role of prediction algorithms in the mavhome smart home architecture, Wireless

Communications, IEEE 9(6), 77–84.

Debruyne, R., (1996). Arc-consistency in dynamic CSPs is no more prohibitive, in

IEEE Int. Conf. Tools with Artificial Intelligence (ICTAI), pp. 299–306.

Dechter, R. and Dechter, A., (1988). Belief maintenance in dynamic constraint

networks, University of California, Computer Science Department.

Dechter, R. and Pearl, J., (1987). Network-based heuristics for constraint-

satisfaction problems, Artificial Intelligence 34(1), 1–38.

Degeler, V., Gonzalez, L. I. L., Leva, M., Shrubsole, P., Bonomi, S., Amft, O.

and Lazovik, A., (2013). Service-oriented architecture for smart environments, in

IEEE International Conference on Service Oriented Computing and Applications

(SOCA 2013).

Degeler, V. and Lazovik, A., (2011). Interpretation of inconsistencies via context

consistency diagrams, in Pervasive Computing and Communications (PerCom),

2011 IEEE International Conference on, IEEE, pp. 20–27.

Degeler, V. and Lazovik, A., (2012a). Cost-efficient context-aware rule mainten-

ance, in IEEE Context Modeling and Reasoning (CoMoRea), Pervasive Comput-

ing and Communications (PerCom) Workshops, IEEE, pp. 608–612.

Degeler, V. and Lazovik, A., (2012b). Reduced context consistency diagrams for

resolving inconsistent data, ICST Transactions on Ubiquitous Environments

12(10-12).

Degeler, V. and Lazovik, A., (2013a). Architecture pattern for context-aware smart

environments, Creating Personal, Social and Urban Awareness through Pervasive

Computing. IGI Global pp. 108–130.

Degeler, V. and Lazovik, A., (2013b). Dynamic constraint reasoning in smart en-

vironments, IEEE International Conference on Tools with Artificial Intelligence

(ICTAI) .

Degeler, V., Lazovik, A., Leotta, F. and Mecella, M., (2014). Itemset-based mining

of constraints for enacting smart environments, in Proceedings of the Symposium

on Activity and Context Modeling and Recognition.

148 BIBLIOGRAPHY

Dey, A. K., Abowd, G. D. and Salber, D., (2001). A conceptual framework and

a toolkit for supporting the rapid prototyping of context-aware applications,

Human-computer interaction 16(2), 97–166.

Du, P. and Lu, N., (2011). Appliance commitment for household load scheduling,

Smart Grid, IEEE Transactions on 2(2), 411–419.

Fielding, R. T. and Taylor, R. N., (2002). Principled design of the modern web

architecture, ACM Transactions on Internet Technology (TOIT) 2(2), 115–150.

Franklin, D. and Flaschbart, J., (1998). All gadget and no representation makes

jack a dull environment, in Proceedings of the AAAI 1998 Spring Symposium on

Intelligent Environments, pp. 155–160.

Georgievski, I., Degeler, V., Pagani, G. A., Nguyen, T. A., Lazovik, A. and Aiello,

M., (2012). Optimizing energy costs for offices connected to the smart grid, IEEE

Transactions on Smart Grid 3, 2273–2285.

Henricksen, K. and Indulska, J., (2004). Modelling and using imperfect context

information, in Proceedings of the Second IEEE Annual Conference on Pervasive

Computing and Communications Workshops, IEEE Computer Society, p. 33.

Huang, Y., Ma, X., Cao, J., Tao, X. and Lu, J., (2009). Concurrent event detection

for asynchronous consistency checking of pervasive context, pp. 1 –9.

Huang, Y., Ma, X., Tao, X., Cao, J. and Lu, J., (2008). A probabilistic approach to

consistency checking for pervasive context, in EUC ’08: Proceedings of the 2008

IEEE/IFIP International Conference on Embedded and Ubiquitous Computing,

IEEE Computer Society, pp. 387–393.

Jeffery, S. R., Garofalakis, M. and Franklin, M. J., (2006). Adaptive cleaning for

RFID data streams, in Proceedings of the International Conference on Very Large

Data Bases, Vol. 1, pp. 163–174.

Jussien, N., Rochart, G., Lorca, X. et al., (2008). Choco: an open source java con-

straint programming library, in CPAIOR’08 Workshop on Open-Source Software

for Integer and Contraint Programming (OSSICP’08), pp. 1–10.

Kaldeli, E., Warriach, E. U., Bresser, J., Lazovik, A. and Aiello, M., (2010). Integ-

rating, composing and simulating services at home, in International Conference

on Service Oriented Computing (ICSOC).

BIBLIOGRAPHY 149

Kaldeli, E., Warriach, E. U., Lazovik, A. and Aiello, M., (2013). Coordinating

the web of services for a smart home, ACM Transactions on the Web (TWEB)

7(2), 10.

Koes, M., Nourbakhsh, I. and Sycara, K., (2006). Constraint optimization coordin-

ation architecture for search and rescue robotics, in Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, IEEE,

pp. 3977–3982.

Kok, K., Derzsi, Z., Hommelberg, M., Warmer, C., Kamphuis, R. and Akkermans,

H., (2008). Agent-based electricity balancing with distributed energy resources,

a multiperspective case study, in Hawaii international conference on system sci-

ences, proceedings of the 41st annual, IEEE, pp. 173–173.

Kong, H., Xue, G., He, X. and Yao, S., (2009). A proposal to handle inconsistent

ontology with fuzzy owl, in Proc. WRI World Congress on CS and Inf. Eng.,

Vol. 1, pp. 599–603.

Kreucher, C., Blatt, D., Hero, A. and Kastella, K., (2006). Adaptive multi-modality

sensor scheduling for detection and tracking of smart targets, Digital Signal

Processing 16(5), 546–567.

Kusznir, J. and Cook, D., (2010). Designing lightweight software architectures for

smart environments, in Intelligent Environments (IE), 2010 Sixth International

Conference on, IEEE, pp. 220–224.

Lakshman, A. and Malik, P., (2009). Cassandra: A structured storage system on a

p2p network, in Proceedings of the twenty-first annual symposium on Parallelism

in algorithms and architectures, ACM, pp. 47–47.

Lassila, O., Swick, R. R. et al., (1998). Resource Description Framework (RDF)

model and syntax specification, Citeseer.

Loke, S., (2006). Context-aware pervasive systems: architectures for a new breed of

applications, CRC Press.

López-de Ipiña, D., Almeida, A., Aguilera, U., Larizgoitia, I., Laiseca, X., Orduña,

P., Barbier, A. and Vazquez, J., (2008). Dynamic discovery and semantic reas-

oning for next generation intelligent environments, in Intelligent Environments,

2008 IET 4th International Conference on, IET, pp. 1–10.

150 BIBLIOGRAPHY

Lu, H., Chan, W. and Tse, T., (2008). Testing pervasive software in the presence

of context inconsistency resolution services, in ICSE ’08: Proceedings of the 30th

international conference on Software engineering, ACM, pp. 61–70.

Mackworth, A. K., (1977). Consistency in networks of relations, Artificial intelli-

gence 8(1), 99–118.

Marcelloni, F. and Aksit, M., (2001). Leaving inconsistency using fuzzy logic, In-

formation and Software Technology 43(12), 725 – 741.

Mittal, S., Aggarwal, A. and Maskara, S., (2012). Situation recognition in sensor

based environments using concept lattices, in Proceedings of the CUBE Interna-

tional Information Technology Conference, ACM, pp. 579–584.

Mittal, S. and Falkenhainer, B., (1990). Dynamic constraint satisfaction, in Nat.

Conf. on Artificial Intelligence, pp. 25–32.

Morgan, M. G., Apt, J., Lave, L., Ilic, M. D., Sirbu, M. A. and Peha, J. M., (2009).

The many meanings of “Smart Grid”.

Neves-Silva, R., Ruzzelli, A., Fuhrmann, P., Bourdeau, M., Pérez, J. and Michaelis,

E., (2010). Energy consumption prediction from usage data for decision support

on investments: The enprove approach, in Control Methodologies and Technology

for Energy Efficiency, Vol. 1, pp. 48–52.

Nguyen, T. A. and Aiello, M., (2012). Beyond indoor presence monitoring with

simple sensors., in PECCS, pp. 5–14.

Nguyen, T. A. and Aiello, M., (2013). Energy intelligent buildings based on user

activity: A survey, Energy and buildings 56, 244–257.

Nguyen, T. A., Degeler, V., Contarino, R., Lazovik, A., Bucur, D. and Aiello, M.,

(2013). Towards context consistency in a rule-based activity recognition archi-

tecture, in International Symposium on Ubiquitous Intelligence and Autonomic

Systems.

Nizamic, F., Degeler, V., Groenboom, R. and Lazovik, A., (2012). Policy-based

scheduling of cloud services, Scalable Computing: Practice and Experience 13(3).

Pecora, F. and Cesta, A., (2007). Dcop for smart homes: A case study, Computa-

tional Intelligence 23(4), 395–419.

BIBLIOGRAPHY 151

Pedrasa, M. A. A., Spooner, T. D. and MacGill, I. F., (2010). Coordinated schedul-

ing of residential distributed energy resources to optimize smart home energy

services, Smart Grid, IEEE Transactions on 1(2), 134–143.

Pelletier, M.-P., Trpanier, M. and Morency, C., (2011). Smart card

data use in public transit: A literature review, Transportation Re-

search Part C: Emerging Technologies 19(4), 557 – 568. URL:

http://www.sciencedirect.com/science/article/pii/S0968090X1000166X

Perdikeas, M., Zahariadis, T. and Plaza, P., (2011). The beywatch conceptual

model for demand-side management, in Energy-Efficient Computing and Net-

working, Springer, pp. 177–186.

Petersen, K., Kleiner, A. and von Stryk, O., (2013). Fast task-sequence allocation

for heterogeneous robot teams with a human in the loop, in Intelligent Robots and

Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE, pp. 1648–

1655.

Preuveneers, D. and Novais, P., (2012). A survey of software engineering best prac-

tices for the development of smart applications in ambient intelligence, Journal

of Ambient Intelligence and Smart Environments 4(3), 149–162.

Ran, Y., Roos, N. and van den Herik, J., (2002). Approaches to find a near-

minimal change solution for dynamic CSPs, in Fourth international workshop on

integration of AI and OR techniques in constraint programming for combinatorial

optimisation problems, pp. 373–387.

Reinisch, C., Kofler, M. and Kastner, W., (2010). Thinkhome: A smart home

as digital ecosystem, in Digital Ecosystems and Technologies (DEST), 2010 4th

IEEE International Conference on, IEEE, pp. 256–261.

Rodden, T., Cheverst, K., Davies, K. and Dix, A., (1998). Exploiting context in

hci design for mobile systems, in Workshop on human computer interaction with

mobile devices, Citeseer, pp. 21–22.

Roos, N., Ran, Y. and Van Den Herik, J., (2000). Combining local search and con-

straint propagation to find a minimal change solution for a dynamic csp, in Ar-

tificial Intelligence: Methodology, Systems, and Applications, Springer, pp. 272–

282.

Russell, S. J. and Norvig, P., (2002). Artificial Intelligence: A Modern Approach,

2nd Ed., Prentice Hall, Englewood Cliffs, NJ.

152 BIBLIOGRAPHY

Ryan, N. S., Pascoe, J. and Morse, D. R., (1998). Enhanced reality fieldwork: the

context-aware archaeological assistant, in Computer applications in archaeology,

Tempus Reparatum.

Schiex, T. and Verfaillie, G., (1994). Nogood recording for static and dynamic

constraint satisfaction problems, Int. Journal of Artificial Intelligence Tools 3-

2, 187–207.

Schilit, B., Adams, N. and Want, R., (1994). Context-aware computing applic-

ations, in Mobile Computing Systems and Applications, 1994. WMCSA 1994.

First Workshop on, IEEE, pp. 85–90.

Spanoudakis, N. I. and Moraitis, P., (2006). Agent-based architecture in an ambient

intelligence context., in EUMAS.

Taqqali, W. M. and Abdulaziz, N., (2010). Smart grid and demand response tech-

nology, in Energy Conference and Exhibition (EnergyCon), 2010 IEEE Interna-

tional, IEEE, pp. 710–715.

Truong, H.-L. and Dustdar, S., (2009). A survey on context-aware web service

systems, International Journal of Web Information Systems 5(1), 5–31.

Verfaillie, G. and Jussien, N., (2005). Constraint solving in uncertain and dynamic

environments: A survey, Constraints 10(3), 253–281.

Verfaillie, G. and Schiex, T., (1994). Solution reuse in dynamic constraint satis-

faction problems, in Proc. of the National Conference on Artificial Intelligence,

pp. 307–312.

Videla, A. and Williams, J. J., (2012). RabbitMQ in action, Manning.

Wahl, F., Milenkovic, M. and Amft, O., (2012). A distributed PIR-based approach

for estimating people count in office environments, in Int. Conf. Computational

Science and Engineering (CSE), IEEE, pp. 640–647.

Want, R., Hopper, A., Falcão, V. and Gibbons, J., (1992). The active badge loca-

tion system, ACM Transactions on Information Systems (TOIS) 10(1), 91–102.

Weiser, M., (1991). The computer for the 21st century, Scientific american

265(3), 94–104.

Weiss, M. and Guinard, D., (2010). Increasing energy awareness through web-

enabled power outlets, in Proceedings of the 9th International Conference on

Mobile and Ubiquitous Multimedia, ACM, p. 20.

BIBLIOGRAPHY 153

White, T., (2012). Hadoop: The definitive guide, O’Reilly Media.

Xiong, G., Chen, C., Kishore, S. and Yener, A., (2011). Smart (in-home) power

scheduling for demand response on the smart grid, in Innovative Smart Grid

Technologies (ISGT), 2011 IEEE PES, IEEE, pp. 1–7.

Xu, C. and Cheung, S. C., (2005). Inconsistency detection and resolution for

context-aware middleware support, in Proceedings of the Joint 10th European

software engineering conference and 13th ACM SIGSOFT international sym-

posium on Foundations of software engineering, ACM, pp. 336–345.

Xu, C., Cheung, S. C. and Chan, W. K., (2006). Incremental consistency check-

ing for pervasive context, in ICSE ’06: Proceedings of the 28th international

conference on Software engineering, ACM, pp. 292–301.

Xu, C., Cheung, S. C., Chan, W. K. and Ye, C., (2008). Heuristics-based strategies

for resolving context inconsistencies in pervasive computing applications, in Pro-

ceedings of the 2008 The 28th International Conference on Distributed Comput-

ing Systems, IEEE Computer Society, pp. 713–721.

Xu, C., Cheung, S. C., Chan, W. K. and Ye, C., (2010). Partial constraint check-

ing for context consistency in pervasive computing, ACM Trans. Softw. Eng.

Methodol. 19(3), 1–61.

Ye, J. and Dobson, S., (2010). Exploring semantics in activity recognition us-

ing context lattices, Journal of Ambient Intelligence and Smart Environments

2(4), 389–407.

Youngblood, G. M., Cook, D. J. and Holder, L. B., (2004). The MavHome archi-

tecture, Department of Computer Science and Engineering University of Texas

at Arlington, Techinal Report, vol. 39.

Zhang, D., Gu, T. and Wang, X., (2005). Enabling context-aware smart home

with semantic web technologies, International Journal of Human-friendly Wel-

fare Robotic Systems 6(4), 12–20.

Samenvatting

Slimme huizen, en in het algemeen, andere soorten slimme omgevingen kunnen

worden gedefinieerd door verschillende belangrijke karakteristieken. De belangrijk-

ste hiervan is ongetwijfeld de mogelijkheid om omgevingsbewust te zijn, om de

fysieke omgeving te ervaren en om de context van de huidige situatie te begrijpen.

Slimme omgevingen zouden in staat moeten zijn om met deze informatie te kun-

nen redeneren en waardevolle kennis te kunnen afleiden. Daarnaast zullen ze de

mogelijkheid moeten hebben om intelligent te reageren in reactie op veranderende

situaties, volgens bepaalde doelstellingen. Slimme omgevingen zijn vaak ubiqui-

tous, wat betekent dat hun capaciteiten voor waarnemen en handelen berusten op

apparaten die zijn ingebed in de fysieke wereld.

Er zijn verschillende criteria op basis waarvan de intelligentie van slimme om-

gevingen kan worden beoordeeld. De meeste slimme omgevingen zijn ontworpen

om het comfort en de kwaliteit van leven van hun gebruikers, bv. de bewoners

van een gebouw, te verhogen. Het automatiseren van omringende apparaten ge-

schied normaliter ten behoeve van dit doel, bijvoorbeeld door de huidige doelen

en problemen te begrijpen en door acties te ondernemen om deze op te lossen. In

de meeste gevallen, echter, zou dit niet mogen leiden tot situaties waar gebruikers

niet in staat zijn om de beslissingen van het systeem te overschrijven, omdat dit

niet alleen het niveau van comfort sterk verlaagt, maar ook omdat dit gevaarlijk

kan zijn in sommige onvoorziene situaties. Daarom is tevens de mogelijkheid van

de gebruikers om de slimme omgeving te besturen een belangrijk criterium. Veel

slimme omgevingen zijn ontworpen met name om ouderen en gehandicapten te hel-

pen, en om zodoende het gezond ouder worden te ondersteunen. En, natuurlijk, de

156 Samenvatting

stijgende energieprijzen en het gebruik van hernieuwbare energiebronnen brengen

het onderwerp van energiebewustzijn en energiebesparingen in slimme omgevingen

ter tafel.

De meeste van de huidige commerciële slimme omgevingsproducten presenteren

slechts gedeeltelijke oplossingen, zoals automatische verlichting of energiebewust-

zijn. Verschillende factoren vertragen de commercialisering van volledig slimme

huizen, waaronder de noodzaak om de oplossing op iedere nieuwe locatie opnieuw

zeer nauwkeurig af te stellen, de inspanningen rondom de integratie en coördinatie

van verschillende componenten, handelingen om een consistent model over verschil-

lende subsystemen van verschillende bronnen samen te stellen, enzovoorts. Samen-

vattend, de grote hoeveelheid aan inspanningen die benodigd zijn om de oplossing

van een locatie naar een andere te verplaatsen hindert de mogelijkheden voor het

stroomlijnen van de uitrol.

In dit proefschrift bespreken we en geven we antwoord op een aantal belangrijke

onderzoeksvraagstukken voor huidige pervasieve systemen, slimme omgevingen in

het bijzonder.

RQ1. Wat zijn de overeenkomsten in het ontwerp en het ontwikkelproces van

een slimme omgeving? Valt enig patroon af te leiden van de technische architectuur

van deze systemen? Hoe kan het proces gestroomlijnd en vereenvoudigd worden?

Welke kennis van bestaande projecten kan worden hergebruikt in nieuwe projecten?

Hoofdstuk 3 van het proefschrift analyseert huidige en eerdere systemen en

projecten voor slimme huizen. Het toont aan dat veel voorkomende patronen zich

voordoen in architecturen of tijdens de constructie van dergelijke systemen. On-

danks het feit dat veel projecten dergelijke architecturen van de grond af ontwerpen,

kan de kennis van projecten uit het verleden hergebruikt worden om het ontwerpen

van de architectuur te vergemakkelijken, of, in sommige gevallen kan een project

zelfs in zijn geheel bestaande architectuuroplossingen hergebruiken.

RQ2. Wat is een effectieve aanpak om een redeneringsmotor voor slimme om-

gevingen te ontwerpen die aan alle belangrijke vereisten voldoet (zoals schaalbaar-

heid, robuustheid, dynamische adaptatie, computationele efficiëntie, real-time ant-

woorden, enzovoorts)? Zijn er bepaalde specifieke structuren of onderscheidende

functionaliteiten van slimme omgevingsdomeinen? Als dit het geval is, is het mo-

gelijk om deze specifieke structuur te benutten om de prestaties en/of de redene-

ringsmogelijkheden van een redeneringsmotor werkend met deze domeinen te ver-

beteren?

Hoofdstuk 4 beschrijft een redeneringscomponent dat gebaseerd is op principes

van dynamische randvoorwaardenvervulling. Het hoofdstuk laat zien waarom het

Samenvatting 157

randvoorwaardenvervullingsmodel goed is voor het modelleren van besluitvorming

in slimme omgevingen die moeten reageren op veranderende omgevingsomstandig-

heden. Het hoofdstuk toont tevens aan dat rechtstreekse representatie van het

randvoorwaardenvervullingsprobleem leidt tot een groot aantal excessieve bereke-

ningen. De belangrijkste bijdrage van het hoofdstuk is daarom het voorstellen van

een methode om een redeneringstaak als een randvoorwaardenvervullingsprobleem

te modelleren op een manier waarop niet-noodzakelijke herberekeningen worden te

voorkomen wanneer nieuwe gebeurtenissen plaatshebben in de omgeving.

RQ3. Hoe kan het effect van sensorfouten voor wat betreft de besluitvorming

worden geminimaliseerd? Kan een redeneringsmotor functioneren met onvolledige

en/of tegenstrijdige sensorgegevens? Indien er geen definitief antwoord bestaat over

welke gegevens incorrect zijn, kan het systeem correct functioneren in de aanwezig-

heid van tegenstrijdige gegevens?

Hoofdstuk 5 beschrijft een manier om onjuiste meetwaarden op een probabilis-

tische wijze te detecteren door het gebruik van onderlinge afhankelijkheidsregels

tussen de sensorvariabelen en de datastructuur van een contextconsistentiediagram

(CCD) als een manier om de meest waarschijnlijke situatie van de huidige omgeving

te bepalen in het geval dat de meetwaarden onduidelijke, onvolledige, of tegenstrij-

dige informatie verschaffen. Hoofdstuk 6 beschrijft een manier om een klassieke

CCD te reduceren waarbij wel de mogelijkheid om de meest waarschijnlijke situatie

te berekenen wordt behouden.

RQ4. Hoe kan een slim systeem het bestaan van verschillende energieleveran-

ciers gebruiken om de energiekosten in de tijd te minimaliseren? Bëınvloedt dit

slimme systeem het totale energieverbruik? Welke informatie zou in dit geval be-

schikbaar moeten zijn voor een redeneringsmotor, en hoe kan deze optimaal gebruikt

worden?

Hoofdstuk 7 behandelt het inplannen van apparaten in de tijd voor huizen die

zijn aangesloten op een smart grid. In een dergelijke omgeving, waar goedkope

energie beperkt is en de prijs verandert in de tijd, is het belangrijk om apparaten

die grotendeels onafhankelijk zijn van menselijke interactie in te plannen op een

manier waarmee gelijktijdig gebruik wordt verminderd en het werk meestal ver-

plaatst wordt naar daluren. De planner is gebouwd om domeinonafhankelijk en

herbruikbaar te zijn in andere domeinen die een soortgelijk beleid bevatten.

	Acknowledgements
	Introduction
	Reasoning in Smart Environments
	A case of a smart environment: the GreenerBuildings project
	Thesis Scope and Organization
	Publications

	Related Work
	Smart Environments
	Context Awareness
	Context Inconsistency
	Constraint Satisfaction in Smart Environments
	Dynamic Constraint Satisfaction
	Scheduling in Smart Environments

	Architecture pattern for context-aware smart environments
	Architecture Overview
	Physical Layer
	Ubiquitous Layer
	Reasoning Layer
	User Layer

	Operational Flows
	Environment-generated
	User-generated
	System-generated

	Challenges
	Case Studies
	MavHome
	SmartLab
	Smart Homes for All
	GreenerBuildings

	Dynamic Constraint Reasoning in Smart Environments
	Rule Satisfaction in Smart Environments
	Environment Definition as CSP
	Rule Transformations
	Dynamic Dependency Graph
	Evaluation
	Architecture
	Living Lab
	Performance

	Interpretation of Inconsistencies via Context Consistency Diagrams
	System model
	Context consistency diagram
	Context
	Context consistency diagram

	Calculation of probabilities
	CCD Example

	Maintaining CCD
	CCD complexity

	Evaluation
	Living Lab Description
	CCD implementation
	Environment model
	Results

	Reduced Context Consistency Diagrams for Resolving Data Inconsistencies
	Reduced context consistency diagram
	RCCD maintenance
	RCCD reasoning
	Unfolding of RCCD to CCD

	CCD vs RCCD complexity
	Evaluation
	Sensors description
	Interdependencies rules
	System's run
	Results
	Performance

	Policy-Based Resource Scheduling
	Scheduling optimization problem
	Policies definition
	Scheduler Core
	Feasibility check
	Alternatives check

	Evaluation
	Economic savings
	Energy Savings
	Discussion on System Performance

	Digression: Scheduler Service Interface for Clouds

	Conclusions
	Bibliography
	Samenvatting

