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10 Introduction

1.1 Introduction
Gravity may be the most well-known force of nature to the majority of people. For
everyone on earth, the effects of the gravitational force are so familiar, that its con-
sequences have formed a part of our natural intuition and habits. In contrast, for
the theoretical physicist gravity remains perhaps the most enigmatic force of nature.
Of course, our everyday experience of the gravitational force, as well as the orbital
motion of the planets in our solar system was known since the work of Isaac New-
ton. Also the underlying principle of gravitational attraction through the curvature
of spacetime itself is well understood after Einstein’s seminal work in 1915. The
problem with gravity most troublesome for theoretical physicists nowadays is that
Einstein’s theory of gravity is incompatible with the principles which underlay all of
the other known forces of nature: the quantization of physical properties.

A consistent theory of quantum gravity could provide valuable insights into fun-
damental questions which predate written history; where does the world around us
come from? How did it all start? Due to the technological advances of the last cen-
turies, we have now entered an era of high precision experiments both on the nature
of fundamental interactions and on the history and evolution of our universe. These
experiments have become the guiding principles in the formation of two “Standard
Models”: the Standard Model of particle physics (SM) describing the dynamics of
subatomic particles and the Standard Model of Big Bang cosmology (ΛCDM), de-
scribing the evolution of the universe.

Both these Standard Models are phenomenological; they describe the experi-
ments to an astounding level of accuracy, but lack a fundamental principle from
which they can be derived. Moreover, they describe the physics of two completely
different regimes; the SM of particle physics governs the very small, while the ΛCDM
model describes the largest scales imaginable. However, we know that the combina-
tion of the two is not the full story. The Standard Model of particle physics does not
include gravitational interactions and a canonical quantization of gravity leads to a
non-renormalizable theory. The ΛCDM model demands the presence of a dark sec-
tor of matter and energy. The dark matter is non-baryonic and hence not described
by the SM, while the SM predictions for the dark energy contributions are off by
many orders of magnitude.

Both of these problems are intrinsically related to gravity, since it is through its
interactions with gravity that we have come to know about the presence of dark en-
ergy and dark matter in the universe. Einstein’s theory of general relativity (GR),
explains the gravitational force as the interplay between matter and the curvature of
spacetime; matter tells the spacetime how to curve and the curved spacetime tells
matter how to move. To explain the present experimental tests, like galactic rota-
tion curves, the acoustic peaks in the CMB and the accelerating expansion of the
universe, the presence of dark matter is needed as well as a cosmological constant
which is intrinsically related to dark energy. In spite of many searches, as of yet there
are no direct experimental indications for the existence of dark matter and no known
mechanism which can explain the correct value of the cosmological constant. Since
their presence is currently solely detected through gravity, an alternative possibility
may be that our present understanding of the gravitational force is only an approx-
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imate one. Perhaps spacetime curves a bit differently on galactic and cosmological
length scales. Hence it is wise to supplement inquiries into the nature of the dark
sector of the universe with explorations into the nature of GR itself.

This leads us to ask some fundamental questions about general relativity. Is it
even possible to modify GR in a mathematically consistent way? What are the es-
sential ingredients that are needed to explain gravity as the interplay between matter
and a dynamical spacetime and is there room for modification? In light of these ques-
tions it is instructive to investigate the defining principles of the theory. Einstein’s
discovery of GR is in some sense based on a leap of insight; he set out to find a theory
invariant under general coordinate transformations satisfying the equivalence prin-
ciple (which states that inertial mass and gravitational mass are one and the same
thing, implying the universality of gravitational attraction). What he found was a
fully non-linear theory of Riemannian geometry describing the dynamical nature of
spacetime itself, but this answer is not unique; it is possible to construct different
theories with general coordinate invariance which satisfy the equivalence principle.

Here we will consider another way to understand general relativity, which dif-
fers from its original formulation. We consider GR as the unique, classical theory for
interacting massless spin-2 particles (gravitons) invariant under linearized diffeo-
morphisms. A resummation of all interaction terms consistent with this symmetry
will essentially reproduce General Relativity [1–3]. From this construction, general
coordinate invariance and the equivalence principle follow as a consequence. This
approach is natural from the point of view of field theories for massless bosonic
particles. Furthermore, the problem of finding a consistent theory of quantum grav-
ity in this light states that we should look for a quantum theory of massless interact-
ing spin-2 particles. Indeed, most of the proposals for a quantum theory of gravity,
such as (super)string theory, M-theory and loop quantum gravity include a massless
graviton in their spectrum.

These considerations motivate investigations into the nature of interacting spin-
2 particles. Combined with the earlier remarks concerning possible modifications
of GR, a natural question may be, is it possible for the graviton to have a small
mass? These type of modifications of GR are called “massive gravity”. Although
this idea has been around since the 1930s [4], massive gravity theories have seen
a recent resurgence in interest mainly because of the resolution of some theoretical
difficulties (see [5,6] for recent reviews). Investigations into massive gravity theories
can broadly be categorized into two approaches: one is to assume that the graviton
responsible for the gravitational interactions is not truly massless, but rather has a
small mass. The other possibility is that the massless graviton of GR interacts with a
sector of massive spin-2 particles.1

Both approaches may lead to alternatives to the ΛCDM model of cosmology. If
the graviton of GR itself is massive, then this will introduce a Yukawa-like gravit-
ational potential with a characteristic length scale set by the graviton mass. Above
this scale the gravitational force will appear weaker than in the GR description. This

1Note that massive spin-2 modes naturally arise in theories with multiple interacting spin-2 modes, as
there is a no-go theorem forbidding massless spin-2 interactions [7]. Hence if there are multiple gravitons,
then they must be massive.
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causes matter and energy to be less sensitive to the gravitational force on large dis-
tance scales. Thus to explain the observed acceleration of the universe, we would
need a parametrically larger cosmological constant than in the GR description. This
process of ‘degravitation’ leads to an effective screening of the cosmological constant,
which may contribute to solving the old cosmological constant problem2 [8]. If GR
can be consistently coupled to a sector of massive spin-2 particles, then this may be
a candidate for the dark matter content of the universe. In addition, the massive
spin-2 sector also contributes to the cosmological constant, leading to a variety of
new possibilities for cosmological applications.

This is all assuming it is even possible to find a consistent interacting theory for
massive spin-2 particles. This turns out to be a non-trivial task, even at the clas-
sical level. The free theory for massive spin-2 particles was constructed by Fierz and
Pauli in 1939 [4]. Only some time later, after it was realized that interacting spin-2
particles and gravitation were intrinsically related, this construction was ruled out as
a phenomenological theory. The problem is that the massive Fierz-Pauli theory does
not reproduce GR when taking the massless limit. This is known as the van Dam-
Veltman-Zakharov (vDVZ) discontinuity after the independent work of van Dam
and Veltman [9] and Zakharov [10]. The massive spin-2 carries 5 degrees of freedom
in contrast to the two degrees of freedom for a massless spin-2. These local degrees
of freedom can be decomposed into different helicity states: a helicity 0 mode (or
a scalar), the helicity ±1 modes of a vector and the helicity ±2 states of a massless
graviton. When taking the massless limit in Fierz-Pauli theory, the vector modes
decouple and the helicity ±2 modes reduce to linearized GR. The scalar mode, how-
ever, will couple to the trace of the stress tensor, which describes the matter content.
This coupling will produces different physical predictions and hence give a different
theory than linearized GR.

The trick to resolving the vDVZ-discontinuity is to take non-linear effects into ac-
count. As is well known, GR is a non-linear theory and at a distance scale set by the
Schwarzschild radius, non-linear effects will start to play a role. In Fierz-Pauli the-
ory this scale is set by the Vainshtein radius [11], which diverges when the graviton
mass is taken to zero. This implies that nowhere in this limit the linearized approx-
imation may be trusted and non-linear effects must be taken into account. Vainshtein
showed that the non-linear effects produce an effective screening of the scalar mode,
restoring the limit to GR. This is now known as the Vainshtein mechanism. How-
ever, soon afterwards it was realized that the most general non-linear completions
of massive Fierz-Pauli theory propagates six degrees of freedom instead of five. The
additional mode being a scalar-ghost, which now carries the name Boulware-Deser
ghost, after the authors of [12]. The mechanism responsible for the correct massless
limit hence introduced a new pathology, the presence of ghosts.

The scalar ghost in the non-linear extensions of Fierz-Pauli theory has caused a
loss of interest in these models until the turn of the millennium. The matter changed
when it was found that adding particular higher-order interactions could remove

2The old cosmological constant problem is the large discrepancy between the measured value of the
cosmological constant from astronomical observations, and the contribution to the cosmological constant
from a calculation of the energy of the vacuum.
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the scalar ghost from the spectrum of the theory. This is the approach of de Rham,
Gabadaze and Tolley (dRGT) [13, 14], they first considered a decoupling limit and
added interaction terms in a specific combination to remove the higher-derivative
terms responsible for the Boulware-Deser ghost. In order to study the ghost problem
beyond the decoupling limit, the authors of [14] resum the new interaction terms
into a fully non-linear theory of massive gravity involving elementary symmetric
polynomials of the square root matrix

√
g−1 f . Here fµν is a reference metric which

is needed to contract the indices of the metric (see also [15]). This fully non-linear
theory was shown to be ghost free in [16]. We will return to this construction briefly
in chapter 3.

The dRGT massive gravity theory describes solely a massive spin-2. The idea is
that at short distances, the graviton will appear massless and the Vainshtein mech-
anism restores the limit to GR. At long distances, the mass term is responsible for
modified cosmology and solutions which are self-accelerating can be found. A pe-
culiarity of these theories is that we need a (a priori arbitrary) reference metric fµν.
The introduction of this reference metric defines a fixed absolute frame which in
some sense goes against our intuition from relativity theory. One of the founding
principles of GR is that the physics should not depend on our choice of coordinates.
However, since the reference metric is not dynamical, the physics in dRGT massive
gravity will depend on our choice of reference frame. In an effort to tackle this prob-
lem, the reference metric of dRGT massive gravity can be upgraded to a dynamical
metric by introducing a kinetic (Einstein-Hilbert) term for it, resulting in a bimet-
ric theory of gravity3 [18]. These models describe the dynamics of a massive spin-2
particle together with a massless one. However, adding the kinetic term for the fixed
reference metric complicates the degree of freedom analysis of the theory. At the mo-
ment of writing this thesis, there is an active debate in the literature whether bimetric
gravity theories are really free of the Boulware-Deser ghost. Compare for instance
the results of [19–25]

With the above considerations in mind, we can now state the main theme of
this thesis: an exploration into the possibility of consistently describing a ‘physical’
massive spin-2 mode in the presence of gravity in three spacetime dimensions. By
physical here is meant that there are at least no mathematical inconsistencies, such
as ghost particles or tachyons. We have already discussed the importance of under-
standing interacting theories of spin-2 particles, let us now focus on another aspect
in the main theme of this thesis: gravity in three spacetime dimensions.

1.2 Moving to Three Dimensions
Restricting ourselves to three spacetime dimensions (3D) is somewhat removed from
the cosmological motivations mentioned above; since we live in a four dimensional
world, it is obvious that no realistic cosmological models can be constructed from
three dimensional gravity models. However, there are several reasons why we make
the jump to three dimensions.

3The first introduction of bimetric theories of gravity date back to the work of Isham, Salam and Strath-
dee in 1971 [17].
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First of all, the three dimensional case provides a relatively easy playing ground
to test ideas and perform exact computations in (quantum) gravitational models.
For instance, the Hamiltonian analysis of three dimensional bimetric gravity is more
tractable and, as we will see in chapter 4, its results suggests a reason why there is a
disagreement in the present literature on the degrees of freedom in bimetric gravity
in four dimensions. Of course, if a certain model works in three dimensions, then
this is no guarantee that it will work in four dimensions as well, but the results can
be useful in guiding us in the right direction.

Secondly, general relativity in three dimensions is special, since in this case the
massless spin-2 does not have any local degrees of freedom. The theory can be
interpreted as a topological gauge theory and has an equivalent formulation as a
Chern-Simons (CS) theory [26, 27]. The absence of local degrees of freedom tells us
that the theory only depends on global effects. For instance, there are black holes
in three dimensional gravity with a negative cosmological constant, the Bañados-
Teitelboim-Zanelli (BTZ) black holes [28]. Locally these black holes look like Anti-de
Sitter (AdS) spacetime, but globally they satisfy the properties of a black hole; they
have an event horizon and are characterized classically by their mass and angular
momentum. These global charges, which can be computed on the boundary of AdS,
are different than in the AdS vacuum.

The relation of three dimensional gravity to a Chern-Simons gauge theory is an-
other central theme of this thesis. Since our aim will be to modify 3D GR and this
inevitably entails the addition of local degrees of freedom, in 3D this translates to
modifying CS gauge theories to describe local degrees of freedom. There is a way to
do so, while keeping some of the desirable properties of CS-theories. All of the 3D
gravity models in this thesis fall into a class of models which can be called “Chern-
Simons–like”. What we precisely mean by CS–like will be defined in chapter 3.1.
It suffices to say here that, like CS gauge theories, they are defined by a first order
Lagrangian three-form constructed solely from one-form fields, but we give up the
requirement that all fields are Lie algebra valued connections and hence the resulting
theories are no longer topological gauge theories.

Another advantage of three dimensional gravity is that, on manifolds with a
boundary, a two dimensional conformal field theory can be found on this bound-
ary. Adopting asymptotically AdS boundary conditions leads to an asymptotic sym-
metry algebra relating different physical states with the same boundary conditions.
This asymptotic symmetry algebra of global charges is two copies of the Virasoro
algebra with a classical central extension, as was shown by Brown and Henneaux
in 1986 [29]. In this sense, three dimensional gravity can be thought of as a two di-
mensional Conformal Field Theory (CFT) and the real dynamics of the 3D massless
spin-2 takes place on the boundary, where its excitations fall into representations of
the (conformally invariant) Virasoro algebra. The connection between 3D gravity
and a two dimensional CFT discovered by Brown and Henneaux is a precursor of
what is now known as holography [30,31], or the AdS/CFT correspondence [32–34].

The philosophy behind the holographic principle is that a theory of gravity in d
dimensions is dual to a quantum field theory in d− 1 dimensions. This implies that
some gravitational problem can be rephrased as a field theoretical problem and vice
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versa. The most well-known example is the duality between type IIB string theory
on AdS5 × S5 and the conformal N = 4 SU(N) super Yang-Mills theory, although
many other dualities have been conjectured.4 Some physicists would support the
idea that these type of dualities are a general property of gravitational theories. This
sheds new light on the relation between gravitational theories and quantum field
theories and on the search for a theory of quantum gravity; it doesn’t have to be a
gravity theory! It may be that our quantum gravity problem translates to an easier
problem in the dual quantum field theory. Solving quantum gravity in this light may
be rephrased as finding the dual field theory.

Holography for three dimensional gravity is particularly interesting, since dual
field theory is two dimensional, which are the most well-studied examples of CFTs.
Still, despite many efforts (see e.g. [35, 36] for reviews and references), the precise
structure of the CFT dual to pure 3D gravity is unknown. But even without the
precise structure of the dual theory, some very promising results have been obtained.
Most notably, in [37, 38] the Bekenstein-Hawking entropy of the BTZ black hole was
related to the entropy associated to the asymptotic density of states of a 2D CFT
using the Cardy formula [39, 40].

Finally, in three spacetime dimensions there are other ways to arrive at a ghost-
free theory of massive spin-2 modes. Instead of adding explicit mass terms which
break some of the gauge symmetries of the theory, one can add higher derivatives
of the metric. One way is to supplement Einstein-Hilbert gravity with a gravita-
tional Chern-Simons term, leading to Topologically Massive Gravity (TMG) [41, 42].
The resulting theory has third order field equations and describes a single helicity 2
mode. This mode has positive energy and mass when the Einstein-Hilbert term is
considered with the ‘wrong’ sign; when the sign is opposite to the one in pure 3D
gravity.

A parity even higher-derivative theory of massive gravity describing the two
helicity ±2 modes of a massive graviton was developed by Bergshoeff, Hohm and
Townsend [43, 44] and it is called New Massive Gravity (NMG). Here one adds
higher derivatives of the metric in a generally covariant way by adding squares of
the curvature invariants: RµνRµν and R2. The theory is free of the Boulware-Deser
ghost, provided that the curvature squared terms come in a specific combination. In
flat space, the massive spin-2 mode has positive energy when one takes the ‘wrong’
sign for the Einstein-Hilbert term. Both for TMG and NMG the situation is more
subtle in anti-de Sitter spacetimes. Due to the higher-derivative equations of mo-
tion, an Ostrogradski-type instability arises. This indicates that either the massless
of the massive graviton is a ghost. In flat space, we may choose the sign in front of
the Einstein-Hilbert term such that the massless mode is a ghost, which is the origin
of the ’wrong’ sign. This leaves a theory of a healthy massive spin-2, since the mass-
less mode is pure gauge in three dimensions. However, in AdS spacetimes, there
are BTZ black holes, which are characterized by the global charges associated to the

4Many examples of the AdS/CFT-correspondence have passed several non-trivial checks, but a full
proof of the duality has not been given. This is due to the fact that usually, when the gravitational side is
strongly coupled, the field theory side has weak coupling and vice versa. This makes the duality hard to
proof, however, this feature is also responsible for its usefulness, since strongly coupled systems can now
be accessed via their weakly coupled dual theory.
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massless mode. Then a wrong sign for the massless modes leads to negative mass for
the BTZ black hole and, in addition, the central charge for the boundary CFT is neg-
ative. This implies that the representations corresponding to the boundary graviton
modes are non-unitary.

As we will discuss in detail in this thesis, this is a property shared by all higher-
derivative extensions of 3D general relativity. In this thesis, we will present novel
theories which also modify 3D GR but resolve this problem. This was made possible
by the observation that TMG and NMG have a description in terms of a Chern-
Simons–like theory [45], however, the full set of CS–like theories is larger. It contains
models which describe the same number of degrees of freedom as TMG and NMG,
but with improved behavior in the context of the AdS/CFT correspondence. The
construction of such models is the most important result of the work described here.
These novel models do not have an equivalent formulation in terms of an action
including higher-derivative corrections to GR, but instead their action contains aux-
iliary fields. These can be solved for upon using the field equations and we can
write these equations in terms of a single metric plus higher derivative corrections,
but this is not valid at the level of the action. This property is novel and allows for
new possibilities.

1.3 Outline of this Thesis
The rest of this thesis will build on the ideas presented in the previous section.
Chapter 2 contains a review of general relativity in three spacetime dimensions and
its relation to Chern-Simons gauge theories. We will explicitly perform a Hamilto-
nian analysis of 3D GR and review the Brown-Henneaux procedure of calculating
the asymptotic symmetry group. This is done not only for the sake of being self con-
tained, but we will also need some of the results in later chapters, when we will study
modifications of three dimensional gravity and their asymptotic symmetry group.

In chapter 3 we will define what we mean by Chern-Simons–like theories of grav-
ity and discuss different approaches of introducing the 2 degrees of freedom of a
massive spin-2 in three dimensions. The free Fierz-Pauli theory in three dimen-
sions is discussed, as well as its non-linear extension into dRGT massive gravity.
We then discuss CS–like theories with auxiliary fields which may be solved for to
obtain higher derivative theories of massive gravity, such a TMG and NMG. We
conclude the chapter by introducing a CS–like theory inspired by bimetric gravity,
called Zwei-Dreibein Gravity (ZDG). We will show that the field equations of ZDG
can be written in terms of a single metric and an infinite sum of higher derivative
terms, while this is not possible at the level of the action.

Chapter 4 investigates the Hamiltonian form of the general CS–like theory. We
find that the presence of secondary constraints is intrinsically linked to the presence
of invertible fields in the theory. We then analyze a number of CS–like models using
the general formalism and confirm the absence of a third degree of freedom, which
could correspond to a Boulware-Deser ghost, on a case by case basis. In the case
of ZDG, the Hamiltonian analysis naturally suggests a defining assumption which
makes the theory scalar ghost-free.
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After having found the Hamiltonian form for the general CS–like model, it be-
comes relatively easy to identify the first class constraints which generate the gauge
symmetries. This is the subject of chapter 5, where we apply the Brown-Henneaux
procedure to various 3D massive gravity theories. We find that the higher derivative
theories have a negative central charge whenever the bulk massive mode has posit-
ive energy. This implies that these theories are non-unitary in AdS. We then show
that in ZDG, this clash between bulk and boundary unitarity does not apply, as both
the central charge and the energy of the massive mode are positive in some regions
of its parameter space.

ZDG has the same linear spectrum as NMG, but improved behavior in light of
the AdS/CFT correspondence, in chapter 6 we investigate a CS–like model with the
same minimal bulk properties as TMG, but with improved bulk-boundary behavior.
We use the techniques discussed in previous chapters to investigate this ‘Minimal
Massive Gravity’ theory, which propagates a single helicity 2 mode. We find that
the theory has a simple description in terms of a CS–like theory, leading to a novel
structure of the field equations in a metric form. We comment on the problem of
coupling such a model to matter.

Chapter 7 deals with CS–like models which lead to extensions of New Massive
Gravity in two ways. One class of models leads to higher-derivative actions which
include more than four derivatives of the metric. We present a systematic way of
constructing such theories, which are free of scalar-ghosts by construction. The con-
struction is furthermore consistent with the presence of a holographic c-theorem.
However, the presence of massive spin-2 ghosts or tachyons cannot be avoided and
this limits the applicability of these models to a number of special, critical points
in the parameter space where the theories become dual to a logarithmic conformal
field theory (LCFT). We conclude chapter 7 with a construction of extensions of
Zwei-Dreibein Gravity. These models propagate multiple massive spin-2 modes and
their parameter space contains regions where all bulk modes are physical, while the
boundary central charge in AdS3 is positive.

Chapter 8 will discuss the conjecture that at a continuous range of critical points
in its parameter space, ZDG is dual to a logarithmic conformal field theory (LCFT).
We will provide evidence for this conjecture both at the linearized and the non-linear
level. The chapter concludes with the relation between a massive gravity theory with
two massive modes at a special tricritical point where both massive modes become
massless and the dual LCFT has rank-3. In chapter 9 we conclude and give some
possible directions for future research.





2
Gravity in Three Dimensions

As was emphasized in the introduction, three dimensional gravity provides an
attractive and simple playing ground for models of quantum gravity. This
chapter serves to give an overview of three dimensional gravity and its pecu-
liarities. In particular, special attention is devoted to the formulation of three
dimensional general relativity as a Chern-Simons gauge theory. A Hamiltonian
analysis of three dimensional gravity is reviewed and it is shown that there are no
local, propagating, degrees of freedom. The last part of this chapter is devoted to
3D gravity on manifolds with a boundary, in particular in Anti-de Sitter space-
time. We show explicitly how the algebra of global charges on the boundary of
an asymptotically AdS spacetime gives rise to an infinite dimensional conformal
algebra.
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2.1 General Relativity in Three Dimensions
General Relativity (GR) is the theory describing the interplay between the local dis-
tribution of matter and energy and the curvature of spacetime. Much like how in
Maxwell’s theory of electromagnetism electric and magnetic fields are sourced by
static or moving electric charges, in GR the geometry of spacetime, described by a
Riemannian metric gµν, is sourced by the presence of static or moving matter and
energy. The geometry of spacetime, in its turn, determines how free particles move.

The field equations describing this intricate relation between the curvature of
spacetime and the matter and energy distribution are Einstein’s equations:

Gµν + Λgµν = 8πGTµν . (2.1)

Here Tµν is the stress-energy tensor, defining the local distribution of matter and
energy, G is Newton’s constant and we use units where the speed of light is set to
unity: c = 1. Λ is the cosmological constant and the Einstein tensor Gµν is defined as

Gµν = Rµν −
1
2

gµνR , (2.2)

where the Ricci tensor Rµν and the Ricci scalar R are contractions of the Riemann
curvature tensor Rα

βγδ

Rµν = Rα
µαν , R = gµνRµν . (2.3)

The Riemann curvature tensor is second order in derivatives of the metric and com-
pletely encodes the curvature of spacetime.

Under certain assumptions, Einstein’s equation (2.1) is the unique field equation
relating geometry to a local matter distribution. Let us assume that a Riemannian
metric gµν is determined by the field equations

Fµν[g] = κTµν , (2.4)

where κ is a dimensionful coupling constant and Fµν is a tensor function of the met-
ric and its derivatives. Then Einstein’s equation (2.1) is unique, regardless of the
dimensionality of spacetime, if we further assume the function Fµν satisfies these
three requirements 1:

• Fµν[g] contains derivatives of the metric up to second order.
• Fµν[g] is linear in second order derivatives
• Conservation of energy and momentum (∇µTµν = 0) is an automatic con-

sequence of the field equations (2.4).

This argument is valid in all dimensions, so let us investigate what the consequences
in three spacetime dimensions are.

1This uniqueness theorem is due to the work of Cartan [46], Vermeil [47] and Weyl [48]. A review can
be found in [49]
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The symmetry properties of the Riemann tensor ensure that it has 1
12 d2(d2 − 1)

algebraically independent components, where d is the number of spacetime dimen-
sions. The Einstein tensor Gµν is symmetric, and hence it has 1

2 d(d + 1) components.
For d = 3, they both have 6 independent components and, since they are related
through (2.2) and (2.3), the Riemann tensor is completely determined in terms of the
Einstein tensor.

Rαβγδ = 2(gα[γGβ]δ − gβ[γGδ]α) + 2Ggα[γgδ]β . (2.5)

By the Einstein equation (2.1), this implies that the curvature of spacetime is com-
pletely determined in terms of the local matter distribution and the cosmological
constant. Outside local sources (Tµν = 0) spacetime is locally flat (Λ = 0) [49, 50] or
of constant curvature (Λ 6= 0) [51]. Hence, in three dimensions, there are no gravit-
ational waves and no dynamical gravitational degrees of freedom: i.e. there are no
massless gravitons in three dimensions.

2.2 3D Gravity as a Chern-Simons Gauge Theory
The absence of local degrees of freedom suggests that three dimensional gravity is
trivial. However, global effects of the manifold are also important; in three dimen-
sions the dynamics is topology [52]. There are black hole solutions in three dimen-
sional gravity with a negative cosmological constant, found by Bañados, Teitelboim
and Zanelli in [28]. These black holes are locally AdS, but globally they are character-
ized by conserved charges at the boundary of the AdS spacetime, which differ from
the AdS vacuum. In fact, as was shown by Brown and Henneaux [29], these global
charges fall into representations of the Virasoro algebra.2 This led to the conjecture
that three dimensional Anti-de Sitter gravity can equivalently be described by a two
dimensional conformal field theory on the boundary of AdS3 [53].

In the remainder of this chapter we will review some known properties of pure
gravity in three dimensions, its relation to gauge theory and the asymptotic symmet-
ries of global charges in the case of AdS3 gravity. But before we go into this, we ex-
pand a bit on GR in a first-order formalism, by choosing a “noncoordinate basis” for
the tangent space. This is very well known, however, most of the thesis will use this
notation and many graduate courses on GR choose to omit a proper discussion of
the first-order formulation. So for the sake of being pedagogical and self-contained,
we proceed with a brief discussion on the noncoordinate basis, following appendix
J of [54].

2.2.1 Noncoordinate basis
As Einstein’s equations describe the relation between the curvature of spacetime and
the local matter and energy distribution, GR is intrinsically related to the Riemannian
geometry of manifolds. All vectors at a point p on a manifoldM define the tangent

2The mass and angular momentum of the BTZ black hole are the zero modes of the global conserved
charges, as we will discuss below in section 2.4
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space Tp. It is customary in GR to choose as a basis {êµ} for the tangent space the
directional derivatives with respect to some (arbitrarily chosen) coordinates xµ. This
particular basis for the tangent space, êµ = ∂µ, is called a coordinate basis and in gen-
eral it is not normalized to unity or orthogonal (“orthonormal”). The corresponding
basis {θ̂µ} for the cotangent space T∗p , the space of all linear maps from Tp to the real
numbers, then is given by the gradients dxµ, since θ̂µ êν = δ

µ
ν .

To clarify the relation between General Relativity and gauge theories, it is con-
venient to instead choose an orthonormal basis for the tangent space Tp, which is
not related to a choice of coordinates (noncoordinate basis). Let us denote the set of
orthonormal basis vectors as {êa} and demand that the inner product of these basis
vectors takes the canonical form:

g(êa, êb) = ηab . (2.6)

Here ηab is the Minkowski metric in the ‘mostly plus’ signature convention and g( , )
denotes the usual spacetime metric tensor. The orthonormal set of basis vectors {êa}
is called the ‘vielbein’ (German for ‘many legs’) in any dimension, which invites the
nomenclature zweibein, dreibein, vierbein, etcetera to denote the vielbein in two,
three and four dimensions respectively. The old coordinate basis, spanned by êµ, can
now be expressed in terms of our new orthonormal basis as

êµ = eµ
a êa , (2.7)

where the components eµ
a form an invertible matrix. It has become standard practice

to confuse tensors with their components, and hence we will continue to call eµ
a the

vielbein (and very soon: the dreibein, since we are going to work mostly in three
dimensions). The inverse vielbein eµ

a are the components of the orthonormal basis
vectors êa in the coordinate basis {êµ}, but they serve double duty, since they also
relate the coordinate basis one-forms {θ̂µ} of the cotangent space T∗p in terms of an
orthonormal basis of one-forms {θ̂a}, satisfying θ̂a êb = δa

b .

θ̂µ = eµ
a θ̂a . (2.8)

In this respect, also the vielbein itself has two duties, next to (2.7) they relate the
orthonormal basis one-forms to the coordinate basis one-forms (θ̂a = eµ

a θ̂µ).

The (inverse) vielbein is a map between the orthonormal basis of the (co)tangent
space and the coordinate basis and for all practical purposes, we can think of them as
the identity map which can convert Greek (coordinate basis; curved space) indices
to Latin (orthonormal basis; flat space) indices and back. Another way to think of
the vielbein is as the square root of the metric, since (2.6) implies

gµνeµ
aeν

b = ηab , and hence: gµν = eµ
aeν

bηab . (2.9)

The noncoordinate basis introduces an extra arbitrariness; we can change basis vec-
tors independently of our choice of coordinates, as long as the orthonormality con-
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dition (2.6) is preserved. To be more precise, if we choose a new set of basis vectors

êa → êa′ = Λa
a′(x)êa , (2.10)

such that

Λa
a′Λ

b
b′ηab = ηa′b′ , (2.11)

then our new basis is equally good. The transformation which preserve the flat met-
ric are, of course, the Lorentz transformations (or orthogonal transformations for a
Euclidean-signature metric). We have this freedom at every point p on the man-
ifold and hence they are called local Lorentz transformations (LLT). Besides LLTs,
there are the usual general coordinate transformations (GCT). The vielbein eµ

a trans-
forms as a one-form under general coordinate transformations and is thus a Lorentz
vector-valued one-form.

To define covariant derivatives on objects with Latin (Lorentz) indices, we need
a connection in order to obtain an expression which transforms as a tensor. In the
noncoordinate basis, this is the spin connection ωµ

a
b. The covariant derivative is

then defined in the usual way3

∇µXa
b = ∂µXa

b + ωµ
a

cXc
b −ωµ

c
bXa

c . (2.12)

Demanding that this expression obeys the usual tensor transformation law fixes how
the spin connection transforms under LLTs.

ωµ
a′

b′ = Λa′
aΛb

b′ωµ
a

b −Λc
b′∂µΛa′

c . (2.13)

The covariant derivative of a vector is then a tensor itself and since tensors are inde-
pendent of the basis we use, we can find a relation between the Christoffel connec-
tions Γρ

µν and the spin connection

Γρ
µν = eρ

a∂µeν
a + eρ

aωµ
a

beν
b . (2.14)

The torsion tensor, defined as Tρ
µν = 2Γρ

[µν]
, can thus be written as

Tµν
a = 2

(
∂[µeν]

a + ω[µ
a

beν]
b
)

, (2.15)

where for later convenience the upper index is converted to a Lorentz index using the
vielbein. The Riemann curvature tensor can be found in terms of the spin connection
by considering the commutator of covariant derivatives

[∇µ,∇ν]Xa = Rµν
a

bXb + Tρ
µν∇ρXa . (2.16)

3If the tensor X in (2.12) carries Greek indices, then also terms involving the Christoffel connection Γρ
µν

are present on the r.h.s.
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Explicit computation using (2.12) gives:

Rµν
a

b = 2
(

∂[µων]
a

b + ω[µ
a

cων]
c
b

)
. (2.17)

The expressions for the curvature and torsion tensors illustrate a useful property of
this formalism. Since they are both two-forms and strictly anti-symmetric in Greek
indices, we can express them in terms of the one-forms

ea = eµ
adxµ , (2.18)

and the spin connection one-forms

ωa
b = ωµ

a
bdxµ . (2.19)

Using exterior derivatives and wedge products and suppressing the Greek indices,
we may write:4

Ra
b = 2(dωa

b + ωa
c ∧ωc

b) ,

Ta = 2(dea + ωa
b ∧ eb) .

(2.20)

The curvature and torsion two-forms satisfy a set of Bianchi identities, which can be
written as

DTa ≡ dTa + ωa
b ∧ Tb = Ra

b ∧ eb ,
DRa

b ≡ dRa
b + ωa

c ∧ Rc
b −ωc

b ∧ Ra
c = 0 ,

(2.21)

where we have defined D as the covariant exterior derivative.

As a final remark on the general noncoordinate basis formalism before moving to
three dimensions, we derive the antisymmetry of the spin connection by demanding
metric compatibility ∇ρgµν = 0. In the noncoordinate basis, the metric is simply the
flat Minkowski metric ηab and hence

∇ρηab = ∂ρηab −ωµ
c

aηcb −ωµ
c
bηac = 0 , (2.22)

implies

ωµ ab = −ωµ ba . (2.23)

This property, together with vanishing torsion Ta = 0, allows one to solve the spin
connection explicitly in terms of first-order derivatives acting on the vielbein ea.

4The funny looking factor of two comes from a choice of conventions. Some texts prefer to write
(dX)µν = 2∂[µXν] = ∂µXν − ∂νXµ, while I will use (dX)µν = ∂[µXν] =

1
2 (∂µXν − ∂νXµ), and similarly for

the wedge product.
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2.2.2 Chern-Simons gauge theory
Now that we have established a noncoordinate basis it is time to move to three
dimensions and show the relation between General Relativity and Chern-Simons
gauge theories [26, 27].

In three spacetime dimensions, we can use the totally antisymmetric epsilon sym-
bol εabc (where ε012 = 1) to write the spin connection one-form with a single Lorentz
index, defining the (Hodge) dualised spin connection

ωa =
1
2

εabcωbc . (2.24)

The dualised Riemann curvature can then be defined such that

Ra = dωa +
1
2

εabcωb ∧ωc , (2.25)

from which the useful identity

eµ
aενρσRρσ

a = det(e)Gµν . (2.26)

follows. This identity will be used frequently in this thesis.
The Einstein equations (2.1) outside local sources can be written in the nonco-

ordinate basis as:

Ra − Λ
2

εabceb ∧ ec = 0 . (2.27)

Together with the torsion constraint Ta = 0, they are the equations of motion ob-
tained by varying the Einstein-Cartan action

SEC = − 1
8πG

∫
M

{
ea ∧ dωa +

1
2

εabcea ∧ωb ∧ωc − Λ
6

εabcea ∧ eb ∧ ec
}

, (2.28)

with respect to ea and ωa.
We already discussed in the last section that outside local sources there are no

dynamical gravitational degrees of freedom and locally spacetime is flat or of con-
stant curvature, depending on the value of the cosmological constant. The absence
of local dynamics means that gravity in three dimensions is completely determined
by global effects, hence it is a topological theory. There are, however, gauge sym-
metries in the theory, the LLTs and the GCTs (or diffeomorphisms). The generators
of these gauge symmetries form a Lie algebra, which again depends on the value
of the cosmological constant. For flat space (Λ = 0) these are precisely the isomet-
ries of Minkowski spacetime, or the Poincaré algebra (ISO(2, 1)). Negative cosmo-
logical constant gives the isometries of Anti-de Sitter (AdS) spacetime (SO(2, 2)),
while for positive Λ the Lie algebra is given by the isometries of de-Sitter (dS) space-
time (SO(3, 1)). Gravity in three dimensions can thus be understood as a topological
gauge theory where the gauge group corresponds to the isometry group of the va-
cuum spacetime.
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Chern-Simons (CS) theories in three dimensions are also topological gauge the-
ories and indeed the Einstein-Cartan action can be written as a CS theory [26, 27].
The CS action is defined as

SCS(A) =
k

4π

∫
M

tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

, (2.29)

where A is a Lie algebra valued connection and the trace denotes a non-degenerate
bilinear form on the algebra. Consider the connections

A = eaPa + ωa Ja , (2.30)

where Pa and Ja have the commutators

[Pa, Pb] = −Λεabc Jc , [Pa, Jb] = εabcPc , [Ja, Jb] = εabc Jc . (2.31)

They correspond to the Lie algebra SO(2, 2) for Λ < 0, SO(3, 1) for Λ > 0 and
ISO(2, 1) for Λ = 0. Together with the bilinear form

tr(JaPb) = ηab , (2.32)

we can verify that the Chern-Simons action (2.29) for the connections (2.30) reduces
to the three-dimensional Einstein-Cartan action (2.28) when the CS-level k is given
by

k =
1

4G
. (2.33)

CS theory in Anti-de Sitter spacetime

When the cosmological constant is negative, the maximally symmetric constant cur-
vature background is Anti-de Sitter spacetime, for which Λ = − 1

`2 with ` the AdS
length. The isometry group is SO(2, 2) which is isomorphic to SL(2, R)× SL(2, R).
In this case, the EC action can equivalently be written as a Chern-Simons action (2.29)
for the connections

A = A+ a J+a + A− a J−a = A+ + A− . (2.34)

Here J±a = 1
2 (Ja ± `Pa) are mutually commuting generators of SL(2, R) with com-

mutators

[J±a , J±b ] = εabc J± c , [J+a , J−a ] = 0 , (2.35)

and the bilinear forms are

tr(J+a J+b ) =
1
2

ηab , tr(J−a J−b ) = −1
2

ηab , tr(J+a J−b ) = 0 . (2.36)
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Now the Chern-Simons action (2.29) splits into two parts

SCS(A) = SCS(A+) + SCS(A−) ,

=
k

4π

∫
M

{
A+

a ∧ dA+ a +
1
3

εabc A+ a ∧ A+ b ∧ A+ c
}

− k
4π

∫
M

{
A−a ∧ dA− a +

1
3

εabc A− a ∧ A− b ∧ A− c
}

.

(2.37)

Note that this is the difference of two Chern-Simons actions. If the connections A± a

are given in terms of the dreibein and the spin connection as

A± a = ωa ± 1
`

ea , (2.38)

then (2.37) also reduces to the Einstein-Cartan action (2.28), now with the CS-level

k =
`

4G
. (2.39)

Assuming an invertible dreibein, the Einstein equation, together with the vanishing
of the torsion two-form, can now be written as zero field-strength conditions for the
connection A±.

This formulation of three dimensional AdS gravity is more convenient when
studying the asymptotic symmetries (the topic of section 2.4). Furthermore, this
theory can be extended to gauge theories of SL(N, R) × SL(N, R) and eventually
hs[λ] ⊕ hs[λ] to describe massless bosonic higher spin fields coupled to gravity in
AdS3, see for instance [55–62].

2.3 Hamiltonian Analysis

We continue our venture into three dimensional GR by studying the theory follow-
ing Dirac’s procedure for constraint Hamiltonian systems. The fact that the theory is
essentially a Chern-Simons gauge theory makes its Hamiltonian formulation partic-
ularly simple and allows us to go through the procedure relatively fast (as compared
to the higher-dimensional Hamiltonian analysis of GR). Still, some subtleties arise
when we consider the theory on manifolds with a boundary, which will be the topic
of the next section. The main purpose of this section is to verify explicitly that the
theory contains no local degrees of freedom and to see the generators of the gauge
symmetries arise in a very natural way.

We take as a starting point the Einstein-Cartan Lagrangian three-form (2.28),
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dropping the overall factor of 1
8πG for the moment.5

LEC = −
{

e · dω +
1
2

e ·ω×ω− Λ
6

e · e× e
}

. (2.40)

Here and in the rest of this thesis, the wedge products are implicit and the Lorentz
indices a, b, c, . . . are suppressed by using a 3D vector notation in which contrac-
tions with ηab and εabc are represented by dots and crosses respectively. So, for
instance, εabcea ∧ eb ∧ ec is denoted as e · e × e. We decompose the dreibein ea and
spin-connection ωa into its space and time components:

ea = e0
adt + ei

adxi , ωa = ω0
adt + ωi

adxi . (2.41)

The Lagrangian density becomes:

L = εijei · ω̇j + e0 · P + ω0 · J , (2.42)

where εij = ε0ij and P a and J a are defined as:

P a = −εij
(

∂iωj
a +

1
2
(ωi ×ωj)

a − 1
2

Λ(ei × ej)
a
)

,

J a = −εij (∂iej
a + (ωi × ej)

a) ,
(2.43)

The Lagrangian density (2.42) is first order in time derivatives. Therefore, the canon-
ical momenta do not involve q̇’s (q being (ea, ωa) in this case). In fact, the canonical
momenta belonging to the spatial parts ea

i and ωa
i are proportional to ωa

i and ea
i re-

spectively. This implies that introducing canonical momenta for the spatial variables
is redundant, since an equally good way to describe them is using the spatial parts
of the fields themselves. Furthermore, the canonical momenta of the time compon-
ents are zero. This implies that the time components of the fields are not dynamical
and hence do not contribute to the physical phase-space of the theory. We may in-
terpret them as Lagrange multipliers enforcing the constraints Pa = 0 and Ja = 0
and consider the spatial part of the fields (ei

a, ωi
a) to be the canonical variables of

the theory.
The Poisson brackets of the canonical variables read:

{ei
a(x), ωj

b(y)}P.B. = −εijη
abδ(2)(x− y) . (2.44)

The Hamiltonian is just the sum of the primary constraints (2.43) enforced by a set
of Lagrange multipliers

H = −e0 · P −ω0 · J . (2.45)

The Dirac procedure for constraint Hamiltonian system dictates that we check the

5Here and in the rest of this thesis we will define the Lagrangian three-form L as S = 1
8πG

∫
L while

the Lagrangian density L is defined as S = 1
8πG

∫
det(e)d3xL.
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consistency of the primary constraints under time evolution. This is done by com-
puting the Poisson brackets of the primary constraints with the Hamiltonian. Since
our Hamiltonian is just the set of constraints, this amounts to computing the Poisson
brackets of the constraints with themselves. It is convenient to define the smeared
operators J [ξ] and P [ξ] by integrating the constraint functions with an arbitrary
Lorentz vector ξa(x),

J [ξ] =
∫

Σ
d2x ξ(x) · J (x) , P [ξ] =

∫
Σ

d2x ξ(x) · P(x) , (2.46)

where Σ is a space-like hypersurface. For the moment we will assume that ξa will
vanish at spatial infinity such that we can ignore boundary terms when we integ-
rate by parts. In the next section we will relax this assumption and generalize the
discussion to manifolds with a boundary and non-trivial boundary conditions.

The Poisson brackets of the smeared operators (2.46) form the algebra

{J [ξ],J [η]}P.B. = J [[ξ, η]] , {P [ξ],J [η]}P.B. = P [[ξ, η]] ,
{P [ξ],P [η]}P.B. = −ΛJ [[ξ, η]] ,

(2.47)

where [ξ, η] = ξ × η. This is, of course, exactly the Lie algebra of the isometries of
the vacuum spacetime (2.31), or the SO(2, 2) group for AdS (Λ < 0), SO(3, 1) for dS
(Λ > 0) and ISO(2, 1) for flat space (Λ = 0).

The Poisson bracket algebra (2.47) implies that both the constraint functions Ja
and Pa are (primary) first-class and hence generate gauge symmetries (up to possible
boundary terms). There are no secondary or second-class constraints. The counting
of the dimension of the physical phase space is then

2× 6
{

canonical
variables

}
− 6

{
primary

constraints

}
− 6

{
gauge

symmetries

}
= 0 . (2.48)

So there are no local degees of freedom. Since the constraint functions are first-
class, they generate gauge transformations. Indeed, when we calculate the Poisson
brackets of the smeared constraints with the fields we find that J [ξ] generates local
Lorentz transformations with gauge parameter ξa

δJ ea
i = {ei

a,J [ξ]}P.B. = −(ei × ξ)a ,
δJωa

i = {ωi
a,J [ξ]}P.B. = −∂iξ

a − (ωi × ξ)a ,
(2.49)

And P [ξ] generates the local translations

δP ea
i = {ei

a,P [ξ]}P.B. = −∂iξ
a − (ωi × ξ)a ,

δPωa
i = {ωi

a,P [ξ]}P.B. = −Λ(ei × ξ)a ,
(2.50)

When the gauge parameter ξa is taken to be proportional to the Dreibein ξa = eµ
aζµ,

then these transformations reduce to the standard transformation rule for diffeo-
morphisms on-shell, up to a local Lorentz transformation with gauge parameter
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ωµ
aζµ [27]. So if we define a new constraint function φ[ζ] as

φ[ζ] = P [eµ
aζµ] + J [ωµ

aζµ] . (2.51)

Then φ[ζ] generates diffeomorphisms on-shell, as it can be verified that

{φ[ζ], ei
a}P.B. = Lζei

a + equations of motion ,

{φ[ζ], ωi
a}P.B. = Lζωi

a + equations of motion .
(2.52)

Here Lζ denotes the Lie derivatives with respect to ζµ: Lζ Xν = ζµ∂µXν + Xµ∂νζµ.
We have now analyzed the bulk theory and saw how the generators of the gauge

symmetries arise as first-class constraints in the Hamiltonian analysis. In the ana-
lysis so far, we have ignored boundary terms. We will now consider these terms
and show that the presence of a boundary introduces boundary degrees of freedom,
which fall into representations of a conformal algebra on the boundary. The main
point is that on manifolds with a boundary, the generators of gauge transformations
need to be improved with a boundary term. This implies that at the boundary, the
generators are no longer first-class and represent a symmetry transformation, con-
necting physically distinct configurations.

2.4 Asymptotic Symmetries
It was shown in [29] by Brown and Henneaux that gravity in AdS3 with non-trivial
boundary conditions contains excitations at the conformal boundary. These bound-
ary degrees of freedom fall into representations of the asymptotic symmetry algebra
which is generated by global symmetry transformations which preserve the AdS3 (or
Brown-Henneaux) boundary conditions. In this section we will review the Brown-
Henneaux argument and show that the asymptotic symmetry algebra for three di-
mensional AdS gravity consists of two copies of the Virasoro algebra with a classical
central extension.

Of course, there are many ways to arrive at the expression for the central charge
in three dimensional AdS gravity. Starting from the second-order formulation, one
could look at the anomalous transformation of the renormalized boundary stress-
tensor, as in [63]. Or we could first write 3D gravity as a pure Chern-Simons theory
and employ the methods described in [64]. Here we prefer to stay close to the de-
scription of three dimensional gravity in terms of the dreibein ea and the spin con-
nection ωa, since we will later investigate the asymptotic symmetries of modified
theories of gravity in three dimensions, which do contain propagating degrees of
freedom in the bulk. The analysis here will loosely follow the lines of Carlip’s ana-
lysis of Topological Massive Gravity in [65], applied to the Einstein-Cartan theory
defined by (2.28) and supplemented with results obtained and reviewed in [35, 64].
This will aid us a great deal in chapter 5, where we calculate the asymptotic symmet-
ries and central charges of various theories of massive gravity in three dimensions.
For more details on asymptotic symmetries in three dimensional gravity and the
relation to a conformal field theory, see [36, 53, 66–71].
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When we consider the theory in AdS3 with Λ = − 1
`2 , we can define the new

smeared operators L±[ξ] as

L±[ξ] = P [ξ]±
1
`
J [ξ] , (2.53)

whose algebra splits into two mutually commuting sectors, up to boundary terms

{L±[ξ], L±[η]} = ±
2
`

L±[[ξ, η]] ,

{L+[ξ], L−[η]} = 0 .
(2.54)

Of course, if had made the field redefinitions (2.38) in the Einstein-Cartan action
(2.28) and then derive the first-class constraint functions, we have would arrived
at this expression for the algebra of Poisson brackets immediately. This is due to
the fact that the isometry group of AdS3 is isomorphic to SL(2, R) × SL(2, R) and
the absence of local gravitational degrees of freedom in the bulk allow us to make
this split into mutually commuting sectors everywhere. Later in this thesis, we will
modify the CS theory in the bulk to a theory which does contain local degrees of
freedom and it will no longer be possible to perform this split everywhere in the bulk
spacetime. However, we will see that with the appropriate boundary conditions, this
redefinition will still work at the boundary of AdS3.

In computing the Poisson brackets of the primary constraints (2.54) we have ig-
nored any boundary term and implicitly assumed that the smeared operators are
differentiable, i.e. that their derivative with respect to the canonical variables is well-
defined. On manifolds with a boundary a boundary term may arise when we vary
the smeared operators with respect to the fields

δL±[ξ] =
∫

Σ
d2x ξa

∂La
±

∂ab
i

δab
i +

∫
∂Σ

dφB±[ξ, a, δa] . (2.55)

Here aa
i = (ei

a, ωi
a) and ∂Σ denotes the boundary of the space-like hypersurface

Σ, parametrised by the coordinate φ. The presence of a non-zero B±[ξ, a, δa] could
lead to delta-function singularities in the Poisson brackets. To remove these, we can
define the improved operator L̃±[ξ] as

L̃±[ξ] = L±[ξ] + Q± , (2.56)

where Q± is defined such that its variation cancels the boundary term coming from
the variation of L±[ξ]

δQ± = −
∫

∂Σ
dφ B±[ξ, a, δa] . (2.57)
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Explicit computation of B±[ξ, a, δa] gives

δQ± =
∫

∂Σ
dφ ξ · δ

(
ωφ ±

1
`

eφ

)
. (2.58)

After we specify the boundary conditions and the symmetry transformations which
preserve these boundary conditions, it is possible to integrate this expression to ob-
tain the boundary charges Q±.

Now that the improved operators have a well-defined variation, we must go back
to the Poisson brackets (2.54) and keep track of the boundary terms. They are:

{L̃±[ξ], L̃±[η]} = . . .± 2
`

∫
dφ ξ ·

[
∂φη +

(
ωφ ±

1
`

eφ

)
× η

]
, (2.59)

where the dots denote the bulk part. The boundary term in the Poisson brackets will
in general provide a term proportional to Q±(ξ, η), which is required to improve the
bulk part, and a term K(ξ, η) which is independent of the fields e and ω and provides
a central extension term in the algebra of Poisson brackets [64].

The above considerations show that the generators of gauge symmetries pick up
boundary terms Q. In general, this implies that the generators of gauge symmetries
become second-class at the boundary, as their Poisson brackets do not vanish on the
constraint surface due to the boundary term in (2.59). The boundary terms Q do not
generate gauge symmetries, but they generate (global) symmetry transformation on
the space of physical states; they are conserved global charges which take different
values for each state. We will now continue the analysis by considering the algebra of
global charges which preserve the asymptotic structure of the AdS3 vacuum, i.e. the
boundary terms related to diffeomorphisms which do not change leading behavior
towards the boundary of AdS3.

As we saw at the end of the last section, the gauge parameters for diffeomorph-
isms are proportional to the dreibein ξa = eµ

aζµ. In general the algebra (2.54) will
then pick up extra terms proportional to {L±[ξ], ea

i }.

{L+[ξ], L+[η]} = L+

[
{L+[ξ], ea

i }χi − {L+[η], ea
i }ζ i +

2
`
[ξ, η]a

]
,

{L−[ξ̄], L−[η̄]} = L−

[
{L−[ξ̄], ea

i }χ̄i − {L−[η̄], ea
i }ζ̄ i − 2

`
[ξ̄, η̄]a

]
,

{L+[ξ], L−[η̄]} = L−
[
{L+[ξ], ea

i }χ̄i
]
− L+

[
{L−[η̄], ea

i }ζ i
]

,

(2.60)

where ηa = eµ
aχµ and similarly with the barred quantities. These terms will not

vanish in the bulk, however it is possible to find a set of symmetry transformations
which preserves the asymptotic structure of the AdS space, i.e. for which the sym-
metry transformation δei

a = {L±[ξ], ea
i } does not introduce any new contributions

to the boundary conditions. In addition, the terms appearing in the last line of (2.60)
should vanish asymptotically.
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2.4.1 Asymptotically Anti-de Sitter Boundary Conditions
In 3D GR, spacetimes with asymptotic AdS3 boundary conditions can be paramet-
rized in terms of two arbitrary (state-dependent) functions L(x+) and L̄(x−) and
the metric can be written in light-cone coordinates as [35]

ds2 = `2
{

dρ2 −L(x+)(dx+)2 − L̄(x−)(dx−)2

−
(

e2ρ + e−2ρL(x+)L̄(x−)
)

dx−dx+
}

.
(2.61)

This metric is an exact solution to the Einstein equations in 3D.6 It reduces to the
BTZ black hole of [28] with mass M and angular momentum J when we take L and
L̄ constant. Explicitly, when L and L̄ are

L =
2G
`
(J − `M) , L̄ = −2G

`
(J + `M) , (2.62)

then (2.61) can be written as [35]

ds2 = −N2dt2 + N−2dr2 + r2 (dφ− Nφdt
)2 , (2.63)

where

N2(r) = −8MG +
r2

`2 +
16G2 J2

r2 , Nφ(r) =
4GJ
r2 . (2.64)

The coordinates (x±, ρ) are related to (t, φ, r) as

x± =
t
`
± φ ,

r2 = r2
+ cosh2[ρ− ρ0]− r2

− sinh2[ρ− ρ0] .
(2.65)

Here e2ρ0 = (r2
+ − r2

−)/4`2 and r± are the radii of the BTZ black hole; they are the
two solutions to N2(r) = 0.

When J = 0 and 8MG = −1 (or equivalently, when L = L̄ = 1/4), the BTZ
solution (2.63) reduces to anti-de Sitter space. Since the BTZ metric solves the va-
cuum Einstein equations with negative cosmological constant, it describes a space of
constant negative curvature. Locally, the BTZ solution is isometric to anti-de Sitter
space. More precisely, as was shown in [72], the BTZ black hole can be obtained from
identifications of points of AdS3 by a discrete subgroup of SO(2, 2).

In general, the field equations do not demand that L and L̄ are constant, but
rather that ∂−L = 0 and ∂+L̄ = 0. Solutions with different L and L̄ are related
by a symmetry transformation that would have been a gauge transformation, if it
was not for the boundary terms in the generators (2.56). Our job now is to find
the algebra of symmetry transformations which preserve the metric (2.61), changing

6The fact that (2.61) is an exact solution implies that the Fefferman-Graham expansion of AdS3 is finite.
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only the values of L and L̄. To this end it convenient to express (2.61) in terms of the
connections A± a = ωa ± 1

` ea

A+ 0 = (eρ + L(x+)e−ρ)dx+ ,

A+ 1 = (eρ −L(x+)e−ρ)dx+ ,

A+ 2 = dρ ,

(2.66)

and

A− 0 = −(eρ + L̄(x−)e−ρ)dx− ,

A− 1 = (eρ − L̄(x−)e−ρ)dx− ,

A− 2 = −dρ .

(2.67)

It is not so hard to verify that the metric constructed from ea = `
2 (A+ a − A− a) is

(2.61).

The set of transformations which preserves the asymptotic structure of boundary
conditions (2.66) and (2.67) is given in terms of the gauge parameters ξa

f and ξ̄a
f̄ and

depends on two arbitrary functions f (x+) and f̄ (x−) as

ξa
f =

`

2

(
f eρ + e−ρ

(
fL+

1
2

f ′′
)

, f eρ − e−ρ

(
fL+

1
2

f ′′
)

,− f ′
)

,

ξ̄a
f̄ =

`

2

(
f̄ eρ + e−ρ

(
f̄ L̄+

1
2

f̄ ′′
)

,− f̄ eρ + e−ρ

(
f̄ L̄+

1
2

f̄ ′′
)

,− f̄ ′
)

.
(2.68)

Here a prime denotes partial derivation with respect to the functions argument. It is
straightforward to check that a symmetry transformation e→ e + δ+e + δ−e with

δ+ei = {L+[ξ f ], ei} =
(

∂iξ f +

(
ωi +

1
`

ei

)
× ξ f

)
,

δ−ei = {L−[ξ̄ f̄ ], ei} =
(

∂i ξ̄ f̄ +

(
ωi −

1
`

ei

)
× ξ̄ f̄

)
,

(2.69)

again gives a metric of the form (2.61), but with L′ = L + δL and L̄′ = L̄ + δL̄,
where

δL(x+) = f (x+)L′(x+) + 2 f ′(x+)L(x+) +
1
2

f ′′′(x+) ,

δL̄(x−) = f̄ (x−)L̄′(x−) + 2 f̄ ′(x−)L̄(x−) +
1
2

f̄ ′′′(x−) .
(2.70)

These are the transformation laws for the holomorphic and anti-holomorphic part of
a stress-energy tensor in a conformal field theory.

As an aside, let us briefly remark that the transformations given in (2.68) are
related to the Killing vectors ζ which generate the most general diffeomorphisms



2.4 ASYMPTOTIC SYMMETRIES 35

preserving the asymptotic form of the AdS3 metric (2.61). From the last section, we
know that in the first-order formalism diffeomorphisms are related to local transla-
tions with parameters proportional to the dreibein. By invertibility of the dreibein we
find the asymptotic Killing vectors ζ = (ζµ + ζ̄µ)∂µ using ζµ = eµ · ξ f and ζ̄µ = eµ · ξ̄ f̄
to be

ζ =

(
f (x+) +

e−2ρ

2
∂2
− f̄ (x−) +O(e−4ρ)

)
∂+

+

(
f̄ (x−) +

e−2ρ

2
∂2
+ f (x+) +O(e−4ρ)

)
∂+

− 1
2
(
∂+ f (x+) + ∂− f (x−)

)
∂ρ .

(2.71)

This is consistent with the original Brown-Henneaux results [29], which shows that
although this approach is different, we are really doing the same thing.

After plugging (2.68) into the bulk part of the Poisson brackets, given in (2.60),
they become

{L+[ξ f ], L+[ξg]} = −L+[ξ{ f ,g}] ,

{L−[ξ̄ f̄ ], L−[ξ̄ ḡ]} = −L−[ξ̄{ f̄ ,ḡ}] ,
(2.72)

where { f , g} = f ∂φg− g∂φ f . We now have all the ingredients to integrate the bound-
ary charges (2.58) to find

Q+ = `
∫

dφ L(x+) f (x+) , Q− = −`
∫

dφ L̄(x−) f̄ (x−) . (2.73)

Finally, after plugging the restricted gauge transformations (2.68) and the Brown-
Henneaux boundary conditions (2.66)-(2.67) in the boundary term of the Poisson
brackets of the improved generators (2.59), we find that

{L̃+[ξ f ], L̃+[ξg]} = . . .− `
∫

dφ f (2L∂+g + g∂+L) +
`

2

∫
dφ ∂+ f ∂2

+g ,

{L̃−[ξ̄ f̄ ], L̃−[ξ̄ ḡ]} = . . . + `
∫

dφ f̄
(
2L̄∂− ḡ + ḡ∂−L̄

)
− `

2

∫
dφ ∂− f̄ ∂2

− ḡ .
(2.74)

The dots denote the bulk part (2.72) and the first term on the r.h.s. may be recog-
nized as exactly the boundary charge needed to improve the r.h.s. of (2.72). The
remaining term is a central extension. The bulk part of this algebra vanishes on the
constraint surface, hence, after replacing the Poisson brackets by Dirac brackets, only
the boundary parts survive. After a Fourier expansion of the charges Lm = −L̃+[ f =

eimx+ ] and L̄m = −L̃−[ f̄ = eimx− ] and reinstating the factor of 1/(8πG) the bound-
ary part of the algebra reduces to two copies of the Virasoro algebra with a classical
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central charge7

i{Lm, Ln} = (m− n)Lm+n +
cL
12

m3δm+n,0 ,

i{L̄m, L̄n} = (m− n)L̄m+n +
cR
12

m3δm+n,0 .
(2.75)

The central charges are given by

cL/R =
3`
2G

. (2.76)

This is the celebrated result obtained by Brown and Henneaux [29].
This concludes the review of the asymptotic symmetry group and the boundary

charges of three dimensional gravity with asymptotically Anti-de Sitter boundary
conditions. As was mentioned before, the results reviewed here will become useful
in the coming chapters. Most of the theories of massive gravitons discussed in the
rest of this thesis are also invariant under local Lorentz transformations and diffeo-
morphisms and allow for Anti-de Sitter background solutions. Hence, with the same
boundary conditions, we will find the same asymptotic symmetry group, only with
a modified expression for the central charge. The trick then becomes to identify the
first class constraints that generate the asymptotic symmetries of the theory in ques-
tion and to calculate their boundary contribution to the central charge. That will be
the main focus of chapter 5. However, before we get too far ahead of ourselves, let
us first investigate how to add degrees of freedom to three dimensional GR without
adding too many, or how to construct ghost-free theories of massive gravitons in
three dimensions.

7The more conventional form of the central extension term: c
12 m2(m− 1)δm+n,0 can be obtained by a

shift in the L0 mode: L0 → L0 − c/24



3
Introducing Degrees of Freedom in

Three Dimensional Gravity

After looking at pure gravity in three dimensions, we now turn to the problem
of adding local degrees of freedom in the bulk in such a way to desribe the two
degrees of freedom of a massive spin-2. We look at several different approaches,
most of which can be written in a Chern-Simons–like form. After defining what
is meant precisely by Chern-Simons–like, we review the free massive spin-2
particle in a curved, maximally symmetric background, as described by Fierz-
Pauli theory. We then proceed to discuss non-linear extensions of the free the-
ory, based on parts of the review [V]. We then consider different known higher-
derivative theories of massive gravity and their CS–like formulation, including
Topologically Massive Gravity, New Massive Gravity and a parity violating
combination of the two, called General Massive Gravity. The last part of this
chapter is devoted to a treatment of Zwei-Dreibein Gravity and contains work
which has previously been published in [VI,VII].
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3.1 Introduction
In the last chapter we discussed three dimensional gravity and its relation to Chern-
Simons gauge theory. The theory does not propagate any local degrees of freedom
and the global characteristics of the theory can be formulated as a two dimensional
conformal field theory on the boundary of AdS3. In this chapter we would like to
investigate how to add local degrees of freedom for spin-2 excitations in the bulk,
i.e. how to make the three dimensional (pure gauge) graviton massive.

There are two main approaches which can be followed. We can either add an
explicit mass term for the graviton, or generate the mass term by adding higher de-
rivative corrections to GR. The first approach introduces the bulk degrees of freedom
by breaking the gauge symmetries of the theory. The latter approach can be achieved
in a way which preserves the gauge symmetries. The additional degrees of freedom
are introduced by the need to specify more initial data to solve the higher derivative
field equations. Both approaches have their own advantages and disadvantages, as
will become clear throughout the thesis.

We saw that the first-order formalism, or the noncoordinate basis, led to a very
simple Hamiltonian analysis of the theory and a clear relation with gauge theory.
These are features which we would like to preserve in the analysis of three dimen-
sional massive gravity theories, however, since the massive three dimensional spin-
2 particles do contain local degrees of freedom, we have to depart from the pure
Chern-Simons formulation. The desirable features can be preserved when we con-
sider theories which are “Chern-Simons–like”. These models are defined by a Lag-
rangian three-form which is written in terms of a collection of N Lorentz vector val-
ued one-form fields {ar a

µ dxµ} as

L =
1
2

grsar · das +
1
6

frstar · as × at . (3.1)

Here the indices r, s, t, . . . label the different one-forms, which define a “flavor space”
of fields. The symmetric grs is a metric on the flavor space of fields and we demand
that it is invertible. The totally symmetric collection of coupling constants frst can be
seen as a tensor on this flavor space and its indices can be lowered and raised by the
flavor space metric grs and its inverse. Like before, wedge products are implicit and
Lorentz indices are suppressed by denoting contractions with ηab and εabc as dots
and crosses respectively.

For a particular choice of the flavor space metric and tensor when N = 2 and
a1 a = ωa, a2 a = ea, the theory reduces to a Chern-Simons gauge theory describing
pure gravity in three dimensions.1 In fact, whenever the combinations

f r
stε

a
bc , ηabgrs , (3.2)

are, respectively, the structure constants of a Lie algebra and a group invariant sym-
1Note that we do allow the spin connection ωa to be one of the Lorentz vector valued one-forms,

even though technically the connection is not a Lorentz vector. The treatment of the general theory only
depends on the fact that the fields carry only one Lorentz index and not on its transformation properties
under local Lorentz transformations.
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metric tensor on this Lie algebra, then the three-form (3.1) is a pure Chern-Simons
three-form. However, the class of Chern-Simons models defined by the action (2.29)
is larger than the CS-models obtained in this way, since we only consider Lorentz
vector valued one-forms in the definition of the Chern-Simons–like models. The
definition of CS–like theories could be extended to include Lorentz scalar or Lorentz
tensor valued one-forms, however, the definition (3.1) is sufficient for our purposes.

For N > 2, we will continue to suppose that two of the one-forms are a dreibein
and a spin connection. There are then many ways to depart from pure three dimen-
sional gravity and this chapter will review some of the known theories of massive
gravity which fit the general model defined by (3.1). But before we try to tackle the
problem of giving a mass to the graviton in a non-linear theory, we discuss a free
massive spin-2 field in a fixed gravitational background.

3.2 Fierz-Pauli Theory
The action and field equations describing a free massive spin-2 particle were given
by Fierz and Pauli in 1939 [4]. They followed a field theoretical approach, demanding
Lorentz invariance and positivity of energy. In flat backgrounds, these requirements
can be rephrased in a group theoretical approach by demanding that the particle
states form unitary representations of the Poincaré group [73,74]. For massive fields
of integer spin, these requirements are formulated by the Fierz-Pauli equations. A
totally symmetric rank-s tensor ψµ1 ...µs describes a massive spin-s field when(

�−M2
)

ψµ1 ...µs = 0 , (3.3a)

∂µ1 ψµ1 ...µs = 0 , (3.3b)

ηµ1µ2 ψµ1µ2 ...µs = 0 . (3.3c)

A Lagrangian formulation for massive bosonic fields of arbitrary spin-s was presen-
ted by Singh and Hagen [75], for a review and more references see [76]. Here we
will focus on the s = 2 case. As was mentioned in the introduction, the free massless
spin-2 field equations are those of linearized general relativity. Hence, to arrive at
the massive spin-2 field equations, we start by considering the linearized Einstein
equations and add a mass term for the fluctuations around a maximally symmetric
background. Since most of this thesis makes use of the first-order CS–like formula-
tion, we will show in detail how the Fierz-Pauli equations for a massive spin-2 can
be derived from a first-order Lagrangian.

3.2.1 Linear 3D GR
To study a free massive spin-2 particle we expand the Einstein-Cartan action (2.28)
around a maximally symmetric background to second order in fluctuations and add
a mass term for those perturbations. The background dreibein and spin connection
are parameterized by ēa and ω̄a.

ea = ēa + κka , ωa = ω̄a + κva , (3.4)
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where κ is a small expansion parameter and ka and va are Lorentz vector valued one-
form fields parameterizing fluctuations around the background. The linear terms
vanish, as the background dreibein and spin connection satisfy the field equations

R̄a − 1
2

Λ(ē× ē)a = dω̄a +
1
2
(ω̄× ω̄)a − 1

2
Λ(ē× ē)a = 0 ,

T̄a = D̄ea = dēa + (ω̄× ē)a = 0 .
(3.5)

Here D̄ is the covariant exterior derivative with respect to the background spin con-
nection ω̄a and bars denote background quantities. Using these relations it can be
shown that any Lorentz-vector one-form f a satisfies

D̄D̄ f a = (R̄× f )a =
1
2

Λ ((ē× ē)× f )a =
1
2

Λεabcεbde ēd ēe fc . (3.6)

The action quadratic in the fluctuations (3.4) is

S(2) = −
∫ {

k · D̄v +
1
2

ē · (v× v−Λk× k)
}

, (3.7)

which leads to the linearized field equations

D̄va −Λ(ē× k)a = 0 , (3.8)
D̄ka + (ē× v)a = 0 . (3.9)

These are two coupled first-order differential equations which we can combine into
a single second-order differential equation for the field ka. Solving (3.9) for vµ

a gives

vµ
a = −det(ē)−1εµνρ

(
ēν

a ēµ b −
1
2

ēµ
a ēν b

)
D̄ρkσ

b . (3.10)

This we substitute into (3.8) and after converting the free indices to curved space
indices, we find

εµ
ρσ ēν a

(
D̄ρvσ

a −Λ(ēρ × kσ)
a) = 2 det(ē)Gµν(k) = 0 , (3.11)

where Gµν(k) is the linearized Einstein tensor. It is second order in derivatives on
kµν and defined as

Gµν(k) = ∇̄ρ∇̄(µkν)ρ −
1
2
�̄kµν −

1
2
∇̄µ∇̄νk +

1
2

ḡµν

(
�̄k− ∇̄ρ∇̄σkρσ

)
+ Λḡµνk− 2Λkµν .

(3.12)

It is transverse (∇̄µGµν(k) = 0) and invariant under linearized diffeomorphisms
(δkµν = ∇̄(µξν)) by construction. The field kµν is defined as

kµν ≡ kµ
a ēν

bηab . (3.13)
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In principle it contains a symmetric and an anti-symmetric part. However, when
substituting (3.10) into (3.8), we see that only the symmetric part of kµν remains in
the final expression, and so the k written in (3.11) is a symmetric two-tensor. Fur-
thermore, the anti-symmetric part of kµν can always be set to zero by a LLT.

3.2.2 Adding a mass term

We can now add a mass term for the fluctuations ka into the quadratic action (3.7).
In this formulation, there is a unique term quadratic in k. The resulting action is the
Fierz-Pauli action in a first-order form.

SFP = −
∫ {

k · D̄v +
1
2

ē ·
(

v× v− (Λ−M2)k× k
)}

, (3.14)

whereM is the Fierz-Pauli mass. The field equations derived by varying (3.14) with
respect to ka and va are now

D̄va −
(

Λ−M2
)
(ē× k)a = 0 , (3.15)

D̄ka + (ē× v)a = 0 . (3.16)

The presence of the mass term breaks the gauge symmetries of the theory, however,
the fields kµν ≡ kµ

a ēν
bηab and vµν ≡ vµ

a ēν
bηab are still symmetric, which now follows

from the equations of motion (3.15) and (3.16). By acting on the field equations with
a covariant derivative D̄ and using (3.6), we can derive the constraints

ēa ē · k = 0 , ēa ē · v = 0 , (3.17)

where it is assumed thatM2 6= 0. By invertibility of the background dreibein, these
equations imply that kµν and vµν are symmetric

k[µν] = 0 , v[µν] = 0 . (3.18)

The two first-order differential equations can again be written as a single second-
order differential equation. The result is now:

Gµν(k) = −
1
2
M2(kµν − ḡµνk) , (3.19)

where k = ḡµνkµν. Acting on this equation with a covariant derivative ∇̄µ gives

∇̄νk = ∇̄µkµν . (3.20)

After taking the trace of (3.19) we find

1
2

(
�̄k− ∇̄µ∇̄νkµν + 2(Λ−M2)k

)
= 0 . (3.21)
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The condition (3.20) reduces (3.21) to

(Λ−M2)k = 0 . (3.22)

This implies that, as long as Λ 6=M2, the trace of k is zero and (3.20) gives ∇̄µkµν =
0. Furthermore, for a transverse traceless kµν, we have that

Gµν(k) = −
1
2
(�̄− 2Λ)kµν . (3.23)

Now eqn. (3.19) reduces to the Fierz-Pauli equation for a free massive spin-2 particle
in a maximally symmetric background (3.3)(

�̄− 2Λ−M2
)

kµν = 0 , (3.24)

together with the subsidiary conditions

∇̄µkµν = 0 , k = 0 . (3.25)

A simple counting argument shows that there are two local degrees of freedom; a
symmetric two-tensor in three dimensions has 6 components, and the subsidiary
conditions restrict 4 of them.

3.2.3 Parity Violating Massive Fierz-Pauli
The two degrees of freedom described by the Fierz-Pauli equations correspond to
a helicity +2 and a helicity −2 state. Both helicity states have an equal mass and
the theory is even under a parity transformation. We can rewrite the Fierz-Pauli
equations to explicitly show both of the helicity states, by making use of the identity

Gµν(k) = −
1
2

ε(µ
αρεν)

βσ∇̄α∇̄βkρσ −
1
2

Λ(k(µν) − ḡµνk) . (3.26)

The Fierz-Pauli equation (3.19) can then be written in terms of linear derivative op-
erators DM as

(D̃MDMk)µν = 0 . (3.27)

Here

(D̃M)
ρ
µ = δ

ρ
µ −

1
det(ē)M

εµ
αρ∇̄α , (DM)

ρ
µ = δ

ρ
µ +

1
det(ē)M

εµ
αρ∇̄α , (3.28)

and the mass parameter M is related to the Fierz-Pauli mass as

M =
√
M2 −Λ . (3.29)

From eqn. (3.27) it becomes obvious that two helicity modes are propagated, with
the operator D̃M corresponding to a helicity +2 and DM to a helicity −2 mode. In



3.2 FIERZ-PAULI THEORY 43

the case of Fierz-Pauli theory, both helicities have the same mass and the theory is
invariant under M → −M, but we could easily imagine that this need not be the
case. Consider for instance

(D̃M1DM2 k)µν = 0 , (3.30)

with M1 6= M2. These equations violate parity and the two massive spin-2 modes
will have different masses. If we take one of the massive parameters to infinity,
the term involving the derivative in (3.28) goes to zero and effectively the theory
describes a single massive helicity state.

3.2.4 The partially massless point

From the trace of the Fierz-Pauli equation (3.22) it is obvious that the pointM2 = Λ
is special. At this point the Fierz-Pauli subsidiary condition k = 0 does not follow
from the equation of motion (3.19). However, this does not imply that the trace of
the spin-2 field will propagate. This is the partially massless point and a new gauge
symmetry emerges with a scalar gauge parameter λ(x) [77, 78]

δλkµν = ∇̄µ∇̄νλ(x) +M2 ḡµνλ(x) . (3.31)

The field equation for the partially massless mode may be written as

(D0k)µν = 0 , (3.32)

where D0 is defined as

(D0)
ρ
µ =

1
det(ē)

εµ
αρ∇̄α . (3.33)

The partially massless symmetry is a linearized gauge symmetry, which in most the-
ories remains an artifact of the linear approximation and vanishes at the non-linear
level [79]. This is not the case if the theory possesses conformal invariance, as we
will see in section 3.4.1.

3.2.5 Perturbative Unitarity: Absence of Tachyons and Ghosts
Thus far we have shown that Fierz-Pauli theory describes two massive helicity ±2
modes in a given background, however, we did not yet specify any conditions on
these modes. From a field theoretical point of view, these modes should have posit-
ive energy (i.e. they should not be ghosts) and propagate within the light-cone (they
should not be tachyonic). From a group theoretical perspective, the modes should be
unitary irreducible representations of the isometry group of the background space-
time. Let us review here briefly the conditions imposed by unitarity on the Fierz-
Pauli mass.

The Fierz-Pauli equation in AdS3 (3.24) can be solved with the group theoretical
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approach of [80]. In global coordinates, the AdS metric can be written as

ds2 =
`2

4

(
−du2 − 2 cosh(2ρ)dudv− dv2 + 4dρ2

)
, (3.34)

where u and v are light-cone coordinates. The solutions of (3.24) form representa-
tions of the SL(2, R)× SL(2, R) isometry group of AdS3. These representations can
be built up by acting with raising operators of the isometry algebra on a primary
state. A primary state was found in [80] and is given by

ψµν = e−ihu−ih̄v(cosh(ρ))−(h+h̄) sinh2(ρ)Fµν(ρ) , (3.35)

with Fµν(ρ) given by

Fµν(ρ) =


h−h̄

4 + 1
2 0

i((h−h̄)+2)
4 cosh ρ sinh ρ

0 1
2 −

h−h̄
4

i(2−(h−h̄))
4 cosh ρ sinh ρ

i((h−h̄)+2)
4 cosh ρ sinh ρ

i(2−(h−h̄))
4 cosh ρ sinh ρ

−1
cosh2 ρ sinh2 ρ

 . (3.36)

The constant weights h, h̄ obey h− h̄ = ±2, as well as the equation(
2h(h− 1) + 2h̄(h̄− 1)− 4− `2M2

)
= 0 . (3.37)

When the Fierz-Pauli mass M = 0, the modes are massless and obey (h(h − 1) +
h̄(h̄− 1)− 2) = 0. The weights which satisfy this equation and lead to normalizable
modes are (h, h̄) = (2, 0) and (0, 2). They are solutions of linearized Einstein gravity
in AdS3 and correspond to left- and right-moving massless gravitons.

When the Fierz-Pauli massM 6= 0, the weights obey (3.37). For those primaries
that do not blow up at the boundary ρ→ ∞, we obtain the following weights:

left-moving : h =
3
2
+

1
2

√
1 + `2M2 , h̄ = −1

2
+

1
2

√
1 + `2M2 , (3.38)

right-moving : h = −1
2
+

1
2

√
1 + `2M2 , h̄ =

3
2
+

1
2

√
1 + `2M2 . (3.39)

These weights correspond to left- and right-moving massive gravitons, with mass
M. The condition that these modes are normalizable implies that the weights of the
massive modes are restricted as h + h̄ ≥ 2 and hence the masses of the modes must
be real:

M2 ≥ 0 . (3.40)

The requirement for unitarity of the irrep in AdS3 thus translates to the positivity
of the Fierz-Pauli mass squared. We may therefore interpret this as the no-tachyon
condition.

Note that for scalar fields in AdS3 the absence of tachyons allows for a small
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negative mass squared, known as the Breitenlohner-Freedman bound [81]. For sym-
metric rank-2 tensors, the bound is (3.40) and a small negative mass squared is not
allowed [82].

The bound (3.40) translates to the massive parameter M defined in (3.29) as

|M`| ≥ 1 . (3.41)

Hence we can interpret this as the no-tachyon bound for a single massive helicity 2
state in AdS3.

Next to the no-tachyon condition, we still need to determine that the spin-2 mode
is not a ghost. For this the field equations are not sufficient and we need to consider
the Fierz-Pauli action (3.14). If we solve the first-order field equation for va (3.16) and
back-substitute then we find the following Lagrangian density for the symmetric
tensor kµν = k(µa ēν)

bηab:

LFP = −A
{

kµνGµν(k) +
1
2
M2

(
kµνkµν − k2

)}
,

(
k = ḡµνkµν

)
, (3.42)

where A is an arbitrary overall factor and Gµν(k) is the linearized Einstein tensor
(3.12). This is the Fierz-Pauli Lagrangian density for a spin-2 field of massM in an
AdS3 background; see e.g. [44], where the conventions used are the same as those
used here. From this result we learn that the no-ghost condition is A > 0. Next,
we diagonalise the Fierz-Pauli Lagrangian 3-form (3.14) by writing it in terms of the
new Lorentz-vector one-form fields ka

± defined by

ka = ka
+ + ka

− , v = Mka
+ −Mka

− . (3.43)

Here M =
√
M2 −Λ. We find that

LFP = −AM
(
k+ · D̄k+ + Mē · k+ × k+

)
+ AM

(
k− · D̄k− −Mē · k− × k−

)
. (3.44)

The k± field propagates a single spin-2 mode of helicity ±2, and for both to have
positive energy we require A > 0. However, the two modes are exchanged by par-
ity, which is a symmetry of the Fierz-Pauli action, so if the helicity ±2 mode has
positive energy then so does the ∓2 mode. This means that A > 0 is the condition
for either helicity mode alone to have positive energy, the action for a single mode
being obtained by setting either k+ ≡ 0 or k− ≡ 0. Hence the no-ghost condition for
either helicity mode is

A > 0 . (3.45)

These no-ghost and no-tachyon conditions derived here will come to use later when
we discuss the perturbative unitarity of various massive gravity theories on AdS3
backgrounds in chapter 5.
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3.3 Non-linear Fierz-Pauli and Scalar Ghosts

In the last section we discussed the free massive spin-2 action found by Fierz and
Pauli. We started explicitly from the first-order form, where there is a unique mass-
term which could be added to the linear Einstein-Hilbert action. In the second-order
formulation, the Fierz-Pauli action is

SFP = −1
2

∫
d3x
√
−g
{

kµνGµν(k) +
1
2
M2

(
kµνkµν − k2

)}
. (3.46)

If the action is written in this form, it is not so obvious to see that the mass term is
unique. In fact, it seems that the combination appearing in the mass term is fine-
tuned to have a coefficient of −1 in front of the k2 term. However, this is the unique
mass term for a free massive spin-2 as a closer look will verify. Moving away from
the Fierz-Pauli tuning will introduce a third degree of freedom, which will propagate
with a wrong sign for the kinetic term and hence it is a scalar ghost.

To see the scalar ghost appearing, let us suppose we do not restrict ourselves to
the Fierz-Pauli tuning and consider the action (3.46) with an arbitrary coefficient α
in front of the k2 term. The field equation derived from that action is

Gµν(k) = −
1
2
M2(kµν + αḡµνk) . (3.47)

Acting on this equation with a covariant derivative now gives

∇̄µkµν = −α∇̄νk . (3.48)

Using this relations, the trace of (3.47) reads

1
2

(
(1 + α)�̄+ 2(Λ−M2)

)
k = 0 . (3.49)

The Fierz-Pauli subsidiary condition k = 0 only follows from this equation if α = −1
(and, like before Λ 6= M2). If α 6= −1, equation (3.49) is a Klein-Gordon equation
for the scalar quantity k. To see that its kinetic term carries the wrong sign, we
decompose kµν into a transverse traceless two-tensor k̃µν, a vector field Aµ and a
scalar field φ, representing the trace of kµν

kµν = k̃µν + ∇̄(µ Aν) + 2∇̄µ∇̄νφ + ḡµνφ . (3.50)

Substituting this into the Fierz-Pauli action (3.46), we see that the vector part de-
couples and the kinetic term for the scalar field φ carries a negative sign with respect
to the kinetic term of the transverse traceless field k̃µν. Hence, if the overall sign of
the action is such that the massive spin-2 modes have positive energy, then the scalar
mode will be a ghost.
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3.3.1 The Boulware-Deser ghost
Gravitation is an inherently non-linear theory and hence to understand the effects of
adding a small mass to the graviton, we should investigate non-linear extensions of
Fierz-Pauli theory. In the last section we saw that in a second-order formulation, a
tuning of parameters was required in order to correctly describe a free massive spin-
2 mode. When we consider non-linear extensions of the theory, we may expect this
scalar ghost mode to turn up again, only now at higher orders in perturbation theory.
In fact, it was shown in [12] that simply replacing the kinetic term in the Fierz-Pauli
action by the non-linear kinetic term of general relativity (

√−gR) indeed leads to a
theory with a scalar ghost in its spectrum. This specific scalar ghost now carries the
name of the authors of [12]: the Boulware-Deser ghost.

To see the origin of the Boulware-Deser ghost, we consider the theory defined by
the action

S =
1
κ2

∫
ddx

√
−g
{

R[g]− 1
4

m2gµν

(0)g
ρσ

(0)

(
kµρkνσ − kµνkρσ

)}
. (3.51)

Here R is the Ricci tensor for the metric gµν. A reference metric g(0) µν is introduced
in order to raise and lower indices on the metric perturbations kµν. Usually they
are related as gµν = g(0)µν + kµν. We consider the theory in d dimensions for the
moment, and move back to three dimensions at the end of this section.

We are now dealing with a new theory, and should investigate whether it propag-
ates the right amount of degrees of freedom to describe a massive graviton. To this
end one may decompose the metric gµν in ADM variables; the spatial metric gij, the
lapse N and the shift Ni and investigate the phase space of the theory through the
Hamiltonian. In general relativity one will find primary constraints that ensure that
the canonical momenta of the lapse and shift vanish. These variables then appear
in the Hamiltonian as Lagrangian multipliers for a set of secondary constraints. In
d dimensions the counting of degrees of freedom proceeds as follows. The spatial
component of the metric is a symmetric d − 1 matrix, so it has 1

2 d(d − 1) compon-
ents. From this we subtract the d constraints enforced by the lapse and shift, leading
to a total of 1

2 d(d− 3) degrees of freedom.
The addition of a mass-term in the action (3.51) will introduce terms quadratic

in the lapse and shift functions, so that they do not play the role of Lagrange mul-
tipliers any more, but instead become auxiliary fields. As a result, the degrees of
freedom propagated by the theory are given by the 1

2 d(d − 1) components of the
spatial metric. In 3 dimensions, these are 3 degrees of freedom, 2 for the massive
graviton and in addition there is an extra ghost-like scalar degree of freedom. This
is the Boulware-Deser (BD) ghost [12].

3.3.2 Removing the ghost: dRGT Massive Gravity
The origin of the ghost mode in (3.51) can be seen in the Stückelberg formulation
of the theory, where the massive graviton is decomposed into helicity ±2, helicity
±1 and helicity 0 modes, like in (3.50). In four spacetime dimensions the lead-
ing order interactions for the helicity 0 mode are suppressed by an energy scale
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Λ5 = (MPm4)1/5. The dynamics of this mode can then be studied in the decoup-
ling limit of [83]: MP → ∞, m → 0 and Λ5 fixed. This limit sends all operators
suppressed by an energy scale higher than Λ5 to infinity and thus decouples them
from the theory. The kinetic term of the helicity 0 mode now receives four-derivative
contributions which signals that the scalar sector propagates two degrees of free-
dom. One is a massless scalar field and the other the Boulware-Deser ghost, with
a mass of order of the energy scale Λ5. One may wonder whether this theory will
still make sense as an effective theory of massive gravity at energies lower than this
cut-off scale, so before the mass of the ghost mode becomes of order one. However,
the distance scale set by the BD ghost coincides with the scale at which quantum
corrections become important [83]. This scale is parametrically larger than the Vain-
shtein radius2, implying that the quantum theory takes over before the classical non-
linearities can restore the proper limit with general relativity. So in order to have a
suitable effective theory of massive gravity, we can try to raise the cut-off scale by
adding higher-order interactions to the theory.

These ideas were investigated by de Rham, Gabadaze and Tolley (dRGT) in [13,
14]. They considered an action with an Einstein-Hilbert kinetic term and an interac-
tion potential Un(g(0), k), defined as

SdRGT ∝
∫

ddx

{√
−gR− 1

4

√
−g(0)m2

∞

∑
n=2

Un(g(0), k)

}
, (3.52)

with

U2 = [k2]− [k]2 ,

U3 = a1[k3] + a2[k][k2] + a3[k]3 , (3.53)

U4 = b1[k4] + b2[k][k3] + b3[k2][k2] + b4[k2][k]2 + b5[k]4 ,
...

The square brackets denote taking the trace with the reference metric [k] = g(0) µνkµν.
Notice that the first term, U2, is just the Fierz-Pauli mass term. After introducing the
Stückelberg decomposition in this interaction potential, one can see that at every
order in n higher derivative kinetic terms for the scalar field will appear. The trick
is now to tune the coefficients (ai for U3, bi for U4, etc.) in such a way that the
higher derivative scalar terms become a total derivative. This is possible at every
order in n and fixes all but two coefficients in four dimensions. The tuning of these
coefficients removes all scalar interaction terms suppressed by any scale Λ < Λ3 =
(m2MP)

1/3. Then the new decoupling limit may be taken with Λ3 fixed and the
consequent effective Lagrangian has at most second-order derivatives on the scalar
field, signalling the absence of the ghost mode in the decoupling limit.

In order to study the ghost problem beyond the decoupling limit, the authors of

2The Vainshtein radius is the length scale at which non-linear effects in Fierz-Pauli theory become

important. It is given by rV =
(

GN M
m4

)1/5
in four spacetime dimensions.
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[14] resummed the interaction terms (3.53) into a fully non-linear theory of massive
gravity involving elementary symmetric polynomials of the square root matrix

√
g−1 f ,

where fµν is the reference metric (see also [15]). This fully non-linear theory was
shown to be ghost free in [16] (see also [19, 84–89]). This is due to the fact that after
an ADM decomposition of the metric, the shift function N remains a Lagrange mul-
tiplier and enforces a secondary constraint. The number of degrees of freedom is
then 1

2 d(d − 1) − 1 which correctly describes the degrees of freedom of a massive
graviton in d dimensions.

In d dimensions the ghost-free dRGT massive gravity theory can be written as
[15]:

SdRGT ∝
∫

ddx
√
−g

[
R[g]− m2

4

d

∑
n=0

β̃nSn

(√
g−1 f

)]
. (3.54)

Here Sn(X) is the n-th elementary symmetric polynomial for the matrix X. It is given
by

Sn(X) =
1

n!(d− n)!
εµ1µ2 ...µd εν1ν2 ...νd X

µ1
ν1 · · ·X

νn
µn δ

µn+1
νn+1 · · · δ

µd
νd . (3.55)

It vanishes identically for n > d, hence in principle, there are d + 1 free parameters
β̃n in (3.54). However, the d-th symmetric polynomial is just

√
−det( f ) and does

not contribute to the equations of motion, reducing the parameter space by one.
Furthermore, another parameter is fixed by demanding that flat space is a solution
to the field equations, leaving d− 1 free parameters.

In this formulation, dRGT massive gravity seems very removed from the CS–like
models we introduced in chapter 3.1. However, in ref. [90] a first-order form of the
action (3.54) was presented in which the interaction terms greatly simplify. Under
certain assumptions, the dRGT model may be written in terms of a vielbein ea and a
“reference vielbein” ēa as

SdRGT ∝
∫

ddx det(e)R[e]

− m2

4

∫ d

∑
n=0

βnεa1a2 ...ad ea1 ∧ · · · ∧ ean ∧ ēan+1 ∧ · · · ∧ ēad .
(3.56)

The parameters βn are related to the β̃n as

βn =
β̃n

n!(d− n)!
. (3.57)

The interaction terms are such that, assuming that the product ēµ
aeν a is symmet-

ric3 [92], the interaction terms reproduce the dRGT interaction terms in (3.54) when

3This condition, which is also important for the Hamiltonian analysis of the theory, does not generically
follow from the equations of motion of the theory as shown in [91]. In three dimensions, it follows from
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ēa is associated with the reference metric and ea with the dynamical metric. In three
dimensions, the dRGT massive gravity model can then be written (in our usual con-
ventions with implicit wedge products and Lorentz indices) as

LdRGT = −e · R(ω)− α1
m2

6
e · e× e +

m2

2
(

β′1e · e× ē + β′2e · ē× ē
)

. (3.58)

This formulation is a lot closer to the Chern-Simons–like form of (3.1). In fact, it
would fall into this class of model, if it was not for the fact that the flavor space metric
grs is not invertible. This is due to the fact that the Lagrangian three-form (3.58)
depends on a fixed reference metric, which does not have any kinetic terms. This
feature is responsible for the broken diffeomorphism invariance in dRGT massive
gravity, which is the cause for the introduction of local degrees of freedom.

3.4 Auxiliary fields and Higher Derivatives
We shall now return to study theories with the general Chern-Simons–like form of
(3.1). First we will review some known three-dimensional gravity theories which
fit this form. In particular, this section will focus on higher-derivative theories of
massive gravity in 3D. The idea here is somewhat different from the dRGT approach
of the last section; now theories are studied which describe a massive spin-2 in a dy-
namical gravitational setting. Hence, the gauge symmetries of 3D GR are not broken
and the degrees of freedom of a massive spin-2 are introduced by the presence of
higher-derivative terms in a metric formulation. These higher-derivative terms are
introduced by auxiliary fields in the Chern-Simons–like formulation of three dimen-
sional gravity.

Let us suppose that we start with a general Chern-Simons–like theory involving a
dreibein and a spin connection. In order to preserve the local Lorentz symmetry, the
spin connection may only come in specific combinations. These are, as the covariant
derivative of some field

DXa = dXa + (ω× X)a , (3.59)

in the Riemann tensor

Ra = dωa +
1
2
(ω×ω)a , (3.60)

or as a Lorentz-Chern-Simons term in the action

LLCS =
1
2

ω ·
(

dω +
1
3

ω×ω

)
. (3.61)

In the last chapter, we already analyzed three dimensional gravity, which contains
only the dreibein and a spin connection. Here we will explore theories which extend
these models by using extra, auxiliary fields.

the field equations only if the linear combination β1ea + β2 ēa is invertible.
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3.4.1 Conformal Gravity

For a general model with N = 3 fields there is a combination which is also a Chern-
Simons gauge theory; one of the conformal group in 3D, called conformal gravity
(CG) [93]. It is defined as

LCG =
1
µ

LLCS +
1
µ

f aDea , (3.62)

where f a is an auxiliary field. It serves as a Lagrange multiplier for the torsion con-
straint.

The above action is a Chern-Simons theory (2.29) for the Lie algebra valued con-
nection one-form [93]

A = eaPa + ωa Ja + f aKa + bD . (3.63)

Here Pa, Ja, Ka and D span the conformal SO(3, 2) group and are the generators of
translations, local Lorentz transformations, special conformal transformations and
dilatations, respectively. Their commutators are given by

[Pa, Jb] = εabcPc , [Ka, D] = −Ka , [Pa, D] = Pa ,
[Ja, Jb] = εabc Jc , [Pa, Kb] = −εabc Jc + ηabD ,

[Ka, Jb] = εabcKc , [Pa, Pb] = [Ja, D] = [Ka, Kb] = 0 .
(3.64)

The corresponding non-degenerate bilinear form is

tr(Ja, Jb) = ηab , tr(Pa, Kb) = −ηab , tr(D, D) = 1 . (3.65)

Using these relations in (2.29), the Chern-Simons action with the connections (3.63)
can be written as

S =
k

4π

∫
{LLCS − f · De + bdb + 2e · f b} . (3.66)

For an invertible dreibein, it is possible to partially fix the gauge symmetries to set
b = 0 [93]. For this gauge choice, the action is equivalent to (3.62) and the field
equations for f a, ωa and ea are respectively

Dea = 0 ,
Ra + (e× f )a = 0 ,
D f a = 0 .

(3.67)

The first of these equations is the torsion constraint and allows one to solve the spin
connection in terms of derivatives of the dreibein. The second equation can be solved
for f a in terms of derivatives acting on the dreibein. Using the identity (2.26), we
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obtain

fµν ≡ fµ
aeν

bηab = −
(

Rµν −
1
4

gµνR
)
≡ −Sµν . (3.68)

Here Sµν is called the Schouten tensor. Using the solution of f a, we may express the
final equation of motion as:

det(e)−1εµ
αρ∇αSρν ≡ Cµν = 0 , (3.69)

where Cµν is the Cotton tensor.

We will now show that the linear theory contains two massless modes and a
partially massless mode. To this end, we perturb the dreibein and spin connection
around a maximally symmetric background as in (3.4). The auxiliary field is propor-
tional to the Schouten tensor, whose background value is S̄µν = Λ

2 ḡµν. Hence we
expand the auxiliary field as:

f a = −Λ
2
(ēa + κka) + κpa . (3.70)

The quadratic Lagrangian of CG then becomes

L(2)
CG = µ−1

{(
p− Λ

2
k
)
·
(
D̄k + ē× v

)
+

1
2

v ·
(
D̄v−Λē× k

)}
. (3.71)

The p equation of motion enforces the equation (3.9) and hence we can substitute the
solution to this equation, given by (3.10), into the action. The result is the Lagrangian
density

LCG = µ−1εµα
ρ∇̄αkρνGµν(k) . (3.72)

The linear field equations then become

(D0G(k))µν = 0 . (3.73)

In AdS, where Λ = −1/`2, we may write

Gµν(k) =
1

2`2 (D
LDRk)µν , (3.74)

where DL/R is given by (3.28) with M = ±1/`

(DL/R)
ρ
µ = δ

ρ
µ ±

`

det(ē)
εµ

αρ∇̄α . (3.75)

The linear field equations can then be written as

(D0DLDRk)µν = 0 . (3.76)
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In this form it is very clear that the linear theory describes a partially massless mode
and two massless gravitons, all of which are pure gauge modes and do not propagate
any local degrees of freedom. In that respect, the conformal invariance of the CG
model can be seen as a non-linear generalization of the partially massless gauge
symmetry introduced in the last section.

The metric form of the CG action is related to a gravitational Chern-Simons action
for the Christoffel connection

SgCS =
k

4π

∫
M

d3x εµνρΓλ
µσ

(
∂νΓσ

ρλ +
2
3

Γσ
ντΓτ

ρλ

)
. (3.77)

This formulation differs from the first-order form by a total derivative bulk term and
a boundary term [63]

SCG − SgCS =
k

12π

∫
M

tr(e−1de)3 − k
4π

∫
∂M

tr(ωdee−1) . (3.78)

For more details on conformal gravity and its relation to holography, we refer to
[94–96].

3.4.2 Topologically Massive Gravity

The simplest model which is not a pure CS gauge theory, but propagates a single
degree of freedom is called Topologically Massive Gravity (TMG) [41,42]. The theory
is defined as the sum of conformal gravity and Einstein-Cartan theory. Its first-order
CS–like formulation is [65, 97]

LTMG = −σe · R +
Λ
6

e · e× e +
1
µ

f · De +
1

2µ
ω ·
(

dω +
1
3

ω×ω

)
. (3.79)

Here σ = ±1 is a sign parameter, which is introduced for later convenience. The
inclusion of Einstein-Cartan theory into CG introduces a mass scale in the theory.
Hence the conformal symmetry of the theory is broken. In the linear theory this
gives a mass to the partially massless mode and the linear spectrum consists out of
a single massive mode of helicity +2 (or −2, depending on the sign of µ).

Again the field equations for f a, ωa and ea may be solved to obtain a single,
higher-derivative field equation for the dreibein. In this case, the field equations are

Dea = 0 ,
Ra + (e× f )a = 0 ,
1
µ
D f a + σ(e× f )a +

Λ
2
(e× e)a = 0 .

(3.80)

The first two equations remain identical to the CG case, and hence the solutions for
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ω(e) and f (e) are the same. The final equation of motion becomes

σGµν + Λgµν +
1
µ

Cµν = 0 . (3.81)

This field equation can also be derived from an equivalent, metric form of the TMG
action. This is the sum of the Einstein-Hilbert action and a gravitational Chern-
Simons term. Its Lagrangian density is

LTMG =
√
−g
(

σR− 2Λ +
1
µ

εµνρΓλ
µσ

(
∂νΓσ

ρλ +
2
3

Γσ
ντΓτ

ρλ

))
. (3.82)

The quadratic action can be found by expanding the fields around a maximally sym-
metric background. The dreibein and spin connection are expanded as in (3.4) and
the auxiliary field f a as in (3.70). The quadratic Lagrangian then becomes

L(2)
TMG =−

{
σ

(
k · D̄v +

1
2

ē · (v× v−Λk× k)
)
− 1

2µ
v ·
(
D̄v−Λē× k

)
−
(

p− Λ
2µ

k
)
·
(
D̄k + ē× v

) }
. (3.83)

The equation of motion of pa is equivalent to (3.9) and hence the solution for va in
terms of ka is unchanged with respect to (3.10). Substituting this into the action, we
find a third-order derivative action for kµν,

L(2)
TMG = σkµνGµν(k) +

1
µ

εµα
ρ∇̄αkρνGµν(k) . (3.84)

In AdS, where Λ = − 1
`2 , the linear field equations can be written as

(DMDLDRk)µν = 0 , (3.85)

where M = σµ. It is now clear that the theory propagates a single massive state with
helicity +2 or −2, depending on the sign of M.

3.4.3 New Massive Gravity

The examples of conformal gravity and Topologically Massive Gravity nicely illus-
trate how we can use auxiliary vector valued one-forms in a Chern-Simons–like the-
ory to obtain higher-derivative terms in a metric formulation of gravity. The field
equations (3.67) and (3.80) in this form have an iterative quality about them. The
first equation (Dea = 0) allows one to solve the spin connection in terms of the de-
rivatives on the dreibein. The second equation gives the auxiliary field in terms of
derivatives on the spin connection (or in terms of the Riemann curvature two-form).
We could continue this process and introduce a fourth field ha and demand its field
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equation fixes it in terms of derivatives on f a. A minimal way would be to write:

Dea = 0 ,
Ra + (e× f )a = 0 ,

D f a −m2(e× h)a = 0 ,

(3.86)

where the convention for the new mass parameter m and its sign are chosen for later
convenience. The auxiliary fields may be solved for in terms of derivatives of the
dreibein. The result is

fµν = −Sµν , hµν = − 1
m2 Cµν . (3.87)

Hence the field f contains two derivatives of the metric, while h has three. The
equations (3.86) can be integrated to a parity even action with no more than four
derivatives of the metric. Since h is odd under parity, we use it to multiply the torsion
term in the action, which results in a parity even term. The auxiliary field f , even
under parity, must then multiply the second equation in (3.86). The third equation
will follow from varying ωa. The result, plus the Einstein-Cartan Lagrangian, is

LNMG = −σe · R +
Λ0

6
e · e× e + h · De− 1

m2 f ·
(

R +
1
2

e× f
)

. (3.88)

Here σ = ±1 is a sign parameter. This is the first-order form of the New Massive
Gravity action [45,98]. Its variation with respect to ha, f a and ωa gives the equations
(3.86), while variation with respect to ea gives

Dha − σRa +
Λ0

2
(e× e)a − 1

2m2 ( f × f )a = 0 . (3.89)

Substituting the solutions for h and f into this equation gives a fourth-order dif-
ferential equation, which can equivalently be derived from varying the Lagrangian
density

LNMG =
1
2

{
σR− 2Λ0 +

1
m2

(
RµνRµν −

3
8

R2
)}

. (3.90)

This is the original NMG Lagrangian as it was introduced in [43, 44].

To show that the linear theory contains a massive spin-2 mode, we expand the
fields ea and ωa as in (3.4) and, since the auxiliary field f a is still proportional to the
Schouten tensor, we expand it as (3.70). The second auxiliary field, ha is proportional
to the Cotton tensor, which vanishes on maximally symmetric backgrounds, so we
take

ha = κqa . (3.91)

The background field equations (3.5) are satisfied when Λ solves the quadratic equa-
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tion

Λ0 = Λ
(

σ +
Λ

4m2

)
. (3.92)

The quadratic Lagrangian three-form reads,

L(2)
NMG =−

(
σ− Λ

2m2

)(
k · D̄v +

1
2

ē · (v× v−Λk× k)
)

− 1
m2

{
p ·
(
D̄v−Λē× k + 1

2 ē× p
)
+ q ·

(
D̄k + ē× v

) }
.

(3.93)

After eliminating va and qa by using their equations of motion, the Lagrangian re-
duces to the density,

L(2)2 = −σ̄ kµνGµν(k)−
2

m2 pµνGµν(k)−
1

2m2 (pµν pµν − p2) , (3.94)

where

σ̄ = σ− Λ
2m2 . (3.95)

The Lagrangian may be diagonalized by a shift in the k field

kµν → kµν +
1

m2σ̄
pµν . (3.96)

It reduces to the sum of a massless mode, plus a Fierz-Pauli Lagrangian:

L(2)NMG = −σ̄kµνGµν(k) +
1

m4σ̄

(
pµνGµν(p) +

1
2
M2

(
pµν pµν − p2

))
, (3.97)

with Fierz-Pauli mass

M2 = −σm2 +
Λ
2

= −σ̄m2 . (3.98)

The NMG action is a non-linear extension of Fierz-Pauli theory in three dimensions.
However, there is a problem. The two kinetic terms in (3.97) come with opposite
signs. This means that, depending on the sign of σ̄, either the massive or the mass-
less mode will have negative energy. In flat space, where Λ = 0, this problem can
be resolved by taking σ = −1. Then the kinetic term for the Fierz-Pauli part carries
the correct sign. The pure gauge mode kµν has negative energy, but since it does not
propagate, this is no serious problem. In AdS, this does lead to a more serious prob-
lem, since the massless modes correspond to the boundary gravitons and a wrong
sign kinetic term will lead to a negative mass for the BTZ black hole and a negative
central charge, as we will see in more detail in chapter 5.
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3.4.4 General Massive Gravity
New Massive Gravity, as obtained in the last section, is the unique way to obtain a
parity even CS–like action with two auxiliary fields resulting in a fourth-order de-
rivative extension of GR. But if we relax the assumption of preserving parity, we
have more options. We can, for instance, supplement NMG with the parity violat-
ing Lorentz-Chern-Simons term (3.61), resulting in General Massive Gravity (GMG).
Adding the Lorentz Chern-Simons term to NMG does not affect the number of local
degrees of freedom and the linear theory now describes two helicity ±2 states with
different masses.

The GMG Lagrangian three-form is given in a CS–like form as [45]:

LGMG = LNMG +
1
µ

LLCS . (3.99)

In the limit where m → ∞, this reduces to the TMG Lagrangian and a limit where
µ→ ∞ gives NMG. The field equations are now

Dea = 0 ,
Ra + (e× f )a = 0 ,

D f a −m2(e× h)a − m2

µ
Ra = 0 ,

Dha − σRa +
Λ0

2
(e× e)a − 1

2m2 ( f × f )a = 0 ,

(3.100)

which gives for the auxiliary fields

fµν = −Sµν , hµν = − 1
µ

Sµν −
1

m2 Cµν . (3.101)

The linearized equations of motion now describe the two helicity states of a massive
mode with masses m+ and m−:

(Dm+Dm−DLDRk)µν = 0 . (3.102)

The masses m± are related to the parameters of the theory as

m± =
m2

2µ
±

√
m4

4µ2 −
Λ
2
−m2σ . (3.103)

In the limit to NMG, where µ→ ∞ this gives

m2
± = −

(
σm2 +

1
2

Λ
)
=M2 −Λ , (3.104)

withM2 the Fierz-Pauli mass in NMG, given by (3.98). In the TMG limit, m2 → ∞
(and µ > 0), we have that m+ → ∞. One of the massive modes thus becomes
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infinitely heavy and the theory describes a single massive helicity state with mass
m− = σµ.

3.5 Zwei-Dreibein Gravity

As we saw in the preceding sections, the non-linear extensions of Fierz-Pauli dis-
cussed thus far are in some way or another dissatisfactory. In the dGRT model, we
found a scalar ghost-free model which is fully non-linear, but at the expense of in-
troducing a reference field. Furthermore, we broke the gauge symmetries of general
relativity, which we know how to handle so well in the Chern-Simons formulation
of gravity. This complicates a further classification of the field theory dual to dRGT
in AdS spacetimes (for attempts see however [99–102]).

NMG is also a ghost-free construction of three dimensional massive gravity in
flat space.4 The problem here arises when we consider the theory in AdS space,
where positive energy for the massive mode cannot be reconciled with a positive
boundary central charge (see for more details chapter 5). Hence, it is worth the effort
to look for different, or more general non-linear theories of massive spin-2 modes,
while retaining the computational advantages of the Chern-Simons–like model.

One such example is Zwei-Dreibein Gravity (ZDG) [103]. It extends both dRGT
and NMG to a more general class of theories in the following sense. In ZDG, the
reference dreibein of dRGT is promoted to a fully dynamical dreibein, with corres-
ponding spin connection. The theory can thus be thought of as a first-order formu-
lation of a bimetric gravity [17, 18, 90]. Simultaneously, ZDG extends NMG in the
Chern-Simons–like form by loosening the assumption that the fields f a and ha are
auxiliary. By auxiliary here we mean, that they can be solved for in terms of a finite
number of derivatives acting on the dreibein, and that they can be eliminated from
the action in favor of higher-derivative terms.

In this section we will study the Zwei-Dreibein Gravity model in full detail, fol-
lowing the discussion presented in [103] and [104]. We will present the model and
give its linear theory. Then, we will show how the ZDG model is related to dRGT
massive gravity and NMG. Finally, we show the relation between ZDG and a higher
derivative theory. We show that the four coupled first-order field equations of ZDG
can be written in terms of a single equation for a metric with an infinite amount
of higher-derivate terms. However, this reformulation of the ZDG field equations
cannot be derived from varying an action containing an infinite amount of higher-
derivative contributions with respect to the metric; the ZDG action can only be writ-
ten in terms of the two dreibeine.

4The absence of the Boulware-Deser ghost in NMG, along with its Hamiltonian analysis will be treated
in the next chapter.
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3.5.1 The ZDG model
In three dimensions, Zwei-Dreibein Gravity can be described as a family of actions
with Lagrangian three-form [103]:

LZDG = −MP

{
σe1 · R1 + e2 · R2 +

α1

6
m2e1 · e1 × e1 +

α2

6
m2e2 · e2 × e2

− 1
2

m2β1e1 · e1 × e2 −
1
2

m2β2e1 · e2 × e2

}
.

(3.105)

The basic variables of this model are two Lorentz vector valued one-forms, the drei-
beine eI

a with I = 1, 2, and a pair of Lorentz vector valued connection one-forms
ωI

a, whose curvature two-forms RI
a are given by:

RI
a = dωI

a +
1
2
(ωI ×ωI)

a . (3.106)

The independent parameters of (3.105) are two cosmological parameters αI , two
coupling constants β I and the Planck mass MP. Besides these, we have introduced a
convenient, but redundant parameter m2 with dimension mass-squared and a sign
parameter σ = ±1.

The equations of motion for e1
a, e2

a and ωI
a, derived from the Lagrangian density

(3.105) are given by:

0 = σRa
1 +

1
2

m2 [α1(e1 × e1)
a − 2β1(e1 × e2)

a − β2(e2 × e2)
a] , (3.107)

0 = Ra
2 +

1
2

m2 [α2(e2 × e2)
a − β1(e1 × e1)

a − 2β2(e1 × e2)
a] , (3.108)

0 = Ta
I . (3.109)

Here, the Ta
I are the torsion 2-forms, given by:

Ta
I = DIea

I ≡ dea
I + (ωI × eI)

a , (3.110)

where DI is the covariant derivative with respect to ωI
a for I = 1, 2. Note that the

curvature and torsion 2-forms satisfy the Bianchi identities:

DI Ra
I = 0 , DI Ta

I = (RI × eI)
a . (3.111)

Each of the kinetic terms of the dreibeine is invariant under their own diffeomor-
phisms and local Lorentz transformations. Due to the presence of the interaction
term, these symmetries are broken to their diagonal subgroups, defined by identify-
ing the two sets of gauge parameters.

ZDG allows for maximally symmetric vacua, given by:

e1
a = ēa , e2

a = γēa , ωI
a = ω̄a , (3.112)
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where γ is a scaling parameter. The ēa and ω̄a are a dreibein and spin connection for
a maximally symmetric spacetime with cosmological constant Λ and as such obey:

dω̄a +
1
2
(ω̄× ω̄)a − 1

2
Λ(ē× ē)a = 0 , (3.113)

D̄ēa ≡ dēa + (ω̄× ē)a = 0 . (3.114)

Indeed, it can then be seen that (3.112) is a solution of the ZDG equations of motion,
provided that the scaling parameter γ and cosmological constant Λ obey:

α1 = 2γβ1 + γ2β2 − σ
Λ
m2 , γ2α2 = β1 + 2γβ2 −

Λ
m2 . (3.115)

For given values of the parameters αI , β I , these can be seen as two equations that
can be solved to express γ and Λ in terms of the ZDG parameters.

3.5.2 Linearized theory

We will now linearize ZDG around an AdS3 spacetime with cosmological constant
Λ, characterized by the dreibein ēa and spin connection ω̄a as described above. We
thus expand the two dreibeine and spin connections, taking the scaling parameter γ
of (3.112) into account, as follows:

e1
a = ēa + κk1

a , ωI
a = ω̄a + κvI

a , (3.116)
e2

a = γ (ēa + κk2
a) ,

where κ is a small expansion parameter. The linear terms in the expansion of the
Lagrangian density (3.105) cancel when eqs. (3.115) hold. The quadratic Lagrangian
for the fluctuations kI µ

a and vI µ
a is given by:

L(2) = −σMP

[
k1 · D̄v1 +

1
2

ē · (v1 × v1 −Λk1 × k1)

]
−γMP

[
k2 · D̄v2 +

1
2

ē · (v2 × v2 −Λk2 × k2)

]
(3.117)

−1
2

m2γ(β1 + γβ2)MP ē · (k1 − k2)× (k1 − k2) .

Provided σ + γ 6= 0, this Lagrangian can be diagonalized by performing the linear
field redefinitions

(σ + γ)k+a = σk1
a + γk2

a , k−a = k1
a − k2

a ,
(σ + γ)v+a = σv1

a + γv2
a , v−a = v1

a − v2
a . (3.118)
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In terms of these fields the linearized Lagrangian becomes:

L(2) = −(σ + γ)MP

[
k+ · D̄v+ +

1
2

ē · (v+ × v+ −Λk+ × k+)
]

− σγ

(σ + γ)
MP

[
k− · D̄v− +

1
2

ē · (v− × v− −Λk− × k−) (3.119)

+
1
2
M2 ē · k− × k−

]
,

where the mass parameterM is given in terms of the ZDG parameters as:

M2 = m2(β1 + γβ2)
σ + γ

σ
. (3.120)

The first line in (3.119) is just the linearized Einstein-Cartan Lagrangian (3.7) for the
fields k+a and v+a. The remainder is the Fierz-Pauli Lagrangian (3.14) for a massive
spin-2 with Fierz-Pauli mass (3.120).

When σ + γ = 0, the massive mode becomes massless and the linearized Lag-
rangian cannot be diagonalized. At this point, a new solution can be found with
logarithmic fall-off behavior towards the AdS3 boundary and it can be argued that
the dual theory is a logarithmic CFT. We will return to this special case in chapter 8.

3.5.3 Scaling Limits of ZDG

Since ZDG can be seen as both an extension of dRGT massive gravity and of New
Massive Gravity, it is not so surprising that both theories are contained within ZDG
as a scaling limit. Here we show this relation explicitly.

dRGT limit

To obtain the dRGT model discussed in chapter 3.3.2, we need to fix one of the two
dreibeine of ZDG to be come a fixed reference dreibein. We will choose this to be e2

a,
but a similar limit exists where e1

a is held fixed. Consider expanding e2
a and ω2

a in
powers of λ as

e2
a =

1
λ2 ēa +

1
λ

k2
a ,

ω2
a = ω̄a + λv2

a .
(3.121)

Here ēa is the fixed reference dreibein of dRGT and ω̄a its corresponding (torsion
free) spin connection. We parametrize the ZDG coupling constants as

β1 = λ2β′1 , β2 = λ4β′2 , α2 = λ4 Λ̄
m2 . (3.122)
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Taking the λ→ 0 limit reduces the ZDG Lagrangian 3-form to

L = MPL(2)(k2, v2) + σMpLdRGT(e1, ω1) . (3.123)

The first term is the Lagrangian three-form of the quadratic approximation to the 3D
EC action in the reference background. The action constructed from this Lagrangian
is given in (3.7). The second term is the dRGT Lagrangian three-form (3.58) for the
dreibein e1 and spin connection ω1. It also depends on the reference dreibein ēa,
which is a solution to Einstein’s equations with cosmological constant Λ̄.

NMG Limit

ZDG is similar to NMG in the sense that it is also a four flavor Chern-Simons–like
theory and it shares its linear spectrum. Both theories contain two parity even fields
(e1 and e2 in ZDG, e and f in NMG) and two parity odd fields (ω1 and ω2 in ZDG and
ω and h in NMG). The crucial difference is that NMG is defined such that the fields f
and h are auxiliary; they can be solved for in terms of derivatives on the dreibein and
eliminated from the action. Although in ZDG it is possible to solve for e2 and ω2 in
terms of derivatives on the dreibein, they cannot be eliminated from the action and
the resulting field equation for e1 contains an infinite amount of higher-derivative
contributions, as will become clear in the next subsection.

Still, ZDG contains NMG as a scaling limit [105], which we will now show. In our
convention for the parameters of the Lagrangian of ZDG (3.105) the limit to NMG
is slightly different from the one given in [103]. To flow to NMG, we should take
σ = −1 and make the field redefinition

e2
a = Γe1

a +
λ

m2 f a , ω2
a = ω1

a − λha . (3.124)

NMG can then be obtained from the flow:

MP(λ) =
1
λ

M′ , Γ(λ) = 1 + σ′λ ,

α1(λ) =

(
6− Λ0

m2

)
λ +

2(1 + σ′λ)

λ
, β1(λ) =

1
λ
+ λ , (3.125)

α2(λ) =
1
λ
− 2σ′ , β2 = 0 ,

and sending λ → 0. Here σ′ = ±1 is a new sign parameter and Λ0 is a new cosmo-
logical parameter. The Lagrangian 3-form (3.105) then becomes:

LNMG = M′
{
− σ′e1 · R1 +

Λ0

6
e1 · e1 × e1 + h · T1

− 1
m2

(
f · R1 +

1
2

e1 · f × f
)}

.
(3.126)

This action is the Chern-Simons–like formulation of New Massive Gravity as con-
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sidered in [45] and reviewed in section 3.4.3, with a Planck mass M′ = (8πG)−1.

3.5.4 ZDG as a higher derivative theory
In [106], it was observed that bimetric theories can be thought of as higher-derivative
theories. In this section we make this connection explicit in the ZDG case with β2 =
0.5 First we observe that we can solve the equations of motion (3.107) to obtain an
expression for e2

a in terms of e1
a. Using the property ερστ R1 στ

a = det(e1)e1
σ aG1

ρ
σ,

we obtain the following expression for e2
a:

e2 µ
a =

α1

2β1
e1 µ

a +
σ

m2β1
S1 µ

a , (3.127)

where S1 µ
a ≡ S1 µνeν a

1 and S1 µν = R1 µν − 1
4 R1g1 µν is the Schouten tensor of g1 µν ≡

e1 µ
ae1 ν

bηab. In this approach to ZDG, we identify g1 µν with the physical metric, as
we have to assume e1

a to be invertible for the absence of ghosts (see chapter 4) and e2
a

can be expressed as a function of e1
a and its derivatives6. The field e2 represents the

higher-derivative content of the theory. It is similar to the auxiliary field in the two-
derivative formulation of NMG in the sense that it can be solved for algebraically
upon using the equations of motion. It is different in the sense that after solving e2
for e1, we cannot eliminate e2 from the action, as this would now change the e1 field
equation which we used to express e2 in terms of e1.

Using the relation (3.127), we can solve the torsion equation T2
a = 0 for ω2

a(e1)
as a power series in 1/m2. By expressing ω2

a as:

ω2 µ
a =

∞

∑
n=0

1
m2n Ω(2n)

µ
a , (3.128)

and solving T2
a = de2

a + εa
bcω2

be2
c = 0 order by order in 1/m2 we find:

Ω(0)
µ

a = ω1 µ
a , Ω(2)

µ
a = −2σ

α1
C1 µ

a ,

Ω(2k)
µ

a = − 2σ

α1
det(e1)

−1ενρσεbcd

(
e1 ν

ae1 µ
b − 1

2
e1 ν

be1 µ
a
)

Ω(2k−2)
ρ

cS1 σ
d ,

(3.129)

for k > 1. Here C1 µ
a ≡ C1 µνeν a

1 and C1 µν = det(e1)
−1εµ

αβDαS1 βν is the Cotton
tensor associated with g1 µν. This result enables us to write R2

a as a series in 1/m2:

R2
a =

∞

∑
n=0

1
m2n R(2n) a

2 , (3.130)

5This parameter choice is motivated by the removal of the Boulware-Deser ghost in ZDG theories, as
we will discuss at length in chapter 4. However, it is also possible to find a higher derivative formulation
of ZDG without this parameter restriction.

6Since e2 can be expressed in terms of e1 and its derivatives on-shell, it is possible to find the inverse of
e2 as an infinite expansion in 1/m2.
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where the coefficients in this expansion are given by:

R(0) a
2 = R1

a , R(2) a
2 = −2σ

α1
DC1

a ,

R(2k) a
2 = DΩ(2k) a +

1
2

k−1

∑
i=1

(
Ω(2i) × Ω(2k−2i)

)a
.

(3.131)

The covariant derivative D is defined with respect to ω1
a. Replacing these expres-

sions into the equation of motion (3.108) for e2
a we obtain a higher-order differential

equation for e1
a as a power series in 1/m2. The resulting equation of motion, up to

order 1/m4 is given by:

0 =
√
−gMP

{(
1 +

α1α2σ

2β2
1

)
Gµν −

(
α2

1α2

4β2
1
− β1

)
m2gµν +

1
m2 Eµν +

1
m4 Fµν

+O
(

1
m6

)}
, (3.132)

where here and in the following we have omitted the label 1, used to denote the
dreibein and we have rewritten it in a second-order form using the metric gµν =

e1 µ
ae1 ν

bηab to raise and lower indices. The symmetric tensors Eµν and Fµν carry
terms with four and six derivatives respectively. They are:

Eµν =− 2σ

α1

[
�Rµν −

1
4
(gµν�R +∇µ∇νR)− 3RµρRρ

ν + gµνRρσRρσ − 1
2

gµνR2

+
3
2

RRµν

]
+

α2

2β2
1

[
gµνRρσRρσ − 5

8
gµνR2 +

3
2

RRµν − 2RµρRρ
ν

]
, (3.133)

Fµν =
4
α2

1

{
∇ρ
[
S(µ

σ∇ν)Sρσ − S(µ|
σ∇ρS|ν)σ − Sρ

σ∇(µSν)σ + 2Sσ
µ∇[ρSσ]ν

+Sσ
ρ∇σSµν

]
+∇ρSλσ∇[λSρ]σgµν − 2∇ρSσ

ν∇[σSρ]µ

}
. (3.134)

The equation of motion for e1
a thus obtained contains an infinite number of terms

and features infinitely many derivatives. Note that higher-derivative actions with
more than four derivatives can, unlike ZDG, propagate two or more massive grav-
itons (see [107] for an example). Typically however, in cases where this happens,
there are terms with more than four derivatives acting on the metric field. This is
not the case here as Ω(2n) contains contractions of the Cotton tensor with (2n − 2)
Schouten tensors and hence R2 is an infinite series of terms that are products of terms
that have at most four derivatives acting on the metric tensor. The resulting equa-
tions of motion thus do contain an infinite amount of derivatives, but the maximum
amount of derivatives acting on the metric is four. Also note that in the case of an
infinite number of derivatives, the initial value problem and ensuing counting of de-
grees of freedom is subtle (see e.g. [108] for a discussion on these issues). The above
higher-derivative formulation is thus not at odds with the fact that ZDG propagates
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a single massive graviton.
As mentioned before, since the field equation for e1 was used to obtain the solu-

tion e2(e1) it is not allowed to substitute (3.127) back into the action. The higher-
derivative equation of motion (3.132) can in general not be integrated to an action.
However, at order 1/m2, there is a parameter relation for which this is possible:

− σ

α1
=

α2

2β2
1

. (3.135)

If the ZDG parameters are restricted in this way, the 1/m2 contributions to (3.132),
given explicity in (3.133), can be integrated to an action proportional to RµνRµν −
3
8 R2. This combination of R2 terms corresponds to the higher-curvature part of the
NMG action.

This is not a coincidence as can be seen by explicitly performing the NMG limit.
Indeed, after substituting (3.125) into the coefficients in eqn. (3.132), we see that the
terms at order 1/m4 scale as λ and hence vanish in the λ → 0 limit, while the re-
maining coefficients become:

MP

(
1 +

α1α2σ

2β2
1

)
= σ′ +O(λ) ,

−MP

(
α2

1α2

4β2
1
− β1

)
m2 = Λ0 +O(λ) , (3.136)

−MP
2σ

α1
= 1 +O(λ) , MP

α2

2β2
1
=

1
2
+O(λ) .

In particular, the last two equations show that the λ→ 0 limit enforces the parameter
relation (3.135) and as a consequence the NMG equations of motion [43,44] that result
from eqn. (3.132) in the λ→ 0 limit

0 = σ′Gµν + Λ0gµν +
1

m2

[
�Rµν −

1
4
(gµν�R +∇µ∇νR)− 4RµρRρ

ν

+
9
4

RRµν +
3
2

gµνRρσRρσ − 13
16

gµνR2
]

,
(3.137)

can be integrated to an action, even if for the generic ZDG equations of motion (3.132)
this is not possible order by order in m2.

Note that the utility of the higher-derivative formulation of ZDG will very much
depend on the specific application one has in mind. For instance, the higher-derivat-
ive formulation can be used to find solutions to the non-linear equations of motion,
as we will show in chapter 8. For other applications, e.g. in AdS/CFT, an action
for which the variational principle is well-defined is required and one will have to
resort to the two-derivative Zwei-Dreibein formulation. Note that even if the higher-
derivative terms could be integrated to an action, a formulation without higher de-
rivatives is still more useful in order to set up a well-defined variational principle, as
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is discussed in the NMG case in [109].

3.6 Conclusions
In this chapter we have investigated how to describe a free massive spin-2 mode in
three dimensions starting from an action which is first order in derivatives. We then
discussed various non-linear extensions of the free Fierz-Pauli theory, most of which
have a very natural formulation in terms of a Chern-Simons–like model, defined
by (3.1). In the case where some of the Lorentz vector-valued one-form fields are
auxiliary and in the ZDG model, we have shown how these theories are related to
higher-derivative models of gravity in a metric formulation. We have also discussed
how the CS–like models reduce to Fierz-Pauli theory upon linearisation around a
maximally symmetric background.

What we did not discuss here is whether there are extra, ghost-like degrees of
freedom which are hidden from the linear analysis. We did discuss the Boulware-
Deser mode in a metric formulation of dRGT massive gravity, but what about the
Chern-Simons–like models? Would they have an additional, third degree of free-
dom when taking non-linearities into account? To answer this question, we will
investigate the degrees of freedom of the non-linear theory, independently of the
chosen background, by performing a Hamiltonian analysis of the theory. This is
where the advantage of the Chern-Simons–like formulation really becomes clear, as
it is possible to treat the general formalism at great length before specifying the spe-
cific model. This will be the subject of the next chapter.



4
The Hamiltonian Formulation of

Three Dimensional
Chern-Simons–like Gravity Models

The fact that many of the higher-derivative extensions of general relativity in
three dimensions may be brought in a Chern-Simons–like form greatly simplifies
the Hamiltonian analysis of these theories. In this chapter, we first consider the
Hamiltonian form of the general Chern-Simons–like model. We show that the
presence of secondary constraints is directly related to the presence of invertible
fields in the theory. After discussing the general procedure, we apply it to some of
the examples discussed in the previous chapter, being General Massive Gravity
(GMG), Zwei-Dreibein Gravity (ZDG) and a further parity violating extension
of the latter, called General Zwei-Dreibein Gravity (GZDG). We show that for
GMG, the presence of secondary constraints is guaranteed by invertibility of the
dreibein. For ZDG this is not the case and the general theory contains three
degrees of freedom. However, by making use of the general procedure, we are
able to remove the third degree of freedom by a simple assumption; we need to
require that a linear combination of the two dreibeine is invertible. The content
of this chapter is based on [VIII].
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4.1 Introduction: CS–like gravity theories
As discussed in chapter 2, General Relativity (GR) in three space-time dimensions
can be interpreted as a Chern-Simons (CS) gauge theory of the 3D Poincaré, de Sit-
ter (dS) or anti-de Sitter (AdS) group, depending on the value of the cosmological
constant [26, 27]. The action is the integral of a Lagrangian three-form L constructed
from the wedge products of Lorentz-vector valued one-form fields: the dreibein ea

and the dualised spin-connection ωa. Using a notation in which the wedge product
is implicit, and a “mostly plus” metric signature convention, we have

L = −eaRa +
Λ
6

εabceaebec , (4.1)

where Ra is the dualised Riemann two-form:

Ra = dωa +
1
2

εabcωbωc . (4.2)

This action is manifestly local Lorentz invariant, in addition to its manifest invari-
ance under diffeomorphisms, which are on-shell equivalent to local translations. The
field equations are zero field strength conditions for the Poincaré or (A)dS group.

Strictly speaking, the CS gauge theory is equivalent to 3D GR only if one as-
sumes invertibility of the dreibein; this is what allows the Einstein field equations
to be written as zero field-strength conditions, and it is one way to see that 3D GR
has no local degrees of freedom, and hence no gravitons. However, there are vari-
ants of 3D GR that do propagate gravitons. The simplest of these are 3D “massive
gravity” theories found by including certain higher-derivative terms in the action1.
The best known examples were reviewed in chapter 3. They are: Topologically
Massive Gravity (TMG), which leads to third-order field equations that propagate
a single spin-2 mode [41] and New Massive Gravity (NMG) which leads to parity-
preserving fourth-order equations that propagate a parity-doublet of massive spin-2
modes. Combining TMG and NMG we get a parity-violating fourth-order General
Massive Gravity (GMG) theory that propagates two massive gravitons, but with dif-
ferent masses [43].

Although the field equation of GMG is fourth order in derivatives, it is possible to
introduce auxiliary tensor fields to get a set of equivalent first-order equations [45];
in this formulation the fields can all be taken to be Lorentz vector-valued one-forms,
and the action takes a form that is “CS–like” in the sense that it is the integral of a
Lagrangian three-form defined without an explicit space-time metric (which appears
only on the assumption of an invertible dreibein). The general model of this type can
be constructed as follows [45]. We start from a collection of N Lorentz-vector valued
one-forms ar a = ar a

µ dxµ, where r, s, t . . . are “flavor” indices; the generic Lagrangian

1It is possible, at least in some cases, to take a massless limit but since “spin” is not defined for massless
3D particles, one cannot get a theory of “massless gravitons” this way, if by “graviton” we mean a particle
of spin-2.
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three-form constructible from these one-form fields is

L =
1
2

grsar · das +
1
6

frstar · (as × at) , (4.3)

where grs is a symmetric constant metric on the flavor space which we will require
to be invertible2, so it can be used to raise and lower flavor indices, and the coupling
constants frst define a totally symmetric “flavor tensor”. We now use a 3D-vector
algebra notation for Lorentz vectors in which contractions with ηab and εabc are rep-
resented by dots and crosses respectively. The three-form (4.3) is a CS three-form
when the constants

f ar
bs ct ≡ εa

bc f r
st , & gar bs ≡ ηabgrs , (4.4)

are, respectively, the structure constants of a Lie algebra, and a group invariant sym-
metric tensor on this Lie algebra3. For example, with N = 2 we may choose ae a = ea

and aω a = ωa, and then a choice of the flavor metric and coupling constants that
ensures local Lorentz invariance will yield a CS three-form equivalent, up to field
redefinitions, to (4.1). For N > 2, we will continue to suppose that ae a = ea and
aω a = ωa, and that the flavor metric and coupling constants are such that the action
is local Lorentz invariant, but even with this restriction the generic N > 2 model will
be only CS–like. In particular, TMG has a CS–like formulation with N = 3 and both
NMG and GMG have CS–like formulations with N = 4 (see chapter 3.4). Since these
models have local degrees of freedom they are strictly CS–like, and not CS models.

The generic N = 4 CS–like gravity model also includes the recently analyzed
Zwei-Dreibein Gravity (ZDG) [103]. This is a parity preserving massive gravity
model with the same local degrees of freedom as NMG (two propagating spin-2
modes of equal mass in a maximally-symmetric vacuum background) but has ad-
vantages in the context of the AdS/CFT correspondence since, in contrast to NMG, it
leads to a positive central charge for a possible dual CFT at the AdS boundary, as we
will discuss in detail in chapter 5. We shall show here that there is a parity-violating
extension of ZDG, which we call “General Zwei-Dreibein Gravity” (GZDG).

We focus here on the Hamiltonian formulation of CS–like gravity models for a
number of reasons. One is that the CS–like formulation allows us to discuss various
3D massive gravity models as special cases of a generic model, and this formulation
is well-adapted to a Hamiltonian analysis. Another is that there are some unusual
features of the Hamiltonian formulation of massive gravity models that are clarified
by the CS–like formalism. One great advantage of the Hamiltonian approach is that
it allows a determination of the number of local degrees of freedom independently
of a linearized approximation (which can give misleading results). In particular,

2If grs is not invertible, then not all primary constraints are independent and a separate analysis is
required. One example is the dRGT model discussed in chapter 3.3.2 which does not contain kinetic
terms for the reference dreibein.

3There are CS gauge theories for which the Lagrangian three-form is not of the form (4.3) because not
all of the generators of the Lie algebra of the gauge group are Lorentz vectors. If we wish the class of CS
gravity theories to be a subclass of the class of CS–like gravity theories, we should define the latter by a
larger class of three-form Lagrangians, as in [45], but (4.3) will be sufficient for our purposes.
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massive gravity models typically have an additional local degree of freedom, the
Boulware-Deser ghost [12]. It is known that GMG has no Boulware-Deser ghost, and
this is confirmed by its Hamiltonian analysis, but ZDG does have a Boulware-Deser
ghost for generic parameters [110] (see also [91]), even though it is ghost-free in a
linearized approximation. Fortunately, this problem can be avoided by a imposing
an additional assumption on the theory as we will present here in detail. We also
present a parity-violating CS–like extension of ZDG, and we show that it has the
same number of local degrees of freedom as ZDG.

4.2 Hamiltonian Analysis
It is straightforward to put the CS–like model defined by (4.3) into Hamiltonian form.
We perform the space-time split

ar a = ar a
0 dt + ar a

i dxi , (4.5)

which leads to the Lagrangian density

L = −1
2

εijgrsar
i · ȧs

j + ar
0 · φr , (4.6)

where εij = ε0ij. The time components of the fields, ar a
0 , become Lagrange multipliers

for the primary constraints φa
r :

φa
r = εij

(
grs∂ias a

j +
1
2

frst
(
ai

s × aj
t)a
)

. (4.7)

The Hamiltonian density is just the sum of the primary constraints, each with a Lag-
range multiplier ar a

0 ,

H = −1
2

εijgrsar
i · ∂0as

j −L = −a0
r · φr . (4.8)

We must now work out the Poisson brackets of the primary constraints. Then, fol-
lowing Dirac’s procedure [111], we must consider any secondary constraints. We
consider these two steps in turn.

4.2.1 Poisson brackets and the primary constraints
The Lagrangian is first order in time derivatives, so the Poisson brackets of the ca-
nonical variables can be determined by inverting the first term of (4.6); this gives{

ar
i a(x), as

j b(y)
}

P.B.
= εijgrsηabδ(2)(x− y) . (4.9)

Using this result we may calculate the Poisson brackets of the primary constraint
functions. It will be convenient to first define the “smeared” functions φ[ξ] asso-
ciated to the constraints (4.7) by integrating them against a test function ξr

a(x) as
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follows

φ[ξ] =
∫

Σ
d2x ξr

a(x)φa
r (x) , (4.10)

where Σ is space-like hypersurface. In general, the functionals φ[ξ] will not be differ-
entiable, but we can make them so by adding boundary terms. Varying (4.10) with
respect to the fields ai

s gives

δφ[ξ] =
∫

Σ
d2x ξr

a
δφa

r

δas b
i

δai
s b +

∫
∂Σ

dx B[ξ, a, δa] . (4.11)

A non-zero B[ξ, a, δa] could lead to delta-function singularities in the brackets of the
constraint functions. To remove these, we can choose boundary conditions which
make B a total variation∫

∂Σ
dx B[ξ, a, δa] = −δQ[ξ, a] . (4.12)

We then work with the ‘improved’ quantities

ϕ[ξ] = φ[ξ] + Q[ξ, a] , (4.13)

which have well-defined variations, with no boundary terms. In our case, after vary-
ing φ[ξ] with respect to the fields ai

s, we find

δQ = −
∫

∂Σ
dxigrsξr · δai

s . (4.14)

The Poisson brackets of the constraint functions can now be computed by using
equation (4.9). They are given by

{ϕ[ξ], ϕ[η]}P.B. = φ[[ξ, η]] +
∫

Σ
d2x ξr

aηs
b P

ab
rs

−
∫

∂Σ
dxi ξr ·

[
grs∂iη

s + frst(ai
s × ηt)

]
, (4.15)

where

[ξ, η]tc = frs
tεab

cξr
aηs

b , (4.16)

and

P ab
rs = f t

q[r fs]ptη
ab∆pq + 2 f t

r[s fq]pt(V
ab)pq , (4.17)

Vpq
ab = εijap

i aaq
j b , ∆pq = εijap

i · a
q
j . (4.18)

In general, adopting non-trivial boundary conditions may lead to a (centrally exten-
ded) asymptotic symmetry algebra spanned by the first-class constraint functions if
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the corresponding test functions ξr
a(x) are the gauge parameters of boundary condi-

tion preserving gauge transformations. The boundary term in (4.15) will then split
into a part proportional to the boundary term required to improve φ[[ξ, η]] and a
possible central extension [64]. In this chapter we will focus on the bulk theory and
assume that the test functions ξr

a(x) do not give rise to boundary terms in (4.11) and
(4.15). We will return to consider the boundary terms in the next chapter.

The consistency conditions guaranteeing time-independence of the primary con-
straints are

d
dt

φb
s = {H, φb

s}P.B. ≈ −ar
0 aP ab

rs ≈ 0 . (4.19)

This expression is equivalent to a set of “integrability conditions” which can be de-
rived from the equations of motion. The field equations of (4.3) are

grsdas a +
1
2

frst(as × at)a = 0 . (4.20)

Taking the exterior derivative of this equation and using d2 = 0, we get the condi-
tions

f t
q[r fs]pta

r aap · aq = 0 . (4.21)

Using the space-time decomposition (4.5) we have

0 = f t
q[r fs]pta

r bap · aq = ar
0aP ab

rs , (4.22)

the right hand side being exactly what is required to vanish for time-independence
of the primary constraints. These conditions are three-form equations in which each
three-form necessarily contains a Lagrange multiplier one-form factor, so they could
imply that some linear combinations of the Lagrange multipliers is zero.

If the matrix P ab
rs vanishes identically then all primary constraints are first-class

and there is no constraint on any Lagrange multiplier. In this case the model is actu-
ally a Chern-Simons theory, that of the Lie algebra with structure constants εa

bc f r
st.

In general, however, P ab
rs will not vanish and rank(P) will be non-zero. We can pick

a basis of constraint functions such that 3N − rank(P) have zero Poisson bracket
with all constraints, while the remaining rank(P) constraint functions have non-
zero Poisson brackets amongst themselves. At this point, it might appear that the
Lagrange multipliers for the latter set of constraints will be set to zero by the condi-
tions (4.22). However, when one of the fields is a dreibein, this may involve setting
e0

a = 0. This is not acceptable for a theory of gravity, as the dreibein must be invert-
ible! When specifying a model, we must therefore be clear whether we are assuming
invertibility of any fields as it affects the Hamiltonian analysis. In general, if we
require invertibility of any one-form field then we may need to impose further, sec-
ondary, constraints.

In other words, the consistency of the primary constraints is equivalent to satis-
fying the integrability conditions (4.22). If some one-form is invertible, then some
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integrability condition may reduce to a two-form constraint on the canonical vari-
ables, which we must add as a secondary constraint in our theory. We now turn to
an investigation of these secondary constraints.

4.2.2 Secondary constraints
To be precise, consider for fixed s the expression f t

q[r fs]ptar a. If the sum over r is non-
zero for only one value of r, say ae a = ea, and ea is invertible, then the integrability
conditions (4.21) imply that

f t
q[e fs]pta

p · aq = 0 . (4.23)

In particular, taking the space-space part of this two-form, we find

εij f t
q[e fs]pta

p
i · a

q
j = 0 , (4.24)

which depends only on the canonical variables and is therefore a new, secondary,
constraint. One invertible field may lead to several constraints if the above equation
holds for multiple values of s. The secondary constraints arising in this way4 are
therefore the inequivalent components of the flavor space vector ψs = f t

q[e fs]pt∆pq.
Let M be the number of these secondary constraints, and let us write them as

ψI = f I,pq∆pq , I = 1, . . . , M . (4.25)

We now have a total of 3N + M constraints.
According to Dirac, after finding the secondary constraints we should add them

to the Hamiltonian with new Lagrange multipliers [111]. However, in general this
can change the field equations. To see why let us suppose that we have a phase-space
action I[z] for some phase space coordinates z, and that the equations of motion
imply the constraint φ(z) = 0. If we add this constraint to the action with a Lagrange
multiplier λ then we get a new action for which the equations of motion are

δI
δz

= λ
∂φ

∂z
, φ(z) = 0 . (4.26)

Any solution of the original equations of motions, together with λ = 0, solves these
equations, but there may be more solutions for which λ 6= 0. This is precisely what
happens for NMG and GMG (although not for TMG) [45]; the field equations of these
models lead to a (field-dependent) cubic equation for one of the secondary constraint
Lagrange multipliers, leading to two possible non-zero solutions for this Lagrange
multiplier5. In this case, Dirac’s procedure would appear to lead us to a Hamiltonian
formulation of a theory that is more general than the one we started with (in that its

4Here we should issue a warning: a linear combination of invertible one-forms is not in general invert-
ible, so if f t

q[r fs]ptar a sums over multiple values of r with each corresponding one-form invertible, this
does not in general imply a new constraint.

5This problem appears to be distinct from the problem of whether the “Dirac conjecture” is satisfied,
since that concerns the values of Lagrange multipliers of first-class constraints. It may be related to the
recently discussed “sectors” issue [112].
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solution space is larger). Perhaps more seriously, adding the secondary constraints
to the Hamiltonian will generally lead to a violation of symmetries of the original
model.

Because of this problem, we will omit the secondary constraints from the total
Hamiltonian. This omission could lead to difficulties. The first-class constraints
are found by consideration of the matrix of Poisson brackets of all constraints, so
it could happen that some are linear combinations of primary with secondary con-
straints. We would then have a situation in which not all first-class constraints are
imposed by Lagrange multipliers in the (now restricted) total Hamiltonian, and this
would appear to lead to inconsistencies. Fortunately, this problem does not actually
arise for any of the CS–like gravity models that we shall consider, as they satisfy
conditions that we now spell out.

The Poisson brackets of the primary with the secondary constraint functions are

{φ[ξ], ψI}P.B. = εij
[

f I,rp∂i(ξ
r) · ap

j + frs
t f I,ptξ

r ·
(

as
i × ap

j

)]
, (4.27)

and the Poisson brackets of the secondary constraint functions amongst themselves
are

{ψI , ψJ}P.B. = 4 f I,pq f J,rs∆prgqs . (4.28)

We now make the following two assumptions, which hold for all our examples:

• We assume that all Poisson brackets of secondary constraints with other sec-
ondary constraints vanish on the full constraint surface. It then follows that
the total matrix of Poisson brackets of all 3N + M constraint functions takes
the form

P =

(
P ′ −{φ, ψ}T

{φ, ψ} 0

)
, (4.29)

where P ′ is the matrix of Poisson brackets of the 3N primary constraints eval-
uated on the new constraint surface defined by all 3N + M constraints.

• We assume that inclusion of the secondary constraints in the set of all con-
straints does not lead to new first-class constraints. This means that the sec-
ondary constraints must all be second-class, and any linear combination of sec-
ondary constraints and the rank(P ′) primary constraints with non-vanishing
Poisson brackets on the full constraint surface must be second-class.

The rank of P, as given in (4.29), is the number of its linearly independent columns.
By the second assumption, this is M plus the number of linearly independent columns
of (

P ′
{φ, ψ}

)
. (4.30)

The number of linearly independent columns of this matrix, as for any other matrix,
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is the same as the number of linearly independent rows, which by the second as-
sumption is rank(P ′) + M. The rank of P, and therefore the number of second-class
constraints, is then rank(P ′) + 2M.

In principle one should now check for tertiary constraints. However, in this pro-
cedure the invertibility of certain fields will be guaranteed by the secondary con-
straints. The consistency of the primary constraints under time evolution can be
guaranteed by fixing rank(P ′) of the Lagrange multipliers. The consistency of the
secondary constraints under time evolution, ar

0a{φa
r , ψI} ≈ 0 can be guaranteed, un-

der the second assumption, by fixing a further M of the Lagrange multipliers. The
fact that these M multipliers are distinct from the rank(P ′) multiplier fixed before fol-
lows from the second assumption. The remaining consistency condition, {ψ, ψ} ≈ 0,
is guaranteed by the first assumption.

We therefore have 3N - rank(P ′) - M undetermined Lagrange multipliers, cor-
responding to the 3N - rank(P ′) - M first-class constraints. The remaining rank(P ′)
+ 2M constraints are second-class. The dimension of the physical phase space per
space point is the number of canonical variables ara

i , minus twice the number of first-
class constraints, minus the number of second-class constraints, or

D = 6N− 2×
(
3N − rank(P ′)−M

)
− 1×

(
rank(P ′) + 2M

)
= rank(P ′) . (4.31)

We will now apply this procedure to determine the number of local degrees of
freedom of various 3D gravity models with a CS–like formulation.

4.3 Specific Examples
We will now derive the Hamiltonian form of a number of three-dimensional CS–like
gravity models of increasing complexity following the above general procedure.

4.3.1 Einstein-Cartan Gravity
To illustrate our formalism we will start by using it to analyze 3D General Relativity
with a cosmological constant Λ, in its first-order Einstein-Cartan form. There are
two flavors of one-forms: the dreibein, ae a = ea, and the dualised spin-connection
aω a = ωa = 1

2 εabcωbc. The Lagrangian three-form is that of (4.1). This takes the
general form of (4.3), with the flavor index r, s, t, . . . = ω, e. The first step is to read
off grs and frst, and for later convenience we also determine the components of the
inverse metric grs and the structure constants with one index raised, f r

st. The non-
zero components of these quantities are:

gωe = −1 , feee = Λ , feωω = −1 , (4.32)
gωe = −1 , f ω

ee = −Λ , f ω
ωω = 1 , f e

eω = 1 .

These constants define a Chern-Simons three-form, as mentioned in the introduction;
the structure constants are εa

bc f r
st. This algebra is spanned by the Hamiltonian con-

straint functions, which are all first-class. In three-dimensions, General Relativity,
like any Chern-Simons theory, has no local degrees of freedom.
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To see how the details work in our general formalism, we can work out the mat-
rix (4.17) and find that it vanishes. Then, by equation (4.31) the dimension of the
physical phase space is

D = 12− 2× 6 = 0 , (4.33)

as expected. Using (4.15) we can also verify that

{φa
ω, φb

ω}P.B. = εab
c φc

ω , {φa
e , φb

ω}P.B. = εab
c φc

e , {φa
e , φb

e}P.B. = −Λεab
c φc

ω ,

which is the SO(2, 2) algebra for Λ < 0, SO(3, 1) for Λ > 0 and ISO(2, 1) for Λ = 0,
as expected.

4.3.2 General Massive Gravity
General Relativity was a very simple application of our general formalism; as a
Chern-Simons theory the Poisson brackets of the constraint functions formed a closed
algebra, so it did not require our full analysis. We will now turn to a more complic-
ated example, General Massive Gravity (GMG). This theory does have local degrees
of freedom; it propagates two massive spin-2 modes at the linear level. It contains
two well known theories of 3D massive gravity as limits: Topologically Massive
Gravity (TMG) [41] and New Massive Gravity (NMG) [43].

We can write the Lagrangian three-form of GMG in the general form (4.3). There
are four flavors of one-form, ar a = (ωa, ha, ea, f a), the dualised spin-connection and
dreibein and two extra fields ha and f a. The Lagrangian three-form was given in
equation (3.99). It is, in full form:

LGMG =− σe · R +
Λ0

6
e · e× e + h · T +

1
2µ

[
ω · dω +

1
3

ω ·ω×ω

]
− 1

m2

[
f · R +

1
2

e · f × f
]

,
(4.34)

where we recall that Ra is the dualised Riemann two-form. The flavor-space metric
grs and the structure constants frst can again be read off:

gωe = −σ , geh = 1 , g f ω = − 1
m2 , gωω =

1
µ

,

feωω = −σ , fehω = 1 , fe f f = −
1

m2 , fωωω =
1
µ

, (4.35)

feee = Λ0 , fωω f = −
1

m2 .

The next step is to work out the integrability conditions (4.21). We find three inequi-
valent three-form relations,

eae · f = 0 , f a
(

1
µ

e · f + h · e
)
− hae · f = 0 , ea

(
1
µ

e · f + h · e
)
= 0 . (4.36)
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We will demand that the dreibein, ea, is invertible. Following our general analysis,
we find the two secondary constraints

ψ1 = ∆eh = 0 , ψ2 = ∆e f = 0 . (4.37)

Next, we compute the matrix P ab
rs as defined in (4.17). All the ∆pq terms drop out

because of the secondary constraints, and in the basis (ω, h, e, f ) we get

(P ′ab)rs =


0 0 0 0
0 0 Ve f

ab −Vee
ab

0 V f e
ab −2Vh f

[ab] +
1
µ V f f

ab Vhe
ab −

1
µ V f e

ab

0 −Vee
ab Veh

ab −
1
µ Ve f

ab
1
µ Vee

ab

 . (4.38)

We must now determine the rank of this matrix at an arbitrary point in space-time.
A Mathematica calculation shows that the rank of P ′ is 4. According to (4.31) this is
also the dimension of the physical phase-space, however, to complete the analysis,
we need to verify if the assumptions stated in the last section hold. To this end we
consider the Poisson brackets of the secondary constraint functions ψI (I = 1, 2) with
themselves and with the primary constraint functions. The Poisson bracket {ψ1, ψ2}
is zero on the constraint surface, which verifies the first assumption. The Poisson
brackets of ψI with the primary constraint functions are

{φ[ξ], ψ1}P.B. = εij
[

∂iξ
h · ej − ξh · (ωi × ej)− ∂iξ

e · hj + ξe · (ωi × hj)

+

(
σξe +

1
m2 ξ f

)
· (ei × f j) +

(
σξ f + Λ0ξe

)
(ei × ej)

]
,

(4.39)

{φ[ξ], ψ2}P.B. = εij
[

∂iξ
f · ej − ξ f · (ωi × ej)− ∂iξ

e · f j + ξe · (ωi × f j)

+

(
m2ξh − m2

µ
ξ f
)
(ei × ej) + m2ξe ·

(
ei ×

(
hj −

1
µ

f j

)) ]
.

(4.40)

The full matrix of Poisson brackets is a 14× 14 matrix P given by

P =

 P ′ v1 v2
−vT

1 0 0
−vT

2 0 0

 , (4.41)

where the vI , (I = 1, 2), are column vectors with components

vI =


{φa

ω, ψI}P.B.
{φa

h, ψI}P.B.
{φa

e , ψI}P.B.
{φa

f , ψI}P.B.

 . (4.42)
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These brackets can be read off from equations (4.39) and (4.40). The vectors (4.42)
are linearly independent from each other and from the columns of P ′. This verifies
the second assumption in the last section and the rank of P is increased by 4. The
full (14× 14) matrix therefore has rank 8, so eight constraints are second-class and
the remaining six are first-class. By eqn. (4.31), the dimension of the physical phase
space per space point is

D = 24− 8− 2× 6 = 4 , (4.43)

consistent with the rank of P ′. This means there are two local degrees of freedom,
and we conclude that the non-linear theory has the same degrees of freedom as the
linearized theory, two massive states of helicity ±2.

4.3.3 Zwei-Dreibein Gravity

We now turn our attention to another theory of massive 3D gravity, the recently
proposed Zwei-Dreibein Gravity (ZDG) [103] which was reviewed in chapter 3.5. It
is a theory of two interacting dreibeine, ea

1 and ea
2, each with a corresponding spin-

connection, ω1
a and ω2

a. It also has a Lagrangian three-form of our general CS–like
form (4.3). Like NMG, ZDG preserves parity and has two massive spin-2 degrees
of freedom when linearized about a maximally-symmetric vacuum background, but
this does not exclude the possibility of additional local degrees of freedom appearing
in other backgrounds. In fact, it was shown by [110] that the generic ZDG model does
have an additional local degree of freedom, the Boulware-Deser ghost. We will see
why this is so, and also how it can be removed by including a defining assumption
to the theory.

The Lagrangian three-form is

LZDG = −MP

{
σe1 · R1 + e2 · R2 +

m2

6
(α1e1 · e1 × e1 c + α2e2 · e2 × e2)

−L12(e1, e2)

}
,

(4.44)

where R1
a and R2

a are the dualised Riemann two-forms constructed from ω1
a and

ω2
a respectively, and the interaction Lagrangian three-form L12 is given by

L12(e1, e2) =
1
2

m2 (β1e1 · e1 × e2 + β2e1 · e2 × e2) . (4.45)

Here σ = ±1 is a sign parameter, α1 and α2 are two dimensionless cosmological
parameters and β1 and β2 are two dimensionless coupling constants. The parameter
m2 is a redundant, but convenient, dimensionful parameter.

From (4.44) we can read off the components of grs and frst. We will ignore the
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overall factor MP to simplify the analysis; after this step they become

ge1ω1 = gω1e1 = −σ , ge2ω2 = gω2e2 = −1 ,
fe1ω1ω1 = −σ , fe2ω2ω2 = −1 , (4.46)

fe1e1e2 = m2β1 , fe1e2e2 = m2β2 ,

fe1e1e1 = −m2α1 , fe2e2e2 = −m2α2 .

We also work out the inverse metric grs and the structure constants f r
st,

ge1ω1 = gω1e1 = − 1
σ

, ge2ω2 = gω2e2 = −1 ,

f ω1
ω1ω1 = f e1

ω1e1 = 1 , f ω2
ω2ω2 = f e2

ω2e2 = 1 , (4.47)

f ω1 e1e2 = f ω1 e2e1 = −m2β1

σ
, f ω1 e2e2 = −m2β2

σ
,

f ω1 e1e1 =
m2

σ
α1 , f ω2 e2e2 = m2α2 ,

f ω2 e1e2 = f ω2 e2e1 = −m2β2 , f ω2 e1e1 = −m2β1 .

Equipped with these expressions, we can evaluate the 12 × 12 matrix of Poisson
brackets (4.15), in the flavor basis (ω1, ω2, e1, e2)

(Pab)rs = m2ηab


0 0 −β1∆e1e2 −β2∆e1e2

0 0 β1∆e1e2 β2∆e1e2

β1∆e1e2 −β1∆e1e2 0 −β1∆ω−e1 − β2∆ω−e2

β2∆e1e2 −β2∆e1e2 β1∆ω−e1 + β2∆ω−e2 0



+ m2β1


0 0 Ve1e2

ab −Ve1e1
ab

0 0 −Ve1e2
ab Ve1e1

ab
Ve2e1

ab −Ve2e1
ab −(Vω1e2

[ab] −Vω2e2
[ab] ) (Vω1e1

ab −Vω2e1
ab )

−Ve1e1
ab Ve1e1

ab (Ve1ω1
ab −Ve1ω2

ab ) 0

 (4.48)

+ m2β2


0 0 Ve2e2

ab −Ve2e1
ab

0 0 −Ve2e2
ab Ve2e1

ab
Ve2e2

ab −Ve2e2
ab 0 −(Ve2ω1

ab −Ve2ω2
ab )

−Ve1e2
ab Ve1e2

ab −(Vω1e2
ab −Vω2e2

ab ) (Vω1e1
[ab] −Vω2e1

[ab] )

 .

Where ω− ≡ ω1 − ω2. We determine the rank of this matrix as before using Math-
ematica, and find it to be 6. This means that there are 12− 6 = 6 gauge symmetries
in the theory.

To find the secondary constraints we must study the integrability conditions
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(4.21). There are three independent equations

(β1e1
a + β2e2

a)e1 · e2 = 0 , (4.49)
e2

aω− · (β1e1 + β2e2)− β1ω−
ae1 · e2 = 0 , (4.50)

e1
aω− · (β1e1 + β2e2) + β2ω−

ae1 · e2 = 0 . (4.51)

Assuming invertibility of both dreibeine, ea
1 and ea

2, is not sufficient to generate a
secondary constraint; from (4.49) we need that (β1e1

a + β2e2
a) is invertible. This

does not follow from the invertibility of the two separate dreibeine. Without any
secondary constraints, the dimension of the physical phase space, using eqn. (4.31),
is 6. This corresponds to 3 local degrees of freedom, one massive graviton and the
other presumably a scalar ghost.

We are interested in theories of massive gravity without ghosts, so we must re-
strict our general model to ensure secondary constraints. The analysis above sug-
gests that if instead of the two separate dreibeine, the linear combination β1e1

a +
β2e2

a is invertible, we can derive the needed secondary constraints. A special case
of this assumption is when β1β2 = 0, but one of them non-zero. In that case, the
invertibility of one of the original dreibeine is sufficient. We will investigate both
possibilities.

The case β1β2 = 0

In the case that we set to zero one of the two parameters βi we may choose, without
loss of generality, to set

β2 = 0 . (4.52)

In this case the invertibility of e1
a alone implies the two secondary constraints.

ψ1 = ∆e1e2 = 0 , ψ2 = ∆ω−e1 = 0 . (4.53)

These constraints and parameter choices cause the first and last matrices in eqn. (4.48)
to vanish. The remaining matrix P ′ab

rs has rank 4, which is equal to the dimensional-
ity of the physical phase space, provided the assumptions of the section 4.2.2 hold.
We will now verify that this is the case.

The secondary constraints (4.53) are in involution with each other which confirms
the first assumption. Their brackets with the primary constraint functions are given
by

{φ[ξ], ψ1}P.B. = εij
[

∂iξ
e1 · e2 j − ξe1 ·ω1 i × e2 j − ∂iξ

e2 · e1 j + ξe2 ·ω2 i × e1 j

− (ξω1 − ξω2) · e1 i × e2 j

]
,

(4.54)
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and

{φ[ξ], ψ2}P.B. =εij
[
(∂iξ

ω1 − ∂iξ
ω2) · e1 j − (ξω1 − ξω2) · (ω2 i × e1 j)− ∂iξ

e1 ·ω− j

+ ξe1 · (ω1 i ×ω− j) + m2 (σβ1ξe1 + α2ξe2) · (e1 i × e2 j) (4.55)

−m2 ((σα1 + β1)ξ
e1 − σβ1ξe2) · (e1 i × e1 j)

]
.

The full matrix of Poisson brackets is again a 14× 14 matrix P given by (4.41), where
the vI with I = 1, 2 are now

vI =


{φa

ω1
, ψI}P.B.

{φa
ω2

, ψI}P.B.
{φa

e1
, ψI}P.B.

{φa
e2

, ψI}P.B.

 . (4.56)

These brackets can be read off from equations (4.54) and (4.55). The vectors (4.56) are
linearly independent from each other and with the columns of P, so this confirms
that the second assumption also holds and increases the rank of P by 4. The total
number of second-class constraints is 8, leaving 6 first-class constraints. Using (4.31)
we find that for general values of the parameters α1, α2 and β1 the dimension of the
physical phase space per space point is 4. This corresponds to the 2 local degrees of
freedom of a massive graviton.

The case of invertible β1e1
a + β2e2

a

The second option is to assume invertibility of the linear combination of the two
dreibeine, β1e1

a + β2e2
a. In this case, to keep track of the invertible field, we make a

field redefinition in the original Lagrangian (4.44). We define, for β1 + σβ2 6= 0,

ea =
2

β1 + σβ2
(β1e1

a + β2e2
a) , f a = σe1

a − e2
a . (4.57)

For convenience we will work with the sum and difference of the spin connections6

ωa =
1
2
(ω1

a + ω2
a) , ha =

1
2
(ω1

a −ω2
a) . (4.58)

6Note that the sum of the two connections also transforms as a connection, while the difference trans-
forms as a tensor under the diagonal gauge symmetries
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In terms of these new fields, the ZDG Lagrangian three-form is

L =−MP

{
σe · R(ω) + c f · R(ω) + f · Dh +

1
2
(σe + c f ) · h× h

+ m2
(

a1

6
e · e× ec − b1

2
e · e× f − b2

2
e · f × f (4.59)

+
(c2 − 1)b1 − 2 c σb2

6
f · f × f

)}
,

where D is the covariant derivative with respect to ω. The new dimensionless con-
stants (a1, b1, b2, c) are given in terms of the old (αI , β I) parameters as follows

a1 =
1
8
(α1 − 3σβ1 − 3β2 + σα2) , b1 =

α2β1 + β2
2 − β2

1 − α1β2

4(β1 + σβ2)
, (4.60)

b2 =−
α1β2

2 + σβ1β2
2 + β2

1β2 + σα2β2
1

2(β1 + σβ2)2 , c =
σβ2 − β1

σβ2 + β1
.

By construction, this theory has two secondary constraints for invertible ea. Indeed,
when we calculate the integrability conditions (4.21) for this theory we find the three
equations

1
2
(β1 + σβ2)ea f · e = 0 ,

1
2
(β1 + σβ2)eah · e = 0 , (4.61)

and

1
2
(β1 + σβ2) (ha f · e + f ah · e) = 0 . (4.62)

From (4.61) we can derive two secondary constraints, since we assumed that ea was
invertible and that β1 + σβ2 6= 0. The secondary constraints are

ψ1 = ∆ f e = 0 , ψ2 = ∆he = 0 . (4.63)

After imposing these constraints, the matrix of Poisson brackets in the basis (ω, h, f , e)
reduces to

(P ′ab)rs =
1
2

m2(β1 + σβ2)

(
0 0
0 Q

)
, (4.64)

where

Q =

 0 Vee
ab −Ve f

ab
Vee

ab 0 −Veh
ab

−V f e
ab −Vhe

ab Vh f
[ab]

 . (4.65)
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Using the same techniques as previously, we find that this matrix has rank 4.

The secondary constraints are again in involution with themselves, and their
brackets with the primary constraint functions are given by

{φ[ξ], ψ1}P.B. = εij
[

∂iξ
f · ej − ξ f ·ωi × ej − ∂iξ

e · f j + ξe ·ωi × f j

−
(

σξe + c ξ f
)
· ei × hj −

(
c ξe + σ(c2 − 1)ξ f

)
· fi × hj (4.66)

− ξh ·
(

σei × ej + 2c ei × f j + σ(c2 − 1) fi × f j

) ]
,

and

{φ[ξ], ψ2}P.B. = εij
[

∂iξ
h · ej − ξh ·ωi × ej − ∂iξ

e · hj + ξe ·ωi × hj

+ m2
(
(c σa1 + b1)ξ

e − (c σb1 − b2)ξ
f
)
· ei × ej (4.67)

−m2
(
(c σb1 − b2)ξ

e + ((c2 − 1)b1 − c σb2)ξ
f
)
· ei × f j

−(c ξe + σ(c2 − 1)ξ f ) · hi × hj − ξh ·
(

c ei × hj + σ(c2 − 1) fi × hj

) ]
.

For generic values of the parameters these constraints increase the rank of the total
matrix of Poisson brackets, P, by 4, leading to a 14× 14 matrix of rank 8. This implies
that there are eight second-class constraints and six first-class constraints, leading to
two degrees of freedom, those of two massive spin-2 modes in 3 dimensions.

To summarize, demanding the presence of secondary constraints in ZDG to re-
move unwanted degrees of freedom forces us to make an additional assumption
about the theory. We must assume invertibility of a linear combination of the two
dreibeine. This assumption reduces to the invertibility of a single dreibein if one of
the two coupling constants is set to zero. In each scenario, only one dreibein need
be assumed invertible. This suggests that we identify its square as the “physical”
metric with which distances are measured. This suggestion is supported by the fact
that the second dreibein may be solved for in terms of the invertible dreibein and
its derivatives, leading to an equation of motion for a single dreibein containing an
infinite sum of higher derivative contributions, as was shown in [104] and reviewed
in chapter 3.5.4.

4.3.4 General Zwei-Dreibein Gravity

It is natural to look for a parity violating generalization of ZDG, just as GMG is
a parity violating version of NMG. To this end we add to the ghost-free, β2 = 0
ZDG Lagrangian three-form (4.44) a Lorentz-Chern-Simons (LCS) term for the spin-
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connection ω1
a.7

LGZDG = LZDG(β2 = 0) +
MP
2µ

ω1 ·
(

dω1 +
1
3

ω1 ×ω1

)
. (4.68)

The introduction of the LCS term for ω1
a introduces non-zero torsion for e1

a. One
might consider adding a torsion constraint for e1

a, enforced by a Lagrange multiplier
field ha, but this introduces new degrees of freedom [103]. In any case, the equations
of motion for General ZDG are such that the torsion constraint is not needed in order
to solve for the spin-connections, and there exists a scaling limit similar to the NMG-
limit presented in [103] where the General ZDG Lagrangian reduces to the GMG
Lagrangian (4.34).

From the point of view of our general formalism, the addition of the LCS term
adds the following non-zero components to grs and frst

gω1ω1 =
1
µ

, fω1ω1ω1 =
1
µ

. (4.69)

The integrability conditions now read

e1
ae1 · e2 = 0 , (4.70)

e1
a
(

ω− · e1 +
β1m2

µ
e1 · e2

)
= 0 , (4.71)

e2
aω− · e1 +

(
β1m2

µ
e2

a −ω−
a
)

e1 · e2 = 0 . (4.72)

Invertibility of e1
a implies the same secondary constraints as in eqn. (4.53), and the

counting of degrees of freedom proceeds analogously. After a linear redefinition of
the constraints to φω′ = φω1 + φω2 , the matrix of Poisson brackets reduces to

(P ′ab)rs = m2β1

(
0 0
0 Q

)
, (4.73)

where

Q =


0 −Ve1e2

ab Ve1e1
ab

−Ve2e1
ab −(Vω1e2

[ab] −Vω2e2
[ab] ) + β1m2

µ Ve2e2
ab (Vω1e1

ab −Vω2e1
ab )− β1m2

µ Ve2e1
ab

Ve1e1
ab (Ve1ω1

ab −Ve1ω2
ab )− β1m2

µ Ve1e2
ab

β1m2

µ Ve1e1
ab

 .

We find that this matrix has rank 4. The Poisson brackets of the secondary constraints

7It is also possible to include a LCS term for ω2
a, in this case the expressions presented in this subsec-

tion are only slightly modified and lead to the same conclusion.
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with the primary ones are now:

{φ[ξ], ψ1}P.B. = εij
[

∂iξ
e1 · e2 j − ξe1 ·ω1 i × e2 j − ∂iξ

e2 · e1 j + ξe2 ·ω2 i × e1 j

−
(

ξω1 − ξω2 +
α1m2

µ
ξe1 − m2β1

µ
ξe2

)
· e1 i × e2 j (4.74)

+
β1m2

µ
ξe1 · e2 i × e2 j

]
,

and

{φ[ξ], ψ2}P.B. =εij
[
(∂iξ

ω1 − ∂iξ
ω2) · e1 j − (ξω1 − ξω2) · (ω2 i × e1 j)− ∂iξ

e1 ·ω− j

+ ξe1 · (ω1 i ×ω− j) + m2 (σβ1ξe1 + α2ξe2) · (e1 i × e2 j) (4.75)

−m2 ((σα1 + β1)ξ
e1 − σβ1ξe2) · (e1 i × e1 j)

+ m2
(

α1

µ
ξe1 − β1

µ
ξe2

)
· (e1 i ×ω− j)−m2 β1

µ
ξe1 · (e2 i ×ω− j)

]
.

Again, the secondary constraints are in involution, and the new columns are lin-
early independent from each other and the original columns. The usual analysis
shows that there are 8 second-class constraints and 6 first-class constraints. The total
dimension of the physical phase space remains 4, and so the model has the same
number of local degrees of freedom as GMG.

4.4 Conclusions
It is a remarkable fact that many of the 3D “massive gravity” models that have been
found and analyzed in recent years have a CS–like formulation in which the action
is an integral over a Lagrangian three-form constructed from wedge products of
one-forms that include an invertible dreibein. One example not considered here is
Topologically Massive Supergravity [113].

Many of these CS–like models have an alternative formulation as a higher-deriv-
ative extension of 3D General Relativity, and it is certainly not the case that all such
higher-derivative extensions can be recast as CS–like models. It appears that the
unitary (ghost-free) 3D massive models are also special in this respect. Whatever the
reason may be for this, it is fortunate because the CS–like formalism is well-adapted
to a Hamiltonian analysis, which we have reviewed, and refined, extending the res-
ults of [45] for General Massive Gravity (GMG) to include the recently proposed
Zwei-Dreibein Gravity (ZDG) [103].

This Hamiltonian analysis leads to a simple determination of the number of local
degrees of freedom, independent of any linearization about a particular background.
This allows one to establish that a class of 3D massive gravity models, including
ZDG, is free of the Boulware-Deser ghost that typically afflicts massive gravity mod-
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els [12]. Conversely, the CS–like formulation of these models can be used as a starting
point to find higher-derivative extensions of New Massive Gravity which are guar-
anteed to be free of scalar ghosts [114], a subject which we will return to in chapter
7.

The techniques developed in this chapter can only partly be used to analyze the
3D dRGT theory reviewed in chapter 3.3.2, since in that case the flavor space metric
is not invertible. However, it is still possible to derive a set of integrability conditions
similar to (4.21) for the dRGT model and to analyze the presence of secondary con-
straints in that theory. A situation similar to the ZDG case follows. The theory only
contains secondary constraints if the linear combination β′1ea + β′2 ēa is invertible. In
that case, the number of degrees of freedom is compatible with a single massive
spin-2 mode.

We have also discussed a parity-violating extension of ZDG; it has some similar-
ities to GMG (and has a limit to GMG for a certain range of its parameters) so it could
be called “General Zwei-Dreibein Gravity” (GZDG). We have shown that it has ex-
actly the same number of local degrees of freedom as GMG. We know that ZDG
propagates two spin-2 modes of equal mass in a maximally symmetric vacuum, so
it seems that GZDG will propagate two spin-2 modes of different masses, like GMG.
Furthermore, there exists a limit of the parameters of GZDG that sends one mass to
infinity keeping the other fixed. This results in a model similar to TMG but with
better behavior in relation to the AdS/CFT correspondence. This model, called Min-
imal Massive Gravity [115], will be treated in full detail in chapter 6. But in order
to analyze the boundary theories, we should first set up the proper machinery to do
so. This requires to take into account the boundary terms which were omitted in the
analysis of this chapter. This will be the subject on the next chapter.



5
Asymptotic Symmetries and Bulk and

Boundary Unitarity

The first-order Chern-Simons–like formulation of gravity has an additional ad-
vantage; it is relatively easy to find the asymptotic symmetry group when im-
posing Brown-Henneaux boundary conditions. In this chapter, we continue
the canonical analysis initiated in the last chapter, paying special attention to
the boundary terms which were omitted there. The boundary terms for the set
of first-class constraints constitute the conserved global charges of the theory,
whose Poisson bracket algebra are two copies of the Virasoro algebra with a cent-
ral extension, just like in the case of pure gravity, discussed in chapter 2. The
only difference in this case for Chern-Simons–like theories of gravity is the expli-
cit expression for the central charge, which we compute for the case of GMG and
ZDG in this chapter. Next we discuss the requirement of positivity of the central
charge in these models of gravity and the compatibility with positive energy and
mass for the massive modes in the bulk AdS3 space-time.
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5.1 Introduction

As was shown in chapter 2, pure gravity in three dimensions contains no bulk de-
grees of freedom. However, it was shown in [29] that in AdS3 the theory contains
non-trivial boundary excitations. These boundary gravitons fall into representations
of the asymptotic symmetry algebra which is two copies of the Virasoro algebra with
a classical central extension. The asymptotic symmetry algebra is generated by dif-
feomorphisms which preserve the AdS background asymptotically. In the last two
chapters of this thesis, we have discussed theories which depart from general relativ-
ity in three dimensions and are no longer pure CS theories, but CS–like. However,
the theories are constructed in such a way that the number of gauge symmetries is
preserved. This was verified by a Hamiltonian analysis in chapter 4. Furthermore,
all theories admit an AdS3 vacuum, and hence imposing Brown-Henneaux bound-
ary conditions should be consistent.

In this chapter we will compute the algebra of conserved global charges when ad-
opting Brown-Henneaux boundary conditions, making use of our general formalism
where we can. For theories which are no longer pure Chern-Simons, i.e. contain bulk
degrees of freedom, the calculation of the asymptotic symmetries group depends on
the structure of the specific theory as we need to identify the first class constraints
explicitly (or at least, in the neighborhood of ∂Σ). This prevents us from a general
treatment of the global charges, which is possible for pure CS gauge theories (see
for instance [64]). The analysis here is a generalization of Carlip’s analysis of TMG
in [65], modified to fit the specific scenario of the examples in the last chapter.

5.2 Generators of Symmetry Transformations

In contrast to the pure Chern-Simons gauge theories, not all constraint functions are
first-class in the Chern-Simons–like models. In order to properly analyze the asymp-
totic symmetries, we should look at the algebra of first-class constraint functions
which generate gauge symmetries. Hence the first step to take is to identify which
(combination of) constraint functions generate the gauge symmetries of the theory.
Fortunately, with the general formalism discussed in detail in the last chapter, we are
well equipped to do just so.

The general CS–like theory defined by (4.3) is manifestly diffeomorphism invari-
ant. For what follows, we shall also assume that the specific CS–like theory of our
interest is also manifestly invariant under local Lorentz transformations. The most
general model (4.3) certainly is not, so this assumption implies the following. The
CS–like model of our interest contains a (dualised) spin connection ωa, which we
will take to be the gauge field for local Lorentz transformations. This means that it
may only appear in the combination Ra (the field strength for ωa) or in a Lorentz-
Chern-Simons term in the action. All derivatives of the other one-form fields ar a

with r 6= ω should appear as covariant derivatives Dar a. Translated to components
of the field flavor space metric grs and flavor tensor frst this assumption is equivalent
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to the following statement

For every element of grs , there is a non-zero frsω such that: frsω = grs . (5.1)

Equipped with this assumption we should expect the CS–like models defined by
(4.3) to have at least six gauge symmetries, corresponding to three diffeomorphism
and three local Lorentz transformations.

To identify the constraint functions which generate these symmetries, it is in-
structive to look at the Poisson brackets of the primary constraints with the dynam-
ical components of the theory. In full generality (but omitting boundary terms for
the moment), they can be computed using the general formulas (4.7), (4.9) and (4.10)
as

{φ[ξ], ar a
i } = ∂iξ

r a + f r
st(as

i × ξt)a . (5.2)

From this result, we can deduce that a local Lorentz transformation with gauge para-
meter χa is generated by the constraint function

φLL[χ] = φ[ξ] , with: ξω a = χa , and ξr a = 0 for r 6= ω . (5.3)

In this case, we recover the usual transformation for the fields under local Lorentz
transformations from (5.2):

{φLL[χ], ωi
a} = ∂iχ

a + (ωi × χ)a ,
{φLL[χ], ar a

i } = (ai
r × χ)a .

(5.4)

In the last line r 6= ω and we have used the fact that by the assumption (5.1) we may
write f r

sω ≡ grp fpsω = grpgps = δr
s .

In chapter 2 we saw that on-shell, diffeomorphisms are generated by an appropri-
ate combination of constraint functions with parameters proportional to the fields.
In the general CS–like theory this is still true. Let us define

φdiff[ζ] = φ[ar
µζµ] . (5.5)

Then, by equation (5.2) we find that

{φdiff[ζ], ar a
i } = Lζ ar a

i + ζ j
(

∂iar a
j − ∂jar a

i + f r
st(as

i × at
j)

a
)

+ ζ0 (∂iar a
0 − ∂0ar a

i + f r
st(as

i × at
0)

a) .
(5.6)

Here Lζ is the Lie derivative with respect to the vector field ζµ. The expressions in
the parentheses are equivalent to the equations of motion of the general space-time
decomposed model (4.6). Hence on-shell, we have that

{φdiff[ζ], ar a
i } = Lζ ar a

i . (5.7)

We have now identified the constraint functions which give the correct transform-
ation rules on the dynamical variables of the theory. Of course, we should check
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whether these combinations of constraint functions are truly first-class, i.e. if they
have weakly vanishing Poisson brackets with all other constraint functions. This can
be verified on a case by case basis.

Once the first-class constraint functions have been identified, we would like to
write them in a basis of mutually commuting SL(2, R) generators. This is hardly
possible in general, however it does work on the AdS background as the generators
of gauge symmetries should reflect the isometries of the AdS vacuum solution. At
the boundary of an asymptotically AdS space-time, the AdS background identities
hold and hence the new basis of first-class constraint functions is also valid there. In
general, we can define the new basis as

L±[ζ] = φ′diff[ζ] + a±φLL[eµζµ] , (5.8)

where we have defined φ′diff[ζ] ≡ φdiff[ζ]−φLL[ωµζµ], since we would like to add the
generator of LLTs independently to the L± with the gauge parameter χ = eµζµ = ξe.
The constants a± are defined such that

{L+[ξ], L−[η]} = 0 , (5.9)

on the AdS background.
At this point one should reinstate the boundary terms and investigate the Poisson

brackets algebra of the improved generators

L̃±[ξ] = L±[ξ] + Q±[ξ] , (5.10)

under asymptotically AdS (or Brown-Henneaux) boundary conditions. The vari-
ation of the boundary terms δQ± can be obtained from the general formula (4.14)
and it is given by

δQ± = −
∫

∂Σ
dxi (grsξr + a±gωsξe) · δas

i , (5.11)

where r sums over all values except ω. In all the examples we treat, after imposing
Brown-Henneaux boundary conditions (2.66)-(2.67) and restricting the gauge para-
meters ξe to be the boundary condition preserving gauge transformations (2.68), the
computation will become identical to the pure gravity case, except for a modified
expression of the central charge. It is exactly this piece of information we are looking
for.

5.3 Specific Examples
Here we will treat two examples specified in earlier chapters. First we will look at
General Massive Gravity, since the theory contains both Topological Massive Grav-
ity and New Massive Gravity as limits. After that we consider the asymptotic sym-
metries of the more recent Zwei-Dreibein Gravity with Brown-Henneaux boundary
conditions.
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5.3.1 General Massive Gravity
General Massive Gravity was defined in section (3.4.4). It was given in terms of the
dreibein ea and corresponding spin-connection ωa. The fields f a and ha are auxiliary
and can be solved in terms of ea and derivatives. The GMG equations of motion
imply:

fµ
a = −eν aSµν(e) , hµ

a = − 1
µ

eν aSµν(e)−
1

m2 eν aCµν(e) . (5.12)

Here Sµν(e) and Cµν(e) are the Schouten and Cotton tensors defined in (3.68)-(3.69).
The theory has an AdS vacuum with a cosmological constant Λ = −1/`2 where Λ
satisfies the quadratic equation:

σΛ−Λ0 +
Λ2

4m2 = 0 . (5.13)

On this background the Schouten tensor is proportional to the AdS metric and the
Cotton tensor vanishes. The background values of the fields f a and ha are then given
by:

f̄ a = −Λ
2

ēa , h̄a = − Λ
2µ

ēa . (5.14)

Algebra of first-class constraints

Here we analyze the algebra of first-class constraints in GMG. First let us verify that
the constraint functions defined in (5.3) and (5.5) are truly first-class by considering
their Poisson brackets with all other constraint functions.

It is straightforward to verify that (5.3) has weakly vanishing Poisson brackets
by inspection of the matrix (4.38), which does not contain any non-zero entries in
the column and row corresponding to r = ω. Furthermore, the Poisson brackets of
the primary constraint functions with the secondary constraints (4.39)-(4.40) do not
depend on ξω a = χa and hence they vanish weakly.

To verify that the Poisson brackets of (5.5) vanish weakly a little more work is
required. As was outlined above, diffeomorphisms are generated when the gauge
parameters are proportional to the fields.

ξr
a = ar

µ aζµ . (5.15)

In the case of GMG, we could also derive from the integrability conditions that

e[µ · fν] = 0 , and e[µ · hν] = 0 . (5.16)

Using these identities, one can show that for gauge parameters chosen as in (5.15),
the following identities hold:

eµ
aξ

f
a = fµ

aξe
a , and: eµ

aξh
a = hµ

aξe
a . (5.17)
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Using these identities in the general formula (4.15) with the GMG specifics of (4.38)
it is possible to show that the Poisson brackets of φdiff with all other primary con-
straint functions vanish weakly. The Poisson brackets of φdiff[ξ

r
a] with the secondary

constraints (4.39) and (4.40) can alternatively be written as

{φdiff[ξ], ψ1} = . . . + εij
(

∂i

(
ξh · ej − ξe · hj

)
+ ξe ·

(
1

2m2 fi × f j − 2σei × f j

−3
2

Λ0ej × ej

)
+ ξ f ·

(
1

m2 ei × f j − σej × ej

))
, (5.18)

{φdiff[ξ], ψ2} = . . . + εij
(

∂i

(
ξ f · ej − ξe · f j

)
+ 2ξe ·

(
m2ei × hj −

m2

µ
ei × f j

)
+

(
ξh − 1

µ
ξ f
)
· ej × ej

)
. (5.19)

Now the dots denote terms proportional to primary constraints which vanish weakly.
In the neighborhood of the AdS boundary, the relations (5.14) hold and eqn. (5.17)
implies that:

ξ f a = −Λ
2

ξe a , ξh a = − Λ
2µ

ξe a . (5.20)

Using these relations and the quadratic equation for Λ (5.13), we see that the Pois-
son brackets of φdiff[ζ] with the secondary constraints vanish weakly near the AdS
boundary.

Now that we have a basis of first-class constraint functions, we can investigate
their Poisson bracket algebra. After defining φ′diff[ζ] = φdiff[ζ]− φLL[ωµζµ] we find
that the first-class constraints form the SO(2, 2) algebra in the neighborhood of the
AdS boundary.

{φ′diff[ξ], φ′diff[η]} = −ΛφLL[[ξ, η]] , {φ′diff[ξ], φLL[η]} = φ′diff[[ξ, η]] , (5.21)
{φLL[ξ], φLL[η]} = φLL[[ξ, η]] .

Here we have used the AdS background relations to write all the gauge parameters
in terms of ξe a = eµ

aζµ = ξa (and similarly for ηa). Like in Einstein-Cartan gravity,
this enables us to split the constraint functions into two mutually commuting sectors.
If we define

L±[ξ] = φ′diff[ξ]±
1
`

φLL[ξ] , (5.22)

then the Poisson bracket algebra becomes

{L±[ξ], L±[η]} = ±
2
`

L±[[ξ, η]] , (5.23)

{L+[ξ], L−[η]} = 0 .
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Now the analysis becomes equivalent to the Einstein-Cartan example reviewed in
section 2.4. The only difference is that the generators of gauge transformations are
a bit more involved and hence when we reinstate the boundary terms using (4.14)
and (4.15) we will find a different overall factor for the global charges and hence a
different central charge. In this case, the variation of the boundary charge in (5.10),
which is needed to improve the generators L±[ξ] is

δQ±[ξ] =−
∫

∂Σ
dxi

(
ξeges + ξ f g f s + ξhghs ±

1
`

ξegωs

)
· δas

i ,

=

(
σ +

1
2`2m2 ∓

1
µ`

) ∫
∂Σ

dφ ξ ·
(

δωφ ±
1
`

δeφ

)
.

(5.24)

In the last line, we have used the background AdS identities (5.14) and (5.20) and we
denote ξe

a = ξa. Reinstating the boundary terms into the Poisson brackets of the first-
class constraints, using the general formula (4.15) and the background identities, we
find that at the AdS boundary:

{L̃±[ξ], L̃±[η]} = . . .± 2
`

(
σ +

1
2`2m2 ∓

1
µ`

) ∫
dφ ξ ·

[
∂φη +

(
ωφ ±

1
`

eφ

)
× η

]
.

Both the boundary term in the Poisson brackets and the variation of the global
charges are proportional to what we found for pure 3D gravity in chapter 2.4. Hence,
we may adopt the same (Brown-Henneaux) boundary conditions (2.66) and (2.67),
together with the same boundary condition preserving gauge transformations (2.68).
This leads, of course, to the same asymptotic symmetry algebra, only with a modi-
fied expression for the central charge. Reintroducing a factor of (8πG)−1 we find for
GMG

cGMG
L/R =

3`
2G

(
σ +

1
2`2m2 ∓

1
µ`

)
. (5.25)

This expression agrees with the one found in [44] using different methods. As we
noted in section 3.4.4, there is a limit from GMG to NMG (µ → ∞) and to TMG
(m2 → ∞). These limits can also be taken in the above central charges to give for
NMG

cNMG
L/R =

3`
2G

(
σ +

1
2`2m2

)
. (5.26)

and for TMG

cTMG
L/R =

3`
2G

(
σ∓ 1

µ`

)
. (5.27)

We will discuss the implications of this result on the unitarity of the theories in sec-
tion 5.4 below.
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5.3.2 Zwei-Dreibein Gravity
We will now repeat the computation of the boundary terms and central charges for
ZDG. In the last chapter we saw that the removal of the extra degree of freedom in
ZDG required the additional assumption of an invertible linear combination of the
two dreibeine. Here we will analyze the asymptotic symmetries for ZDG with this
assumption. For all practical purposes this amounts to analyzing the theory after the
redefinitions (4.57)-(4.58) with an invertible ea.

AdS background in ZDG
In section 3.5 we saw how there are anti-de Sitter vacua in ZDG, which are paramet-
rized by γ, the proportionality factor of the second dreibein. The background values
of the four fields in ZDG are

e1
a = ēa , e2

a = γēa , ω1
a = ω2

a = ω̄a . (5.28)

Here ēa denotes the AdS dreibein and ω̄a is the AdS spin connection. Plugging this
in the field redefinitions (4.57)-(4.58) gives the AdS background values for our new
fields ea, f a, ωa and ha:

ea =
2(β1 + γβ2)

(β1 + σβ2)
ēa ≡ Aēa , f a = (σ− γ)ēa , ωa = ω̄a , ha = 0 . (5.29)

This background solves the ZDG equations of motion when Λ = −1/`2 and γ are
solutions of

σ
Λ
m2 + a1 A2 − 2b1 A(σ− γ)− b2(σ− γ)2 = 0 ,

c
Λ
m2 − b1 A2 − 2b2 A(σ− γ) +

(
(c2 − 1)b1 − 2cσb2

)
(σ− γ)2 = 0 .

(5.30)

These two equations are equivalent to the ZDG background relations (3.115) in the
original formulation of the theory. We will refer to this solution as the AdS + γAdS
background.

Algebra of first class constraints
Like before, due to the integrability conditions (4.61), we have that on the back-
ground the gauge parameters for diffeomorphisms satisfy

ξe
a = Aξ ē

a , ξ
f
a = (σ− γ)ξ ē

a , ξh
a = 0 . (5.31)

Due to this relation and the background relations (5.30) the algebra of first-class con-
straints (5.3) and (5.5) derived from (4.15) on the AdS + γAdS background becomes
the SO(2, 2) algebra:

{φ′diff[ξ], φ′diff[η]} = −ΛφLL[[ξ, η]] , {φ′diff[ξ], φLL[η]} = φ′diff[[ξ, η]] , (5.32)
{φLL[ξ], φLL[η]} = φLL[[ξ, η]] ,
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where now all the gauge parameters are expressed in terms of ξ ē a = ēµ
aζµ = ξa (and

similarly for ηa).

We can once again define the SL(2, R) generators

L±[ξ] = φ′diff[ξ]±
1
`

φLL[ξ] , (5.33)

and the Poisson bracket algebra becomes

{L±[ξ], L±[η]} = ±
2
`

L±[[ξ, η]] , (5.34)

{L+[ξ], L−[η]} = 0 .

At this point we may readily proceed in analogy to the GMG example and the pure
gravity analysis of section 2.4. In the case of ZDG, using the relation

σA + c(σ− γ) = (σ + γ) , (5.35)

we find the variation of the boundary charges in (5.10) to be

δQ±[ξ] = (σ + γ)
∫

∂Σ
dφ ξ ·

(
δω̄φ ±

1
`

δēφ

)
. (5.36)

Once again the result is proportional to the Einstein-Cartan case, now with propor-
tionality factor (σ + γ). The boundary term in the Poisson brackets of the first-class
constraints (5.34) becomes

{L̃±[ξ], L̃±[η]} = . . .± 2
`
(σ + γ)

∫
dφ ξ ·

[
∂φη +

(
ω̄φ ±

1
`

ēφ

)
× η

]
, (5.37)

After adopting Brown-Henneaux boundary conditions (2.66) and (2.67) for ēa and
ω̄a, together with the boundary condition preserving gauge transformations (2.68),
we find that the asymptotic symmetry algebra is again two copies of the Virasoro
algebra, now with a semi-classical central charge given by

cZDG
L/R =

3`
2G

(σ + γ) . (5.38)

The conserved global charges for ZDG are also proportional to the Einstein-Cartan
ones

QZDG
+ = `(σ + γ)

∫
dφ L(x+) f (x+) ,

QZDG
− = −`(σ + γ)

∫
dφ L̄(x−) f̄ (x−) .

(5.39)

We thus find that the central charge in ZDG is independent of the coupling constants
β1 and β2.
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5.4 Bulk and Boundary Unitarity
Now that we have derived the central charges for GMG and ZDG, we can investigate
whether there are regions in the parameter space of the theories where perturbative
unitarity in the bulk is compatible with a positive central charge on the boundary.
The latter is a requirement for unitarity of the dual CFT.1 In this section we will
discuss the parameter restriction imposed by the absence of tachyons and ghosts for
the massive mode in the bulk, and positivity of the boundary central charges for
TMG, NMG and ZDG.

5.4.1 Topologically Massive Gravity
The conditions for a single helicity 2 mode to be ‘physical’ were derived in section
3.2.5. In the case of TMG, the absence of tachyons (3.41) translates to

µ` ≥ 1 , (5.40)

For the absence of ghosts we need the coefficient in front of the massive mode in the
quadratic action. To this end we diagonalize the quadratic action (3.83) by a linear
field redefinition

k = ` f+ + ` f− +
`2µ

`2µ2 − 1
p ,

v = f+ − f− +
σ`2µ2

`2µ2 − 1
p .

(5.41)

The quadratic TMG action then becomes

L(2)
TMG =

(
−σ`+

1
µ

) [
f+ · D̄ f+ +

1
`

ē · f+ × f+

]
+

(
σ`+

1
µ

) [
f− · D̄ f− −

1
`

ē · f− × f−

]
(5.42)

+
µ`2

2(µ2`2 − 1)
[
p · D̄p + σµē · p× p

]
.

The first two lines represent the massless modes which do not propagate any degrees
of freedom. The last line is the action for a single massive spin-2 state. By comparison
with the diagonalized Fierz-Pauli action (3.44) we see that the energy of the massive
mode is positive whenever

A = − σ`2

2(µ2`2 − 1)
> 0 . (5.43)

For σ = +1 this is in direct contradiction with the no-tachyon condition (5.40). Hence
for the two to be compatible, we need to take σ = −1, or in other words, we need to

1Note that these requirements are necessary but not sufficient for the unitarity of the theory.
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take the ‘wrong sign’ in front of the Ricci scalar in the action.
This conclusion poses a problem for the positivity of the central charges (5.27).

They are never positive for σ = −1 and µ` > 1! In fact, positive central charges and
µ` > 1 requires use to take σ = +1. In that case, the best we can do is to saturate
the bound (5.40) [80]. At this point the massive mode becomes massless and pa de-
generates with f a

+. Another consequence is that the field redefinitions (5.41) are not
well-defined and the quadratic action becomes non-diagonalizable. The field equa-
tions, however, remain third order and a new logarithmic solution appears [116]. At
this point the Brown-Henneaux boundary conditions can be modified, to allow for
this logarithmic behavior towards the AdS boundary [117]. This has led to the con-
jecture that TMG at this critical point is dual to a logarithmic conformal field theory
(LCFT) [118–120].

Note that the coefficients in front of the massless modes in (5.42) are proportional
to the central charges. By comparing them with the diagonalized Fierz-Pauli action
(3.44) with mass parameter M = 1/`, we see that requiring positive energy for the
massless modes is equivalent to the condition of positive central charges. This is
compatible with the results of [80], obtained by analyzing the quadratic action in a
Hamiltonian form.

5.4.2 New Massive Gravity
In NMG, the no-tachyon and no-ghost conditions (3.41) and (3.45) can be read off
directly from the diagonalized quadratic action (3.97). They are, respectively:

−m2
(

σ +
1

2`2m2

)
= −m2σ̄ > 0 , (5.44)

and

−m4σ̄ > 0 . (5.45)

In principle the massive parameter m2 could be chosen with a relative minus sign,
but we see from the combined no-tachyon and no-ghost conditions that we should
take m2 > 0. We are then forced to conclude that requiring the massive spin-2 to be
physical restricts the parameters of the theory as σ̄ < 0. This is in direct conflict with
positivity of the central charges (5.26). Hence the theory is not unitary in AdS3.

Once again the situation is more subtle at a special point in the parameter space,
where σ̄ = 0. The two massive modes degenerate with the two massless modes and
new logarithmic modes appear. We will discuss the appearance of these logarithmic
modes in more detail in chapter 8.

Since both TMG and NMG do not have a region in their parameter space where
perturbative bulk unitarity is compatible with positive central charges, it should not
be surprising that their combination into GMG suffers from the same problem. This
can indeed be verified with the methods presented in this thesis, and we will leave
this as an exercise for the interested reader.

Also in NMG the coefficient in front of the massless modes in the quadratic action
is proportional to the central charge. In a sense this should not be a big surprise, since
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the massless, pure gauge modes correspond to the boundary gravitons. As we saw
in chapter 2.4 the global charges which generate the asymptotic conformal algebra
are the boundary terms for the generators of gauge symmetries. When the massless
sector gets a specific pre-factor in its action, then this will reflect in the global charges
and finally in the central charge.

5.4.3 Zwei-Dreibein Gravity
We will now investigate the same parameter constraints for the Zwei-Dreibein model.
The fact that the ZDG action can not be written as a higher-derivative action for a
single metric (this only works at the level of equations of motion) indicates that the
situation may be improved in this theory. Higher-derivative actions typically suf-
fer from the Ostrogradsky instability, which states that systems whose Lagrangians
depend on second and higher-order derivatives of time are necessarily unstable. In
ZDG, there are two dreibeine, which both come with second-order time derivatives
in the Lagrangian and hence there is no direct indication for an Ostrogradsky in-
stability. However, we did find a set of higher-derivative field equations for ZDG in
chapter 3.5.4 and we know that NMG is contained within ZDG as a scaling limit.

The conditions for perturbative unitarity of the massive modes in ZDG are pos-
itive Fierz-Pauli mass (3.120)

M2 = m2(β1 + γβ2)
σ + γ

σ
> 0 , (5.46)

and a positive coefficient in front of the Fierz-Pauli Lagrangian (3.119)

σγ

σ + γ
> 0 . (5.47)

Positivity of the central charge (5.38) requires

σ + γ > 0 , (5.48)

where we remind you that the AdS background parameter γ should solve the back-
ground equations (3.115).

The Hamiltonian analysis of the last chapter revealed that in addition to these in-
equalities, the absence of the Boulware-Deser ghost required us to assume the invert-
ibility of the linear combination of dreibeine β1ea

1 + β2ea
2. On the AdS background,

where ea
1 = ēa and ea

2 = γēa, this implies that we should restrict β1 + γβ2 6= 0. Con-
sequently, any small perturbation around this background cannot render the linear
combination noninvertible.

From these inequalities combined, we see that σ = −1 is not allowed, since (5.47)
would then imply that γ < 0 and this is in clear contradiction with (5.48). Hence we
should restrict to the positive sign σ = +1 and γ > 0.2 In that case, all inequalities
can be satisfied simultaneously, as there are two of them (γ > 0 and (5.46)) for a
four dimensional parameter space (α1, α2, β1, β2). An explicit example satisfying all

2This is consistent with the NMG results, since the NMG limit to ZDG required us to take σ = −1
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constraints is

β1 = β2 = 1 , α1 = α2 = 3 + ζ , (5.49)

where ζ is a positive constant. For this choice of parameters there is an AdS vacuum
satisfying (3.115) with γ = 1 and (`m)−2 = ζ. Furthermore, γ ≈ 1 for any ‘nearby’
ZDG model, with slightly different parameters, which are themselves constrained
only by inequalities that have been satisfied but not saturated. It follows that the
above explicit model is one of an open set of models in the ZDG parameter space
with similar ”good” properties; these properties are not the result of any fine-tuning
of parameters that could be destabilized by perturbative quantum corrections.

5.5 Discussion
The appearance of a “bulk-boundary clash” (the incompatibility of positive bound-
ary central charge with positive energy and mass of the bulk spin-2 modes) is a
general feature of higher-derivative gravity theories. We have shown here that there
are alternatives, within the class of CS–like models; ZDG does not show this clash
for some region in its parameter space. A related issue concerns the mass of the BTZ
black holes in these theories. As was shown in chapter 2.4, the mass and angular
momentum of the BTZ black holes are related to the zero modes of the Virasoro gen-
erators. As we have seen here, in the CS–like theories, the conserved global charges
pick up a factor proportional to the central charge and hence, the mass of the BTZ
black hole will receive the same overall factor. This implies that whenever the cent-
ral charge is negative, the BTZ black hole will have negative mass. Due to this ar-
gument, the term “bulk-boundary clash” is technically not very fitting, as negative
mass black holes are a clear indication of a bulk problem. However, to be consistent
with some of the literature, we will continue to use this phrase.

An interesting question is whether there exists a CS–like modification of TMG
which could avoid the bulk-boundary clash, much like ZDG extends and generalizes
the NMG action in a CS–like formulation. An early indication that this could be
possible follows from a counting argument along the lines of chapter 4. The generic
CS–like model with three one-form fields will always have 9 primary constraints and
18 dynamical variables. If we assume, as always, a locally Lorentz symmetric theory
and diffeomorphism invariance, then at least 6 constraints are first-class, leaving at
most 3 second-class constraints. However, the number of second class constraints
cannot be odd, hence either one (or all) of them are actually first-class, or there exists
at least one secondary second-class constraint. In both of these cases, a counting
of the dimensionality of the physical phase space following (4.31) shows that there
can be at most 1 local degree of freedom. Of course, when there are no degrees of
freedom, the theory is actually a CS gauge theory. Hence not only TMG, but all N = 3
CS–like models have one local degree of freedom. This is a clear indication that in
the CS–like framework, TMG is not the unique theory for a single massive helicity 2
state and that there may be alternatives, perhaps with better behavior in light of the
AdS/CFT-correspondence. This turns out to be the case as we will discuss at length
in the next chapter.





6
Minimal Massive 3D Gravity

Although the higher-derivative models of massive gravity generally give rise to
a non-unitary theory in AdS3, this is not true for some of the Chern-Simons–
like theories of gravity. In the last chapter we saw how ZDG has regions in
its parameter space where perturbative bulk unitarity is consistent with positive
boundary central charge. In this chapter we investigate a Chern-Simons–like
model with three flavor fields and with the same ”minimal” bulk properties as
Topologically Massive Gravity; a single local degree of freedom, realized as a
massive graviton in linearization about an Anti-de Sitter vacuum. This ”min-
imal massive gravity” has both a positive energy for the graviton and positive
central charges for the asymptotic symmetry group. The content of this chapter
is based on [IX].
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6.1 Introduction
Topologically Massive Gravity (TMG), discussed in chapter 3.4.2, is a parity-violating
extension of three-dimensional (3D) General Relativity (GR) that propagates, on lin-
earization about a maximally symmetric vacuum, a single massive spin-2 mode [41].
Its action augments the Einstein-Hilbert action (plus “cosmological” term with cos-
mological parameter Λ0) by a Chern-Simons action for the Levi-Civita affine con-
nection one-form Γ. Omitting a positive factor proportional to the inverse of the 3D
Newton constant, which has dimensions of inverse mass, the TMG action is1

STMG =
∫

d3x
√
−det g (σR− 2Λ0) +

1
2µ

∫
tr
{

ΓdΓ +
1
3

Γ3
}

, (6.1)

where µ is a mass parameter, and σ is a sign (plus for GR but minus for TMG if we
insist on positive energy for the spin-2 mode, as we saw in the last chapter). The
TMG field equation derived from this action is

1
µ

Cµν + σGµν + Λ0gµν = 0 , (6.2)

where Gµν is the Einstein tensor, and Cµν the (symmetric traceless) Cotton tensor,
defined as

Cµν ≡
1√
−det g

εµ
τρ∇τSρν , Sµν ≡ Rµν −

1
4

gµνR . (6.3)

Here, ∇ is the covariant derivative defined with Γ, and Sµν the 3D Schouten tensor.
As Gµν = −Λgµν for maximally symmetric vacua with cosmological constant Λ, and
since Cµν is zero in such vacua, the relation between Λ0 and Λ for TMG is Λ = σΛ0.

TMG is a minimal theory of massive 3D gravity in the sense that a field propagat-
ing a single spin-2 mode in a Minkowski vacuum defines a unitary irrep of the 3D
Poincaré group. An obvious question is whether TMG could be the semi-classical
approximation to some 3D quantum gravity theory; in particular, it is natural to
wonder whether there might be a holographically dual conformal field theory (CFT)
on the boundary of an AdS3 vacuum of TMG with cosmological constant Λ = −1/`2

for AdS3 radius `. The trouble with this idea was discussed in chapter 5.4; the cent-
ral charge of such a CFT, computed in a semi-classical approximation, is negative
whenever the bulk spin-2 mode has positive energy, implying a non-unitary CFT.
A closely related problem is that the Bañados-Teitelboim-Zanelli (BTZ) black hole
solutions (which exist for any 3D gravity theory with an AdS3 vacuum) have negat-
ive mass whenever the energy of bulk graviton modes is positive. It was suggested
in [80] that this problem might be circumvented by first choosing σ = 1, to ensure
positive mass BTZ black holes, and then tuning the dimensionless parameter µ` to a
critical point at which the bulk mode is absent, and the boundary CFT is chiral, for
sufficiently strong boundary conditions. However, another bulk mode appears at

1We use a “mostly plus” metric signature convention.
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the critical point [121], and it was soon realized that this is a chirality-violating “log-
arithmic” mode that is compatible with consistent AdS3 boundary conditions [116],
implying a non-unitary “logarithmic” boundary CFT.

Until recently, a similar state of affairs held for the parity-preserving New Massive
Gravity (NMG) [43, 44], which is a 4th-order extension of 3D GR that propagates a
parity doublet of spin-2 modes (and is therefore minimal with respect to the product
of the Poincaré group with parity). This too suffers from the defect that the cent-
ral charge of the boundary CFT dual is negative whenever the bulk spin-2 modes
have positive energy, and tuning to critical points again leads only to non-unitary
“logarithmic” boundary CFTs. Extensions of TMG or NMG with higher powers of
curvature have been discussed in the literature [122, 123] but the “bulk-boundary
clash” persists. Other attempts to evade this conflict (e.g. [124]) typically introduce,
as a by-product, the Boulware-Deser ghost [12] (which is invisible in a linearized
approximation). However, the recently constructed “Zwei Dreibein Gravity” (ZDG)
shows that there is a viable alternative to NMG [103, 125].

At present there is no known alternative to TMG that resolves the “bulk-boundary
clash” while preserving the minimal bulk properties. The main purpose of this
chapter is to present such an alternative. Since it has the same minimal local structure
as TMG (and also for another reason to be explained later) we shall call it “Minimal
Massive Gravity” (MMG); the essential difference is that the field equation of MMG
includes the additional, curvature-squared, symmetric tensor

Jµν =
1

2 det g
εµ

ρσεν
τηSρτSση

= Rµ
ρRρν −

3
4

RRµν −
1
2

gµν

(
RρσRρσ −

5
8

R2
)

. (6.4)

In other words, the MMG field equation is

1
µ

Cµν + σ̄Gµν + Λ̄0gµν = − γ

µ2 Jµν , (6.5)

where γ is some non-zero dimensionless constant2; we have replaced σ by σ̄ since it
is no longer obvious why it should be just a sign, and we have replaced Λ0 by Λ̄0
since we should not expect it to equal the cosmological parameter when σ̄ = 1.

Using the Bianchi identities satisfied by the Einstein and Cotton tensors, we see
that consistency requires ∇µ Jµν = 0, but a direct computation shows that√

−det g∇µ Jµν = ενρσSρ
τCστ . (6.6)

The right hand side is not identically zero, but it is only required to be zero as a
consequence of the field equation (6.5); using this to eliminate the Cotton tensor, we

2We shall see later that it must be positive.
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find that√
−det g∇µ Jµν =

γ

µ
ενρσSρ

τ Jτσ ≡ 0 . (6.7)

The identity holds because the tensor J can be written as

Jµν = Sµ
ρSρν − SSµν −

1
2

gµν

(
SρσSρσ − S2

)
, (6.8)

where S ≡ gµνSµν. This tells us that “εSJ” is a linear combination of terms of the form
εSn for n = 1, 2, 3, which are all zero because Sn is symmetric. Thus, remarkably, the
modified field equation (6.5) is consistent.

The manner in which the MMG field equation (6.5) evades inconsistency is novel;
we are not aware of any other example in which consistency is achieved in this way.
We elaborate on the implications of this novelty in the final section of this chapter.
One implication is that the MMG field equation (for the metric alone) cannot be
obtained from any conventional higher-curvature modification of the TMG action
(6.1). Nevertheless, there is a very simple action with auxiliary fields that yields pre-
cisely the equation (6.5), and the required auxiliary fields are those already present
in the dreibein formulation of TMG [65, 126]. These auxiliary fields can be elimin-
ated from the field equations derived from the MMG action, leaving only the MMG
equation (6.5). However, in contrast to the usual situation for auxiliary fields, back-
substitution into the action is not legitimate (for γ 6= 0) so the MMG action with
auxiliary fields does not imply the existence of one without them.

These results would be no more than curiosities if the proposed modification of
TMG were to change the local structure in an unacceptable way. A first indication
that this will not happen is that the J tensor does not contribute to linearization
about a Minkowski vacuum, but this is a rather weak test. It would seem to re-
quire a miracle for this property to be maintained for other vacua, leaving aside the
Boulware-Deser ghost. Nevertheless, the miracle occurs, as we explain in detail us-
ing the Hamiltonian methods developed in chapter 4. Furthermore, not only is the
local structure of MMG exactly that of TMG, but the freedom allowed in MMG per-
mits a resolution of the “bulk-boundary clash”, as we show by a computation of the
algebra of the asymptotic conformal group in an asymptotically AdS3 spacetime.

6.2 Chern-Simons–like formulation

We were led to the MMG model of massive gravity by considering possible modi-
fications of TMG in the context of its formulation as a Chern-Simons–like model of
gravity (3.1). For present purposes, we focus on the case with N = 3 and we take
(e, ω, h) as the three Lorentz vector-valued one-form fields. The h field has the same
parity (odd) and dimension as ω and it appears in the TMG action as a Lagrange
multiplier for the zero torsion constraint. The Lagrangian three-form for TMG was
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given in (3.79). After redefining the auxiliary field f = µh it is given by:

LTMG = −σe · R +
Λ0

6
e · e× e + h · T(ω) +

1
2µ

(
ω · dω +

1
3

ω ·ω×ω

)
, (6.9)

where Λ0 is a cosmological parameter with dimensions of mass-squared, and σ a
sign. The last term, with a factor of 1/µ, is the “Lorentz Chern-Simons” (LCS) term,
but here for the independent dual spin connection ω. The mass parameter µ could
have either sign since a parity transformation would effectively flip the sign of µ. In
the limit that |µ| → ∞ the TMG action reduces (for σ = 1) to an action for 3D GR.

Because the 3D Newton constant has dimensions of inverse mass, the Lagrangian
three-form should have dimension of mass-squared, as it does if we assign zero di-
mension to e and dimensions of mass to both ω and h. With these assignments of par-
ity and dimension, and given the requirement of local Lorentz invariance, the TMG
Lagrangian three-form is almost unique, up to field redefinitions, if we suppose that
parity is broken only by the LCS term. However, there is one further parity-even
term that could be included; this is an “e · h× h” term. This leads us to consider the
following one-parameter family of “Minimal Massive Gravity” (MMG) Lagrangian
three-forms

LMMG = LTMG +
α

2
e · h× h , (6.10)

where α is a dimensionless parameter. In the absence of the parity-violating LCS
term, the new “ehh” term is innocuous; it leads only to an alternative action for 3D
GR. However, when combined with the LCS term it leads, as we shall now show, to
a modification of TMG that is equivalent to the one described in tensor form in the
introduction (with the constant γ being a function of α).

The field equations derived from the Lagrangian three-form (6.10) are

0 = T(ω) + αe× h ,
0 = R(ω) + µe× h− σµT(ω) ,

0 = −σR(ω) +
Λ0

2
e× e +D(ω)h +

α

2
h× h .

(6.11)

An equivalent set of equations is

0 = T(Ω) ,

0 = R(Ω) +
αΛ0

2
e× e + µ (1 + σα)2 e× h , (6.12)

0 = D(Ω)h− α

2
h× h + σµ (1 + σα) e× h +

Λ0

2
e× e ,

where the new dual spin connection one-form is

Ω = ω + αh . (6.13)
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In what follows we shall assume that the dreibein is invertible. Using the identities

D(Ω)T(Ω) ≡ R(Ω)× e , D(Ω)R(Ω) ≡ 0 , (6.14)

and assuming that

1 + σα 6= 0 , (6.15)

one finds that the field equations imply

0 = e · h ≡ eahbηab . (6.16)

The first of equations (6.12) implies that Ω = Ω(e), the usual torsion free spin
connection, which can be traded for the Levi-Civita affine connection. The second of
equations (6.12) can be solved for h:

hµν ≡ hµ
aeν

bηab = − 1

µ (1 + ασ)2

[
Sµν +

αΛ0

2
gµν

]
, (6.17)

where Sµν is the 3D Schouten tensor. Since this is a symmetric tensor, we learn that
hµν is symmetric; this is precisely the content of (6.16). At this point, we have used
the first two of equations (6.12) to solve for Ω and h in terms of e. Because of local
Lorentz invariance, back-substitution into the action will produce an action for the
metric alone. However, this back-substitution is not legitimate when α 6= 0 because
the equations used are not equivalent, jointly, to the two equations found by varying
the action with respect to Ω and h; to get them one needs (if α 6= 0) to use the e-
equation in addition to the Ω and h equations.

Although it is not legitimate to back-substitute into the action, it is legitimate to
substitute the expressions for Ω and h into the third equation of (6.12) to arrive at
an equation for the metric3. Doing so, we find that this equation is equivalent to the
MMG tensor equation (6.5) with coefficients

σ̄ = σ + α

[
1 +

αΛ0/µ2

2 (1 + σα)2

]
, γ = − α

(1 + σα)2 , (6.18)

and4

Λ̄0 = Λ0

[
1 + σα− α3Λ0/µ2

4 (1 + σα)2

]
. (6.19)

3The situation is similar for ZDG as was emphasized in chapter 3.5.4; the equations allow the elimina-
tion of one dreibein in terms of the other one but back-substitution into the action is not legitimate. One
can still substitute into the ZDG equations to get a field equation for only one dreibein but it involves an
infinite series that must be constructed order by order [104].

4Recall that Λ0 is the cosmological parameter occurring in the Lagrangian, Λ̄0 the constant coefficient
of gµν in the field equation and Λ the cosmological constant of a vacuum solution of these equations.
For TMG Λ = σΛ̄0 = σΛ0 but for other 3D gravity models, including MMG, the relation between these
parameters is more complicated.



6.3 LINEARIZED ANALYSIS 107

We have now found an action that yields the MMG equation (6.5). In its CS–like
form it is a very simple and natural modification of the TMG action. However, it
cannot be reduced to an action for the metric alone by elimination of the auxiliary fields.
This result accords with our earlier observation that the MMG equation cannot be
obtained from an action for the metric alone.

We shall later give a detailed proof that MMG has the same number of local de-
grees of freedom as TMG, but the essence of the analysis is as follows. Starting from
the CS–like action, a time/space split leads directly to a constrained Hamiltonian
system with the time components acting as Lagrange multipliers for 9 primary con-
straints. The 18 space components are the canonical variables. By construction, 6 of
the primary constraints are first-class, generating diffeomorphisms and local Lorentz
transformations, which leaves 3 primary constraints. If any of these are first-class
there will be additional gauge invariances, so any such model will be exceptional.
For example, if all 3 remaining primary constraints are first-class then the CS–like
theory is actually a CS theory with no local degrees of freedom. This possibility is
realized when ασ = −1 because LMMG is then the sum of a CS three-form for (e, Ω)
(with gauge group depending on Λ0) and an SL(2, R) CS three-form for ω; we ex-
clude this case by imposing the restriction (6.15).

One can go systematically through the other possibilities for the general 3-flavor
model (allowing for the possibility of secondary constraints) to show that the dimen-
sion of the physical phase space, per space point, must be either 0 or 2. As we shall
see, only the latter possibility is consistent with a linearized analysis of MMG (as-
suming 1 + σα 6= 0) so the generic case is the one of relevance here. This is the case
for which the three remaining primary constraints form a second-class set together
with one secondary constraint, the space component of (6.16). This yields a total
of 6 first-class and 4 second-class constraints, implying a physical phase space with
dimension per space point of (18− 2× 6− 1× 4) = 2, corresponding to one local
degree of freedom, exactly as for TMG.

6.3 Linearized analysis
We now look for maximally symmetric vacuum solutions of the MMG equations in
the form (6.12). These are solutions for which

R(Ω) =
1
2

Λ e× e ,
(
⇒ Sµν =

1
2

Λgµν

)
, (6.20)

where Λ is the cosmological constant. Substitution into the equation of motion (6.5)
yields

h = Cµ e , σΛ/µ2 = Λ0/µ2 − α (1 + σα)C2 , (6.21)

for the dimensionless constant

C = − (Λ + αΛ0) /µ2

2 (1 + σα)2 = − Λ
2µ2 +O(α) . (6.22)
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When α = 0 we have σΛ = Λ0; otherwise we have a quadratic equation for Λ,
for which the solution is

Λ = −αΛ0 −
2µ2 (1 + σα)3

σα

[
1∓

√
1 +

αΛ0/µ2

(1 + σα)2

]
. (6.23)

To recover the α = 0 case in the α → 0 limit, one must choose the upper sign. From
now on, we will reserve the upper sign for the TMG branch, i.e. the branch that
contains the TMG model in the α → 0 limit. The lower sign denotes the non-TMG
branch.

For real Λ we must restrict Λ0 such that

αΛ0/µ2 + (1 + σα)2 ≥ 0 . (6.24)

6.3.1 Linear equations
We now linearize about an AdS background, for which

Λ = −1/`2 , (6.25)

where ` is the AdS radius. Let ē be the background dreibein, and ω̄ ≡ Ω(ē) the
background spin connection. We expand about this background by writing

ea = ēa + ka , Ωa = ω̄a + va , ha = Cµ (ēa + ka) + pa , (6.26)

where (ka, va, pa) are perturbations; ka has even parity whereas va and pa have odd
parity. The expansion of ha breaks parity due to the presence of a term linear in µ.
To first order in these perturbations, the field equations are 5

D̄k + ē× v = 0 ,

D̄v−Λ ē× k = −µ(1 + ασ)2 ē× p ,
D̄p + Mē× p = 0 ,

(6.27)

where D̄ is the covariant exterior derivative for spin connection ω̄, and

M = [σ(1 + σα)− αC] µ = ± σµ (1 + σα)

√
1 +

αΛ0

µ2 (1 + σα)2 . (6.28)

The sign here is the same as the one appearing in (6.23); in other words, the top sign
allows an α→ 0 limit, whereas the bottom sign does not.

Notice that the condition (6.24), required for reality of Λ, is equivalent to M2 ≥ 0.
Let us also record here, for future use, the identity

1− 2C =
(`M)2 − 1

(1 + σα)2(`µ)2 . (6.29)

5These equations break parity but only because of terms involving odd powers of the mass µ.
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The integrability conditions of the equations (6.27) may be found by using the
fact that for any Lorentz-vector valued one-form a,

D̄2a =
1
2

Λ(ē× ē)× a = Λ ē (ē · a) . (6.30)

This leads to the conclusion that the equations (6.27) imply

ē · p = 0 . (6.31)

Equivalently, these equations imply that the tensor field pµν ≡ pµ
a ēν

bηab on AdS3 is
symmetric.

Provided that |`M| 6= 1 (equivalently, 2C 6= 1) the set of three first-order equa-
tions (6.27) may be diagonalized. This is achieved by introducing the new variables
f a
± defined by

ka = `( f a
+ + f a

−) +
1

µ (1− 2C)
pa , va = f a

+ − f a
− +

M
µ (1− 2C)

pa . (6.32)

This leads to the three equations

D̄ f+ + `−1 ē× f+ = 0 ,

D̄ f− − `−1 ē× f− = 0 ,
D̄p + M ē× p = 0 .

(6.33)

Parity now exchanges f+ with f−, so the equations for these fields are exchanged
by parity. Taken together, these two equations preserve parity. The equation for p
breaks parity, as expected because M ∝ µ; this is the AdS3 version of the “self-dual”
equation for a single massive spin-2 mode [127].

For any Lorentz vector-valued one-form field a the first-order equation

D̄a + m ē× a = 0 , (6.34)

is equivalent, given that ē · a = 0 and hence that aµν is symmetric6, to the equation

(Dma)µν = 0 , (Dm)µ
ν ≡ δµ

ν +
1

m det(ē)
εµ

τν∇̄τ , (6.35)

combined with the condition that the symmetric tensor a is traceless. Using this
result, we may rewrite the equations (6.33) in tensor form as

DL f+ = 0 , DR f− = 0 , DM p = 0 , (6.36)

for symmetric traceless tensors ( f±, p). Here DL/R are defined in (3.75) as Dm with
m = ±1/`. More generally, without assuming that |`M| 6= 1, we may use the equa-

6This condition is a consequence of (6.34) when |`m| 6= 1, and when `m = ±1 it may be imposed as a
gauge condition.
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tions (6.27) to eliminate p and v and thus obtain the following third-order equation

(DMDLDRk)µν = 0 , (6.37)

where the tensor k is both symmetric and traceless. Evidently, this third-order equa-
tion is equivalent to the three first-order equations (6.36) when |`M| 6= 1. The
|`M| = 1 case yields the linearized equations of a “critical” MMG model with a
“logarithmic” bulk mode; we shall not study this critical case here.

6.3.2 Absence of tachyons
The solutions of the first-order equation Dma = 0, for symmetric traceless second-
order tensor a, define an irrep of the AdS3 isometry group, which is unitary provided
that |m`| ≥ 1, with m` = ±1 corresponding to the singleton irreps that have no bulk
support (see chapter 3.2.5 and [82] for a review). It follows that of the three equations
(6.36) only the one with DM propagates a bulk mode, which has spin-2 because p is
a symmetric traceless second-order tensor. The condition for unitarity of the irrep
defined by this equation is

|`M| > 1 (⇔ 1− 2C > 0) . (6.38)

An immediate consequence is that M2 > 0, so the condition (6.24) required for reality
of Λ will be satisfied. The more stringent condition (6.38) is equivalent to positivity
of the graviton mass-squared. This is because

DMk = 0 ⇒ DMD̃Mk = 0 , (6.39)

where D̃M is defined in (3.28) as DM with M → −M. This is the Fierz-Pauli spin-2
field equation in AdS3 for a spin-2 field k with massM given by

`2M2 = `2M2 − 1 . (6.40)

We may therefore interpret the condition (6.38) as a “no-tachyon” condition.

6.3.3 Absence of ghosts
We have still to determine the condition that the spin-2 bulk mode is not a ghost,
but to do this we need to consider the quadratic action for the perturbations about
the AdS3 vacuum, not just the linearized field equations. When the action (6.10)
is expanded about the AdS3 vacuum in terms of the one-form field fluctuations
( f+, f−, p) one finds, to quadratic order, an action that is the integral of the Lag-
rangian 3-form

L(2) =
λ+

µ

[
f+ · D̄ f+ + `−1 ē · f+ × f+

]
+

λ−
µ

[
f− · D̄ f− − `−1 ē · f− × f−

]
+

1
2µ (1− 2C)

[
p · D̄p + M ē · p× p

]
, (6.41)
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where

λ± = 1∓ (σ + αC) µ` . (6.42)

We shall see later that these coefficients are directly related to the boundary central
charges; in fact

c∓ ∝ ∓λ±
µ`

= σ∓ 1
µ`

+ αC , (6.43)

which agrees with the TMG result for α = 0.
Notice that

−λ+λ− = `2µ2 (1− 2C) > 0 , (6.44)

where the final inequality is a consequence of the no-tachyon condition (6.38). This
inequality implies that λ+ and λ− must have opposite sign, which means that we
can rescale the f± fields to bring their contribution to L(2) into the form of the dif-
ference of two linearized SL(2, R) CS three-forms. Up to an overall sign, this is the
linearization of 3D GR with negative cosmological constant in its CS-formulation, so
the f± fields have no local degrees of freedom, in agreement with the analysis of the
previous subsection.

Let us now focus on the term in L(2) that is quadratic in p; this is

L(2)
p = −AM

(
p · D̄p + M ē · p× p

)
, A = − 1

2Mµ (1− 2C)
. (6.45)

By the analysis of chapter 3.2.5 we conclude that the no-ghost condition for this Lag-
rangian three-form is (3.45): A > 0 with A given in (6.45); i.e.

Mµ(1− 2C) < 0 . (6.46)

6.3.4 Combined no-tachyon/no-ghost conditions
The no-tachyon and no-ghost conditions combined are equivalent to the two condi-
tions

1− 2C > 0 & M/µ < 0 . (6.47)

These are equivalent to the two conditions

M2 > 0 & ± σ(1 + σα) < 0 , (6.48)

where the upper sign must be chosen if the AdS3 vacuum is the one allowing an
α→ 0 limit. The latter equation leads to the following possibilities:

1. Top sign: σ = −1 and 0 < α < 1.
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2. Top sign: σ = −1 and α = 0. This is the TMG case, for which the no-tachyon
condition is |`µ| > 1. The fact that σ = −1 is the origin of the negative BTZ
black hole mass and negative boundary central charge for TMG.

3. Top sign: σ = −1 and α < 0.
4. Top sign: σ = 1 and α < −1.
5. Bottom sign: σ = −1 and α > 1.
6. Bottom sign: σ = 1 and −1 < α < 0.
7. Bottom sign: σ = 1 and α > 0.

We shall see later that only three of these seven possibilities survive when we add
the condition of positive boundary central charges.

6.4 Hamiltonian analysis
We will now analyze the constraint structure to show that, quite generally, the Lag-
rangian three-form (6.10) defines a model describing a single bulk degree of freedom.
The analysis for the general CS–like model was treated in detail in chapter 4 and 5.
In this analysis it is not necessary to consider any particular background but we will
be interested in spacetimes that are asymptotic to an AdS vacuum, so we will pay
attention to boundary terms. This will allow us to find the central charges in the sum
of Virasoro algebras spanned by the conserved charges at the AdS boundary [29].

6.4.1 Local degrees of freedom of MMG
Here we will determine the local degrees of freedom of the MMG model, follow-
ing the general procedure of chapter 4. Specializing to the Lagrangian three-form
(6.10), we find, as a consequence of the assumed invertibility of the dreibein, that the
integrability conditions (4.21) give that

µ(1 + σα)2∆eh = 0 . (6.49)

As we also assume (1 + σα) 6= 0, this equation gives the additional (secondary)
constraint 0 = ∆eh ≡ ψ. Taking this into account in the matrix of Poisson brackets
(4.15), we can omit the ∆eh term from the right hand side of (4.17), and there is then
no ∆pq term. In the basis (ω, e, h), the remaining term gives the 9× 9 matrix

P = µ(1 + σα)2

 0 0 0
0 −Vhh

ab Vhe
ab

0 Veh
ab Vee

ab

 . (6.50)

We will also need the Poisson brackets of the primary constraint functionals φ[ξ]
with the one secondary constraint function ψ; this is

{φ[ξ], ψ}PB = εij[Diξ
e · hj −Diξ

h · ej − α ξe · hi × hj + µσ(1 + ασ)ξe · ei × hj

+
(

Λ0 ξe + µσ(1 + ασ)ξh
)
· ei × ej

]
, (6.51)
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where

Diξ
r = ∂iξ

r + ωi × ξr . (6.52)

The (9× 9) matrix P has rank 2. When we combine this with the Poisson brackets of
the secondary constraints, this increases the dimension of the matrix by one and the
rank by two, since the brackets (6.51) are independent of the column space defined
by (6.50). The final (10× 10) matrix has rank 4, meaning that four constraints are
second-class and the remaining six are first-class. The dimension of the physical
phase space, per space point, is then 3× 6− 2× 6− 4 = 2, implying a single bulk
degree of freedom. This is consistent with the linear analysis of the last section, but
we now know that this is a background independent property of the fully non-linear
theory.

6.5 Boundary central charge

To extract the boundary central charge from the Poisson bracket algebra (4.15) it is
sufficient to consider the AdS3 boundary terms for the two sets of mutually com-
muting first-class constraints [65]. We may identify the first-class constraints as in
chapter 5.2, where (5.3) generate local Lorentz transformations and (5.5) generate
diffeomorphisms. We now aim to find a new basis (5.8) such that the Poisson-bracket
algebra of first-class constraints becomes a direct sum of isomorphic algebras close
to the AdS boundary. This new basis can be constructed by considering the linear
combinations

L±[ξ] = φ′diff[ζ] + a±φLL[ζ
µeµ] , (6.53)

for constants a±. By making use of the general result (4.15) and the fact that h = µCe
in the AdS vacuum, and hence close to the boundary of any asymptotically-AdS
spacetime, we find that

{L+[ξ], L−[η]} = (2αµC + a+ + a−) (φe[[ξ, η]] + µC φh[[ξ, η]])

+
(

2µ2(1 + ασ)C + a+a−
)

φω [[ξ, η]] + . . . , (6.54)

where the dots denote boundary terms which will vanish after choosing suitable
boundary conditions. Here we have also used that by virtue of the symmetry of
hµν = eµ · hν we have that:

eµ
aξh

a = eµ · hνζν = hµ · eνζν = hµ
aξe

a , (6.55)

and hence, on the AdS background, we may write

ξh
a = µCξe

a . (6.56)
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The remainder of the right hand side of (6.54) vanishes when

a± = −αµC± 1
`

. (6.57)

Using this parametrization for a± and the identities

2αµC + 2a± = ±2
`

, a2
± + 2µ2(1 + σα)C = ±2a±

`
, (6.58)

we find the Poisson brackets for the improved generators L̃±[ξ] (5.10)

{L̃±[ξ], L̃±[η]} =±
2
`

L±[[ξ, η]]

± 2
`

(
σ± 1

µ`
+ αC

) ∫
∂Σ

dφ ξ ·
[

∂φη +

(
ω̄φ ±

1
`

ēφ

)
× η

]
,

(6.59)

where φ is the angular coordinate parametrizing ∂Σ, which is the intersection of
the boundary of AdS3 with the equal-time slice Σ. After choosing suitable (Brown-
Henneaux) boundary conditions (2.66)-(2.67) and restricting the gauge transforma-
tions to those which preserve these boundary conditions (2.68), we can see that the
boundary term in (6.59) is responsible for a central extension in the asymptotic sym-
metry algebra of global charges. The expression obtained here is equivalent to the
pure three dimensional gravity case (2.59), with a modified expression for the cent-
ral charge. After including the proper normalizations, we find that the asymptotic
symmetry algebra consists of two copies of the Virasoro algebra with a central charge

c± =
3`

2G3

(
σ± 1

µ`
+ αC

)
, (6.60)

where G3 is the 3D Newton constant. Note that in the TMG limit α → 0 the central
charges reduces to the TMG expressions. Unitarity of the dual CFT requires these
central charges to be positive.

6.5.1 Positivity of the central charges

We saw in subsection 6.3.4 that there are seven distinct choices of (i) AdS3 vacuum
branch (ii) sign of σ and (iii) range of α for which the propagating spin-2 mode is
neither a ghost nor a tachyon, and for each of these we requireM2 > 0. We shall now
investigate the compatibility of these constraints with the requirement of positive
central charges c±; we shall see that only three of the seven cases survive. For clarity,
we summarize here the conditions that we wish to fulfil simultaneously:

No-tachyon & No-ghost: 1− 2C > 0 , & ± σ(1 + ασ) < 0 .

Positive central charges : σ− 1
|µ`| + αC > 0 . (6.61)
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Here the ± in the no-ghost condition depends on the sign in (6.23) and hence differ-
entiates the two branches of AdS vacua, which we shall now consider in turn. The
parameters are Λ0/µ2 and α, both of which may, a priori, be any real numbers, and
µ`, which we may assume to be positive without loss of generality. We find that the
conditions (6.61) are satisfied simultaneously in the following three cases:

• Top sign: σ = −1, α < 0 and

Λ0/µ2 =
1

α(µ`)2 +
2(1− α)3

α3

(
1 +

√
1 +

α2/(µ`)2

(1− α)2

)
. (6.62)

As expected, this is singular at α = 0. This is case 3 of subsection 6.3.4. In
this case the dimensionless parameter γ in the MMG field equation (6.5) is
restricted to the range

0 < γ ≤ 1
4

. (6.63)

• Top sign: σ = 1, α < −1 and

Λ0/µ2 =
1

α(µ`)2 +
2(1 + α)3

α3

(
1−

√
1 +

α2/(µ`)2

(1 + α)2

)
. (6.64)

This is case 4 of subsection 6.3.4. In this case the dimensionless parameter γ is
restricted to the range

γ > 0 . (6.65)

• Bottom sign: σ = 1, −1 < α < 0 and

Λ0/µ2 =
1

α(µ`)2 +
2(1 + α)3

α3

(
1 +

√
1 +

α2/(µ`)2

(1 + α)2

)
. (6.66)

This is case 6 of subsection 6.3.4. In this case the dimensionless parameter γ is
again restricted to the range

γ > 0 . (6.67)

Notice that α < 0, necessarily, and there are no “bottom-sign” cases with σ = −1.
Notice too that γ > 0 in all cases.

We remark that inversion of the formula (6.23) giving Λ as a function of Λ0 yields

αΛ0 = −Λ +
2µ2 (1 + σα)3

α2

[
1∓

√
1− α2Λ/µ2

(1 + σα)2

]
, (6.68)
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but there is no simple correlation of the sign with the vacuum branch sign of (6.23).
Given a choice of this branch, TMG (top sign) or non-TMG (bottom sign), there is a
definite value of Λ for given Λ0, and the sign in (6.68) must then be chosen such that
upon substitution for Λ one recovers the given Λ0. The signs in the above expres-
sions for Λ0/µ2 are such that this is the case, as may be checked by considering the
first terms in an expansion in powers of 1/(µ`)2 for µ`� 1.

6.6 Discussion
We have presented a new, multi-parameter, massive 3D gravity theory that we have
called “Minimal Massive Gravity” (MMG). It is “minimal” in essentially two differ-
ent ways.

One is that it shares with the well-known “Topologically Massive Gravity” (TMG)
the property that it describes, when linearized about a flat or AdS3 vacuum, a single
massive graviton mode. Like TMG, this mode is physical for some parameter range,
in the sense that it is neither a tachyon nor a ghost, and there are no other local
degrees of freedom. TMG has a problem, however, when considered as a possible
semi-classical limit of some quantum theory defined holographically via a dual CFT
on an AdS3 boundary. The asymptotic symmetry algebra is a direct sum of two Vi-
rasoro algebras [29] which must have positive central charges for unitarity of the
CFT, and the parameters of TMG do not allow this condition to be satisfied while
maintaining physical properties of the bulk mode. In contrast, the one additional
parameter of MMG allows a resolution of this “bulk-boundary” clash; in fact we
found three disjoint regions of parameter space for which this is possible.

It might appear from this summary that our resolution of the “bulk-boundary”
clash of TMG has been achieved in a rather obvious way (by the inclusion of extra
terms in the action, leading to extra parameters and hence more freedom) and that
MMG is really just a variant of TMG with more parameters. However, this is very
far from being the case. As observed in the introduction, the MMG equation for the
metric alone (after elimination of other, auxiliary, fields) cannot be found by vari-
ation of an action for the metric alone, so it does not correspond to any conventional
extension of the TMG equation. In fact, MMG is qualitatively different from TMG, in
various ways. One of them leads to the conclusion that MMG is indeed “minimal”
in another sense.

Let us write the MMG equation (6.5) in the form Eµν = 0, where

Eµν = Λ̄0gµν + σ̄Gµν +
1
µ

Cµν +
γ

µ2 Jµν . (6.69)

Using the identity (6.6), one finds that√
−det g∇µEµν =

γ

µ
ενρσSρ

τEτσ . (6.70)

Consistency of the MMG field equation requires the left hand side to be zero as a
consequence of the MMG field equation, and this consistency condition is satisfied.
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However, let us now attempt to couple MMG to “matter” fields, which we suppose
to have a (symmetric) stress tensor T with the usual property that

∇µTµν = 0 , (6.71)

as a consequence of the matter field equations. Let us now consider (in some con-
venient units for the 3D Newton constant) the equation

Eµν = Tµν . (6.72)

In the case that γ = 0, this is just the TMG field equation in the presence of matter
with stress tensor T. Consistency of this equation requires that

∇µ [Eµν − Tµν] = 0 , (6.73)

and this is an identity for TMG, given (6.71). However, for MMG (γ 6= 0) we find,
using (6.72), that√

−det g∇µ [Eµν − Tµν] =
γ

µ
ενρσSρ

τTτσ . (6.74)

This is not zero unless the spacetime is an Einstein space, which is not required by
the field equations7. We conclude that the standard coupling of gravity to matter is
not possible for MMG. It appears that MMG is also “minimal” in the sense that the
graviton can couple consistently only to itself.

The difficulty here is that we are effectively assuming the standard minimal coup-
ling of the metric to matter, such that variation of the matter action with respect to
the metric yields, in a vacuum spacetime, the usual symmetric (Belinfante) stress
tensor, but there is no action for the metric alone to which this matter action could
be added. It may be that some consistent matter couplings can be found by an ex-
tension of the CS–like action for MMG itself; we suspect that a coupling to spin-3/2
fields can be achieved in this way, leading to a locally supersymmetric extension of
MMG that is consistent in a similarly novel way. However, all that is clear at present
is that the standard minimal coupling of gravity to matter is not possible for MMG;
this will presumably have significant implications for the boundary CFT.8

We conclude with one further comment on MMG, which was actually our point
of departure. As shown in chapter 4.3.4 [125], the Zwei-Dreibein Gravity model
of [103], which resolves the “bulk-boundary clash” for NMG, has a parity-violating
extension to a model that propagates two spin-2 modes of opposite 3D-helicity with
different masses. By sending the mass of one of the two modes to infinity, one arrives
at an alternative to TMG. This limit is rather subtle, but it leads to the MMG model
described in this chapter. This embedding of MMG into a model with additional
degrees of freedom may be a useful source of further insight into its novel features.

7Alternatively, we could require the stress tensor T to be a linear combination of the metric and Einstein
tensors, but this would just change the coefficients in the source-free equation.

8It has recently been shown that the MMG equation can be extended to include matter via a particular
source tensor that is quadratic in the matter stress tensor [128]





7
Extensions of Massive 3D Gravity

We have now established that the Chern-Simons–like description for 3D gravity
models is well suited to describe theories of massive spin-2 modes. All of the
known scalar ghost-free higher-derivative extensions of 3D general relativity fall
into the class of CS–like theories with N ≤ 4 fields. We have also discussed
other, novel, theories of gravity within this class, which show improved behavior
in the context of the AdS/CFT correspondence. In this chapter we build on these
ideas to extend the discussion to CS–like theories with N > 4. First we will
construct a set of scalar ghost-free theories of higher-derivative gravity which
propagate multiple massive spin-2 modes. However, the higher-derivative nature
of these theories introduces pathologies, as not all of the massive spin-2 modes
are physical. We then turn to resolve this problem, much like ZDG resolves the
bulk-boundary clash in NMG, by considering a more general class of CS–like
theories with N > 4. These theories have a structure similar to ZDG, only with
more interacting dreibeine, hence we name them Viel-Dreibein Gravities. This
chapter is based on two papers which are in preparation at the time of writing
this thesis [X,XI].
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7.1 Introduction
So far in this thesis, we have concentrated on Chern-Simons–like theories with N ≤ 4
Lorentz vector valued one-forms. This was sufficient to describe a wide class of
massive gravity models whose different characteristics were discussed at length.
One prevalent assumption was that the number of gauge symmetries remained the
same as in the Einstein-Cartan theory. The CS–like models are manifestly diffeo-
morphism invariant and we have always assumed the presence of a (dual) spin con-
nection ωa, resulting in local Lorentz symmetric field equations.

Besides a dreibein ea and a spin connection ωa, the models we have discussed
contain additional fields which are auxiliary. What we mean precisely by auxiliary
is that upon using the field equations, they can be expressed in terms of other fields
in the theory, usually the dreibein and its derivatives. However, the fact that these
fields are auxiliary does not imply that they are redundant and can be eliminated
from the action. This is only true in specific cases, and this feature can be seen as a
characteristic of the specific model which divides the general CS–like theories into
two categories: those with an action in terms of an invertible dreibein (and hence a
metric) alone, and those who do not have such an action.

All of the higher-derivative theories of gravity studied in chapter 3.4 belong to
the first category; there is an equivalent formulation of the theory in terms of a
higher-derivative extension of general relativity. This is because the field equations
which determine the auxiliary fields are obtained by varying the action with respect
to those auxiliary fields themselves. Furthermore, if we use those equations in the
action, the auxiliary fields are completely eliminated from the action, at the expense
of introducing higher-derivatives of the dreibein. At the end of the day, we can
vary the action with respect to the dreibein and obtain a higher-derivative equation
of motion for the dreibein which is equivalent to the original field equation for the
dreibein, after plugging in the solutions for the auxiliary fields.

To the second category belong the “novel” theories of massive 3D gravity: Zwei-
Dreibein gravity (ZDG), introduced in chapter 3.5, and the Minimal Massive Gravity
(MMG) model of chapter 6. For both of these models, it is possible to solve the ad-
ditional fields (e2 and ω2 in the case of ZDG, h in the case of MMG) in terms of the
dreibein and its derivatives, but to do so, one needs to use the field equation ob-
tained by varying the dreibein. Back-substitution of this equation into the action
is illegal, since this will change the equation of motion for the dreibein, which was
used to solve for the auxiliary fields in the first place! The resulting action would
have different field equations and will not describe the same theory. However, it is
possible to substitute the solution of the auxiliary fields into the other field equa-
tions to obtain a single, higher-derivative equation for the metric alone. The novel
feature of these theories is that they do not follow from an action for the metric
alone and hence posses other, new characteristics. Most notably, they resolve the
bulk-boundary clash present in the higher-derivative extensions of GR. On the other
hand, as discussed in the last chapter, these theories cannot be coupled to matter in
the conventional, minimal way.

In this chapter, we will consider extending both categories of CS–like models to
theories with more than N = 4 Lorentz vector-valued one-form fields. In the first
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category this will result in higher-derivative extensions of GR with more than four
derivatives on the metric. The extensions are constructed in a manner similar to New
Massive Gravity, and give exactly the higher-order derivative combinations which
do not lead to additional scalar degrees of freedom in the theory. The linear spec-
trum now contains multiple massive spin-2 modes, the number of modes depend
on the number of derivatives in the final theory. We will show that the construc-
tion of these theories is compatible with a holographic c-theorem when minimally
coupled to matter. However, the higher-derivative nature of the theory does lead to
pathologies similar to those in NMG on AdS3 backgrounds; the bulk-boundary clash
persists and is in a sense even worse, since not all massive spin-2 modes are phys-
ical (i.e. tachyon- and ghost-free), irregardless of the value of the boundary central
charge.

This novel clash, which is in fact solely a bulk clash, is once again resolved by
considering theories with N > 4 fields belonging to the second category. We con-
sider a class of theories with N = 6 modeled after ZDG, but now with three pairs of
dreibeine and spin connections, called Drei-Dreibein Gravity. After constraining the
interaction terms of the theory to ensure the presence of secondary constraints, we
see that these models describe two massive spin-2 modes, just like the sixth-order
derivative extension of GR. Unlike these higher-derivative extensions, they do al-
low for regions in their parameter space where all bulk modes are physical and the
boundary central charges are positive. However, a minimal coupling to matter for
these theories is problematic, as there is no action principle for one metric alone. We
conclude the chapter with some general remarks on going beyond three dreibeine
and define the scalar-ghost free interaction terms which make out a Viel-Dreibein
theory of gravity.

7.2 Extended Massive Gravity Models

In this section, we propose a procedure to derive higher-order derivative extensions
of 3D GR which propagate multiple massive spin-2 particles. The extensions are
obtained from an auxiliary field formalism which guarantees the freedom of scalar
ghosts. However, the higher-derivative nature of the theory does lead to the presence
of massive spin-2 ghosts. We discuss the pathologies in section 7.3.1. We work out
the extensions up to eight order in derivatives explicitly.

7.2.1 General Procedure

There are two parity preserving gravity models in three dimensions which are both
purely topological and do not propagate any local degrees of freedom. They are
Einstein-Cartan (EC) gravity, of even parity (see chapter 2), and conformal gravity
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(CG) (see chapter 3.4.1), which is odd under parity:

Parity Even, SEC ≡ S0 = − 1
κ2

∫
e ·
(

R− Λ0
6 e× e

)
, (7.1)

Parity Odd, SCG ≡ S1 =
1

2κ2µ

∫ {
ω ·
(

dω + 1
3 ω×ω

)
+ 2 f · De

}
, (7.2)

where κ−2 = 8πG is the three dimensional Planck mass and Λ0 the cosmological
constant with the dimension of (mass)2 while µ has the dimension of mass. This
amounts to a dimensionless coupling for CG which is a conformally invariant theory.

Due to lack of any local degrees of freedom, these models can be written purely as
Chern-Simons gauge theories for SO(2,2) and SO(2,3) respectively [26, 27, 93], where
e, ω and f correspond to the gauge fields for translation, rotation and special con-
formal transformation in three dimensions, see [129] for a more recent treatment.

The dualised curvature two-form is R = dω + 1
2 ω × ω and the field equations

will ensure vanishing of the torsion two-form,

T = De = de + ω× e = 0 . (7.3)

Assuming the invertibility of the dreibein it is possible to solve this equation for the
spin connection in terms of the dreibein, ωa = ωa(e). Varying the action (7.1) w.r.t.
ea gives the equation R = 1

2 Λ0e × e, which can be written in the metric form as,
Gµν + Λ0 gµν = 0, where Gµν = Rµν − 1

2 Rgµν is the Einstein tensor.

Varying the action (7.2) w.r.t. f a, ωa and ea gives the field equations,

De = 0 ,
R + f × e = 0 , (7.4)
D f = 0 .

Assuming the invertibility of dreibein, the auxiliary field f a can be solved in terms
of the curvature two-form as

fµν ≡ fµ
aeν a = −

(
Rµν − 1

4 R gµν

)
≡ −Sµν(e) , (7.5)

and the last equation in (7.4) then gives a third-order differential equation for dreibein;
Cµν(e) ≡ e−1ε(µ|

αβ∇αSβ|ν) = 0. Here Sµν and Cµν are the symmetric Schouten and
Cotton tensors respectively, constructed from dreibein ea.

This simple example shows how we can construct a higher-derivative action –
CG in this case with three derivatives – in a first-order CS-like form by introducing
an auxiliary field f a [94, 95]. As we discussed in chapter 3.4.3, this approach can be
extended to fourth order by introducing two extra one-form fields ( f a, ha) to obtain
New Massive Gravity (NMG), denoted by S2

S2 = S0 −
1

κ2m2

∫
{ f · (R + e× f ) + h · De} . (7.6)
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The field h guarantees the torsion constraint (7.3), and the following field equations
arise

De = 0 ,
R + e× f = 0 ,
D f + e× h = 0 ,

Dh + 1
2

(
f × f − 2m2e× f −m2Λ0e× e

)
= 0 .

(7.7)

The first equation in (7.7) is solved as in (7.5) and the second equation gives

hµν ≡ hµ
aeν a = e−1ε(µ|

αβ∇αSβ |ν) = Cµν(e) . (7.8)

Looking at equations (7.4) and (7.7) suggests that we can continue this logic to obtain
arbitrarily higher-derivative extensions of these theories. Consider extending the
equations of motion to have the schematic form

1 De = 0 ,
2 R + e× f1 = 0 ,
3 D f1 + e× h1 = 0 ,
4 Dh1 + e× f2 + . . . = 0 ,

...
2N + 1 D fM + e× hM + . . . = 0 ,
2N + 2 DhM + . . . = 0 .

(7.9)

The structure of these equations is such that they may be solved one after the other
in terms of derivatives acting on the dreibein. The number appearing before the
equation denotes the maximum number of derivatives of the dreibein which may
appear in the equation after all fields have been solved. The dots denote terms which
may be lower or equal in derivatives on ea.

The first equation in (7.9) solves the spin connection in terms of the dreibein. The
next two equations are already solved as in (7.5) and (7.8). The other auxiliary fields
( f a

I , ha
I ) can be obtained in terms of ea and derivatives on it, such that the final equa-

tion is a higher derivative field equation for the dreibein. This set of equations may
terminate on an equation for DhM

a or D fM+1
a and the final equation then becomes,

respectively, an even or an odd order partial differential equation for the dreibein,
corresponding to a parity even or odd theory.

We can diagramatise the even and odd cases as follows

Even:

EC︷ ︸︸ ︷
e•−→ω◦−→

2 dof︷ ︸︸ ︷
f1◦−→h1◦︸ ︷︷ ︸

NMG

−→ · · ·−→ fM◦ −→hM◦ (7.10)



124 CHAPTER 7 EXTENSIONS OF MASSIVE 3D GRAVITY

Odd:

CG︷ ︸︸ ︷
e•−→ ω◦−→ f1◦−→

2 dof︷ ︸︸ ︷
h1◦−→ f2◦ · · ·−→ hM◦ −→ fM+1◦ (7.11)

The sequential form of the diagram shows which field are solved in terms of which.
The filled circle denotes the assumption of invertibility of the dreibein, while all other
fields (open circles) need not to be invertible. Every set of auxiliary fields ( f , h) adds
two local degrees of freedom to the theory. The parity even theory contains 2M
degrees of freedom, where M > 0 denotes the number of ( f , h) pairs.

In the parity odd sector, the starting point S1 already contains one auxiliary field,
which is responsible for the partially massless mode in CG (see chapter 3.4.1). The
presence of additional auxiliary fields will break the conformal symmetry of CG and
hence the partially massless mode will no longer be pure gauge, but propagate a
local degree of freedom. So adding a pair of auxiliary fields (h, f ) to CG will initially
increase the degrees of freedom by three and any subsequent pair will raise this
number by two more. Hence, CG plus M pairs of auxiliary fields will have 2M + 1
local degrees of freedom.

7.2.2 Action Principle
In both even and odd cases the set of equations (7.9) can be integrated to an action by
the same general procedure. The field with the highest number of derivatives on the
dreibein (hM

a for even parity, fM+1
a for odd parity) can be used as a multiplier for

the torsion constraint. The field with one derivative less will be used to multiply the
second equation, and so on, until half of the field equations have been used. The rest
of the field equations then follow from the action by varying the fields with a lower
number of derivatives on the dreibein. This procedure guarantees that the highest
number of derivatives appearing in the action after solving for all the auxiliary fields
is 2M + 2 for the parity even models and 2M + 3 for the parity odd models.

Parity Even Models

The parity preserving extensions of EC gravity (7.1) in this CS–like form can be ob-
tained from the following recursive action,

S2M = S2M−2 +
κ−2

(m2)M

∫ [
∑

I+J=M
f I · DhJ + ∑

I+J+K=M+1
αI JK f I · f J × fK

+ ∑
I+J+K=M

J,K 6=0

β I JK f I · hJ × hK

]
, (7.12)

where I, J, K = 0, 1, 2, · · · , M with f0 ≡ e, h0 ≡ ω and R = Dω is the curvature two-
form. The starting value in this recursive relation is given by (7.1). As an example S2
is already constructed in (7.6).
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Parity Odd Models
The parity preserving extension of CG (7.2) in this CS-like form can be obtained from
the following recursive action,

S2M+1 = S2M−1+
κ−2

µ(µ2)M

∫ [
∑

I+J=M
hI · DhJ + ∑

I+J+K=M
I,J,K 6=0

αI JKhI · hJ × hK

+ ∑
I+J=M+1

f I · D f J + ∑
I+J+K=M+1

K 6=0

β I JK f I · f J × hK

]
, (7.13)

The indices of f I in this odd sector run from zero to M + 1 and of hI from zero to M
with f0 ≡ e and h0 ≡ ω. The starting value in this recursive relation is given by (7.2).
The next example, denoted by S3, is

S3 = S1 +
1

κ2µ3

∫ {
e · D f2 + h1 · (R + e× f1) +

α
2 f1 · D f1

}
. (7.14)

Not all couplings αI JK and β I JK in (7.12) and (7.13) are physical. For a given M we
have 2M auxiliary fields in the even sector and 2M + 1 in the odd case which can be
rescaled such that the same number of coefficients may be set to unity. In (7.12) and
(7.13) we have already exhausted M + 1 and M + 2 of the rescalings respectively, by
canonically normalizing the M + 1 and M + 2 kinetic terms.

Similarly, we also retain the freedom to redefine the auxiliary fields fM
a = f ′M

a +

am2 fM−1
a + . . . for some arbitrary constant a (and likewise for hM

a). Such a field re-
definition can always be used to simplify or cancel terms appearing in S2M or S2M+1.
In the concrete examples coming later, we will use such shifts to cancel the kinetic
terms of the lower-order action.

In this work we will only analyze extensions which preserve parity, however, it
is straightforward to extend the analysis to parity-violating models by taking the
sum of an even and odd parity theory. In fact, Topologically Massive Gravity can
be defined as the sum of S0 and S1, while General Massive Gravity is (up to a field
redefinition) the sum of S0, S1 and S2. We will explicitly construct the even and
odd parity models up to the eight-derivative extension of general relativity in metric
formalism in the next section. In section 7.3.1 we will linearize the sixth-order theory
around AdS3 and confirm that adding a set of auxiliary fields will add 2 massive
spin-2 degrees of freedom. However, before doing so we will comment on the ab-
sence of scalar ghosts and the growth of local degrees of freedom by adding a ( f , h)
pair of auxiliary fields, independently of any linearized approximation.

7.2.3 Absence of Scalar Ghosts
The advantage of the first-order formulation over the metric form is that it is relat-
ively easy to count the number of local degrees of freedom (dof) and see the second
class constraints which remove the Boulware-Deser scalar ghost. They arise from the



126 CHAPTER 7 EXTENSIONS OF MASSIVE 3D GRAVITY

symmetry of the auxiliary fields hI µν ≡ hI µ · eν and f I µν ≡ f I µ · eν,

f I [µν] = 0 , hI [µν] = 0 . (7.15)

These constraints can be derived directly from the equations of motion (7.9) by acting
on them with an exterior derivative and using d2 = 0. This is in essence equivalent
to deriving the integrability conditions (4.21). By invertibility of the dreibein, the
first equation in (7.9) simplifies to f1 aea = 0 and the second gives h1 aea = 0, whose
spatial projections are secondary constraints in a Hamiltonian formulation of the
theory [45, 125]. A similar procedure ensures the symmetry of hI µν and f Iµν for
I > 1. The counting of degrees of freedom was shown in [45] for NMG but it can be
generalized to all CS–like theories constructed as outlined in the preceding section,
provided that the secondary constraints (7.15) are second-class and do not lead to
further tertiary constraints1 (see also chapter 4).

After a space-time decomposition of the fields, the time components f a
0 and ha

0,
become Lagrange multipliers for a set of six primary constraints and the spatial com-
ponents of the fields, f a

i and ha
i , add to the canonical variables of the theory. Along

with the additional secondary constraints f a
[ij] = 0 and ha

[ij] = 0, each pair of auxiliary
fields will add

1
2
(12− 6− 2) = 2 , (7.16)

degrees of freedom to the theory. These two degrees of freedom correspond to the
two helicity states of a massive spin-2 mode in three dimensions. This counting
works for all vector valued one-form pairs ( f I , hJ). Hence, any action which gives
the equations of motion with the general structure of (7.9) is guaranteed to produce
a scalar ghost-free, higher-derivative extension of gravity in three dimensions.

7.3 Extended New Massive Gravity
In this section we construct the extensions in the parity even sector up to eight de-
rivatives. A similar analysis for the parity odd sector is done in appendix A.

The fourth-order action S2 is NMG (7.6). The next step for the parity even mod-
els is S4, which is sixth-order in derivatives and its Lagrangian three-form can be
derived using (7.12)

L4 = −e ·
(

σR− Λ0

6
e× e

)
+

1
2m2 e · f1 × f1 −

1
m4

[
e · Dh2

+
a
6

f1 · f1 × f1 + f2 · (R + e× f1) + b h1 ·
(
D f1 +

1
2 e× h1

) ]
.

(7.17)

Here we have introduced a sign parameter σ = ±1 and two arbitrary dimensionless

1In this counting we assume that adding these new auxiliary fields does not change gauge symmetries;
this actually happens for the auxiliary field in CG through the presence of additional symmetries which
cancel the degrees of freedom introduced by f a, see [95].
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parameters a, b. The dimensionful parameters Λ0 and m2 were introduced before
in (7.1) and (7.6). Up to field redefinitions and rescaling of the auxiliary fields, this
is the most general parity-even Lagrangian which produces field equations of the
form (7.9) with 2 pairs of auxiliary fields. Explicitly, the equations of motions for this
Lagrangian, obtained by varying with respect to h2, f2, h1, f1, ω and e respectively,
are,

De = 0 ,
R + e× f1 = 0 ,
D f1 + e× h1 = 0 ,

bDh1 +
1
2

(
a f1 × f1 + 2e× f2 − 2m2e× f1

)
= 0 ,

D f2 + (b f1 × h1 + e× h2) = 0 ,

Dh2 +
1
2

(
2 f2 × f1 + b h1 × h1 −m2 f1 × f1 −Λ0m4e× e− 2m4σ e× f1

)
= 0 .

(7.18)

The first equation imposes zero torsion and allows the spin-connection to be solved
in terms of the dreibein. Moving down the line, we find for the fields f1 µν and h1 µν

f1 µν = −Sµν(e) , and h1 µν = Cµν(e) . (7.19)

which in turn fixes f2 µν and h2 µν,

f2 µν = −b Dµν + a
(

Pµν − 1
4 Pgµν

)
−m2Sµν , (7.20)

h2 µν = −Eµν − 2b
(

Qµν − 1
4 Qgµν

)
+ b SCµν . (7.21)

where

Dµν ≡ e−1ε(µ|
αβ∇αCβ |ν) , Pµν ≡ Gµ

ρSνρ , (7.22)

Eµν ≡ e−1ε(µ|
αβ∇α f2 β |ν) , Qµν ≡ C(µ

ρSν)ρ . (7.23)

Back substitution in the action leads to the following, Extended New Massive Grav-
ity Lagrangian (ENMG) density

LENMG ≡ L4 =
1
2

{
σR− 2Λ0 −

1
m2 P +

1
m4

(
2a det(S)− b CµνCµν

)}
. (7.24)

At order 1/m2 we have the NMG combination of R2 terms,

P = RµνRµν − 3
8

R2, (7.25)
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and at order 1/m4 we find two combinations of sixth-order terms;

−6 det(S) = 2Rν
µRρ

νRµ
ρ −

9
4

RRµνRµν +
17
32

R3 ,

CµνCµν = Rµν�Rµν − 3
8

R�R− 3Rν
µRρ

νRµ
ρ +

5
2

RRµνRµν − 1
2

R3 ,
(7.26)

where the last identity is up to total derivatives. This theory is free of scalar ghosts
and has four local degrees of freedom by construction, as was verified in section
7.2.3.

We can systematically continue this program and find the scalar ghost-free eight-
order derivative theory. It is

L6 = LENMG +
e

m6

{
κ1

(
PµνPµν − 3

8 P2
)
+ κ2

(
Sρ

µCνρCµν − 1
2 SCµνCµν

)
+ κ3

(
Cµν�Cµν + 3Sρ

µCνρCµν + SCµνCµν
) }

. (7.27)

One can reduce the κ1-term using the Schouten identity, /S4
µν = 1

2 (/S
2
µν)

2 where /S is
the traceless Schouten tensor, /Sµν = Sµν − 1

3 Sgµν;

− κ1

12

(
16 SSρ

µSσ
ρ Sµ

σ − 3(SµνSµν)2 − 18SµνSµνS2 + 5S4
)

. (7.28)

Interestingly, the a- and κ1-term above are precisely the combination of R3 and R4

terms found by Sinha in [122] by demanding the presence of a holographic c-theorem
in higher-derivative extensions for New Massive Gravity, see also [123]. The b-term,
κ2 and κ3 terms were not considered in their considerations regarding holographic
c-theorem; we will comment on this in section 7.4.2.

7.3.1 Linearization

In this section we study the higher-derivative theory constructed above by linear-
izing it around a maximally symmetric vacuum parametrized by the background
dreibein ē, the spin connection ω̄ and the cosmological constant Λ satisfying,

R̄ = dω̄ +
1
2

ω̄× ω̄ =
Λ
2

ē× ē , D̄ē = 0 . (7.29)

All barred quantities refer to the background. The background values for the aux-
iliary fields can be determined by their background equations of motion. Since the
parity even and odd models have the same field equations, these fields have the
same background values in both models. The f fields all have background values
proportional to the background dreibein and the h fields, which are constructed from
the Cotton tensor, vanish on this background. We expand the one-form fields around
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the vacuum as,

e = ē + κ k , ω = ω̄ + κ v ,

f1 = −Λ
2 ē + κ k1 , h1 = κ v1 , (7.30)

f2 = −Λ
2

(
m2 + aΛ

4

)
ē + κ k2 , h2 = κ v2 ,

where we used κ as a small expansion parameter. In the parity odd case m and a are
replaced by µ and α.

The quadratic Lagrangians L(2)
0 , L(2)

1 and L(2)
2 corresponding to Einstein-Cartan

gravity, conformal gravity and New Massive Gravity respectively, were reviewed
in chapter 3. The linear theory of the parity odd model defined by S3 is treated
in appendix A. Here we consider the quadratic Lagrangian L(2)

4 by inserting the
fluctuations (7.30) into the Lagrangian (7.17). The terms linear in κ vanish when the
cosmological parameter Λ0 is related to the physical cosmological constant Λ as

Λ0 = Λ
(

σ +
Λ

4m2 +
aΛ2

8m4

)
. (7.31)

After a shift in the fields,

k2 → k2 − Λ
2 (m

2 + aΛ
4 )k , k1 → k1 − Λ

2 k , v2 → v2 +
bΛ
2 v1 , (7.32)

the quadratic Lagrangian three-form of S4 reduces to,

L(2)
4 = −

(
σ− Λ

2m2 −
aΛ2

8m4

)(
k · D̄v +

1
2

ē · (v× vc −Λk× k)
)

+
1

2m2

(
1 +

aΛ
2m2

)
ē · k1 × k1 −

1
m4

{
k2 ·

(
D̄v−Λē× k + ē× k1

)
+v2 ·

(
D̄k + ē× v

)
− b v1 ·

(
D̄k1 +

1
2 ē× v1

)}
.

(7.33)

Upon eliminating the auxiliary fields va, v1
a and v2

a by using their equations of mo-
tion, the quadratic Lagrangian density may be written as

L(2)4 = − σ4 kµνGµν(k)−
2

m4 kµν
2 Gµν(k)−

b
m4 kµν

1 Gµν(k1)

+
1

2m2 Θ
(

kµν
1 k1µν − k2

1

)
− 1

m4

(
kµν

1 k2µν − k1k2

)
. (7.34)

where

σ4 = σ− Λ
2m2 −

aΛ2

8m4 , and Θ = 1 +
aΛ

2m2 −
bΛ
m2 . (7.35)

For general values of the parameters this quadratic Lagrangian leads to a sixth-order
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differential equations for kµν. The matrix for the kinetic terms and the mass terms in
the basis of |k〉, m2|k1〉 and m4|k2〉 can be written as,

K = −

 σ4 0 1
0 b 0
1 0 0

 , and M2 = m2

 0 0 0
0 −Θ 1
0 1 0

 . (7.36)

When σ4 6= 0 and b 6= 0, the quadratic Lagrangian can be diagonalized by redefining
the fields

k = k0 − 1
σ4

(
k+ − k−

)
, (7.37)

k1 = −m4

b

(
1
M2
−

k+ − 1
M2

+

k−
)

, (7.38)

k2 = m4 (k+ − k−
)

, (7.39)

The quadratic Lagrangian now becomes the sum of the linearized Einstein-Hilbert
term, denoted by L(2)0 and two Fierz-Pauli terms LFP,

L(2)4 = σ4L
(2)
0 (k0) +K+LFP(k+,M+) +K− LFP(k−,M−) , (7.40)

where σ4 and K± satisfy,

σ4K+K− = −Θ2 − 4b σ4

b σ2
4

= K+ +K− , (7.41)

and the corresponding Fierz-Pauli massesM2
± satisfy,

M2
+M2

− =
m4

b
σ4 and M2

+ −M2
− =

m2

b

√
Θ2 − 4bσ4 . (7.42)

The numerator in (7.41) should be positive, otherwise the square of the masses be-
comes imaginary. Hence, it is not possible for both the kinetic terms and the masses
to be positive simultaneously. When σ4 > 0, from (7.41) and (7.42) we see that there
is either a negative mass squared (b < 0) or a wrong-sign kinetic term (b > 0) in the
theory. For σ4 < 0, one (b < 0) or both (b > 0) kinetic terms K± have the wrong sign.
Hence for all values where σ4 6= 0, one of the massive modes is either tachyonic or a
ghost.

7.3.2 Critical Lines and the Tricritical Point
In above analysis we disregarded a number of special points in the parameter space.
Here we present them separately;

• b = 0: At this point the rank of the matrix K is reduced by one. The action
(7.17) is now independent of the auxiliary field h1

a, and f2
a is algebraically
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given in terms of f1
a. This reduces the number of local degrees of freedom

from four to two, representing a single massive graviton. From eq. (7.24) we
see that the term involving the Cotton tensor has disappeared and the action
reduces to the ‘cubic extended’ NMG model described in [122].

• b = Θ = 0: At this special point the linearized field equations for kµν be-
comes second order in derivatives and the massive mode disappears from
the linearized spectrum. The linearized spectrum hence only contains a pure
gauge mode, which could lead to a dual CFT with positive central charge if
σ4 > 0 [122]. However, it is unclear that this fine-tuning persists at the non-
linear level.

• σ4 = 0: On this critical line, one of the FP masses become zero, but the linear
field equations remain sixth order in derivatives. Consequently, a new, log-
arithmic (log)-mode appears and it forms a Jordan cell of rank two with the
massless mode. The Lagrangian (7.34) is not diagonalizable any more.

• σ4 = Θ = 0: This is a ‘tricritical’ point, where both FP masses vanish and the
corresponding massless gravitons form a Jordan cell of rank three. The spec-
trum now contains one log-mode and a log2-mode (see for instance [107]).

• Θ2 = 4bσ4: This is another critical line where the two non-zero FP masses
degenerate and form a Jordan cell of rank two. At this point the spectrum
contains one massive mode and a massive log-mode.

These critical points are interesting from AdS/LCFT point of view. For a more de-
tailed treatment along the lines of [107], we refer to chapter 8.4.

7.4 Anti-de Sitter Holography
All of the extended massive gravity models admit an AdS vacuum and hence it is
possible to study the holographic dual theory by imposing suitable asymptotically
AdS boundary conditions. In section 5.2 we investigated the first-class constraints
of the general CS–like models which generate local Lorentz transformations and dif-
feomorphisms. To proceed with an analysis of the asymptotic symmetry group we
would like to write them in a basis of mutually commuting SL(2, R) generators (5.8).

L±[ζ] = φ′diff[ζ] + a±φLL[eµζµ] , (7.43)

where φ′diff[ζ] = φdiff[ζ]− φLL[ωµζµ]. The constants a± are defined such that

{L+[ξ], L−[η]} = 0 , (7.44)

on the AdS background.
One can then reinstate the boundary terms introduced in (4.13) and investigate

the Poisson bracket algebra of the generators (7.43) subject to asymptotically AdS (or
Brown-Henneaux) boundary conditions. This computation requires us to consider
the specific models on a case by case basis, as we need the explicit flavor space metric
grs and the structure constants frst, as well as the AdS background values of the
auxiliary fields. We will analyze the parity-odd S3 theory in full detail in appendix
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A and here we will treat the parity-even theory defined by S4.

7.4.1 Central Charges

Here we will construct explicitly the algebra of first-class constraints for the extended
new massive gravity model introduced in the last section. To this end it is convenient
to first define the constraint functions

φt[ξ
t] =

∫
d2x ξt

aφa
t , (7.45)

where here there is no sum over t. We now set out to find the generators (7.43) such
that (7.44) holds. Let us first comment that, quite generally, by the fact that (7.15)
holds, the gauge parameters for diffeomorphisms satisfy

eµ
aξ

f I
a = eµ

a f I ν aζν = f I µ
aeν aζν = f I µ

aξe
a ,

eµ
aξhI

a = hI µ
aξe

a .
(7.46)

Moreover, on the AdS background, the auxiliary fields f I
a are proportional to the

AdS dreibein and the auxiliary fields hI
a vanish. Hence we have that on the AdS

background

ξ
f I
a = f̄ Iξ

e
a , ξhI

a = 0 . (7.47)

Where f̄ I is the constant background value of the auxiliary fields, i.e. f I
a = f̄ I ēa on

the AdS background. The values for f̄1 and f̄2 can be read off from (7.30). This allows
us to express all the gauge parameters in φ′diff[ζ] in terms of ξe

a. Using these relations
and the specific values of grs and frst for ENMG, which may be read of from (7.17),
we can compute the Poisson brackets of φdiff[ζ] and φLL[ξ]. We find

{φ′diff[ξ], φ′diff[η]} = φt[ f t
rsξr × ηs] (7.48)

=

(
−Λ0m4 + σΛm4 +

m2Λ2

4
+

aΛ3

8

)
φh2 [ξ

e × ηe]−ΛφLL[ξ
e × ηe]

= −ΛφLL[ξ
e × ηe] . (7.49)

In the first line here the sum over t is over all flavors, while r and s sum over all
flavors except ω. In the second line, we have used (7.47) to express all gauge para-
meters in terms of ξe

a and ηe
a and the last line follows from the ENMG background

equation for the cosmological constant (7.31).

The other Poisson brackets are

{φ′diff[ξ], φLL[η]} = φ′diff[ξ × η] , {φLL[ξ], φLL[η]} = φLL[ξ × η] . (7.50)

This shows that the first-class constraint functions φ′diff[ζ] and φLL[ξ] span the SO(2, 2)
algebra when Λ = −1/`2 < 0. It is now simple to define the SL(2, R) generators as
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in (7.43) with

a± = ±1
`

. (7.51)

The algebra of Poisson brackets on the AdS background then becomes

{L±[ξ], L±[η]} = ±
2
`

L±[ξ × η] , {L+[ξ], L−[η]} = 0 . (7.52)

We can now consider reinstating the boundary terms for (7.43) and adopting suitable
asymptotically AdS boundary conditions.

The boundary charges Q± of the generators L±[ξ] can be found trough the gen-
eral formula (4.14). Their variation is

δQ± =−
∫

∂Σ
dxi (ξr

agrs + a±ξe
agωs) δas a

i

=−
∫

∂Σ
dxi

(
ges + f̄1g f1s + f̄2g f2s + . . . + a±gωs

)
ξe

aδas a
i ,

(7.53)

where in the first line the sum over r does not include ω and we have used (7.47) in
the last line. In general, after plugging in the explicit flavor space metric and AdS
background values of the fields, the result may be written as

δQ±[ξ±] =
k̂

2π

∫
∂Σ

dxi ξ±a

(
δωi

a ± 1
`

δei
a
)

. (7.54)

where k̂ is an effective coupling determined by the elements of grs and the f̄ I ’s. We
have also distinguished the gauge parameters for the left and right moving sectors
explicitly.

In order to integrate this expression to the boundary charges, we impose Brown-
Henneaux boundary conditions (2.66)-(2.67) on the dreibein and the spin connec-
tion. Together with the boundary condition preserving gauge transformations (2.68)
they lead to the following expression for the conserved charge Q = Q+ + Q− at the
boundary

Q =
k̂

2π

∫
dϕ
[

f (x+)L(x+)− f̄ (x−)L̄(x−)
]

. (7.55)

We can compute the Poisson brackets (7.52) with the boundary term from (4.15) after
suitably identifying ξ and η from (2.68) and defining the improved generators as in
(5.10). After Fourier expanding the improved generators as

Ln = L̃+[ f = einx+ ] , and L̄n = L̃−[ f̄ = einx− ] , (7.56)



134 CHAPTER 7 EXTENSIONS OF MASSIVE 3D GRAVITY

we find two copies of Virasoro algebra as expected,

i{Lm, Ln} = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (7.57)

i{L̄m, L̄n} = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 , (7.58)

where c = c̄ = 6k̂ for parity even models and c = −c̄ = 6k̂ for parity odd models.
After explicitly computing the effective couplings k̂ for the parity odd theory S3 (see
appendix A) we find the central charges

c3 = −c̄3 =
3

2µG
. (7.59)

This result is independent of the new coupling constant α. A similar computation
for the extended New Massive Gravity model S4, defined by (7.17) shows that

cENMG =
3`
2G

σ4 =
3`
2G

(
σ +

1
2`2m2 −

a
8m4`4

)
. (7.60)

The central charge is proportional to the earlier defined parameter σ4 and independ-
ent of the coupling constant b.

7.4.2 Holographic c-theorem

RG flows between fixed points in a matter theory with stress tensor Tµν coupled to
gravity and with AdS vacua can be described by a metric of the form

ds2 = e2A(r)(−dt2 + dx2) + dr2 . (7.61)

Assuming that the null energy condition holds for the matter sector, i.e. Tµνξµξν ≥ 0
for any null vector ξµ, it was shown in [130] that a monotonically increasing holo-
graphic c-function can be found in terms of A(r), such that it satisfies Zamolod-
chikov’s c-theorem [131] with the radial coordinate r as the measure of the energy.
The null energy condition simplifies to

−T t
t + T r

r ≥ 0 , for (ξt, ξr, ξx) =
(

e−A, 1, 0
)

. (7.62)

A monotonically increasing holographic c-function can then be obtained from

c′(r) = −T
t

t − T r
r

κ2A′2 ≥ 0 . (7.63)

If the bulk field equations are given by Eµν = κ2Tµν, the null energy condition can
equivalently be written as Eµνξµξν ≥ 0. In [122,132] it is argued that one way to make
c′(r) fulfill the inequality (7.63) is to have c(r) be only a function ofA′ which implies
that E t

t −E r
r should only be a function ofA′ andA′′. They used this logic to constrain
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higher-derivative interactions by demanding the presence of such a monotonically
increasing function.

Here we show that the construction with field equations (7.9) is consistent with
this assumption. The ansatz (7.61) is conformal to AdS spacetime which is an Ein-
stein metric and all solutions of the Einstein equations in three dimensions are also
solutions of Cµν = 0. This has the following two consequences:

1. All fields which are constructed from the Cotton tensor and its derivatives are
zero on the background (7.61). In other words, all fields hI and all D f terms
vanish on the ansatz (7.61) and all equations (7.9) reduce to a set of algebraic
equations among the f I fields. These equations can be solved in terms of the
Schouten tensor, which only contains up to two derivatives of A. Hence, after
solving for all auxiliary fields the bulk field equation Eµν involves only A′ and
A′′ by construction.

2. We can afford terms in the action constructed from the Cotton tensor as higher-
derivative corrections without affecting the c-function. This also suggests that
the only consistent way to include ∇R terms in the action is to use the Cotton
tensor.

If we only focus on the bulk actions (7.12) and (7.13), this suggests that terms contain-
ing the fields hI and D f terms do not directly contribute to the one-point functions
around the AdS vacuum. The variation of the action (7.12) around the background
(7.61) is only affected by ( f̄ · f̄ × δ f )-terms because fluctuations in other terms are
always proportional to a power of h or a D f term, which are zero for (7.61). In the
metric formulation this means that the linearized theory around (7.61) is not affected
by terms where graviton fluctuations are proportional to a power of Cotton tensor
which is zero for this background2. In fact, this is confirmed by direct calculation of
the central charge for the first few parity-even models (7.24) and (7.27),

ceven =
3`
2G

(
σ +

1
2m2`2 −

a
8m4`4 +

κ1

16m6`6 + · · ·
)

. (7.64)

The dots here refer to higher-derivative contributions to the central charge. By the
same reasoning, the variation of the action (7.13) around the background (7.61) is
only affected by ( f̄ · f̄ × δh)-terms. But this term also vanishes for any maximally
symmetric spacetime such as AdS. In the metric formulation this is more transparent
from the fact that ḡµνδCµν = 0. Hence the interaction terms in the odd sector do not
contribute to the central charge. This means that the central charge in the parity-odd
models is universal and not affected by any higher-derivative term,

codd = −c̄odd =
3

2µG
. (7.65)

We conclude that only interaction terms constructed solely from the Schouten tensor

2The value of the central charge is not fully determined by the equations of motion. There is always
a total derivative ambiguity which should be fixed by adding suitable boundary terms to the action and
imposing suitable boundary conditions.
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can contribute to the central charge. This is consistent with earlier studies of the
holographic c-theorem in this context [123]. Terms involving the Cotton tensor are
allowed by the holographic c-theorem and do not contribute to the central charge
— these terms however can contribute to the graviton masses and the two point
functions.

7.5 Drei-Dreibein Gravity
In this section we introduce the Drei-Dreibein Gravity (DDG) model. It is a straight-
forward generalization of the Zwei-Dreibein model introduced in chapter 3.5 to a
theory with three interacting dreibeine and three ‘spin connections’.3 As we dis-
cussed at length in chapter 4, the presence of secondary constraints (and correspond-
ingly, the absence of additional local d.o.f.) in ZDG required us to assume a linear
combination of the two dreibeine to be invertible. A special case of this assump-
tion was to restrict the parameters of the model such that the invertibility of a single
dreibein was sufficient to derive the necessary secondary constraints.

In Drei-Dreibein Gravity, similar considerations will play a role and we will de-
duce the restrictions on the parameters space of the theory which remove the addi-
tional scalar degrees of freedom in section 7.5.2. We proceed to analyze the linear
theory and give the expression for the two Fierz-Pauli masses and the dual central
charge. We discuss a scaling limit to the ENMG model presented in chapter 7.3 and
find further restrictions on the DDG parameter space by demanding the two masses,
the energy of the massive modes and the dual central charge to be positive.

7.5.1 The Model
The most general Lagrangian three-form constructed from three dreibeine eI

a with
I = 1, 2, 3 and three dualised spin connections ωI

a invariant under diagonal diffeo-
morphisms and local Lorentz invariance is given by:

L = −MP

3

∑
I=1

(
σI eI · R(ωI) +

1
6

m2αIeI · eI × eI

)
+ Lint , (7.66)

where

Lint =
1
2

m2MP

{
β12e1 · e1 × e2 + β21e2 · e2 × e1 + β13e1 · e1 × e3

+ β31e3 · e3 × e1 + β23e2 · e2 × e3 + β32e3 · e3 × e2 + β123e1 · e2 × e3

}
.

(7.67)

Here the β’s are dimensionless, free coupling constants and αI , with I = 1, 2, 3 are
three cosmological parameters. The mass parameter m2 is inessential, but convenient
and the coefficients σI are in principle arbitrary free ratios of Planck masses, however,

3Since there is only one overall local Lorentz invariance, there is also only one ‘real’ spin connection as
the gauge field for this diagonal gauge symmetry.
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we can always rescale one of the dreibeine eI
a such that σI = 1.

This theory is in essence a three dreibein extension of Zwei-Dreibein Gravity
(ZDG) presented in [103]. In ZDG the presence of secondary constraints in the
Hamiltonian formalism is essential for removing the Boulware-Deser ghost [103,
110, 125]. As was shown in chapter 4, the needed secondary constraints are in turn
closely related to the presence of invertible fields in the theory. If the inverse of
a dreibein can be used to construct a two-form equation from the Bianchi identit-
ies4 ( DI RI

a = 0, and DI TI
a = εabcRI beI c), then the theory possesses secondary

constraints [125]. Conversely, demanding the presence of secondary constraints to
remove unwanted degrees of freedom may impose a restriction on the parameter
space of the theory or require us to assume the invertibility of linear combinations of
the dreibeine.

The equations of motion derived from the Lagrangian (7.66) are

σ1R(ω1) =
1
2

m2
[
− α1e1 × e1 + β123e2 × e3 + (2β12e1 × e2 + β21e2 × e2)

+ (2β13e1 × e3 + β31e3 × e3)

]
, (7.68)

σ2R(ω2) =
1
2

m2
[
− α2e2 × e2 + β123e1 × e3 + (β12e1 × e1 + 2β21e1 × e2)

+ (2β23e2 × e3 + β32e3 × e3)

]
, (7.69)

σ3R(ω3) =
1
2

m2
[
− α3e3 × e3 + β123e1 × e2 + (β13e1 × e1 + 2β31e1 × e3)

+ (β23e2 × e2 + 2β32e2 × e3)

]
, (7.70)

together with three torsion constraints (for fixed I)

TI = DIeI ≡ deI + ωI × eI = 0 . (7.71)

The three curvature two-forms satisfy three Bianchi identities DI RI = 0, and the
three torsions satisfy three Cartan identities DI TI = RI × eI . These equations are all
three-form equations and in a Hamiltonian analysis their space-time decomposition
is equivalent to the consistency equations which the primary constraints of this the-
ory need to satisfy [125]. If these equations can be turned into two-form equations
by the invertibility of (some combination of) the dreibeine, then the theory possesses
secondary constraints.

4The Bianchi identities for this theory are jointly equivalent to the integrability conditions (4.21) de-
rived in chapter 4.
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7.5.2 Constraint Analysis

Let us first investigate the number of secondary constraints needed to remove any
unwanted degrees of freedom in the theory. The above Lagrangian has one diagonal
diffeomorphism invariance and one diagonal local Lorentz symmetry. This suggests
that there is one overall massless spin-2 mode coupled to two massive spin-2 modes.
There should thus be 4 local degrees of freedom, leading to an 8 dimensional physical
phase space.

After a space-time decomposition in the Lagrangian (7.66), the time-components
of the fields become Lagrange multipliers for 18 primary constraints. The matrix of
Poisson brackets for these constraints has rank 12, since 6 constraints are first class,
reflecting the six gauge symmetries of the theory. In the absence of secondary con-
straints, the dimension of the physical phase space would be (3× 2× 6) = 36 com-
ponents in the spatial parts of the 6 fields, minus (2× 6) = 12 first class constraints
and minus 12 second class constraints, leading to 12 dynamical components in the
physical phase space, i.e. 6 local degrees of freedom. These are 2 degrees of free-
dom too many, so we need 4 secondary scalar constraints to remove the unwanted
degrees of freedom.

From the Cartan identities DI TI
a = εabcRI beI c we can derive 3 three-form equa-

tions which are satisfied on-shell. They are(
β12e1

a + β21ea
2 + β123e3

a)e1 · e2 +
(

β13e1
a + β31ea

3 + β123e2
a)e1 · e3 = 0 , (7.72)(

β12e1
a + β21ea

2 + β123e3
a)e1 · e2 −

(
β23e2

a + β32ea
3 + β123e1

a)e2 · e3 = 0 , (7.73)(
β13e1

a + β31ea
3 + β123e2

a)e1 · e3 +
(

β23e2
a + β32ea

3 + β123e1
a)e2 · e3 = 0 . (7.74)

There are only secondary constraints if these equations can be turned into a two-form
equation for the fields. This can be achieved by setting to zero some of the coupling
constants of the theory and assuming invertibility of (some of) the dreibeine. By in-
spection of the equations (7.72)-(7.74) it becomes apparent that a non-zero β123 would
never lead to secondary constraints, so we will have to set it to zero. Then, in order to
derive two secondary constraints from this system of equations, we must restrict the
parameters of the theory such that exactly one of the following combinations vanish,
while the other two should have an inverse.

β12e1
a + β21ea

2 , β13e1
a + β31ea

3 , β23e2
a + β32ea

3 . (7.75)

This result implies that there can only be one dreibein in the theory which couples
to the other two dreibeine; theories with all dreibeine interacting with each other do
not lead to the necessary secondary constraints.

There are many special cases of this type of restriction of the theory where the
invertibility of one or more of the original dreibeine, and not of some linear com-
bination, is sufficient. For instance, if we assume invertibility of only e1

a, there is a
unique parameter choice which leads to secondary constraints. It is:

β12 6= 0 , β13 6= 0 , (7.76)
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Figure 7.1: The ghost-free interaction terms with assuming only one invertible
dreibein. The invertible dreibein is denoted by a solid circle, the empty circles are
two dreibeine which are not assumed to be invertible. The arrow denotes the inter-
action term where the dreibein to which the arrow points appears once. So if the
invertible dreibein is e1

a, this diagram corresponds to a DDG theory with only β12
and β13 non-zero.

while all other β parameters should be set to zero. The three equations (7.72)-(7.74)
then reduce to

e1
ae1 · e2 = 0 , e1

ae1 · e3 = 0 , β12e1
ae1 · e2 + β13e1

ae1 · e3 = 0 . (7.77)

From which two secondary constraints on the spatial variables of the theory follow

εije1 i · e2 j ≡ ∆e1e2 = 0 , εije1 i · e3 j ≡ ∆e1e3 = 0 . (7.78)

Here i, j = 1, 2 denote the spatial part of the dreibeine. A similar choice of parameters
exists if we take e2

a or e3
a to be invertible, as is indicated by figure 7.1. For invert-

ible e1
a, we can find another two secondary constraints from the Bianchi identities

DI RI
a = 0. They are:

εij(ω1 i −ω2 i) · e1 j ≡ ∆ω1e1 − ∆ω2e1 = 0 ,

εij(ω1 i −ω3 i) · e1 j ≡ ∆ω1e1 − ∆ω3e1 = 0 .
(7.79)

These constraints are necessary and sufficient to remove the unwanted degrees of
freedom in the theory. After adding the secondary constraints to the matrix of Pois-
son brackets it grows to a 22× 22 matrix. There are still 6 first class constraints (FCC),
reflecting the six gauge symmetries present. The remaining 16 constraints are second
class (SCC) and the dimension of the physical phase space is, per space point

36 {canonical var.} − 12 {FCC} − 16 {SCC} = 8 . (7.80)

This corresponds to the four helicity ±2 modes of two massive gravitons. For more
details and the explicit computation of the matrix of Poisson brackets and its rank,
we refer to appendix B.

The parameter choice (7.76) is unique if we assume the invertibility of only one
dreibein. If instead there are two invertible dreibeine, then we have five different
ways of choosing two non-zero β parameters (see figure 7.2). This leads to three
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Figure 7.2: The ghost-free interaction terms with assuming two invertible dreibeine.
There are now five choices for the β parameters, two of which are related to the
others by a relabeling of the dreibein index I. The three inequivalent choices are
presented schematically here, where the filled dot denotes an invertible dreibein.

different options for the two secondary constraints, since two of the five choices are
related to the others by a relabeling of the dreibein indices I:

∆e1e2 = ∆e1e3 = 0 , or: ∆e1e2 = ∆e2e3 = 0 , or: ∆e1e3 = ∆e2e3 = 0 . (7.81)

When assuming the invertibility of all three dreibeine, the inequivalent choices for
the two non-zero β parameters are all 12 permutations of the two arrows between
the three dots in the figure above. However, since the dreibeine are in principle in-
distinguishable, the theory is invariant under permutations of the dreibein labels 1, 2
and 3. At the end of the day, there are three inequivalent combinations of interaction
terms, graphically denoted by the three different arrangements of arrows in figure
7.2.

To summarize, the analysis of the presence of secondary constraints in DDG
severely restricts the number of allowed interaction terms. In full generality, to de-
rive the secondary constraints needed to remove the extra degrees of freedom, we
must:

• Set to zero β123, i.e. there is no interaction term mixing three dreibeine.

• Assume invertibility of two of out of the three linear combination in (7.75),
while the parameters of the theory should be restricted such that the third com-
bination vanishes.

The last of these rules implies that only one dreibein is allowed to couple to the
other two dreibeine, i.e. there can be no loops in the diagrams in figure 7.2. This is
compatible with the analysis of ref. [22], obtained by different means.

7.5.3 Linearized theory
Before selecting a specific ghost-free theory, we analyze the linear theory around a
common maximally symmetric background with cosmological constant Λ = −1/`2,
described by the dreibein ēa and spin-connection ω̄a. We allow for two arbitrary
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scale parameters γ2 and γ3 for the backgrounds of e2
a and e3

a respectively.

e1
a = ēa + κk1

a , e2
a = γ2 (ēa + κk2

a) , (7.82)
e3

a = γ3 (ēa + κk3
a) , ωI

a = ω̄a + κvI
a . (7.83)

The linear terms in the κ expansion cancel when

σ1
Λ
m2 = 2β12γ2 + β21γ2

2 + 2β13γ3 + β31γ2
3 − α1 ,

σ2
Λ
m2 = β12 + 2β21γ2 + 2β23γ2γ3 + β32γ2

3 − γ2
2α2 , (7.84)

σ3
Λ
m2 = β13 + 2β31γ3 + β23γ2

2 + 2β32γ2γ3 − α3γ2
3 .

These three equations fix γ2, γ3 and Λ in terms of the DDG parameters.

The quadratic Lagrangian for the fluctuations kI
a and vI

a is

L(2) = −MP

3

∑
I=1

σIγI

{
kI · D̄vI +

1
2

ē · (vI × vI −ΛkI × kI)

}
−1

2
m2MP ē · (γ2(β12 + γ2β21)(k1 − k2)× (k1 − k2) (7.85)

+ γ3(β13 + γ3β31)(k1 − k3)× (k1 − k3)

+γ2γ3(γ2β23 + γ3β32)(k2 − k3)× (k2 − k3)) .

where γ1 = 1. In the last section, we showed that one of the three combinations
appearing in (7.75) should vanish by a restriction of the β parameters. This implies
that only one of the three dreibeine can couple to the other two simultaneously. After
choosing this dreibein to be e2

a, we see that we have to take β13 = β31 = 0 and the
(k1 − k3)

2 term is not present in the above quadratic Lagrangian. Since we may
always relabel the dreibein indices I = 1, 2, 3, this implies that the specific ghost-free
parameter choice does not influence the linear theory and that there are only two
non-diagonal mass terms in (7.85). For simplicity, we will proceed the analysis of the
linear theory by also taking β21 = 0 and β32 = 0, since in the linear theory these two
coupling constants can be absorbed in β12 and β23.

Diagonalisation

The above quadratic Lagrangian has diagonal kinetic terms for the fields kI and vI ,
but it contains mass-terms for the differences k1 − k2 and k2 − k3. Here we diagon-
alize the theory and write it in terms of a massless field and two massive fields. The
first step is to define two new fields equal to the difference appearing in the mass
terms

f1 = k1 − k2 , f2 = k2 − k3 , (7.86)
w1 = v1 − v2 , w2 = v2 − v3 . (7.87)
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We also redefine the fields k2 and v2 as

k2 = k(0) −
σ1

γcrit
f1 +

σ3γ3

γcrit
f2 ,

v2 = v(0) −
σ1

γcrit
w1 +

σ3γ3

γcrit
w2 ,

(7.88)

where

γcrit = σ1 + σ2γ2 + σ3γ3 . (7.89)

Assuming γcrit 6= 0, the quadratic Lagrangian becomes:

L(2) = −γcritMP

{
k(0) · D̄v(0) +

1
2

ē ·
(

v(0) × v(0) −Λk(0) × k(0)
)}

− σ1(γ2σ2 + γ3σ3)MP
γcrit

{
f1 · D̄w1 +

1
2

ē · (w1 × w1 −Λ f1 × f1)

}
− γ3σ3(σ1 + γ2σ2)MP

γcrit

{
f2 · D̄w2 +

1
2

ē · (w2 × w2 −Λ f2 × f2)

}
(7.90)

− γ3σ1σ3MP
γcrit

{
f1 · D̄w2 + f2 · D̄w1 + ē · (w1 × w2 −Λ f1 × f2)

}
− 1

2
m2MPγ2 ē · (β12 f1 × f1 + γ2γ3β23 f2 × f2) .

We have now traded an off-diagonal mass-term for off-diagonal kinetic terms, but
at least we are able to identify the Lagrangian for the massless spin-2 mode, which
corresponds to the first line of (7.90).

We now diagonalize the massive part of the linearized Lagrangian, which cor-
responds to the last four lines of (7.90). We redefine the fields f1, f2, w1 and w2 as a
linear combination of two massive spin-2 modes

f1 = k(M1)
+ k(M2)

, f2 = A+k(M1)
+ A−k(M2)

,

w1 = v(M1)
+ v(M2)

, w2 = A+v(M1)
+ A−v(M2)

.
(7.91)

The massive part of (7.90) is diagonal if the (non-zero) dimensionless coefficients A±
are given by

A± =
1
2

(
β12(σ1 + σ2γ2)

β23σ1γ2γ3
− γ2σ2

γ3σ3
− 1
)

±

√
β12

β23γ2γ3
+

1
4

(
σ1 + γ2σ2

σ1γ2γ3

β12

β23
− γ2σ2 + γ3σ3

γ3σ3

)2
.

(7.92)

The quadratic Lagrangian factorizes into a part describing a linearized massless
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spin-2 plus 2 massive Fierz-Pauli Lagrangians.

L(2) =− γcritMP

{
k(0) · D̄v(0) +

1
2

ē ·
(

v(0) × v(0) −Λk(0) × k(0)
)}

(7.93)

+ C1MP LFP(kM1 , vM1 ,M1) + C2MP LFP(kM2 , vM2 ,M2) ,

where

LFP(k, v,M) = −
{

k · D̄v +
1
2

ē ·
(

v× v− (Λ−M2)k× k
)}

, (7.94)

is the Fierz-Pauli Lagrangian (see also (3.14)).

The two Fierz-Pauli masses,M1 andM2, belonging to the massive modes k(M1)
and k(M2)

respectively, are given by:

M2
1 =

m2γcritγ2
(

β12 + γ2γ3β23 A2
+

)
γ2σ2(σ1 + σ3γ3 A2

+) + σ1σ3γ3ζ(1 + A+)2
,

M2
2 =

m2γcritγ2
(

β12 + γ2γ3β23 A2
−
)

γ2σ2(σ1 + σ3γ3 A2
−) + σ1σ3γ3ζ(1 + A−)2

.

(7.95)

The coefficients in front of the kinetic terms of the Fierz-Pauli Lagrangian are:

C1 =
γ2σ2(σ1 + σ3γ3 A2

+) + σ1σ3γ3ζ(1 + A+)2

γcrit
,

C2 =
γ2σ2(σ1 + σ3γ3 A2

−) + σ1σ3γ3ζ(1 + A−)2

γcrit
.

(7.96)

Finally, the dual central charge can be computed by analogy to the computation for
ZDG [103] performed in chapter 5.3.2. The result is

cL/R = 12π`MPγcrit =
3`
2G

γcrit . (7.97)

Critical lines and points

The linear DDG theory contains critical lines and tricritical points where the central
charge vanishes and the linearized Lagrangian is not diagonalizable. Consider the
linear theory with σ3 = 1 and we tune

γcrit = 0 , (7.98)

by parametrizing

σ2 = − 1
γ2

(σ1 + γ3) . (7.99)
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This defines a set of critical lines for which (one of) the Fierz-Pauli masses (7.95)
vanishes. Depending on the value of the following combination of parameters

A = β12γ3 + β23γ2σ2
1 , (7.100)

we find that

if A > 0 , M2
+ =

Am2γ2

σ2
1 + γ3σ1

, M2
− = 0 ,

if A < 0 , M2
+ = 0 , M2

− =
Am2γ2

σ2
1 + γ3σ1

,

if A = 0 , M2
+ = M2

− = 0 .

(7.101)

The last of these three equations defines a set of tricritical points. The full parameter
space of ghost-free DDG is seven dimensional (σ1, σ2, α1, α2, α3, β12, β23) and moving
to the tricritical point fixes two of the seven parameters, leaving five free parameters.
Hence, the tricritical points found here are a generalization of the ENMG tricritical
point found in chapter 7.3.2.

7.5.4 The Extended NMG Limit
The Extended NMG theory obtained in section 7.3 has the same linear spectrum
as ghost-free Drei-Dreibein Gravity, although the parameter space of the latter is
larger. In fact, there exists a scaling limit, or a flow, from DDG to the ENMG theory
presented in chapter 7.3. Consider the DDG Lagrangian with the same ghost-free
parameter choice as was discussed in the linear theory above:

LDDG = −MP

{
σ1e1 · R(ω1) + σ2e2 · R(ω2) + σ3e3 · R(ω3)

+
1
6

m2(α1e1 · e1 × e1 + α2e2 · e2 × e2 + α3e3 · e3 × e3

− 3β12e1 · e1 × e2 − 3β23e2 · e2 × e3
)}

.

(7.102)

We introduce the following parametrization as an expansion in λ for the three dreibeine
and the spin connections,

e1 = e ,

e2 = e + λ
m2 f1 ,

e3 = a31 e + a32
λ

m2 f1 +
λ2

m4 f2 ,

ω1 = ω ,

ω2 = ω + λ
m2 h1 ,

ω3 = ω + a32
a31

λ
m2 h1 +

1
a31

λ2

m4 h2 ,

(7.103)

where

a31 = − (a− b)2

(a− 2b)
, and a32 = − (a− b)b

(a− 2b)
. (7.104)
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We take the Planck mass and the σI parameters as

MP =
M
λ2 , σ1 = a− b + λ2σ , σ2 =

(a− b)b
(a− 2b)

, σ3 = 1 , (7.105)

where σ = ±1 is a new sign parameter. The cosmological parameters and the two
coupling constants are expanded as

α1 = −2− 2(a− b)
λ

, α2 = −1 +
(a− b)(a2 − 2b2)

(a− 2b)2λ
, α3 = − (a− 2b)

(a− b)3λ
,

β12 =
Λ0λ2

3m2 − 1− a− b
λ

, β23 = − a− b
(a− 2b)λ

. (7.106)

After plugging this into the Lagrangian (7.102) and taking the limit λ→ 0 we arrive
at the Extended New Massive Gravity action given in (7.17).

In order to take the limit in the DDG central charge to find the central charge of
the Extended NMG (ENMG) theory we need to know how γ2 and γ3 scale with λ.
We can deduce this from the parameter relations (7.84) which in this case read

σ1
Λ
m2 = 2β12γ2 − α1 ,

σ2
Λ
m2 = β12 + 2β23γ2γ3 − γ2

2α2 , (7.107)

σ3
Λ
m2 = β23γ2

2 − α3γ2
3 .

If we expand the cosmological constant as Λ = −1/`2 + Λ(1)λ +O(λ2), then it is
possible to solve these equations order by order in λ. The result is

γ2 = 1 +
1

2`2m2 λ−
(

1
2(a− b)m2`2 +

Λ(1)

2m2

)
λ2 +O(λ3) , (7.108)

γ3 = − (a− b)2

(a− 2b)
− (a− b)b

2(a− 2b)`2m2 λ

−
(

a
8`4m4 −

(a− b)
2(a− 2b)`2m2 −

(a− b)bΛ(1)

2(a− 2b)

)
λ2 +O(λ3) .

(7.109)

Taking the λ→ 0 limit in the DDG central charge (7.97), we find that

cL/R =
3`
2G

(
σ +

1
2`2m2 −

a
8`4m4

)
. (7.110)

Which agrees with the result (7.60).
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7.5.5 Positive Central Charge and the Absence of Ghosts in DDG
A problem for the higher-derivative extensions of New Massive Gravity was the
presence of massive spin-2 ghosts. The linear theory of DDG contains the same spec-
trum as ENMG, however, the original theory does not contain higher derivatives and
the parameter space is larger. This gives the additional freedom to achieve positive
energy for the massive modes consistent with a positive central charge.

For DDG with the parameter choice β12 6= 0 and β23 6= 0 the bulk requirements
are:

C1, C2,M2
1,M2

2 > 0 . (7.111)

Positivity of the dual central charge restricts the DDG parameters as

γcrit = σ1 + γ2σ2 + γ3σ3 > 0 . (7.112)

The theory has seven free parameters (two of the σ’s, three α’s and two β’s) which
have to satisfy the five inequalities (7.111) and (7.112). This is possible and an explicit
choice satisfying all inequalities is:

β12 = A > 0 , β23 = B > 0 , σI = 1 , for: I = 1, 2, 3 ,

α1m2 = ζ + 2m2 A , α2m2 = ζ + m2(A + 2B) , α3m2 = ζ + m2B . (7.113)

Where here ζ > 0. For this choice of parameters there is an AdS vacuum satisfying
(7.107) with γ2 = γ3 = 1 and an AdS length ` = 1/

√
ζ. Moreover, like in ZDG, any

nearby DDG model also satisfies the restrictions (7.111)-(7.112), since these inequal-
ities are satisfied, but not saturated. Hence there is a continuous range of parameters
defining a class of DDG models with good bulk and boundary properties.

7.6 Viel-Dreibein Gravity

The constraint analysis of Drei-Dreibein Gravity can be extended to a theory with an
arbitrary number of interacting dreibeine. From the DDG analysis, we know that in-
teraction terms mixing more than two dreibeine do not lead to secondary constraints.
To investigate the secondary constraints in a Viel-Dreibein theory with N interacting
dreibeine, we only consider interaction terms involving two dreibeine and define the
Lagrangian as:

L = −MP

N

∑
I=1

(
σI eI · R(ωI) +

1
6

m2αIeI · eI × eI

)
+ Lint , (7.114)

where

Lint =
1
2

m2MP

N

∑
I=1

N

∑
J 6=I

β I JeI · eI × eJ . (7.115)
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From the Bianchi and Cartan identities ( DI RI = 0, and DI TI = RI × eI) we can
derive secondary constraints if we can use the inverse of some of the dreibeine to
construct two-form equations of them. But let us first investigate the number of sec-
ondary constraints which are needed to remove the additional degrees of freedom.

The theory should describe N− 1 massive spin-2 modes and one massless mode.
The desired number of degrees of freedom is thus 2(N − 1); two for every massive
mode, or a physical phase space of dimension 4(N − 1). After a space-time decom-
position of the fields, the dynamical phase space consists out of the 12N components
of the spatial parts of the dreibeine and the spin connections. The time components
of the fields act as Lagrange multipliers for 6N primary constraints, out of which 6
are first class, corresponding to the diagonal gauge symmetries of the theory. In the
absence of secondary constraints a counting of the physical phase-space gives:

12N − 6N − 6 = 6(N − 1) . (7.116)

To arrive at 4(N− 1), we need to derive 2(N− 1) secondary constraints from the Bi-
anchi and Cartan identities. Let us first consider the Cartan identities for this model.
They are N equations, each containing N − 1 terms

(β12e1
a + β21e2

a)e1 · e2 + (β13e1
a + β31e3

a)e1 · e3 + . . .
. . .+(β1Ne1

a + βN1eN
a)e1 · eN = 0 ,

(β12e1
a + β21e2

a)e2 · e1 + (β23e2
a + β32e3

a)e2 · e3 + . . .
. . .+(β2Ne2

a + βN2eN
a)e2 · eN = 0 ,

...
(β1Ne1

a + βN1eN)eN · e1 + . . . + (βNN−1eN
a + βN−1NeN−1

a)eN · eN−1 = 0 .

(7.117)

To derive N − 1 secondary constraints from (7.117), we need to constrain the para-
meters such that N− 1 of these involve solely an invertible combination of dreibeine
carrying a free Lorentz index. Then we can use the inverse of this combination of
dreibeine to construct a two-form equation, whose spatial projection is a secondary
constraint. In other words, out of the 1

2 N(N − 1) combinations

(β I JeI
a + β J IeJ

a) , with I 6= J , (7.118)

we need that N − 1 have an inverse, while the others all vanish. For simplicity, we
will restrict our attention here to a special case of this assumption where only a single
dreibein is assumed to be invertible. We may pick the invertible dreibein to be e1

a

without loss of generality, there is a single parameter choice for which eqn. (7.117)
leads to secondary constraints. This is

β1J 6= 0 , for: J = 2, . . . , N , (7.119)

and all other β parameters vanish. After this parameter restriction, the secondary
constraints can be derived by acting with e−1

1 on (7.117) and taking the spatial part.
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They are

εije1 i · eJ j = ∆e1eJ = 0 , for: J = 2, . . . , N . (7.120)

We now turn our attention to the N Bianchi identities DI RI
a = 0. They can be

written, in full generality, as

β12 [(ω1
a −ω2

a)e1 · e2 + e2
ae1 · (ω1 −ω2)] + β21 [e2

ae2 · (ω1 −ω2)] + . . .
+ β1N [(ω1

a −ωN
a)e1 · eN + eN

ae1 · (ω1 −ωN)] + βN1 [eN
aeN · (ω1 −ωN)] = 0 ,

β21 [(ω2
a −ω1

a)e2 · e1 + e1
ae2 · (ω2 −ω1)] + β12 [e1

ae1 · (ω2 −ω1)] + . . .
+ β2N [(ω2

a −ωN
a)e2 · eN + eN

ae2 · (ω2 −ωN)] + βN2 [eN
aeN · (ω2 −ωN)] = 0 ,

... (7.121)
βN1 [(ωN

a −ω1
a)eN · e1 + e1

aeN · (ωN −ω1)] + β1N [e1
ae1 · (ωN −ω1)] + . . .

+ βNN−1 [(ωN
a −ωN−1

a)eN · eN−1 + eN−1
aeN · (ωN −ωN−1)]

+ βN−1N [eN−1
aeN−1 · (ωN −ωN−1)] = 0 .

After the parameter constraint (7.119) and using e1 · eJ = 0, this set of equations
reduces to:

β12e2
ae1 · (ω1 −ω2) + . . . + β1NeN

ae1 · (ω1 −ωN) = 0 ,

β12e1
ae1 · (ω2 −ω1) = 0 ,

β13e1
ae1 · (ω3 −ω1) = 0 ,

...
β1Ne1

ae1 · (ωN −ω1) = 0 .

(7.122)

The assumed invertibility of e1
a is sufficient to derive another N − 1 secondary con-

straints

εije1 i · (ω1 j −ωJ j) = 0 , for: J = 2, . . . , N . (7.123)

Provided that the secondary constraints (7.120) and (7.123) are second-class, these
remove an additional 2(N − 1) components from the counting performed in (7.116),
leading to a physical phase space of dimension 4(N− 1), corresponding to 2(N− 1)
degrees of freedom, the correct number of degrees of freedom to account for the two
helicity states of N − 1 massive spin-2 modes.

In a similar fashion, secondary constraints can be derived when assuming more
or all dreibeine to be invertible, or when assuming N − 1 of the linear combinations
in (7.118) to be invertible. In all of the cases, the parameters of the theory must be
restricted such that in a diagram similar to 7.2, there are only N − 1 connections
between the dots representing the dreibeine. From this analysis we arrive at a set of
rules for constructing a ghost-free Viel-Dreibein Gravity model. The rules are
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• No interaction terms which couple more than two dreibeine.
• For N dreibeine, pictorially represented by dots, there must be exactly N − 1

connections between the dots, representing the interaction terms.
• No dreibein is disconnected.

The last two points combined excludes the possibility to form loops in the diagrams
depicting the interaction terms of the theory.

Any VDG theory constructed in this way will have the correct number of de-
grees of freedom to describe N − 1 massive gravitons interacting with each other,
provided that the secondary constraints derived here are also second-class and that
the consistency conditions of the secondary constraints do not introduce any further
tertiary constraints. This has been checked explicitly for VDG with N = 2 (ZDG) in
chapter 4.3.3 and N = 3 (DDG) in appendix B.

7.7 Discussion
In this chapter we have discussed several Chern-Simons–like models with more than
four fields which propagate multiple massive spin-2 modes in three dimensions. The
theories discussed here can be divided into two classes. The first class of models we
have discussed are CS–like models for higher-derivative extensions of general re-
lativity containing a finite number of higher-derivative terms. We have shown how
to derive higher-derivative terms which give a scalar ghost-free extension of GR,
however, the theory does contain unphysical massive spin-2 modes. These unphys-
ical modes disappear at special critical lines and points in the parameter space, a
subject we will revisit in the next chapter.

The scalar ghost-free terms found here are unique at each order in 1/m2, how-
ever, it is possible to find other theories which extend GR by (scalar ghost-free)
higher-derivative terms. For instance, if we supplement the NMG Lagrangian in
a CS–like form with a 1

m4 f · f × f term, then the solution of the auxiliary field f
becomes an infinite expansion in 1/m2, each term containing a higher power of Sn

contributions (with S we mean the Schouten tensor). The resulting theory, while
maintaining the two degrees of freedom of NMG, involves an infinite series of Rn

terms and is scalar ghost-free by construction. At a specific value for the free para-
meter of the new interaction term, the theory becomes equivalent to a Born-Infeld
extension of NMG [133, 134], as we will discuss in chapter 9.2.

On the other hand, we discussed extensions of Zwei-Dreibein Gravity to models
with three or more interacting dreibeine. For these models it is possible to describe
physical spin-2 modes, together with a positive central charge for the boundary CFT.
This fact, together with the existence of AdS3 vacua, suggests that the BTZ black hole
solutions in these models will also have positive mass. In contrast to the higher-
derivative extensions of GR, the DDG and VDG models discussed here fall into the
class of theories which do not have an action in terms of a single metric. This is
much like MMG and ZDG, as was discussed in previous chapters. In fact, in DDG,
it is possible to solve the equations of motion for two of the three dreibeine in terms
of the third, invertible, dreibein in a procedure much like in ZDG (see chapter 3.5.4).
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This will result in a field equation involving a single dreibein and an infinite series of
higher-derivative contributions. At the level of the action, this procedure is hardly
possible, which is a sign that these theories are fundamentally different from the
‘conventional’ gravitational theories; even though their field equation may depend
on a single metric, the action requires the use of auxiliary fields. This novel property
poses new difficulties, such as the question of how to couple them to matter, but it
also introduces new possibilities, like the resolution of the ‘bulk-boundary clash’.



8
The AdS/LCFT correspondence

Most of the Chern-Simons–like models that we have encountered so far all share
a special property which we have not yet discussed. At special points in the para-
meter space, the mass of the spin-2 mode vanishes and the linearized Lagrangian
cannot be diagonalized. In this chapter we will investigate these special points in
more detail. We will show that in critical ZDG the massive mode is replaced by a
logarithmic mode, which, together with the pure gauge mode, forms a Jordan cell
of rank 2 with respect to the Hamiltonian. This leads to the conjecture that ZDG,
at certain critical points, is dual to a logarithmic CFT (LCFT). We lend further
support for this conjecture by showing that the non-linear theory contains log-
arithmic pp-wave solutions at the critical points, using the higher-derivative
formulation of ZDG discussed in 3.5.4. After this, we study the sixth-order
extended NMG (ENMG) model of chapter 7.3 at a tricritical point where both
massive modes become massless. The corresponding log and log2 modes form a
Jordan cell of rank 3 with the pure gauge modes and the conjectured dual LCFT
is of rank 3. The results with respect to critical ZDG were obtained in [VII] and
the section dealing with tricritical ENMG is adapted from [IV] and [X].
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8.1 Introduction

Most of the Chern-Simons–like theories discussed in this thesis share a common fea-
ture. At a specific point or range of points in the parameter space the mass of the
spin-2 mode vanishes. At this point the massive mode degenerates with the pure
gauge modes in the theory. The field equations, which are typically higher-order
differential equations, still have the same number of solutions and hence new solu-
tions to the linearized equations of motion arise. These new solutions have different
asymptotics towards the AdS3 boundary; in Poincaré coordinates they fall of like
log r and hence they are called logarithmic modes. They were first found in TMG at
the chiral point in [116]. As the mass of the spin-2 mode goes to zero, the weights
characterizing the conformal dimension of the operators dual to the massive modes
degenerates with those of the stress-energy tensor of the dual conformal field the-
ory (CFT). This led to the conjecture that critical TMG (sometimes called Log Grav-
ity [118]) is dual to a logarithmic CFT1 (LCFT) [117, 119, 120]. Soon afterwards,
logarithmic modes were also found in NMG at a critical point and in its higher-
dimensional analogues, see for instance [139–147]. See [148] for a recent review on
the AdS/LCFT correspondence in critical gravity theories.

In the next section we will show explicitly how these logarithmic modes arise
in critical gravity theories, but let us first comment briefly on the nature of LCFTs
and their difference from ‘ordinary’ CFTs. For a more detailed review on LCFTs and
references we refer to [135, 149, 150].

Conformal Field Theories are invariant under scale transformations that preserve
angles. The two-point correlation functions are restricted by conformal symmetry to
behave like:

〈Oi(x)Oj(y)〉 = δij
c

|x− y|2∆ ,

and there exists a Hamiltonian operator that is diagonalizable, i.e. the operators of
the CFT are eigenstates of the energy operator H:

[H,Oi] = E0Oi .

Logarithmic CFT’s arise when two operators degenerate in all quantum numbers.
The two operators will form an indecomposable, but non-irreducible representation
of the CFT symmetry algebra (Jordan cells). The Hamiltonian no longer acts diagon-
ally on the operators, but instead:

[H,Olog
i ] = E0O

log
i +Oi , [H,Oi] = E0Oi , (8.1)

where Olog
i is called the logarithmic partner of Oi. The two-point correlation func-

1Gravitational duals for logarithmic CFTs [135] were studied before in the contexts of singletons in
AdS backgrounds [136, 137] and in theories with a set of degenerate scalar fields on AdS [138].
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tions will now involve logarithmic terms:

〈Oi(x)Oj(y)〉 = 0 , (8.2a)

〈Olog
i (x)Oj(y)〉 = δij

b
|x− y|2∆ , (8.2b)

〈Olog
i (x)Olog

j (y)〉 = δij
1

|x− y|2∆ (−2b log |x− y|+ λ) . (8.2c)

The rank of the LCFT determines the amount of logarithmic partner operators. Typ-
ically, this can be any integer n + 1 and the corresponding correlation functions will
then contain logn-terms. The two-point functions above are again fixed by conformal
symmetry, up to the constant b, which is called the new anomaly.

In this chapter, we will argue that the existence of critical points in the parameter
space at which logarithmic modes appear in the linearized spectrum, is not only a
feature of the higher-derivative gravity models, but also of the recently introduced
ZDG model. We will show this first at the linearized level. We will in particular
show that there exist regions in the ZDG parameter space, where the massive grav-
itons become massless and thus coincide with pure gauge modes. We will show that
instead logarithmic modes appear in the linearized spectrum, that behave similarly
to the analogous modes found in higher-derivative critical gravities. The existence
of these modes can be seen as a serious hint that ZDG can be added to the class of
gravity theories that are, at specific parameter values, dual to LCFTs. We will argue
that the dual LCFTs have zero central charges and we will calculate the value of the
new anomalies on the gravity side via a procedure outlined in [151].

We will also confirm that the existence of these logarithmic modes is not an arte-
fact of the linearized approximation, but that there exist solutions of the full theory,
that exhibit this logarithmic fall-off behavior. This lends further credibility to the
idea that the ZDG parameter space features critical points at which the theory can be
dual to LCFTs. The non-linear solutions we will discuss are AdS waves, that are the
ZDG analogue of the solutions discussed in [152–154]. In order to find these solu-
tions, we will use the fact that bimetric theories, such as ZDG, can alternatively be
thought of as higher-derivative theories for a single metric field [106], as was dis-
cussed in detail in chapter 3.5.4. This allows us to explicitly find AdS waves that
exhibit logarithmic asymptotic behavior at critical points.

After treating critical ZDG, we will turn to the sixth-order extension of general
relativity discussed in chapter 7.3 at its critical line and tricritical point. This theory
contains two massive gravitons, which both become massless at a tricritical point in
the parameter space. At this point, the theory is conjectured to be dual to a rank-3
LCFT, much like the sixth-order derivative theories discussed in [107] and we com-
pute the values of the new anomalies.

8.2 Critical ZDG
In chapter 3.5.2 we have discussed Zwei-Dreibein Gravity linearized around a max-
imally symmetric background. For general values of the parameters, we found that
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the linear theory contains two pure gauge modes and two massive spin-2 modes. We
did not, however, analyse the theory at special, critical points in its parameter space,
for which the diagonalization procedure fails. At these critical points the massive
modes become massless and are replaced by logarithmic solutions as we will show
below.

Let us first recap some useful formulae obtained in earlier chapters. In chapter
4.3.3 we analysed the absence of additional, non-linear degrees of freedom in ZDG
and found that assuming the invertibility of the linear combination β1e1

a + β2e2
a was

a sufficient and necessary condition to achieve this. In this chapter we will focus on
a special case of this assumption, where we take β2 = 0 (while β1 6= 0) and require
that e1

a has an inverse.
The quadratic Lagrangian for fluctuations around an AdS3 background (3.117) is

then given by:

L(2) = −σMP

[
k1 · D̄v1 +

1
2

ē · (v1 × v1 −Λk1 × k1)

]
−γMP

[
k2 · D̄v2 +

1
2

ē · (v2 × v2 −Λk2 × k2)

]
(8.3)

− 1
2

m2γβ1MP ē · (k1 − k2)× (k1 − k2) .

Provided σ + γ 6= 0, this Lagrangian can be diagonalized by performing the linear
field redefinition:

(σ + γ)k+ = σk1 + γk2 , k− = k1 − k2 ,
(σ + γ)v+ = σv1 + γv2 , v− = v1 − v2 .

(8.4)

In terms of these fields the linearized Lagrangian becomes:

L(2) = −(σ + γ)MP

[
k+ · D̄v+ +

1
2

ē · (v+ × v+ −Λk+ × k+)
]

(8.5)

− σγ

(σ + γ)
MP

[
k− · D̄v− +

1
2

ē ·
(

v− × v− − (Λ−M2)k− × k−
) ]

,

where the Fierz-Pauli massM is given in terms of the ZDG parameters as:

M2 = m2β1
σ + γ

σ
. (8.6)

8.2.1 Critical Points
The diagonalization described above fails when σ + γ = 0 and the Fierz-Pauli mass
in eq. (8.6) vanishes, along with the central charge (5.38). This corresponds to a
critical point2 in the ZDG parameter space, where logarithmic modes appear, as we

2In fact, there is a line of critical points. Indeed, for σ + γ = 0, the parameter relations (3.115) reduce
to α1 = −σ

(
2β1 + Λ/m2) and α2 = β1 −Λ/m2. For a given value of the cosmological constant, there is
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will now show.
In terms of the fields

k− = m2β1 (k1 − k2) , k+ = k1 + k2 ,

v− = m2β1 (v1 − v2) , v+ = v1 + v2 ,
(8.7)

the Lagrangian (8.3) becomes:

L(2) = MP

2m2β1

(
k+ · D̄v− + k− · D̄v+ + ē · (v+ × v− −Λk+ × k−) (8.8)

− ē · k− × k−
)

.

This Lagrangian corresponds to the first-order form of the Lagrangian for linearized
critical NMG, where the massive modes degenerate with the massless ones and log-
arithmic solutions appear [139, 145]. The only difference with the critical NMG case
is the appearance of the coupling constant β1 as an overall factor.

The equations of motion derived from the Lagrangian density (8.8) are given by:

D̄v− −Λē× k− = 0 ,
D̄v+ −Λē× k+ = 2ē× k− , (8.9)
D̄k± + ē× v± = 0 .

The last of these equations can be used to express v± in terms of k± in the usual way.
One finds (see also (3.10)):

v± µ
a(k±) = −det(ē)−1ενρσ

(
ēσ

a ēµ b −
1
2

ēµ
a ēσ b

)
D̄νk± ρ

b . (8.10)

Furthermore, by acting on the equations (8.9) with D̄ and using the identity D̄D̄ f a =
(R̄× f )a = Λēa ē · f one can derive the constraints:

ēa ē · k− = 0 , (8.11)

which imply that the field k− µν = k− µ a ēν
a is symmetric:

k− [µν] = 0 . (8.12)

Plugging (8.10) into the first two equations of (8.9) and writing them with free space-
time indices we obtain:

Gµν(k−) = 0 , (8.13)

Gµν(k+) = k−µν − ḡµνk− , (8.14)

where Gµν(k) is the linearized Einstein tensor which is invariant under linearized

thus a free parameter β1 left. In the following, we will however keep on using the terminology ‘critical
point’, often using the plural form to emphasize that there is a continuous family of critical points in ZDG.



156 CHAPTER 8 THE ADS/LCFT CORRESPONDENCE

diffeomorphisms by construction. It is defined in (3.12).

One can see that these linearized equations of motion are equivalent to the NMG
linearized equations of motion at the critical point, see ref. [145]. Explicitly, by mak-
ing use of ∇̄µGµν(k+) = 0, we can derive that

∇̄νk− = ∇̄µk− µν , (8.15)

and together with the trace of (8.13), we find that

k− = 0 , (8.16)

provided that Λ 6= 0. We may then combine (8.13) and (8.14) into a single, fourth-
order differential equation for the transverse traceless fields k+µν

Gµν(G(k+)) =
1
4
(�̄− 2Λ)

2 k+µν = 0 . (8.17)

8.2.2 Modes at the Critical Point

The linearized field equation (8.17) is solved by the primary state of the massless
mode ψ0

µν, given by (3.35) with M = 0 (or equivalently, with the weights (h, h̄) =

(2, 0) and (0, 2) for the left- and right-moving modes respectively). But there is an-
other solution, which does not solve the massless equation, but instead satisfies

(�̄− 2Λ)ψ
log
µν = ψ0

µν . (8.18)

As was shown in [116], this logarithmic mode can be obtained by differentiation of
the massive mode (3.35) with respect toM2`2 and by settingM2 = 0 afterwards:

ψ
log
µν =

∂ψµν(M2)

∂(M2`2)

∣∣∣∣
M2=0

. (8.19)

Here ψµν(M2) is the explicit solution obtained by filling in the weights (h, h̄) corres-
ponding to a massive graviton, in (3.35). Explicitly, these weights are given by (see
also (3.38) and (3.39)):

Left : (hL, h̄L) = (2, 0) , Right : (hR, h̄R) = (0, 2) , (8.20)

Massive L: (hM,L, h̄M,L) =

(
3
2
+

1
2

√
1 + `2M2,−1

2
+

1
2

√
1 + `2M2

)
, (8.21)

Massive R: (hM,R, h̄M,R) =

(
−1

2
+

1
2

√
1 + `2M2,

3
2
+

1
2

√
1 + `2M2

)
, (8.22)

The resulting logarithmic modes are given by

ψ
log
µν = f (u, v, ρ)ψ0

µν , (8.23)
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where

f (u, v, ρ) = − i
2
(u + v)− log(cosh ρ) . (8.24)

The log modes are not eigenstates of the AdS energy operator H = L0 + L̄0. Instead
they form a rank-2 Jordan cell with respect to this operator (or similarly, with respect
to the Virasoro algebra). The normalization of the log modes has been chosen such
that when acting on the modes kµν = {ψ0

µν, ψ
log
µν } with H, the off-diagonal element

in the Jordan cell is 1:

H kµν =

(
(h + h̄) 0

1 (h + h̄)

)
kµν . (8.25)

The presence of the Jordan cell shows that the states form indecomposable but non-
irreducible representations of the Virasoro algebra. Furthermore, we have that

L1ψ
log
µν = 0 = L̄1ψ

log
µν . (8.26)

These properties form the basis for the conjecture that critical ZDG is dual to a rank-2
LCFT. The modes correspond to states in the LCFT and (8.25) translates to the state-
ment that the LCFT Hamiltonian is non-diagonalizable and that the states form a
rank-2 Jordan cell. The conditions (8.25) and (8.26) indicate that the states associated
to ψ

log
µν are quasi-primary. The only proper primary state is the one associated to ψ0

µν.

Note that the critical points in ZDG constitute a generalization of the NMG crit-
ical point. NMG can be retrieved from ZDG by performing a limiting procedure,
outlined in chapter 3.5.3, but this limit requires starting from the part of the ZDG
parameter space where the sign parameter σ = −1. In contrast, in the above dis-
cussion, we have not assumed this and it is possible to find regions in the ZDG
parameter space where σ + γ = 0 for positive σ. The critical points found here are
thus indeed more general than the NMG one.

8.2.3 New anomaly
In the above section, we have confirmed the existence of critical points in linear-
ized ZDG, where logarithmic modes appear that have the same properties as the
logarithmic modes that appear in critical higher-derivative gravity theories, such as
critical NMG. In the NMG case, the appearance of these modes led to the conjec-
ture that the field theory dual to critical NMG is an LCFT with zero central charges,
once appropriate boundary conditions are taken into account. The NMG logarithmic
modes can be seen to be dual to the logarithmic partners of the stress-energy tensor
components in the dual LCFT. Even though the central charges are zero, the two-
point functions of the stress-energy tensor modes and their logarithmic partners are
non-trivial and determined by new quantities, called the ‘new anomalies’. A simple
way to calculate these new anomalies on the gravity side was given in [151].

Similar conclusions hold at the ZDG critical points. Again, the central charges
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(5.38) [103]

cL/R = 12π`MP(σ + γ) , (8.27)

where Λ = −1/`2, vanish at the critical points. The two-point functions of the
cL/R = 0 LCFT should instead be characterized by the new anomalies bL/R. These
can be calculated via the limiting procedure of ref. [151].

bL/R = lim
σ+γ→0

cL/R
hL/R − hM,L/R

, (8.28)

where the weights of the massless and massive modes are given in (8.20)-(8.22). Eval-
uating this limit explicitly, we find the critical ZDG new anomalies:

bL/R = −48πσMP

`m2β1
. (8.29)

Equality of the new anomalies is due to the fact that ZDG is a parity even the-
ory. In the NMG limit of ZDG (see appendix 3.5.3) the new anomalies reduce to
bNMG

L/R = −12σ′`/G, where σ′ is the NMG sign parameter. This result agrees with
the known expression obtained in [141, 155] at the NMG critical point defined by
m2 = −(2σ′`2)−1. The CFT dual to critical ZDG is conjectured to be a rank-2 LCFT
with vanishing central charges. The two-point functions for such an LCFT are of the
form

〈OL(z)OL(0)〉 = 0 , (8.30a)

〈OL(z)Olog(0)〉 = bL

2z4 , (8.30b)

〈Olog(z, z̄)Olog(0)〉 = − bL log |z|2
z4 , (8.30c)

where Olog(z, z̄) denotes the logarithmic partner of OL(z). The two-point function
for the right-moving sector are equivalent, since the theory is even under parity.

The difference with respect to critical NMG is that here the new anomaly (8.29)
is a function of the coupling constant β1, instead of a fixed combination of `/G.
This again makes clear that the ZDG critical points are a generalization of the NMG
critical point.

8.3 Logarithmic AdS waves in ZDG

To study critical behaviour in non-linear ZDG we look for propagating waves on an
AdS3 background with logarithmic decay, analogously to the situation in NMG, as
studied in [154]. As an Ansatz we consider a Kerr-Schild deformation of AdS3:

gµν = ḡµν − f (u, y)kµkν , (8.31)
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where ḡµν is the AdS background and kµ is a light-like vector3. The function f (u, y)
is the wave profile. Using Poincare coordinates this leads to the following expression
for the AdS3 wave space-time ansatz:

ds2 =
`2

y2 (− f (u, y)du2 − 2dudv + dy2) . (8.32)

We will choose the following dreibeine for this metric:

e0 =
`

y

(√
f (u, y)du +

1√
f (u, y)

dv

)
, e1 =

`

y
1√

f (u, y)
dv , e2 =

`

y
dy . (8.33)

In order to find the AdS wave solutions, we will follow the same procedure that was
outlined in chapter 3.5.4, in which ZDG was rewritten as a higher-derivative theory.
We recall that the equation of motion in this formulation is given by eq. (3.108) with
β2 = 0, and e2

a is understood to be written in terms of e1
a as in (3.127). We thus use

(8.33) as an ansatz for the dreibein e1
a and find that e2

a, as determined by (3.127), is
given by:

e2
0 = g(u, y)du + h(u, y)dv ,

e2
1 = p(u, y)du + q(u, y)dv ,

e2
2 = s(u, y)dy ,

(8.34)

where:

g(u, y) =
1

2m2`β1y
√

f (u, y)

(
2m2`2γβ1 f (u, y) + σy

(
∂

∂y
− y

∂2

∂y2

)
f (u, y)

)
,

h(u, y) =
γ`

y
√

f (u, y)
= q(u, y) , (8.35)

p(u, y) =
σ

2m2`β1
√

f (u, y)

(
∂

∂y
− y

∂2

∂y2

)
f (u, y) , s(u, y) =

γ`

y
.

The parameter γ appearing in these functions can be determined as a function of
the ZDG parameters from (3.115) with β2 = 0. In order to write down the equation
of motion (3.108), we also need to evaluate the series expansion (3.128) for ω2

a(e1).
Explicitly calculating (3.129) for this solution, we see that all contributions to Ω(2n)

µ
a

with n > 0 have the same form:

Ω(2n)
µ

a =

(
σ

`2α1

)n
`y

∂3 f (u, y)
∂y3 kµkνeν a

1 . (8.36)

It might seem strange that this expression contains only three derivatives for every
value of n, in view of the fact that Ω(2n)a

µ contains more derivatives for larger n, in
3We take kµ∂µ = (y/`)∂v.
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order to balance the mass dimensions of the corresponding m−2n in the series (3.128).
For this particular ansatz however, the `-parameter features as an extra dimension-
full parameter that can be used to balance dimensions and this explains why it is
possible that all Ω(2n)

µ
a feature the same number of derivatives.

We can now sum all orders of 1/m2 into a closed expression for ω2
a. We find:

ω2 µ
a = ω1 µ

a − σ`y
σ− α1`2m2

∂3 f (u, y)
∂y3 kµkνeν a

1 . (8.37)

Replacing this into the equation of motion (3.108), we see that the latter reduces to
the following fourth-order differential equation for the wave profile:

1
y2
√

f (u, y)

[
y4 ∂4 f (u, y)

∂y4 + 2y3 ∂3 f (u, y)
∂y3 −

(
1 +M2`2

)(
y2 ∂2 f (u, y)

∂y2 − y
∂ f (u, y)

∂y

)]
= 0 . (8.38)

Here M2 is the Fierz-Pauli mass (8.6) and we have used the parameter relations
(3.115).

The equation (8.38) can be solved by separation of variables and proposing that
the solutions behave polynomially in y : f (u, y) = f̃ (u)yn. The power n is determ-
ined as a solution of the indicial equation:

n(n− 2)
(

n(n− 2)−M2`2
)
= 0 . (8.39)

In general, this equation has four roots n = {0, 2, n+, n−}, with n± = 1±
√

1 +M2`2.
The generic solution for the wave profile is then:

f (u, y) = f0(u) + f2(u)
(y
`

)2
+ f+(u)

(y
`

)n+
+ f−(u)

(y
`

)n−
. (8.40)

The constant and the quadratic terms can always be removed by local transforma-
tions [156]. The relevant parts are then given by the terms involving yn± . At special
points in the parameter space the roots n± become degenerate, as we will discuss in
the next subsection.

Since the expressions for Ω(2n) a are all proportional to each other, the AdS wave
solution (8.40) is not only a solution to the full theory, but it will solve the equations
of motion at every order of 1

m2 , provided that the parameters appearing in n± are
properly adjusted.

8.3.1 Special points
At the ZDG critical points, one has that σ + γ = 0 and thus M2 = 0. At such
points n+ = 2 and n− = 0 and the indicial equation (8.39) thus has two degenerate
solutions, instead of four distinct ones. The order of the differential equation (8.38)
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at the critical points is still four however, and four distinct, albeit potentially non-
polynomial solutions should still exist. Ignoring the constant and quadratic solu-
tions that can be removed by local transformations, one finds the following solu-
tions:

fc(u, y) = fL(u) ln
(y
`

)
+ f2L(u)

(y
`

)2
ln
(y
`

)
. (8.41)

One thus finds AdS waves with logarithmic decay at the critical point and this is
a clear sign that the existence of logarithmic modes in critical ZDG persists at the
non-linear level and is not merely an artifact of the linearized approximation.

There is another class of special points, where a degeneracy in the indicial equa-
tion (8.39) takes place. At these points, M2 = −1/`2 and n± = 1. The indicial
equation (8.39) thus only has three roots, one of which is degenerate. The equation
(8.38) is again still of order four and thus one non-polynomial solution should ex-
ist. The following solutions (again ignoring the ones that can be removed by local
transformations) are found:

fs(u, y) =
(y
`

) (
f1(u) + f1L(u) ln

(y
`

))
. (8.42)

One thus finds one AdS wave with logarithmic decay at these special points. This
solution was also found in the Isham, Salam, Strathdee f − g theory [17] in [157].

This point already appears as a special point in NMG and it is known that for this
special point, NMG has black hole solutions that are not locally isometric to AdS3 [44,
158]. At this point, the linearized Fierz-Pauli action in AdS3 features an extra gauge
invariance, with scalar parameter. Linearized NMG, being a sum of a linearized
Einstein-Hilbert and Fierz-Pauli action for two different fluctuations, inherits this
linearized gauge invariance. The same holds for ZDG as can be seen from eq. (3.119)
and the discussion in chapter 3.2.4. At the linearized level, NMG and ZDG at those
critical points thus only propagate one degree of freedom. This however is no longer
true at the non-linear level and the extra linearized gauge invariance is an accidental
one.

NMG at this point has been dubbed ‘Partially Massless Gravity’ (PMG), as the
massive mode becomes partially massless [77, 78]. In [151], it was argued that solu-
tions with logarithmic decay appear in PMG, of the type given in (8.42) and that this
can be taken as a sign that the dual field theory is an LCFT. Interestingly, we have
found above that also PMG, originally found as a special version of NMG, can be
generalized to a class of special points in the ZDG parameter space.

8.4 ENMG and Tricritical Gravity
In this section we investigate the critical lines and points in the parity even sixth-
order Extended New Massive Gravity (ENMG) model introduced in chapter 7.3.
Away from the tricritical point, the theory propagates one massless and two massive
gravitons. At the critical point, the two massive gravitons degenerate with the mass-
less one and are replaced by new solutions. In contrast to the massless graviton
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modes, that obey Brown–Henneaux boundary conditions, these new solutions ex-
hibit log and log2 behaviour towards the AdS3 boundary and are referred to as log
and log2 modes. The existence of these various logarithmic modes naturally leads
to the conjecture that “tricritical” ENMG is dual to a rank-3 logarithmic CFT. In this
section, we will discuss these modes and their AdS/CFT consequences in more de-
tail.

The linearized equations of motion for ENMG, derived from the quadratic Lag-
rangian (7.34) can be written as(

�̄+
2
`2 −M

2
+

)(
�̄+

2
`2 −M

2
−

)(
�̄+

2
`2

)
kµν = 0 , (8.43)

for a transverse traceless field kµν. The Fierz-Pauli massesM2
± are given in terms of

the ENMG parameters as

M2
± =

a− 2b− 2m2`2 ±
√

f (a, b, m2)

4b`2 , (8.44)

with:

f (a, b, m2) = a2 − 2a
(

b + 2`2m2
)
+ 4

(
b2 + `4m4 − 4b`4m4σ

)
. (8.45)

From the analysis of chapter 7.3.1 we know that the presence of massive spin-2
ghosts or tachyons cannot be avoided for non-zero FP masses, however, there is a
critical line and a tricritical point where, respectively, one and both FP masses van-
ish. At this point the central charge also vanishes and the theory is a gravitational
dual for Logarithmic Conformal Field Theories (LCFT) of rank 2 and 3 respectively.
Even though the parameter b does not appear in the expression for the central charge,
it does play a role in the analysis of the critical lines and points. If we tune a to its
critical value acrit, defined such that the central charge (7.60) vanishes

a = acrit = 4`2m2(1 + 2`2m2σ) , (8.46)

the FP masses become

M2
± =

1
2b`2

(
B(b, m2)±

√
(B(b, m2))

2
)

, (8.47)

with

B(b, m2) = −b + `2m2 + 4`4m4σ . (8.48)

This implies that on the critical line defined by (8.46)

if: B(b, m2) < 0 , then: M2
+ = 0 , M2

− =
B

b`2 , (8.49)
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if: B(b, m2) > 0 , then: M2
− = 0 , M2

+ =
B

b`2 ,

if: B(b, m2) = 0 , then: M2
+ = 0 , M2

− = 0 .
(8.50)

The last scenario, where b = bcrit = `2m2(1 + 4`2m2σ), defines the tricritical point
where both FP masses vanish and the dual LCFT has rank 3.

8.4.1 Modes at the tricritical point

At the critical line defined by (8.46), one of the two Fierz-Pauli masses vanishes,
while the other is given in (8.49)-(8.50). Since the expression for the non-vanishing
mass is the same, regardless of the sign of B(b, m2), we will assume that B(b, m2) ≥ 0
and M2

− = 0 on the critical line. In the case that B < 0, we only have to switch
M+ ↔ M−. At this point the spectrum contains a massive mode (3.35) with mass
M+, a massless mode ψ0

µν and a logarithmic mode (8.23).

At the tricritical pointM2
± = 0 and the weights (and therefore the solutions) of

the massive modes degenerate with those of the massless modes. There are now two
new solutions, called log and log2 modes. Denoting these modes by ψlog and ψlog2

resp., they satisfy

Gµν(G(ψlog)) = 0 , but Gµν(ψ
log) 6= 0 , (8.51)

Gµν(G(G(ψlog2
))) = 0 , but Gµν(G(ψlog2

)) 6= 0 . (8.52)

The log mode can be obtained, as before, by differentiating the massive mode with
respect to its mass and setting the mass to zero afterwards. The log2 mode can be ob-
tained in a similar way, by differentiating twice with respect toM2

±`
2. The resulting

modes are given by

ψ
log
µν = f (u, v, ρ)ψ0

µν , (8.53)

ψ
log2

µν =
1
2

f (u, v, ρ)2 ψ0
µν , (8.54)

where f (u, v, ρ) is given in (8.24).

Note that the massless, log and log2 modes all behave differently when approach-
ing the boundary ρ → ∞. The massless mode obeys Brown–Henneaux boundary
conditions. In contrast, the log mode shows a linear behaviour in ρ when taking the
ρ → ∞ limit, whereas the log2 mode shows ρ2 behaviour in this limit. The three
kinds of modes therefore all show different boundary behaviour in AdS3 and the
boundary conditions obeyed by log and log2 modes are correspondingly referred to
as log and log2 boundary conditions.

The log and log2 modes now form a rank-3 Jordan cell with respect to the AdS
energy operator H. With the proper normalisation, the Jordan cell for the modes
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kµν = {ψ0
µν, ψ

log
µν , ψ

log2

µν } is now:

H kµν =

 (h + h̄) 0 0
1 (h + h̄) 0
0 1 (h + h̄)

 kµν . (8.55)

The states form indecomposable but non-irreducible representations of the Virasoro
algebra and like in (8.26) we now have that

L1ψ
log
µν = 0 = L̄1ψ

log
µν , L1ψ

log2

µν = 0 = L̄1ψ
log2

µν . (8.56)

This indicates that also the states corresponding to the log2 modes are quasi-primary.
All these properties combined are the basis for the conjecture that tricritical ENMG
is dual to a rank-3 LCFT.

8.4.2 The structure of the dual CFT
In chapter 7.4.1 we computed the central charges for ENMG. They are

cENMG
L/R =

3`
2G

(
σ +

1
`2m2 −

a
8`4m4

)
. (8.57)

The central charges vanish at the tricritical point and this lends further support for
the conjecture that the dual CFT is logarithmic. Indeed, as unitary c = 0 CFTs have
no non-trivial representations, CFTs with central charge c = 0 are typically non-
unitary and thus possibly logarithmic.

The central charges also vanish on the rest of the critical line (8.46) where just one
of the massive modes becomes massless. On this critical line, the dual CFTs are still
expected to be logarithmic, but the rank must decrease by one with respect to the
tricritical point. The dual theory on the critical line is thus expected to be an LCFT of
rank 2. As a consistency check, we note that (non-critical) NMG is contained in our
model in the limit a → 0 and b → 0. Substituting these values in (8.57), we see that
the central charge agrees with the central charge found for NMG in [44].

The dual CFT of tricritical ENMG is thus conjectured to be a rank-3 LCFT with
cL = cR = 0. In that case the general structure of the two-point correlators is known.
The two-point functions are determined by quantities called new anomalies. If one
knows the central charges, one can employ a short-cut [151] to derive these new
anomalies. We do this for the left-moving sector. Similar results hold for the right-
moving sector as the two sectors are related to each other by a parity transformation.

Let us start from the non-critical case, where the correlators of the left-moving
components OL(z) of the boundary stress tensor are given by

〈OL(z)OL(0)〉 = cL

2z4 , (8.58)

where cL is given by (8.57). Let us first consider the case where only one of the two
masses vanishes, e.g. when B(b, m2) > 0 and M2

− → 0. In this case, we are on the
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critical line (8.46). The CFT dual is conjectured to be a rank-2 LCFT with vanishing
central charges. The two-point functions for such an LCFT are of the form

〈OL(z)OL(0)〉 = 0 , (8.59a)

〈OL(z)Olog(0)〉 = bL

2z4 , (8.59b)

〈Olog(z, z̄)Olog(0)〉 = − bL log |z|2
z4 , (8.59c)

where Olog(z, z̄) denotes the logarithmic partner of OL(z). The parameter bL is the
new anomaly. It can be calculated with knowledge of the weights (8.20)-(8.22) and
the limiting procedure of [151]. The new anomaly is given by

bL = lim
a→acrit

cL
hL − hM− ,L

= −6B(b, m2)

G`3m4 = −
6bM2

+

`Gm4 . (8.60)

Note that in the limit b → 0 and a = acrit → 0 we recover critical NMG and we find
that the result (8.60) agrees with the new anomaly of NMG [141].

At the tricritical point, the correlators are conjectured to be the ones of a rank-3
LCFT with vanishing central charges:

〈OL(z)OL(0)〉 = 〈OL(z)Olog(0)〉 = 0 , (8.61a)

〈OL(z)Olog2
(0)〉 = 〈Olog(z)Olog(0)〉 = aL

2z4 , (8.61b)

〈Olog(z, z̄)Olog2
(0)〉 = − aL log |z|2

z4 , (8.61c)

〈Olog2
(z, z̄)Olog2

(0)〉 = aL log2 |z|2
z4 . (8.61d)

Here Olog(z, z̄), Olog2
(z, z̄) are the two logarithmic partners of OL(z). The new an-

omaly aL at the tricritical point is obtained via another limit:

aL = lim
b→bcrit

bL
hL − hM+ ,L

=
96`
G

(
σ +

1
4m2`2

)
. (8.62)

Knowledge of the central charges thus allows one to obtain the new anomalies and
hence fix the structure of the two-point correlators, via the limit procedure of [151].

Note that after fixing a and b to their critical values, the free parameter m2 is
undetermined in the expression for aL. This implies that tricritical ENMG in fact has
a continuous line of tricritical points dual to a family of rank-3 LCFTs with different
values for the new anomaly (8.62).
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8.5 Discussion
In this chapter, we have shown that the parameter space of ZDG around AdS3 has
critical points, where solutions with logarithmic fall-off behavior appear, both at the
linearized and non-linear level. These critical points and logarithmic solutions are
similar to the ones that appear in critical NMG. Although NMG can be retrieved
from ZDG in a particular limit, the critical points found here do however not simply
correspond to the NMG one, but can rather be seen as a generalization of the NMG
critical point.

Note that the existence of the ZDG logarithmic solutions found here is non-trivial.
In both NMG and ZDG, criticality is signalled when massive modes become mass-
less and degenerate with pure gauge modes. In both cases, one can argue via con-
tinuity that new solutions, that are not massive nor massless modes, should appear
at a critical point. In NMG, that is naturally formulated as a four-derivative the-
ory, this argument is based on the fact that the equations of motion remain fourth
order at the critical point, and hence there should still be four distinct linearized
modes. Since the massive modes coincide with the pure gauge modes, new solu-
tions that are not massive, nor pure gauge should appear in the spectrum. They
turn out to be solutions of a particular fourth-order differential equation, featuring a
fourth-order differential operator that is the square of a second-order one [145] and
such equations typically feature the logarithmic modes. In ZDG, the equations of
motion at critical points are still a system of coupled second-order differential equa-
tions for two metric fields and there should again still be four distinct linearized
modes. What is non-trivial in ZDG is that the new modes that appear instead of the
massive modes at the critical point are logarithmic. Indeed, the logarithmic behavior
is typical for solutions of particular differential equations of order higher than two
and ZDG is naturally formulated in terms of coupled second-order equations. In
this chapter, we have however seen that the new solutions at the ZDG critical points
are logarithmic. At the linearized level, this stems from the fact that the linearized
critical ZDG equations of motion are the same as the linearized NMG ones. At the
non-linear level, we have used the fact that ZDG can alternatively be rewritten as
a higher-derivative theory (involving an infinite number of higher-derivatives) for
a single dreibein and it is this higher-derivative character of ZDG that is ultimately
responsible for the existence of AdS waves with logarithmic fall-off behavior at the
critical points.

As in the critical higher-derivative massive gravity cases, the existence of logar-
ithmic modes can be seen as a hint that critical ZDG theories are dual to logarithmic
conformal field theories, once appropriate boundary conditions are imposed. In-
order to show this in more detail, more checks need to be performed however. In
particular, precise calculations of two- and three-point functions, as was done for
TMG and NMG in [119, 120, 141, 155], via e.g. holographic renormalization should
be performed. The conjecture can also be shown by calculations of the classical and
one-loop partition functions on the gravity side (see [159,160] for examples in higher-
derivative theories) and checking that the results conform with the structure expec-
ted for an LCFT. Performing these checks will require an extension of the AdS/CFT
holographic dictionary and methods to Chern-Simons–like theories, such as ZDG.
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In addition to critical ZDG, we have also considered three-dimensional, tricrit-
ical higher-derivative gravity theories around AdS3. These tricritical theories are
obtained by considering higher-derivative gravities constructed from CS–like mod-
els with four auxiliary fields, as outlined in chapter 7.3. Ordinarily, these theories
propagate one massless and two massive graviton states, but at a special point in
their parameter space all massive gravitons become massless. The massive graviton
solutions, that ordinarily obey Brown–Henneaux boundary conditions, are in tricrit-
ical theories replaced by new solutions that obey log and log2 boundary conditions
towards the AdS boundary: the so-called log and log2 modes.

GMG at the tricritical point constitutes a parity odd example of such a tricritical
gravity theory and was studied in [140, 160]. It was also shown that this theory is
dual to a parity violating, rank-3 LCFT. In this chapter, we considered a parity even
example, that is of sixth order in derivatives. The results obtained here can be put
in the context of the findings of [161], where a scalar field model was studied, that
(in the six-derivative case) can be seen as a toy model for tricritical ENMG. There it
was argued that odd rank LCFTs allow for a non-trivial truncation, that on the grav-
ity side can be seen as restricting oneself to Brown–Henneaux and log boundary
conditions. In [107] it was found that similar conclusions hold for tricritical grav-
ity, at the linearized level. Indeed, upon applying this truncation to the two-point
correlators of the dual LCFT, the truncated theory still has one non-trivial correlator;
the log-log two-point function (8.61b). Similar truncations were considered in even
higher-derivative extensions of general relativity in [162, 163].

In order to go beyond the linearized level, one should first address the issue of the
consistency of the truncation, in the presence of interactions. In [107] a step in this
direction was made by rephrasing the truncation for tricritical gravity as restricting
oneself to a zero charge sub-sector of the theory, with respect to the Abbott–Deser–
Tekin charges associated to (asymptotic) symmetries. Similar conclusions can be
made for tricritical GMG using the results for the conserved charges in [140]. How-
ever, it was shown in [164] that the consistency of the truncation is an artefact of
the linearized approximation and it is no longer valid at the next order in metric
perturbations.





9
Conclusions and Discussions
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9.1 Conclusions
In this thesis we have discussed a wide variety of three dimensional massive grav-
ity models which can be characterized as Chern-Simons–like; all of the discussed
models fit a general form defined by the Lagrangian three-form

L =
1
2

grsar · das +
1
6

frstar · (as × at) . (9.1)

Here ar a are a set of N Lorentz vector-valued one-form fields, labelled by flavor in-
dices r, s, t, . . .. The symmetric matrix grs is an invertible metric on the flavor space
and frst a totally symmetric flavor tensor which contains information on the inter-
action terms in the theory. The Latin Lorentz indices a, b, c, . . . are made implicit by
denoting contractions with ηab and εabc by dots and crosses respectively. In addition,
wedge products between the form fields are implicit.

Whenever f r
stε

a
bc are the structure constants of some Lie algebra, and grsηab a

group invariant symmetric tensor on this Lie algebra, then the Lagrangian three-
form (9.1) defines a pure Chern-Simons theory. Two examples of pure CS theories
were discussed in this thesis, summarized in the table below. In all other cases, the
theory is only CS–like and the individual fields are no longer Lie algebra-valued
connections. Note that the full class of CS theories is larger that the one which can
be obtained from (9.1), as not all of the fields need to be vector-valued under the
Lorentz-group.

The advantage of the formulation (9.1) is that it allows for theories with local
degrees of freedom, while retaining a relatively simple Hamiltonian formulation. In
chapter 4 we have analyzed this Hamiltonian form and found that the presence of
secondary constraints is related to the presence of invertible fields in the theory. This
is especially important if we wish to view these CS–like theories as models for three
dimensional gravity, since this link can only be made when the dreibein is invertible.

The CS–like theories of gravity considered in this thesis can be characterized in
two classes: those with an alternative action principle in terms of a single metric
and higher-derivative terms and those without. The specific models which were
discussed in this thesis are summarized in the tables on the following pages.

Chern-Simons theories of gravity

# of fields name gauge group chapter

N = 2 Einstein-Cartan
ISO(2, 1) Λ = 0
SO(2, 2) Λ < 0
SO(3, 1) Λ > 0

2

N = 3 Conformal Gravity SO(3, 2) 3.4.1
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CS–like theories: Class I
Models with a higher-derivative action

# of fields name parity chapter

N = 3 Topologically Massive Gravity violating 3.4.2

N = 4 New Massive Gravity even 3.4.3
General Massive Gravity violating 3.4.4, 4.3.2, 5.3.1

N = 5 Extended gravitational CS-term odd A

N = 6 Extended New Massive Gravity even 7.3

N > 6 Extended Massive Gravity even for N = even 7.2odd for N = odd

The models which can be written in terms of a higher-derivative theory share a
number of properties. Besides the dreibein e and spin connection ω, they contain
a number of auxiliary fields. The order of the derivatives after integrating out the
auxiliary fields equals to the number of fields N denoted in the table above. Further-
more, the number of propagating degrees of freedom equals to N − 2 and all local
degrees of freedom are states with helicity ±2. The CS–like construction of the the-
ory, together with the assumption of an invertible dreibein, guarantees the absence
of additional scalar-ghost degrees of freedom, as was verified in this thesis by the
Hamiltonian analysis outlined in chapter 4. This is a big advantage of the CS–like
formulation; since it is very clear how secondary constraints arise in the Hamilto-
nian form, it is also clear how to define theories which posses the necessary number
of constraints needed to remove the Boulware-Deser ghost which typically plague
theories of massive gravity. Hence, by using the Chern-Simons–like formulation it
becomes possible to derive the scalar-ghost free combinations of higher-derivative
terms.

Unfortunately, the Boulware-Deser ghost is not the only pathology which affects
these type of models. It seems that all of the higher-derivative models suffer from
a “bulk-boundary clash”1: there are no regions in parameter space where a bound-

1Technically, the term “bulk-boundary clash” is not a very good one, since the BTZ black hole, which
is a bulk solution, would have negative mass whenever the central charge is negative. This implies that
even without considering the boundary central charge, the bulk has unphysical properties. Furthermore,
in light of the AdS/CFT-correspondence, a non-unitary boundary theory should correspond to a non-
unitary bulk theory and vice versa. This implies that in regions with perturbative unitarity in the bulk,
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CS–like theories: Class II
Models without a higher-derivative action

# of fields name parity chapter

N = 3 Minimal Massive Gravity violating 6

N = 4 Zwei-Dreibein Gravity even 3.5, 4.3.3, 5.3.2
General Zwei-Dreibein Gravity violating 4.3.4

N = 6 Drei-Dreibein Gravity even 7.5

N > 6 Viel-Dreibein Gravity even 7.6N = even

ary central charge is consistent with perturbative unitary in the bulk, at least not for
perturbations around AdS3 spacetimes. For theories with N ≥ 6, when multiple
massive spin-2 modes are propagated, we have shown there is always an unphys-
ical (tachyonic or ghost) massive mode in the spectrum. These considerations seem
generic for higher-derivative theories of gravity and have their origin in the Ostro-
gradski instability.

The general CS–like model (9.1) allows for more possibilities than the class of
theories discussed above. Another class can be loosely defined as CS–like models
without an action in terms of a single metric. The various examples which we have
discussed in this thesis are summarized in the above table. These models also share a
number of properties. They all admit an AdS3 background and linearization around
this background shows they propagate N − 2 massive states of helicity +2 and/or
−2. A background independent Hamiltonian analysis confirms that the same num-
ber of degrees of freedom are propagated non-linearly. An analysis of the asymptotic
symmetry group when restricting to Brown-Henneaux boundary conditions shows
that these models do contain regions in their parameter space where positive central
charge is consistent with perturbative unitarity in the bulk.

The improved behavior with respect to the AdS/CFT-correspondence in these
models stems from the inclusion of additional interaction terms, and hence addi-
tional parameters, with respect to the CS–like theories with an equal number of fields
belonging to the first class. However, this entails by no means an obvious modific-
ation of the higher-derivative gravity theories which follow from the models of the
first class. Even though the field equations can still be written in terms of a metric
and its derivatives, the models of the second class cannot be obtained by the inclu-

the non-linear theory may still suffer from pathologies, since there the dual CFT is non-unitary.
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sion of new higher-derivative terms to the action of the models of the first class. In
this sense, they constitute novel modifications of gravity in 3 dimensions.

The absence of an action formulation in terms of a single metric implies that a
minimal coupling to matter in the metric formulation is not possible. We have expli-
citly seen this for Minimal Massive Gravity (MMG) in chapter 6; the inclusion of a
symmetric stress-tensor to the modified field equations of MMG do not lead to the
conservation of this stress-tensor. In a sense this should not be a big surprise, since
there is no action from which these equations can be derived. It would therefore be
more logical to investigate matter couplings directly in the CS–like formulation of
the theory, where there is a simple and manifestly gauge invariant action. Here it is
clear, from the Hamiltonian analysis, which field should have an inverse2 and from
this field we may construct a metric. It would be interesting to study the coupling
of matter to this invertible field. In the second class of theories one usually needs
the field equation obtained by varying with respect to the dreibein to solve for the
auxiliary fields, therefore the coupling to matter could change the solution for the
auxiliary fields and modify the final higher-derivative equation for the metric (now
plus matter) in a non-trivial (and non-minimal) way which may be consistent.

The latter class of models generalizes and extends the former class of CS–like
theories. In the explicit examples treated in this thesis, we have shown how (some
of) the models belonging to the first class can be obtained from the theories in the
second class as scaling limits. This can also be seen at a range of critical points in the
parameter space where the masses of the massive modes vanish. At this point, as
we have shown explicitly for ZDG, a new, logarithmic solution appears and the dual
theory (with modified boundary conditions) is conjectured to be a logarithmic CFT.
We expect this feature to be a general one for all CS–like theories constructed in the
manner outlined in this thesis.

9.2 Discussions
The Chern-Simons–like formulation seems well adapted to describe ghost-free the-
ories of massive gravity in three dimensions and in the preceding section we have
made a distinction into two classes; theories with and without a higher-derivative
action. The models discussed in this work, however, do not saturate all possibilities;
there are several ways to extend the work presented in this thesis. Let us comment
on a number of ways to do so here.

First of all, the CS–like description is also capable of describing theories which
contain an infinite sum of higher-derivative terms in a very compact and powerful
way. Consider, for example, extending the Lagrangian three-form of NMG with a
f · f × f -term in its CS-like formulation:

L = −σe · R +
Λ0

6
e · e× e + h · De− 1

m2 f ·
(

R +
1
2

e× f +
a

6m2 f × f
)

, (9.2)

2The invertible field is usually the dreibein, but it may also be some linear combination of fields as in
Zwei-Dreibein Gravity, see the discussion of chapter 4.
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where a is a free dimensionless parameter. The field equations obtained by varying
with respect to f are given by

R + e× f +
a

2m2 f × f = 0 . (9.3)

This equation can be solved for fµν ≡ fµ
aeν

bηab in terms of an infinite expansion in
m−2

fµν =
∞

∑
n=0

1
m2n f (n)µν , (9.4)

as follows:

f (n+1)
µν = − a

2

(
gµρgνσ −

1
2

gµνgρσ

)
εραβεσγδ

n

∑
k=0

f (k)αγ f (n−k)
βδ . (9.5)

The starting value at order m0 is f (0)µν = −Sµν. Having found the solution for fµν,
we can go to the metric formulation by plugging the solution of (9.5) back into the
Lagrangian. The result can be written as

L =
1
2

{
σR− 2Λ0 −

2
m2

[
2
3

fµνGµν +
1
6

(
fµν f µν − f 2

)]}
. (9.6)

Here f = fµνgµν and fµν is given in terms of the coefficients f (n)µν in eq. (9.5). Expli-
citly, up to order 1/m6 we have checked that the scalar ghost free Rn combinations
of (7.27) are recovered. These terms are the same as those that follow from the ex-
pansion of the Born-Infeld extension of NMG [105, 133, 134, 165, 166] when a = σ.
The linearized spectrum of this model includes only one massive graviton. Using
the prescription explained in chapter 5 we obtain the following expression for the
central charge of the model:

c =
3`
2G

[
σ +

1
a

(
−1 +

√
1 +

a
m2`2

)]
. (9.7)

This coincides with the central charge computed in [134], when a = σ. So besides the
advantages already listed in the previous section, the CS–like formulation is capable
of describing theories with actions containing infinite expansions in a compact and
closed form.

A second possible extension of the models discussed here would be to investigate
the most general theories with an odd number of fields. We have discussed N = 3
in chapter 6, and the Viel-Dreibein Gravity models of chapter 7 represent models
with even N ≥ 4. It may be possible to generalize the Viel-Dreibein models to parity
violating theories by including Lorentz Chern-Simons terms for the spin connec-
tions. The resulting “General Viel-Dreibein” model may then have a limit where the
mass of one of the helicity states goes to infinity, much like the limit from General
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Zwei-Dreibein Gravity to Minimal Massive Gravity. The resulting theory would be a
parity violating, odd N CS–like model. In this sense the models discussed in chapter
7.5 and 7.6 are not the most general ones.

A further possible extension may be to expand the definition of CS–like to in-
clude fields which are Lorentz scalar-valued one-forms or Lorentz tensor-valued
one-forms. The latter may be interesting from the point of view of bosonic higher-
spin theories in three dimensions. Three dimensional massless higher spin fields can
be described by a CS-theory of SL(N, R)× SL(N, R) [56, 60]. The SL(N, R) gener-
ators can then be written to contain an SL(2, R) generator, plus some higher-spin
generators which carry multiple Lorentz indices. The gauge fields corresponding to
these higher-spin generators are irreducible Lorentz tensors and they are respons-
ible for the higher-spin fields in a metric formulation. It may be possible, like in the
spin-2 case discussed in this thesis, to give up the requirement that all fields are Lie
algebra valued connections and to describe in a similar fashion massive higher-spin
fields in three dimensions. This would require a more serious modification of the
general CS–like formalism and its Hamiltonian form.

The final possible extension which we will comment on here deals with the in-
clusion of half-integer spin fields. It would be interesting to investigate whether
the CS–like models can be made supersymmetric. The formulation in terms of one-
forms suggests it could be compatible with local N = 1 supersymmetry and a step
in this direction was initiated in [113] where the CS–like form of N = 1 Topological
Massive Supergravity was given and analyzed in a Hamiltonian form. Especially for
theories which lead to novel field equations in terms of the metric alone, a possible
supersymmetric extension could lead to matter couplings which are consistent in a
similar novel manner. Perhaps an adaptation of the general Hamiltonian analysis of
chapter 4 to include spin-3/2 fields could aid in these type of constructions.

In addition to possible extensions of the work presented in this thesis, much pro-
gress can still be made in setting up and refining the holographic dictionary for CS–
like theories. In this work we have considered the first steps in this direction, by
imposing Brown-Henneaux boundary conditions for the CS–like models. In general,
the theories with N ≥ 3 fields also contain massive modes which should be repres-
ented by a corresponding operator in the dual CFT. In the cases we have discussed,
the additional fields are auxiliary and can be solved for in terms of the dreibein. Im-
posing Brown-Henneaux boundary conditions may then be too restrictive, as one
would expect that it may be possible to include sources for the massive modes in
the boundary conditions. For higher-derivative gravity theories, it is known how
to include the sources for massive modes in a Fefferman-Graham expansion and
how to holographically renormalize the metric form of the action and compute the
boundary correlation functions (see for instance [109,119,155,167–169]). For models
which do not have an action in terms of a single metric, this procedure is less clear.
It would be very interesting to investigate how to include these massive modes and
how to extract information on the correlation functions of their corresponding CFT
operators from the CS–like formulation directly.

In addition, the richer dynamics in these theories, as compared to Einstein-Cartan
theory, may allow for solutions with different asymptotic behavior and hence differ-
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ent asymptotic symmetry algebras. The sector of parity odd theories discussed in
7.2.2 and appendix A would be interesting in the light of flat space holography (see
for instance [94–96,129,170,171]) since the unitarity of the dual CFT requires the left
and right central charges to be opposite. Furthermore, it was shown in [172] that
TMG admits warped AdS3 solutions with global SL(2, R) × U(1) symmetries and
appropriate boundary conditions can be found for these solutions [173]. It would
be interesting to investigate these and novel types of solutions in the second class of
CS–like theories, which show improved bulk-boundary behavior and hence do not
have to be restricted to ’chiral’ points for bulk unitarity.

To conclude, in this thesis we have presented novel ways to couple massive spin-
2 modes to gravity in three dimensions and investigated some of the consequences
with regard to the asymptotic symmetry algebra. The results so far are promising,
but a lot of further work needs to be performed in order to thoroughly understand
the dual field theories and to set-up a holographic dictionary for these models. Be-
sides these issues, one may wonder about the lessons we can learn from these models
for higher-dimensional theories of massive gravity. The Chern-Simons formulation
is native to three dimensional physics, however, the departure from pure Chern-
Simons theory discussed in this thesis implies that perhaps we may also depart from
three dimensional spacetimes. After all, some of the desirable properties of the CS–
like formulation (first order actions, simple Hamiltonian form, clear relation to gauge
theory, relatively easy analysis of asymptotic symmetries) need not be restricted to
three dimensional spacetimes. A generalization of CS–like models to four dimen-
sions could lead to novel theories of massive spin-2 particles coupled to gravity and
this may lead to interesting new possibilities for cosmological models.



A
Extended Gravitational Chern-Simons

Term

In this appendix we analyze the first parity odd higher-derivative extension of con-
formal gravity, defined by S3 in (7.14). Its Lagrangian 3-form is given explicitly as

L3 =
1

2µ
ω ·
(

dω +
1
3

ω×ω

)
+

1
µ3

[
e · D f2 + h1 · (R + e× f1)

+
α

2
f1 · D f1

]
,

(A.1)

where α is an arbitrary dimensionless parameters. The equations of motion for this
Lagrangian, obtained by varying with respect to f2

a, h1
a, f1

a, ωa and ea respectively,
are,

De = 0 ,
R + e× f1 = 0 ,
αD f1 + e× h1 = 0 ,

Dh1 +
1
2

(
α f1 × f1 + 2e× f2 − 2µ2σe× f1

)
= 0 ,

D f2 + f1 × h1 = 0 .

(A.2)

After acting on the equations of motion with an exterior derivative and doing some
algebra, we can derive that the auxiliary fields are symmetric

f1 [µν] = h1 [µν] = f2 [µν] = 0 . (A.3)
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We can solve them in turns of derivatives on the dreibein. Explicitly:

f1 µν = −Sµν , h1 µν = αCµν , (A.4)

f2 µν = −α Dµν + α
(

Pµν − 1
4 P gµν

)
− µ2Sµν . (A.5)

Here Sµν is the Schouten tensor defined in (7.4) and Dµν and Pµν are defined in (7.22).
They are the covariant exterior derivative of the Cotton tensor and the contraction of
the Einstein and Schouten tensor respectively. Back substitution in the action leads
to the following higher-derivative extension of the gravitational Chern-Simons term:

L3 =
1
µ

εµνλ

{
Γρ

µσ∂νΓσ
λρ +

2
3 Γρ

µσΓσ
ντΓτ

λρ +
α

µ2 Rµ
σ∇νRσλ

}
. (A.6)

In a similar manner, we can construct the seventh order derivative theory S5, defined
by taking N = 2 in (7.13). It is, in a metric form

L5 = L3 +
e

µ5

{
β1PµνCµν + β2DµνCµν

}
, (A.7)

where Pµν and Dµν are defined in (7.22).

A.1 Linearization
We now turn to the quadratic Lagrangian for the parity odd model S3. After plug-
ging (7.30) with m→ µ and a→ α into (A.1) and shifting the fluctuations as

k2 → k2 + (µ2 + αΛ
2 )k1 − αΛ2

8 k , and k1 → k1 − Λ
2 k , (A.8)

we find the following quadratic Lagrangian for S3:

L(2)
3 = L(2)

1 +
1

µ3

{
k2 ·

(
D̄k + ē× v

)
+

α

2
k1 · D̄k1

+ v1 ·
(
D̄v−Λē× k + ē× k1

) }
. (A.9)

Here L(2)
1 is the linearized Lagrangian three-form of conformal gravity (3.71). Upon

eliminating the auxiliary fields by their equations of motion, we find the fifth-order
derivative Lagrangian density

L(2)3 = − 1
µ

εµα
ρ∇̄αkρν

0 Gµν(k0) +
α

µ3 εµα
ρ∇̄αGρν(k0)Gµν(k0) . (A.10)

The linearised equations of motion for this action can be written as:

(D0DMD̃MDLDRk0)µν = 0 , (A.11)



A.2 CENTRAL CHARGE 179

where the differential operators DM and D̃M are defined as:

(DM)
ρ
µ = δ

ρ
µ +

1
M

εµ
αρ∇̄α , (D̃M)

ρ
µ = δ

ρ
µ −

1
M

εµ
αρ∇̄α , (A.12)

and the mass parameter M is given as:

M =
√
M2 −Λ =

√
1
`2 −

µ2

α
. (A.13)

The linear theory hence describes a partially massless mode, and two helicity ±2
massive modes, with a Fierz-Pauli mass M2 = −µ2/α. Now the conformal sym-
metry is broken, due to the additional interaction term. The theory hence propag-
ates three degrees of freedom, corresponding to the two helicity states of the massive
mode and the partially massless mode.

In accordance with what is expected from the linear spectrum, it is possible to
diagonalise the quadratic Lagrangian. After the appropriate field redefinitions (A.9)
can be written as:

L3
(2) =

1
µ

(
kL · D̄kL +

1
`

ē · kL × kL

)
+

1
µ

(
kR · D̄kR −

1
`

ē · kR × kR

)
+

(α− `2µ2)

2µ
k0 · D̄k0 −

1
µ

(
kM+ · D̄kM+ + Mē · kM+ × kM+

)
(A.14)

− 1
µ

(
kM− · D̄kM− −Mē · kM− × kM−

)
,

where we have furthermore assumed that µ2`2 6= α. This point correspond to a
special case in the linear spectrum. At α = `2µ2, the massive modes become partially
massless and degenerate with the partially massless mode k0. Note that in this case,
there is no (finite) parameter choice possible where the massive mode degenerates
with the massless mode.

From inspection of (A.14) it is immediately obvious that the kinetic terms for the
massive modes come with the opposite sign as the massless modes. Moreover, fol-
lowing the analysis for positive energy of the Fierz-Pauli modes outlined in chapter
3.2.5, we must conclude that the left and right moving sectors have an opposite sign
for the energy. This implies that even in the absence of the massive mode, either
the left or right moving massless mode has negative energy. This is reflected in the
central charge of the right- and left-moving sectors, which have opposite signs.

A.2 Central charge

We will now compute the central charges of the model defined by (A.1). It fits the
general Chern-Simons–like model (4.3) with flavor space metric and structure con-
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stants:

gωω =
1
µ

, ge f2 = gωh1 =
1

µ3 , g f1 f1 =
α

µ3 , (A.15)

fωωω =
1
µ

, fωe f2 = fωωh1 = fe f1h1 =
1

µ3 , fω f1 f1 =
α

µ3 . (A.16)

The matrix of Poisson brackets (4.17) in the flavor space basis (ω, e, f1, h1, f2) gives

P =

(
0 0
0 Q

)
, (A.17)

where

Q =
1

µ3


µ2V f1 f1

ab − 1
α Vh1h1

ab − 2V f1 f2
[ab] −µ2V f1e

ab + V f2e
ab

1
α Vh1e

ab V f1e
ab

−µ2Ve f1
ab + Ve f2

ab µ2Vee
ab 0 −Vee

ab

1
α Veh1

ab 0 − 1
α Vee

ab 0

Ve f1
ab −Vee

ab 0 0

 . (A.18)

From (A.17) it is immediately obvious that φLL[χ] defined as in (5.3) is indeed first-
class. To show that the brackets of φdiff[ζ] vanish, we may use that, by virtue of

e[µ
a f1 ν] a = e[µ

ah1 ν] a = e[µ
a f2 ν] a = 0 , (A.19)

the gauge parameters ξr
a = ar

µ aζµ satisfy

ei
aξ

f1
a = f1 i

aξe
a , ei

aξh1
a = h1 i

aξe
a , ei

aξ
f2
a = f2 i

aξe
a . (A.20)

Using these identities, explicit computation shows that φdiff[ζ] as defined in (5.5)
has weakly vanishing brackets with all other primary constraint functions. It is also
possible to show that the Poisson brackets of φLL[χ] and φdiff[ζ] with the secondary
constraints vanish on the AdS vacuum. This is sufficient to identify them as the gen-
erators of gauge symmetries at the AdS boundary, since close to the AdS boundary,
we may use the background values for the fields. Then, it becomes possible to split
the first-class constraint functions into a set of mutually commuting constraints L±
defined by (5.8). The background values for the fields (7.30) give that:

ξ
f1
a =

1
2`2 ξe

a , ξh1
a = 0 , ξ

f2
a =

1
2`2

(
µ2 − α

4`2

)
ξe

a . (A.21)

We define the constraint functions L±[ξ] as

L±[ξ] = φ′diff[ζ]±
1
`

φLL[ξ] , (A.22)
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where φ′diff[ζ] = φdiff[ζ] − φLL[ωµζµ]. Upon using the AdS background identities
(A.21) in the expression for the boundary charges (7.53), we find that

δQECSG
± [ξ±] = ± 1

8πµG

∫
∂Σ

dxi ξ± ·
(

δωi ±
1
`

δei

)
, (A.23)

where we have reinstated the overall factor of (8πG)−1. Following the analysis of
section 7.4.1, this leads to a central charge given by.

cL/R = ± 3
2µG

. (A.24)

The result does not depend on the new coupling constant α, which may be expected
since the α term in (A.6) vanishes on the AdS background.





B
Hamiltonian Analysis of

Drei-Dreibein Gravity

In this appendix we give the details on the Hamiltonian analysis of the Drei-Dreibein
Gravity model. The calculation is performed along the lines of the Hamiltonian
analysis of general Chern-Simons–like models involving only Lorentz-vector valued
one-forms as presented in chapter 4. For more details on the general model we refer
to there and [125].

The DDG model is described by a Lagrangian:

L =
1
2

grsar · das +
1
6

frstar · (as × at) , (B.1)

where ar a describe the six fields (ω1
a, ω2

a, ω3
a, e1

a, e2
a, e3

a). After omitting an overall
factor MP, the field symmetric space metric grs has non-zero entries for:

ge1ω1 = −σ1 , ge2ω2 = −σ2 , ge3ω3 = −σ3 . (B.2)

The non-zero entries for the symmetric field space matrix frst are

fe1ω1ω1 = −σ1 , fe2ω2ω2 = −σ2 , fe3ω3ω3 = −σ3 ,

fe1e1e1 = −α1m2 , fe2e2e2 = −α2m2 , fe3e3e3 = −α3m2 ,

fe1e1e2 = β12m2 , fe1e2e2 = β21m2 , fe1e1e3 = β13m2 , (B.3)

fe1e3e3 = β31m2 , fe2e2e3 = β23m2 , fe2e3e3 = β32m2 ,

fe1e2e3 = β123m2 .
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The Lagrangian (B.1) is a first order Lagrangian and after a space-time decomposi-
tion of the fields, the corresponding Hamiltonian is solely a function Lagrange mul-
tipliers (the time-components of ar a) and a set of constraints φr

a. Since the time-
components do not propagate, only the spatial parts of the fields contribute to the
dynamical phase-space.

From the equations of motion of (B.1) a set of conditions can be derived which
must hold on-shell. They are

f t
q[r fs]pta

r aap · aq = 0 . (B.4)

Where the index of f t
qr is raised with the inverse of grs. Eqn. (B.4) are six three-form

equations from which we can derive the secondary constraints if they are a function
of solely an invertible field. Three of these equations give the Cartan identities (7.72)-
(7.74) which we analyse in section 7.5.2. Assuming only invertibility of e1

a led to a
unique choice where two secondary constraints on the spatial components of ar a

could be derived from the identities (7.72)-(7.74). This parameter restriction was to
take only β12 and β13 non-zero.1 The corresponding secondary constraints are given
in (7.78). For this choice of parameters, the other three equations in (B.4) reduce to:

β12e2
a(ω1 −ω2) · e1 + β13e3

a(ω1 −ω3) · e1 = 0 ,
e1

a(ω1 −ω2) · e1 = 0 , e1
a(ω1 −ω3) · e1 = 0 .

(B.5)

These equations lead to another two secondary constraints, given in (7.79). To check
the consistency of the primary constraints φa

r under time evolutions, we calculate
dφ[ξ]/dt, where φ[ξ] is a smeared operator defined by integrating φa

r against a vector
field ξr

a (see (4.10)). This amounts to calculating the matrix of Poisson brackets [45]2

{φ[ξ], φ[η]}P.B. = φ[[ξ, η]] +
∫

Σ
ξr

aηs
b P

ab
rs , (B.6)

with

P ab
rs = f t

q[r fs]ptη
ab∆pq + 2 f t

r[s fq]pt(V
ab)pq , (B.7)

Vpq
ab = εijap

i aaq
j b , and ∆pq = εijap

i · a
q
j , (B.8)

[ξ, η]tc = frs
tεab

cξr
aηs

b . (B.9)

By virtue of our parameter choice and the secondary constraints, the first term in
(B.7) is identically zero. The remaining term gives a 18 × 18 matrix, P ′ab

rs whose

1For two or three invertible fields there are three inequivalent choices of two non-zero coupling con-
stants leading to secondary constraints, as was shown in section 7.5.2. One of these three possibilities is
worked out here. The Hamiltonian analysis for the other two choices is similar to the analysis presented
here and yields the same results.

2We are focusing on the bulk degrees of freedom, hence we omit boundary terms here.
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entries are given by

(P ′ab)rs = m2β12



0 0 0 Ve1e2
ab −Ve1e1

ab 0
0 0 0 −Ve1e2

ab Ve1e1
ab 0

0 0 0 0 0 0
Ve2e1

ab −Ve2e1
ab 0 −(Vω1e2

[ab] −Vω2e2
[ab] ) Vω1e1

ab −Vω2e1
ab 0

−Ve1e1
ab Ve1e1

ab 0 Ve1ω1
ab −Ve1ω2

ab 0 0
0 0 0 0 0 0



+ m2β13



0 0 0 Ve1e3
ab 0 −Ve1e1

ab
0 0 0 0 0 0
0 0 0 −Ve1e3

ab 0 Ve1e1
ab

Ve3e1
ab 0 −Ve3e1

ab −(Vω1e3
[ab] −Vω3e3

[ab] ) 0 Vω1e1
ab −Vω3e1

ab
0 0 0 0 0 0

−Ve1e1
ab 0 Ve1e1

ab Ve1ω1
ab −Ve1ω3

ab 0 0

 .

We can determine the rank of this matrix at any point in space-time by an arbitrary
parametrisation of the fields and plugging it into Mathematica. We find that this
matrix has rank 8. To complete the analysis we must add to this the matrix the
Poisson brackets of primary constraints with the secondary ones. We define

ψ1 = ∆e1e2 , ψ2 = ∆e1e3 , ψ3 = ∆ω1e1 − ∆ω2e1 , ψ4 = ∆ω1e1 − ∆ω3e1 . (B.10)

The Poisson brackets of the secondary constraints among themselves vanish on the
constraint surface and the brackets with the primary constraints are given by:

{ψ1, φ[ξ]} = εij (e1 i · ∂jξ
e2 − e2 i · ∂jξ

e1 − (ξω1 − ξω2) · e1 i × e2 j − ξe1 ·ω1 i × e2 j

+ξe2 ·ω2 i × e1 j
)

, (B.11)

{ψ2, φ[ξ]} = εij (e1 i · ∂jξ
e3 − e3 i · ∂jξ

e1 − (ξω1 − ξω3) · e1 i × e3 j − ξe1 ·ω1 i × e3 j

+ξe3 ·ω3 i × e1 j
)

, (B.12)

{ψ3, φ[ξ]} = εij
(
− e1 i · ∂j(ξ

ω1 − ξω2) + (ω1 i −ω2 i) · ∂jξ
e1

+ ξe1 · (ω1 i −ω2 i)×ω1 j + m2
(

σ−1
1 β12ξe1 + σ−1

2 α2ξe2
)
· e1 i × e2 j

−m2
(
(β12σ−1

2 + α1σ−1
1 )ξe1 − β12σ−1

1 ξe2 − β13σ−1
1 ξe3

)
· e1 i × e1 j

+ β13σ−1
1 m2ξe1 · e1 i × e3 j − (ξω1 − ξω2) · e1 i ×ω2 j

)
, (B.13)
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{ψ4, φ[ξ]} = εij
(
− e1 i · ∂j(ξ

ω1 − ξω3) + (ω1 i −ω3 i) · ∂jξ
e1

+ ξe1 · (ω1 i −ω3 i)×ω1 j + m2
(

β13σ−1
1 ξe1 + α3σ−1

3 ξe3
)
· e1 i × e3 j

−m2
(
(β13σ−1

3 + α1σ−1
1 )ξe1 − β12σ−1

1 ξe2 − β13σ−1
1 ξe3

)
· e1 i × e1 j

+ β12σ−1
1 m2ξe1 · e1 i × e2 j − (ξω1 − ξω3) · e1 i ×ω3 j

)
. (B.14)

For general values of the coupling constants adding these brackets to the total matrix
of Poisson brackets will increase the rank of that matrix by 8, making a 22× 22 matrix
of rank 16. This implies that there are 22− 16 = 6 first class constraints, while the
remaining 16 constraints are second class. This leads to the degree of freedom count
as

# d.o.f =
1
2
(6× 3× 2− 16− 2× 6) = 4 . (B.15)

This result is consistent with the linear analysis of the DDG model, which propagates
two massive spin–2 particles, each with two helicity states.
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Samenvatting

Voor de meerderheid van de mensen is de zwaartekracht wellicht de bekendste van
alle natuurkrachten. De effecten van deze kracht zijn ons zo gewoon, dat het een
deel uitmaakt van onze natuurlijke intuı̈ties. Daarentegen is de zwaartekracht voor
de theoretische natuurkundige misschien wel de meest enigmatische natuurkracht.
Uiteraard is onze alledaagse ervaring van de zwaartekracht en de beweging van de
planeten in het zonnestelsel bekend sinds het werk van Newton. Ook de onderlig-
gende principes van de zwaartekracht als de kromming van de ruimtetijd is begre-
pen na het werk van Einstein in 1915. Het probleem met de zwaartekracht wat de
hedendaagse natuurkundige het meest dwars zit, is dat Einsteins theorie onverenig-
baar is met het principe dat ten grondslag ligt van alle andere natuurkrachten die we
kennen: de kwantisatie van fysische eigenschappen.

Een consistente theorie van kwantumzwaartekracht kan kostbare inzichten op-
leveren in fundamentele vragen die zo oud zijn als onze beschaving: waar komt de
wereld om ons heen vandaan? Hoe is het allemaal begonnen? Door de technolo-
gische ontwikkeling van de laatste eeuwen begeven we ons nu in een tijdperk van
hoge precisie experimenten naar de aard van de fundamentele interacties en naar de
geschiedenis en evolutie van het universum. Deze experimenten zijn de leidraad ge-
worden voor de vorming van twee “standaardmodellen”: het standaardmodel van
de deeltjesfysica (SM) welke de dynamica van de subatomaire deeltjes beschrijft, en
het zogeheten ΛCDM standaardmodel van de oerknal-kosmologie, welke de evolu-
tie van het universum beschrijft.

Beide standaardmodellen zijn fenomenologisch van aard; ze beschrijven de ex-
perimenten met een geweldig hoge precisie, maar er mist een fundamenteel principe
waar de theorieën uit afgeleid kunnen worden. Daarnaast beschrijven de standaard-
modellen de natuurkunde van twee verschillende afstandsschalen; het standaard-
model van de deeltjesfysica gaat over de kleinste toegankelijke afstandsschaal, ter-
wijl het ΛCDM model over de grootst mogelijke afstandsschalen gaat. Echter, een
combinatie van beide modellen levert geen compleet plaatje. Het ΛCDM model be-
rust op de aanwezigheid van donkere energie en donkere materie. Deze donkere



198

materie wordt niet door het SM beschreven en de SM voorspellingen voor de bij-
drage aan de donkere energie van het universum liggen vele ordes van grootte naast
de experimentele waarde.

Deze problemen zijn beiden gerelateerd aan de zwaartekracht, aangezien de don-
kere materie en donkere energie enkel door de interactie met zwaartekracht geobser-
veerd zijn. Einsteins theorie van algemene relativiteitstheorie (ART) verklaart zwaar-
tekracht als de wisselwerking tussen lokale materie en de kromming van de ruimte-
tijd; materie (en energie) kromt de ruimtetijd en de gekromde ruimtetijd bepaald hoe
de materie beweegt. Om de huidige experimenten te verklaren met behulp van ART,
is er ongeveer 24% donkere materie nodig en een kosmologische constante, welke
intrinsiek aan donkere energie is gerelateerd. Ondanks veel zoekwerk is er op het
moment geen passende, fundamentele verklaring voor donkere materie en geen me-
chanisme welke de juiste waarde van de kosmologische constante voorspelt. Omdat
deze twee zaken ons enkel bekend zijn via zwaartekracht, zou het ook kunnen dat
ons begrip van de zwaartekracht enkel bij benadering werkt. Het zou kunnen dat
op intergalactische afstandsschalen de zwaartekracht anders te werk gaat. Daarom
is het slim om naast het onderzoek naar donkere materie en energie ook te kijken
naar de aard van de zwaartekracht op de allergrootste afstandsschalen.

Dit leidt tot het stellen van fundamentele vragen over de ART. Is het überhaupt
mogelijk om de ART op een wiskundig consistente manier te modificeren? Welke
essentiële ingrediënten zijn nodig om de zwaartekracht te verklaren als de interactie
tussen materie en een dynamische ruimtetijd? Is er plaats voor aanpassingen? Met
het oog op deze vragen is het instructief om eerst naar de grondprincipes van de
theorie te kijken. Einsteins ontdekking van de ART was op een bepaalde manier een
sprong van inzicht; hij wou een theorie die invariant is onder algemene coördinaten
transformaties en voldoet aan het equivalentieprincipe (welke zegt dat trage massa
(zoals in Newtons eerste wet) en zware massa (zoals in Newtons zwaartekrachts-
wet) een en hetzelfde ding zijn). Wat Einstein uiteindelijk vond was een niet-lineaire
theorie van Riemann-meetkunde welke de dynamische aard van de ruimtetijd be-
schrijft; maar zo’n soort theorie is niet uniek! Het is mogelijk om andere theorieën te
vinden welke invariant zijn onder algemene coördinaten transformaties en voldoen
aan het equivalentieprincipe.

In dit proefschrift beschouwen we een ander beginpunt voor de ART. De theorie
kan ook gezien worden als de unieke klassieke veldentheorie die de wisselwerkin-
gen van massaloze deeltjes met spin 2 beschrijft. Deze hypothetische deeltjes wor-
den gravitonen genoemd. Alle mogelijke interacties van de gravitonen die consistent
zijn met infinitesimalen coördinaten transformaties geeft een theorie die equivalent
is aan de ART. Het equivalentieprincipe en invariantie onder algemene coördinaten
transformaties zijn dan een logische consequentie in plaats van een grondprincipe
van de theorie. Daarnaast kan het probleem van de kwantumzwaartekracht nu ge-
formuleerd worden als het vinden van een consistente kwantumtheorie van massa-
loze spin-2 deeltjes. Inderdaad beschrijven de meeste voorstellen voor een theorie
van kwantumzwaartekracht, zoals supersnarentheorie, M-theorie en loop quantum
gravity, een massaloos spin-2 deeltje.

Het onderzoeken van aanpassingen van de zwaartekrachttheorie van Einstein
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kan nu ook begrepen worden als het onderzoeken van de aard van interagerende
spin-2 deeltjes. Een natuurlijke vraag in dit opzicht is: is het mogelijk dat deze spin-
2 deeltjes een hele kleine massa kunnen hebben? Dit soort aanpassingen van de ART
worden “massieve zwaartekracht” genoemd. Aan massieve zwaartekracht wordt al
sinds de jaren 30 van de vorige eeuw gewerkt, maar de afgelopen paar jaar is er een
hernieuwd interesse opgedoken voor deze theorieën, mede door het overkomen van
een aantal theoretische obstructies.

Verschillende theorieën van massieve zwaartekracht kunnen worden ingedeeld
in twee categorieën. Aan de ene kant kan worden verondersteld dat het graviton
verantwoordelijk voor zwaartekracht massief is en een andere mogelijkheid is dat
de massaloze graviton van de ART interacties aangaat met een sector van massieve
spin-2 deeltjes. Beide mogelijkheden leiden tot alternatieven op het ΛCDM model
van de kosmologie. Als de graviton zelf een massa heeft, dan zal de zwaartekracht
op lange afstandsschalen zwakker zijn dan in de ART. Hierdoor is materie minder
gevoelig voor de zwaartekracht en is er een grotere kosmologische constante nodig
om de geobserveerde versnelling van het universum te verklaren. Dit proces van
“degravitatie” leidt tot een effectieve “screening” van de kosmologische constante,
wat kan bijdragen tot het oplossen van het kosmologische contante probleem. Als de
ART consistent gekoppeld kan worden aan een sector van massieve spin-2 deeltjes,
dan kan dit een kandidaat zijn voor donkere materie. Daarnaast zal de massieve
spin-2 sector ook zijn bijdrage leveren aan de kosmologische constante. Hierdoor is
een variëteit van nieuwe kosmologische toepassingen mogelijk.

Deze nieuwe toepassingen zijn natuurlijk enkel levensvatbaar aangenomen dat
het überhaupt mogelijk is om een consistente theorie voor massieve spin-2 deeltjes
te vinden. Dit blijkt niet triviaal, zelfs niet op het klassieke niveau. De theorie die
vrije massieve spin-2 deeltjes beschrijft is reeds bekend sinds het werk van Fierz en
Pauli in de jaren 30 van de vorige eeuw. Toen later het verband tussen spin-2 deel-
tjes en zwaartekracht duidelijk werd, bleek dat de vrije massieve spin-2 modellen
uitgesloten moesten worden aan de hand van observaties. Het probleem was dat
de massaloze limiet van deze theorieën niet de ART reproduceerde. Dit heet de van
Dam-Veltman-Zakharov (vDVZ) discontinuı̈teit. Het houdt in dat zelfs een infinite-
simaal kleine massa voor het graviton andere voorspellingen geeft dan een massa-
loos graviton. Deze voorspellingen komen niet overeen met de waarnemingen en
sluiten daarom een kleine massa voor het graviton uit.

De manier om de vDVZ-discontinuı̈teit te omzeilen is door niet naar vrije mas-
sieve spin-2 deeltjes te kijken, maar om zelf-interacties mee te nemen. Zoals alge-
meen bekend is de ART een niet-lineaire theorie en op afstandsschalen van de orde
van grootte van de Schwarzschild-straal beginnen deze niet-lineaire effecten een rol
te spelen. In de vrije massieve spin-2 theorie van Fierz en Pauli wordt deze afstands-
schaal gegeven door de Vainshtein-straal. In massaloze limiet gaat deze Vainshtein-
straal naar oneindig, wat zoveel zegt dat nergens de niet-lineaire effecten mogen
worden verwaarloosd. Dezelfde Vainshtein waarna deze straal is vernoemd liet zien
dat de niet-lineaire effecten voor massieve spin-2 deeltjes ervoor zorgen dat de juiste
massaloze limiet bestaat. Dit wordt nu het Vainshtein mechanisme genoemd. Echter,
tegelijkertijd met deze ontwikkelingen werd door Boulware en Deser aangetoond
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dat de meest algemene, niet-lineaire theorie van massieve spin-2 deeltjes ook niet-
fysische vrijheidsgraden beschrijft. De niet-lineaire effecten introduceren een zoge-
heten ghost deeltje, welke negatieve energie toestanden beschrijft.

Door dit Boulware-Deser ghost deeltje was er een verminderde interesse in the-
orieën voor massieve spin-2 deeltjes tot na de eeuwwisseling. Hier kwam veran-
dering in toen het duidelijk werd dat door bepaalde zelf-interacties toe te voegen
het ghost deeltje verwijderd kan worden uit het spectrum van de theorie. Deze ont-
wikkelingen kwamen door het werk van de Rham, Gabadadze en Tolley (dRGT) en
wordt dRGT massieve zwaartekracht genoemd. In het dRGT model is een referen-
tie metriek nodig welke niet dynamisch is; hetgeen tegen de intuı̈tie van de ART
ingaat. Door deze referentie metriek te promoveren tot een tweede dynamische me-
triek ontstaat een zogeheten theorie van bimetrische zwaartekracht. Het is op het
moment nog onduidelijk of ook deze bimetrische zwaartekracht gevrijwaard is van
ghost deeltjes; er is een actieve discussie in de literatuur over dit onderwerp.

Het hoofdonderwerp van dit proefschrift kan nu worden begrepen als een ver-
kenning naar de mogelijkheden om een consistente theorie van massieve spin-2 deel-
tjes te definiëren in de aanwezigheid van zwaartekracht (begrepen als interacties met
massaloze spin-2 deeltjes) in drie-dimensionale ruimtetijd. Nu het belang van het
begrijpen van interagerende deeltjes van spin-2 duidelijk is en de historie hiervan
enigszins is uiteengezet, kunnen we verder ingaan op een ander belangrijk aspect
van dit proefschrift; zwaartekracht in drie-dimensionale ruimtetijd.

Het beperken tot twee ruimtelijke dimensies plus tijd is enigszins verwijderd
van de kosmologische toepassingen van theorieën van massieve spin-2 deeltjes. Het
moge duidelijk zijn dat we in een vier-dimensionale wereld leven en dus zullen we
van drie-dimensionale modellen geen realistische kosmologische toepassingen vin-
den. Toch zijn er genoeg redenen om in drie dimensies te werken. Ten eerste biedt
het drie dimensionale geval een relatief makkelijke speelveld om ideeën te toetsen
en exacte berekeningen te doen met betrekking tot (kwantum) zwaartekracht. Het
idee is dat deze modellen dan een leidraad kunnen vormen voor hoger dimensionale
modellen.

Daarnaast is zwaartekracht in drie dimensies (3D) bijzonder, want het massaloze
spin-2 deeltje heeft dan geen vrijheidsgraden. Dit betekent dat er geen dynamica is
in 3D zwaartekracht; de kromming van de ruimtetijd wordt compleet bepaald door
de lokale verdeling van materie en energie en er zijn geen zwaartekrachtgolven. Dit
betekent dat in de afwezigheid van materie de ruimtetijd lokaal plat is (of van con-
stante kromming, afhankelijk van de waarde van de kosmologische constante). Toch
bestaan er niet-triviale oplossingen die globaal gezien afwijken van de platte ruimte,
zoals zwarte gaten. Lokaal zijn deze oplossingen equivalent aan anti-de Sitter ruim-
tes (oplossingen van constante negatieve kromming), maar globaal voldoen ze aan
de criteria van een zwart gat; er is een waarnemingshorizon en de oplossingen wor-
den gekarakteriseerd door een massa en impulsmoment, welke als globale ladingen
te berekenen zijn op de asymptotische rand van de anti-de Sitter ruimte.

Het feit dat er geen zwaartekrachtdynamica is in 3D geeft aan dat zwaartekracht
een topologische theorie is die enkel wordt gekenmerkt door globale effecten. Een
brede klasse van topologische theorieën in 3D kunnen worden beschreven door
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Chern-Simons ijktheorieën. De relatie tussen zwaartekracht en een Chern-Simons
ijktheorie is een ander centraal element van dit proefschrift. Het vinden van een
consistente theorie voor massieve spin-2 deeltjes wordt in deze taal het zoeken naar
een veralgemenisering van de topologische Chern-Simons theorieën naar modellen
die niet meer topologisch zijn. In dit proefschrift worden verschillende modellen on-
der de loop genomen die kunnen worden geclassificeerd als Chern-Simons–achtig
(of ‘Chern-Simons–like’, zoals in de titel van dit werk). Dit zijn theorieën die de
wiskundige structuur delen met Chern-Simons ijktheorieën, maar niet louter topo-
logisch van aard zijn en dus lokale vrijheidsgraden (zoals massieve spin-2 deeltjes)
kunnen beschrijven.

Een ander voordeel van drie dimensionale zwaartekracht komt voort uit het feit
dat op een variëteit met een rand een asymptotische symmetriegroep kan worden
gedefinieerd. In het geval van anti de-Sitter ruimtes is deze asymptotische symme-
triegroep een conforme (hoekgetrouwe) symmetriegroep. Zodoende kan er een twee
dimensionale conforme veldentheorie leven op de rand van de drie dimensionale
anti de-Sitter ruimte. Deze relatie tussen een zwaartekrachttheorie en een velden-
theorie in een lagere dimensionale ruimte wordt holografie genoemd en de relatie
tussen zwaartekracht in anti de-Sitter ruimtes en conforme veldentheorie heet de
AdS/CFT correspondentie. Het centrale idee hierachter is dat beide theorieën du-
aal aan elkaar zijn. Dit wil zeggen dat een bepaald fysisch proces in de theorie van
zwaartekracht evengoed kan worden beschreven door de duale veldentheorie. Deze
correspondentie is zeer nuttig, aangezien de koppelingsconstante van beide theo-
rieën meestal omgekeerd evenredig zijn. Dit wil zeggen dat als een probleem sterk
gekoppeld is aan de zwaartekracht kant, dan is de duale veldentheorie zwak gekop-
peld en vice versa. Aangezien enkel zwak gekoppelde systemen oplosbaar zijn door
middel van storingsrekening levert dit een nieuwe manier om sterk gekoppelde pro-
cessen de begrijpen.

In het geval drie dimensionale zwaartekracht is de duale conforme veldentheo-
rie twee dimensionaal. Dit is een bijzondere klasse van conforme veldentheorieën
aangezien de twee dimensionale conforme symmetriegroep oneindig dimensionaal
is. Dit maakt de theorie een stuk makkelijker, aangezien de grote symmetriegroep
al veel fysische eigenschappen van de theorie vastlegt. Desondanks is er na veel
werk nog geen goede kandidaat voor de precieze theorie die duaal is aan drie di-
mensionale zwaartekracht. Wellicht dat de Chern-Simons–achtige theorieën die hier
bestudeerd worden uiteindelijk tot een beter begrip van deze dualiteiten kunnen
leiden.

Tot slot bestaat er in drie dimensies een andere manier om een theorie van mas-
sieve zwaartekracht te definiëren. Men kan in 3D hogere afgeleiden van de metriek
toevoegen aan de actie van de ART. Dit leidt tot een theorie van twee spin-2 deel-
tjes, een massaloze en een massieve. Een van de twee is een ghost, en men kan het
teken in de actie zo kiezen dat dit de massaloze betreft. In drie dimensionale platte
ruimte is dit geen probleem, aangezien het massaloze spin-2 deeltje geen lokale vrij-
heidsgraden beschrijft. Echter in drie dimensionale anti de-Sitter ruimtes geeft dit
een probleem voor de conforme veldentheorie op de rand. Deze is niet unitair als
gevolg van de negatieve energie toestanden van het massaloze spin-2 deeltje.
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In dit proefschrift wordt het bovengenoemd probleem geherformuleerd in ter-
men van de eerder genoemde Chern-Simons–achtige modellen. In dit formalisme
doet zich ook een oplossing van het probleem voor. Waar de hogere afgeleide model-
len uniek lijken in hun originele formulering, blijkt dat in de Chern-Simons–achtige
formulering er meer mogelijkheden bestaan om de interacties tussen massaloze en
massieve spin-2 deeltjes te beschrijven. Zodoende is het mogelijk om massieve spin-
2 deeltjes te beschrijven zonder de Boulware-Deser ghost en met een duale velden-
theorie die mogelijk unitair is. Deze Chern-Simons–achtige modellen hebben veel
weg van de bimetrische modellen en een uitgebreide analyse toont aan dat het in-
derdaad mogelijk is om een bimetrisch model van zwaartekracht zonder ghosts te
definiëren. Hiermee wordt aangetoond dat, in ieder geval in drie dimensies, theo-
rieën van massieve zwaartekracht levensvatbaar zijn.
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