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ABSTRACT
We analyse the Aquarius simulations to characterize the shape of dark matter haloes with
peak circular velocity in the range 8 < Vmax < 200 km s−1, and perform a convergence
study using the various Aquarius resolution levels. For the converged objects, we determine
the principal axis (a ≥ b ≥ c) of the normalized inertia tensor as a function of radius. We
find that the triaxiality of field haloes is an increasing function of halo mass, so that the
smallest haloes in our sample are ∼40–50 per cent rounder than Milky Way-like objects at
the radius where the circular velocity peaks, rmax. We find that the distribution of subhalo
axis ratios is consistent with that of field haloes of comparable Vmax. Inner and outer contours
within each object are well aligned, with the major axis preferentially pointing in the radial
direction for subhaloes closest to the centre of their host halo. We also analyse the dynamical
structure of subhaloes likely to host luminous satellites comparable to the classical dwarf
spheroidals in the Local Group. These haloes have axis ratios that increase with radius,
and which are mildly triaxial with 〈b/a〉 ∼ 0.75 and 〈c/a〉 ∼ 0.60 at r ∼ 1 kpc. Their
velocity ellipsoid become strongly tangentially biased in the outskirts as a consequence of tidal
stripping.

Key words: methods: numerical – galaxies: dwarf – cosmology: dark matter.

1 IN T RO D U C T I O N

In the � cold dark matter (�CDM) cosmological paradigm struc-
tures build hierarchically, via the mergers of smaller objects (Press
& Schechter 1974; Gott & Rees 1975; White & Rees 1978; Blu-
menthal et al. 1984). As mergers proceed, the innermost regions of
some of the progenitors survive, resulting in non-linear structures
where a wealth of substructure orbits the centre of an otherwise
monolithic dark halo. Early N-body simulations showed that haloes
could host dozens of substructures, down to masses near the numer-
ical resolution limit (Tormen 1997; Tormen, Diaferio & Syer 1998;
Ghigna et al. 1998; Klypin et al. 1999a,b; Moore et al. 1999). For
systems like the Milky Way, current numerical simulations have ex-
tended the dynamical range of resolved substructures by 4-5 orders
of magnitude (Diemand, Kuhlen & Madau 2007; Diemand et al.
2008; Springel et al. 2008; Stadel et al. 2009).

The properties of these substructures are of great interest since lu-
minous satellites, such as the population of dwarf spheroidal (dSph)
galaxies in the Local Group, are expected to be embedded in them
(Stoehr et al. 2002; Strigari et al. 2007; Boylan-Kolchin, Bullock

� E-mail: ciro@astro.wisc.edu

& Kaplinghat 2012; Vera-Ciro et al. 2013). Furthermore, the large
mass-to-light ratios of dSph, which range from 10 s to 1000 s
(Mateo 1998; Gilmore et al. 2007; Walker 2013), indicate that their
internal dynamics is dominated by the dark matter. This suggests
that the predictions of pure dark matter simulations may be di-
rectly confronted with observations of these systems. For instance,
it has been suggested that they provide an optimal place to look for
signals of dark matter self-annihilation processes (Kamionkowski,
Koushiappas & Kuhlen 2010) due to the natural enhancement in
density and the lack of significant contamination from the baryonic
component.

The availability of large samples of line-of-sight velocities for
individual stars in dSph galaxies offers new tests of the predictions
of �CDM regarding the structure of dark matter subhaloes. For
instance, studies of N-body numerical simulations have shown that
the inner slope of the dark matter density profile is expected to
be cuspy in CDM models (Navarro, Frenk & White 1996, 1997).
This seems to contrast with the somewhat shallower slopes and
even constant density cores proposed to explain the motions of
stars in local dwarf spheroidals (Amorisco & Evans 2011; Walker
& Peñarrubia 2011; Amorisco & Evans 2012; Jardel & Gebhardt
2012). This, however, is a subject of active debate, since various
authors have shown that the stellar kinematics of Milky Way dwarfs
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are also consistent with the NFW cuspy profiles (Battaglia et al.
2008; Walker et al. 2009; Strigari, Frenk & White 2010; Breddels
et al. 2013; Breddels & Helmi 2013).

Most of the dynamical modelling performed in the studies of
Local Group dwarf spheroidals relies on simple assumptions about
the structure of their dark matter component. In particular, spher-
ical symmetry and specific anisotropy profiles have been exten-
sively assumed. The orbital anisotropy has been taken to be con-
stant (Richstone & Tremaine 1986; Łokas 2002, 2009; Łokas,
Mamon & Prada 2005; Walker et al. 2009), or radially depen-
dent (Kleyna et al. 2001; Wilkinson et al. 2002; Battaglia et al.
2008; Strigari et al. 2008; Wolf et al. 2010; Amorisco & Evans
2011), while in Schwarzschild modelling or in made-to-measure
N-body methods it does not need to be assumed (Long & Mao
2010; Jardel & Gebhardt 2012; Breddels et al. 2013). The selec-
tion of geometric shape for the dark matter potential can also be
relaxed. For example, Hayashi & Chiba (2012) considered axisym-
metric dark matter haloes to model some of the Milky Way dSph
galaxies.

For isolated galaxies, numerical experiments of �CDM have
clear predictions for these quantities. The shapes of (isolated) dark
matter haloes in the mass range 1010–1015 M� are generally found
to be triaxial, with axis ratios depending on the mass of the object
(Frenk et al. 1988; Dubinski & Carlberg 1991; Warren et al. 1992;
Cole & Lacey 1996; Thomas et al. 1998; Jing & Suto 2002; Bailin &
Steinmetz 2005; Kasun & Evrard 2005; Hopkins, Bahcall & Bode
2005; Allgood et al. 2006; Bett et al. 2007; Hayashi, Navarro &
Springel 2007; Kuhlen, Diemand & Madau 2007; Stadel et al. 2009;
Diemand & Moore 2011; Muñoz-Cuartas et al. 2011; Schneider,
Frenk & Cole 2012). In terms of their internal kinematics, the
velocity ellipsoid is close to isotropic near the centre of haloes and
becomes mildly radial towards the outskirts (Wojtak et al. 2005;
Hansen & Moore 2006; Ludlow et al. 2011).

For subhaloes, however, less is known because of the demanding
numerical resolution needed to model properly low-mass haloes
orbiting within hosts of Milky Way mass. This situation has re-
cently improved with simulations that are now able to successfully
sample the mass function on these scales, such as the Via Lactea,
CLUES, GHALO and Aquarius simulations (Diemand et al. 2007,
2008; Springel et al. 2008; Stadel et al. 2009; Libeskind et al. 2010).
For instance, using the Via Lactea simulations Kuhlen et al. (2007)
found that subhaloes are also not spherical, although the effect of
tides tends to make subhaloes rounder than comparable objects in
the field. These results prompt questions about the validity of some
of the assumptions involved in the mass modelling of stellar kine-
matics in dwarfs. And although the orbital anisotropy of the stars
in a dSph is likely unrelated to that of dark matter (and associated
with the formation history), it is nonetheless valuable to explore
the dynamical structure of subhaloes because they provide the main
potential.

A detailed study of the shape of the Milky Way mass Aquarius
haloes was presented in Vera-Ciro et al. (2011). Here we extend
this analysis to lower mass objects, both subhaloes of the main
central halo and field haloes, up to 1.5 h−1 Mpc from the centre
of the main Aquarius halo. The paper is organized as follows. In
Section 2 we describe the numerical simulations, introduce the
methods we use to determine halo shapes and explore the conver-
gence of the results. In Section 3 we compare the properties of
subhaloes and isolated objects of similar mass. We analyse subhalo
shapes in the context of the kinematic modelling of dwarfs around
the Milky Way in Section 4 and summarize our main results in
Section 5.

2 SHAPE MEASUREMENTS
A N D C O N V E R G E N C E

We use the suite of cosmological N-body simulations from the
Aquarius project (Springel et al. 2008). These consist of six
∼1012 M� �CDM haloes (Aq-A to Aq-F), re-simulated with five
different levels of resolution within the cosmology �0 = 0.25,
�� = 0.75, H = 100 h km s−1 Mpc−1, h = 0.75. The simulations
use the zoom-in technique, with a high-resolution region that ex-
tends at z = 0 up to ∼2 h−1 Mpc from the centre of each main
halo. This exceeds the typical virial radius of the Aquarius haloes
by 5–10 times and allows us to identify isolated haloes that have
been unaffected by tidal forces (see Springel et al. 2008, for further
details).

In most of the analysis that follows we focus on the level-2
resolution runs, with a mass per particle mp ≈ 104 M�. However, we
use the other Aquarius levels to test the convergence of our results.
Haloes and subhaloes are identified using the SUBFIND algorithm
(Springel et al. 2001). We keep all structures identified with at
least 20 particles. We will call the central subhalo of a group a
field/isolated halo. In this work we consider field haloes up to a
distance of 1.5 h−1 Mpc from the centre of the main Aquarius halo
to avoid contamination of low-resolution particles.

To measure the shape of haloes in the simulations we follow the
same approach as Vera-Ciro et al. (2011) and iteratively compute the
inertia tensor in ellipsoidal regions. At a given radius, the algorithm
begins with a spherical contour which is reshaped and reoriented
according to the principal axis of the normalized inertia tensor for
the encompassed material, until convergence is reached (Allgood
et al. 2006). More specifically, we define the normalized inertia
tensor as

Iij =
∑
xk∈V

x
(i)
k x

(j )
k

d2
k

, (1)

where dk is a distance measure to the kth particle and V is the set of
particles of interest. Representing dark matter haloes as ellipsoids
of axis lengths a ≥ b ≥ c, the axis ratios q = b/a and s = c/a are the
ratios of the square-roots of the eigenvalues of I , and the directions
of the principal axes are given by the corresponding eigenvectors.
Initially, the set V is given by all particles located inside a sphere
which is re-shaped iteratively using the eigenvalues of I . The dis-
tance measure used is d2

k = x2
k + y2

k /q
2 + z2

k/s
2, where q and s are

updated in each iteration. In practice we find that the algorithm con-
verges (i.e. the variation in the shape between successive iterations
is <1 per cent) when there are as few as 200 particles in set V.
Notice that this is a more stringent criteria than required by plain
identification of bound objects in SUBFIND, which is here taken to be
only 20 particles.

In Vera-Ciro et al. (2011) we showed that shapes can be robustly
measured from the convergence radius, rconv outwards (Power et al.
2003; Navarro et al. 2010). rconv is defined so that the ratio between
the local relaxation time and the dynamical time at the virial radius
equals κ where:

κ(r) =
√

200

8

N (r)

ln N (r)

[
ρ(r)

ρc

]−1/2

, (2)

where N(r) is the number of particles inside the radius r, ρ is the
spherically averaged density and ρc the critical density. We adopt
the value κ = 7 because this guarantees that the circular velocity
profiles of the main haloes are accurate to better than 2.5 per cent
(Navarro et al. 2010). Note that this equation has to be numerically
solved for rconv with fixed κ for each object in the simulation. As a
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Figure 1. Shape of the r95 contour (left) and Vmax contour (right) as a
function of Vmax for subhaloes of the main halo at five different resolutions.
With thick lines we plot subhaloes for which rconv ≤ r95 (left) and rconv ≤
rmax (right), where rconv is such that κ(rconv) = 7.

rule-of-thumb, we find that requiring a minimum of ∼10 000 parti-
cles enclosed within the radius of interest (i.e. rmax or r95) ensures
that more than 90 per cent of the subhaloes satisfy this constraint.

Fig. 1 shows that the same criteria applied to our sample of
subhaloes also ensure convergence of halo shape estimates. We
compare the results for the Aq-A run in all resolution levels 1–5 (red
to black, respectively). The left panels show, as a function of halo
maximum circular velocity Vmax, the mean axis ratios computed at
r95, here defined as the ellipsoidal contour enclosing the 95 per cent
most bound particles identified by SUBFIND. The thin lines correspond
to the entire sample of subhaloes, whereas the thick curve shows
only ‘converged’ objects (those where r95 ≥ rconv). At level 2, the
one used for most of our analysis, the mean axis ratios agree with
the highest resolution run Aq-A-1 to better than 5 per cent across
the full spectrum of ‘converged’ subhaloes.

A similar conclusion is reached for the inner regions of subhaloes,
as shown by the right panels of Fig. 1. Here, c/a and b/a are
computed at the radius of the peak circular velocity Vmax, which is
typically approximately nine times smaller than rvir for field haloes
and approximately six times smaller than r95 for subhaloes. The
number of objects for which rconv < rmax is roughly 10 times lower
than those with rconv < r95. This explains the relatively more noisy
behaviour of the curves on the right column compared to those
on the left (especially for the lowest two-resolution runs, where
typically less than 10 objects satisfy the convergence condition). In
general, a subhalo whose shape has converged at the r95 radius has
not necessarily converged at the rmax radius.

Besides the mean trends shown in Fig. 1, we have also explored
the convergence of halo shapes on an object-by-object basis. In
order to do this, we identify the same subhaloes in several resolution
levels of the Aq-A halo by matching the Lagrangian positions of all
the particles assigned to a substructure by SUBFIND back in the initial
conditions (see Section 4.2; Springel et al. 2008, for further details).
In addition to this criterion, we impose a maximum deviation on
the orbital path of matched objects in different level runs. This is

Figure 2. Left: distribution function of the deviation of the major-to-minor
axis ratio with respect to the highest resolution simulation δs. The light-grey
histogram shows the distribution for the matched sample, while the dark-
grey shows the results for the sample that satisfies that rconv (vertical arrows
in the right panels) is smaller than rmax (vertical grey line in the right panels)
in all resolutions. The converged sample is narrower by a factor of 5. Right:
axis ratios as a function of position for three different subhaloes with the
quoted number of particles in the respective resolutions.

to ensure that the evolution of each subhalo has been comparable
in the different resolution runs also in the non-linear regime. More
specifically, we define

�2
r = 1

N

∑
snapshot

|r3(t) − r2(t)|2
|r2(t)|2 , (3)

with rj is the position1 of the subhalo with respect to the main halo
centre at the jth resolution level. This is computed for every snapshot
from the time the object is first identified in the simulation box until
present day. We consider only structures for which �r ≤ 0.1.

A total of 260 substructures are successfully matched in all levels
1, 2 and 3 of the Aq-A halo by this procedure. For each object, we
define δs = s3/s1 − 1, where s = c/a measured at rmax and the lower
indices indicate the resolution level (1 and 3 in the example above).
By construction, δs ∼ 0 for well-converged objects. We show the
distribution of δs in Fig. 2. The light grey histogram corresponds to
all matched objects, and is significantly broader than the distribution
for the converged sample (i.e. the subset of the matched sample
formed only with the subhaloes that have rmax > rconv), which is
shown in dark grey.

We illustrate this more clearly on the right panels in Fig. 2, which
show the behaviour of c/a as a function of radius R = (abc)1/3 for
three subhaloes in the sample. Small coloured dots indicate their δs

value on the histogram on the left. The various curves correspond
to the results for different resolution levels as indicated by the
labels. For each subhalo the convergence radius rconv is marked
with a vertical arrow and the position of the Vmax contour by a
vertical thick grey line. The top panel shows a typical example of
an unconverged object: the peak of the circular velocity occurs at

1 The positions of all haloes and subhaloes are defined by the particle with
the minimum potential energy.
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a smaller radius than rconv for levels 2 and 3. On the other hand,
subhaloes in the middle and bottom panels have rmax > rconv and
have therefore converged (according to our criterion) at all these
levels.

Notice that a large number of particles do not guarantee conver-
gence. For instance, the unconverged object on the top right panel
of Fig. 2 has ∼5000 and ∼17 000 particles in levels 3 and 2, re-
spectively. These are significantly larger than the values previously
used in the literature (e.g. Kuhlen et al. 2007; Knebe et al. 2008a,b),
and highlights the need to impose a second criterion to measure
individual shapes reliably. With our criterion, for only ∼2 per cent
of the haloes with 5000–10 000 particles have the shapes at the
Vmax contour converged (i.e. rconv > rmax). The situation improves
significantly for the r95 contour, where 99.6 per cent of such objects
have converged.

The distribution of axis ratios for converged objects shown in the
left panel of Fig. 2 has a standard deviation σ = 0.08, meaning
that 68.3 per cent of the objects shapes determined at the Aquarius
level-3 deviate less than 8 per cent from their value in the highest
resolution run. Since we focus on the level-2 runs for the analy-
sis that follows, we expect resolution effects in our sample to be
negligible.

The above discussion shows that our criterion for convergence
is relatively strict. There are 21 403 subhaloes with at least 200
particles within the r95 radius in all the Aquarius simulations, and
we find that the inertia tensor algorithm converges for 11 483 sub-
haloes at the rmax contour, and for 13 970 at the r95 contour. If we
now impose our convergence criteria, there remain 412 and 6072
subhaloes with well-determined shapes at the rmax and r95 contours,
respectively. For haloes in the field our convergence criteria lead
to a reduction of 96 and 35 per cent for the rmax and r95 contours,
respectively. As expected, there is a larger proportion of field ob-
jects whose shapes can be measured at the r95 contour. However,
despite this significant reduction in sample size, we have gained in
the reliability of the shape determination for individual haloes.

Therefore, in the next section we focus on those haloes which
satisfy our convergence criteria.

3 H A L O SH A P E S A S A F U N C T I O N O F MA S S
A N D E N V I RO N M E N T

We proceed to characterize the variations in the axis ratios b/a and
c/a of dark matter haloes according to their mass or, equivalently,
their maximum circular velocity. The left column of Fig. 3 shows
b/a and c/a for isolated objects measured at the r95 radius (labelled
r95 contour) and at rmax ( Vmax contour) in the top and bottom panels,
respectively. A thick line indicates the median trend of our sample
and the open symbols at the high-mass end show the results for the
main Aquarius haloes from Vera-Ciro et al. (2011). In agreement
with previous work, we find that axis ratios tend to decrease gently
with Vmax (Allgood et al. 2006; Macciò et al. 2007; Hahn et al.
2007; Bett et al. 2007; Muñoz-Cuartas et al. 2011), although we
now explore a different mass regime.

Inspection of the top and bottom panels shows that the depen-
dence of the axis ratios with circular velocity is somewhat steeper
when measured at rmax than at the r95 contours. Typically, our low-
est mass objects have inner axes that are rounder by 40–50 per cent
than those of Milky Way-like haloes. Nevertheless, the scatter from
object to object at fixed circular velocity also is larger at rmax, as
indicated by the shaded regions.

A comparison between the left and the right column of Fig. 3
reveals that there are only small differences between subhaloes and

Figure 3. Shape as a function of Vmax for field haloes (left) and subhaloes
of the main haloes in the suite of Aquarius simulations (right). Thick lines
represent the median of the distribution of converged structures and the
shadowed region represents ±1σ equivalent dispersion around the median.
Thin lines are fits to the objects in the field. The diamonds and squares
indicate the axis ratios of the main Aquarius haloes.

isolated objects. To make this comparison easier we overplot in the
panels on the right the linear fits obtained for field haloes. This
shows that, on average, subhaloes are slightly more spherical than
field haloes at a given Vmax, but differences are well within the
scatter in the samples. The number of converged objects in the case
of subhaloes is 385 and 1522 for Vmax and r95 contours, respectively.

Could the differences between field haloes and subhaloes be
caused by measuring shapes at different physical radii? It has been
shown in the literature that tidal evolution can significantly decrease
rmax in satellites while affecting Vmax significantly less (Hayashi
et al. 2003; Kravtsov, Gnedin & Klypin 2004; Peñarrubia, Navarro &
McConnachie 2008). In that case, the measurement of the halo shape
at rmax would be at a smaller radius for a subhalo than for a halo in
the field with the same Vmax, and the same holds for the r95 contour.
We address this in Fig. 4, where we show the minor-to-major axis
profiles for individual field haloes (left) and subhaloes (right) of
similar mass (Vmax ∼ 50 km s−1). The solid dots show the location
of rmax for individual objects; they indicate that the radii of the
peak circular velocity are comparable in both samples and therefore
show that this cannot be reason for the different trends reported in
Fig. 3. We thus confirm that, on average, subhaloes of a given Vmax

are slightly more spherical than comparable field haloes at all radii,
particularly in the outskirts. Kolmogorov–Smirnov tests indicate
that the difference between both samples is statistically significant
only at the r95 contours (the Kolmogorov–Smirnov probability is
0.09 in that case versus 0.42 at rmax). However, the differences are
well within the object-to-object scatter (see the bottom panel Fig. 4).

The similarity between the subhalo and field populations apparent
in Figs 3 and 4 explains the lack of appreciable trends as a function
of distance d to the centre of the main Aquarius haloes, shown in
Fig. 5. The typical axis ratios measured at the r95 as well as Vmax

contours do not depend on the distance to the host centre up to
distances d ∼ 5rvir. We have explicitly checked that this is not due
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Figure 4. Top: the thin lines show the minor-to-major axis ratio profiles
as a function of radius for objects with Vmax ∼ 50 km s−1. The thick lines
correspond to the median and the shadowed region is 1σ equivalent scatter
for the same sample of objects in the field (left) and subhaloes (right). The
median for field haloes is also plotted in the right panel for comparison.
Bottom: distribution of the axis ratios of the Vmax (left) and r95 (right)
contour for the field haloes (red) and subhaloes (blue) plotted in the top
panels. Although the median axis ratio (open circle) is slightly larger for
subhaloes the differences are well within the scatter.

Figure 5. Shape and orientations of subhaloes and objects in the field as a
function of distance to the main haloes d in each of the Aquarius simulations.
The grey line indicates the virial radii of the main haloes.

to the averaging over random orbital phases of individual subhaloes;
using the apocentre distances instead of the instantaneous position
leads to very similar results. On the other hand, the tidal field of the
host seems to imprint a significant radial alignment on the subhaloes
(see the bottom panel of Fig. 5), which tend to orient their major

axis radially to the centre of the host, albeit with a large scatter.
The signal is stronger close to the centre of the main host haloes
and decreases steadily until it disappears at d � 2rvir, where the
distribution is consistent with random (Pereira, Bryan & Gill 2008;
Pereira & Bryan 2009). Interestingly, inner (at rmax) and r95 contours
are well aligned within each object, as shown in the bottom right
panel.

Notice that, although our findings suggest only small differences
between the shapes of subhaloes and field haloes, the evolution of
single objects under the effects of tidal disruption can differ signifi-
cantly from the behaviour of the population as a whole (Barber et al.,
in preparation). In general, the analysis of a population of subhaloes
such as that shown in Figs 3–5 will be dominated, in number, by
objects with recent infall times (and therefore not largely exposed
to tidal effects), minimizing the differences between subhaloes and
field haloes in good agreement with our results.

4 A P P L I C AT I O N TO T H E M O D E L L I N G
O F L O C A L G RO U P SAT E L L I T E S

As discussed in the Introduction, the Local Group satellite galaxies
are expected to inhabit dark matter subhaloes comparable to those
studied in the previous section. Since the contribution of the baryons
to the gravitational potential of these systems is thought to be sub-
dominant, the shape, dynamics and orbital structure of their host
dark haloes may be compared in a reasonably direct way to those
of a suitable subset of the subhaloes in the Aquarius simulations.

To select subhaloes likely to host luminous satellites comparable
to local dwarfs we use the semi-analytical model of Starkenburg
et al. (2013). The semi-analytic model includes physical prescrip-
tions for the treatment of relevant processes such as radiative cool-
ing, chemical enrichment, star formation, supernova feedback, etc.
The parameters in the model are tuned to simultaneously reproduce
the luminosity function and spatial clustering of bright galaxies as
well as the properties of satellites in the Local Group (De Lucia
& Blaizot 2007; De Lucia & Helmi 2008; Li, De Lucia & Helmi
2010).

4.1 The shapes of subhaloes hosting luminous satellites

Fig. 6 shows the axis ratios as a function of distance along the
major-axis r for our sample of subhaloes. This consists of subhaloes
within the virial radius of their hosts at z = 0 and that resemble the
classical satellites of the Milky Way in their luminosity, i.e. their
V-band absolute magnitudes are in the range −13.2 ≤ MV ≤ −8.6.
Each curve is plotted from the convergence radius out to the r95

contour, and the colour scale indicates the luminosity assigned by
the semi-analytic model to the satellites.

Fig. 6 shows that the dwarf galaxies in the model are surrounded
by subhaloes that are triaxial, with axis ratios b/a and c/a typically
increasing from the inner regions to the r95 radius. The scatter
from object to object is large, but the overall trend with radius is
similar for all subhaloes. The median profile and 1σ -equivalent
percentiles of the sample are given, respectively, by the black solid
line and the grey shaded area. These dark matter subhaloes have
on average c/a ∼ 0.60 and b/a ∼ 0.75 at a radius of ∼1 kpc,
and turn more spherical close to the r95 radius, where c/a ∼ 0.8
and b/a ∼ 0.9. Individual inner shapes of haloes/subhaloes can be
clearly seen in Fig. 7, where we show a scatter plot of b/a and c/a
ratios measured at r ∼ 1 kpc. Only converged objects have been
included. Different symbols are used for different samples: blue
circles for field haloes, red diamonds for subhaloes and black circles

MNRAS 439, 2863–2872 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/439/3/2863/1106955
by Rijksuniversiteit Groningen user
on 09 April 2018



2868 C. A. Vera-Ciro et al.

Figure 6. Shape as a function of distance along the major axis, a, for
subhaloes hosting luminous satellites. The median profile and 1σ -equivalent
percentiles of this sample are given, respectively, by the black solid line and
the grey shaded area.

Figure 7. b/a versus c/b axis ratios measured at r = 1 kpc for individual
(converged) objects. Field haloes are shown with blue circles, subhaloes with
red diamonds and luminous subhaloes with black squares. The histograms
show that close to the centre subhaloes may be approximated by oblate
axisymmetric objects.

for luminous subhaloes. The fact that subhaloes and field haloes are
well mixed in this plane confirms the lack of any significant trend
between shape and distance to the main halo, in agreement with
Fig. 5.

We may use Poisson’s equation to derive a relation between the
b/a and c/a of the density (which our method measures), and those
of the potential b
/a
 and c
/a
. Following Vogelsberger et al.
(2008), we introduce a generalized radius:

r̃ = ra + r

ra + rE
rE, (4)

Table 1. Best-fitting values for the profiles shown in Figs 6 and
8. See text for details.

Parameter Median −1σ +1σ

α 0.27 0.07 0.10
r−2 (kpc) 1.21 0.42 0.58
v−2 (km s−1) 9.06 1.87 1.72
c
/a
 0.70 0.07 0.10
b
/a
 0.83 0.10 0.09
ra (kpc) 1.72 1.26 2.86
χ 1.60 0.13 0.09
lnA −2.42 0.15 0.20

where r2 = x2 + y2 + z2 is the Euclidean distance, r2
E = (x/a
)2 +

(y/b
)2 + (z/c
)2 is the ellipsoidal radius and ra a characteristic
scale. With this definition, r̃ ≈ rE for r � ra and r̃ ≈ r for r 
 ra.
Assuming that the potential at any point is


(x, y, z) = 
̃( r̃), (5)

where 
̃ is the spherically symmetric potential associated with the
Einasto profile (Einasto 1965), we find for our sample a median
b
/a
 = 0.83 and c
/a
 = 0.70. The median and ±1σ error of
the parameter fits for the density and axis ratios obtained in this
way are given in Table 1.

4.2 The internal kinematics of subhaloes hosting
luminous satellites

4.2.1 Behaviour along the major axis

Fig. 8 shows the radial velocity dispersion σ r (top) and the orbital
anisotropy β (bottom), both as a function of distance along the major
axis. These quantities are computed in ellipsoidal coordinates that
follow the axis ratios of the mass density at each radius. In practice,
we calculate the component of the velocity in the direction tangential
to a given ellipsoid, σ T, and the radial component σ r is derived by
subtraction in quadrature of σ T from the total velocity dispersion.
Therefore this σ r corresponds very closely to the velocity dispersion

Figure 8. Radial velocity dispersion and anisotropy as a function of the
distance along the major axis, r, for the subhaloes hosting luminous satellites.
The thick solid black line represents the median behaviour.
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along the spherical radial direction as it is computed along the
ellipsoid’s major axis.

As in the previous figure, individual objects are shown with thin
lines colour-coded according to their V-band absolute magnitude.
The median trend of the sample is indicated by a black solid curve,
1σ -equivalent percentiles in grey shading. The spread in σ r seen
in the top panel of Fig. 8 is due to the difference in mass of the
subhaloes, which span a range m = 1.6 × 108–5.8 × 109 M�.

A declining velocity dispersion profile as seen in the top panel of
Fig. 8 is generally expected for haloes in CDM because of the rela-
tion between the density and pseudo-phase-space density, namely
Q = ρ/σ 3

r (Taylor & Navarro 2001):

�

σ̃ 3
r

= Ax−χ , (6)

with A a normalization constant, � ≡ ρ/ρ−2, σ̃r ≡ σr/v−2 and x ≡
r/r−2, where ρ−2, v−2 and r−2 are the characteristic density, velocity
and radius for the Einasto density profile, respectively.2 When we
fit the Q-profiles individually for each subhalo, we obtain median
values of ln A = −2.42 and χ = 1.60, the latter indicating a slightly
shallower fall off than for field haloes.

In the bottom panel of Fig. 8 we plot the ellipsoidal velocity
anisotropy β profiles. Here β = 1 − σ 2

r /σ 2
T , where we calculate the

component of the velocity tangential and radial to a given ellipsoid
as explained above. The velocity anisotropy profiles of dark matter
subhaloes tend to decline with radius. In the inner regions the mo-
tions are slightly radially biased (β ∼ 0.2 at r ∼ 1 kpc), while the
ellipsoid becomes increasingly tangential (β < 0) at larger radii.
This behaviour is markedly different from the radially biased ellip-
soids found in isolated �CDM haloes, particularly in the outskirts
(Cole & Lacey 1996; Taylor & Navarro 2001; Wojtak et al. 2005;
Ludlow et al. 2010). This difference is a result of tidal forces, which
preferentially remove particles with large apocentres on radial or-
bits. Fig. 8 also shows that subhaloes rarely have a constant β

profile.
We may derive an expression for β using the spherical Jeans

Equation which relates the density, anisotropy and radial velocity
dispersion of a system (Binney & Tremaine 2008). In the case of an
Einasto profile with logarithmic slope ∼ −rα we find:

3β(r) = −6πμ

xσ̃ 2
r

+ 5xα − χ, (7)

where σ̃r = σr/v−2 as before and μ = μ(x, α) is given by equa-
tion (A3) (see Appendix A for a more detailed derivation of this
expression). The velocity anisotropy is therefore dependent on the
logarithmic slopes of the mass density and of the pseudo phase-
space density, α and χ , respectively.

This expression provides a reasonable fit out to r ∼ 2.5r−2.
Whereas the limiting behaviour of the anisotropy in the inner re-
gions is similar for all subhaloes, beyond a radius of ∼1 kpc large
variations are seen from object-to-object. These variations are still
accounted for by equation (7) when each β profile is fitted individ-
ually. We find that the exact shape of the anisotropy profile depends
most strongly on α, while χ determines where the velocity ellipsoid
becomes tangential at large radii. On the other hand, variations in
ln A have a very minor effect.

2 See Appendix A, where we show that a power-law fit is a reasonable
description of the pseudo-phase-space of subhaloes just like it is for field
haloes.

Figure 9. Velocity dispersion as a function of distance along the minor
(left) and major axis (right) for subhaloes hosting luminous satellites. In
each case the system is rotated such that the minor axis lies along the z

direction. The cylindrical velocity dispersions σ 2
z and σ 2

R are estimated in
spheres containing 400 particles.

4.2.2 Axisymmetric description of the internal kinematics

Fig. 6 shows that subhaloes are not significantly triaxial having in
average b/a � 0.8, therefore, an axisymmetric approach may be
sufficient to describe their internal kinematics. Moreover, an oblate
approximation seems favoured by the overall distribution of inner
shapes shown in Fig. 7, albeit with a large scatter.

To this end, in Fig. 9 we explore the velocity structure in the
cylindrical radial and vertical directions. Each object is rotated such
that the minor axis coincides with the z-direction. The velocity
dispersion components along the vertical (z) and radial (R) axes
provide information on how dynamically hot a system is in both
directions. We compute this along the two preferential axes, minor
(left) and major (right), using at each radius a sphere that contains
400 particles. The velocity dispersion σ z and σ R are then computed
within these volumes and displayed as a function of distance along
the axes. As before, individual haloes are shown in thin blue lines,
the median values with solid thick lines.

The velocity dispersion profiles show a steady decline with ra-
dius, and as expected with a trend similar to the radial velocity
dispersion shown in Fig. 6. As in that case, there is scatter from
object-to-object mostly due to the range in subhalo mass, with the
most luminous objects (light green in Fig. 9) having larger velocity
dispersion than the fainter ones (red). The anisotropy βz is defined
as βz = 1 − σ 2

z /σ 2
R and is shown in the bottom panels of Fig. 9.

Interestingly, along the minor axis we find σ z ∼ σ R, in agreement
with the assumptions by Hayashi & Chiba (2012) when modelling
stars in the dSph. However, this is not true for the velocity disper-
sions along the major axis as shown in the right panel, where we
find positive values of βz close to the centre and βz < 0 at the r95

radius. This trend, although systematic, is quite weak, with large
scatter amongst the individual objects. It is important to realize
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Figure 10. Relation between the anisotropy δ = 1 − σ 2
z /σ 2

x and the ellip-
ticity of the haloes ε = 1 − c/a measured at a distance x = 1 kpc along the
major axis. The solid black line shows the prediction of the virial tensor the-
orem when applied to axisymmetric systems supported by random motion
(Binney 2005).

that our measurements are subject to significant noise as we are
now restricted to consider a small region around a given radius (i.e.
we do not average over entire ellipsoidal shells as before and so
each sphere contains fewer particles). The typical uncertainty for
the individual curves is shown by the black vertical error bar, com-
puted as the dispersion obtained from drawing 100 samples with
replacement in each bin.

The fact that the velocity dispersions σ R and σ z are not equal
implies that the subhaloes’ distribution functions are a function of
a third integral. Although we have shown this to be the case for
dark matter satellites, it could also be true for the stars embedded
in these systems. Therefore, dynamical models of dSph may need
to take this into account (Battaglia, Helmi & Breddels 2013), since
neglecting this fact can lead to unrealistic estimates of the shapes
of the host dark matter haloes (see Hayashi & Chiba 2012).

The shapes of the subhaloes are consistent with dynamical sup-
port by the velocity ellipsoid, as shown by Fig. 10. The vertical axis
shows the local anisotropy δ = 1 − σ 2

z /σ 2
x , where x is again the

direction of the major axis and z points along the minor axis. These
quantities are calculated in a sphere with 400 particles located at
x = 1 kpc and the individual points in this figure correspond to the
different subhaloes. In the axisymmetric case, the virial theorem in
tensor form (Binney 2005) gives:

v2
0

σ 2
0

= 2(1 − δ)
Wxx

Wzz

− 2, (8)

where Wij are the components of the potential-energy tensor (Binney
& Tremaine 2008). For ellipsoidal systems Wxx/Wzz is a function of
the ellipticity ε = 1 − c/a and is independent of the radial density
profile (Roberts 1962). v0 is the streaming velocity along the y-
axis and σ 0 is the velocity dispersion in the x direction. The solid
line in Fig. 9 indicates the prediction from equation (8) in the case
of a dispersion supported system with v0/σ 0 = 0. This prediction
provides a reasonable representation of the simulated objects that
agrees well with the very little rotation that we find: haloes and
subhaloes show an average 〈v0/σ 0〉 = 0.08 and more than 90 per
cent of the sample has v0/σ 0 < 0.14 in their inner regions. The

scatter, however, is large and cannot be explained solely on the
basis of rotation of subhaloes at small radii. Further factors such as
departure from axisymmetry or the lack of dynamical equilibrium
generated by tides may also contribute to the scatter seen in Fig. 10.

5 C O N C L U S I O N S

We have used the Aquarius simulations to study the shapes of
field and satellite dark matter haloes with emphasis on the mass
range expected for the hosts of the dwarf galaxies in the Local
Group. We have used an iterative method based on the normalized
inertia tensor to characterize the principal axis lengths a ≥ b ≥ c
of haloes and subhaloes as a function of radius. In particular, we
have explored in detail halo shapes measured in the inner regions
(radius of maximum circular velocity rmax) and in the outskirts or
r95 contour. Although stars are more centrally concentrated than the
dark matter, our resolution allows us to characterize halo shapes at
radii as small as r ∼ 1 kpc, starting to probe the regime traced by
the outer stars in dwarf galaxies.

Through a comparison of objects in common between the differ-
ent resolution levels of the Aquarius simulations, we have noticed
that simple number of particles cuts do not guarantee convergence
in the measured halo shapes, especially in the inner regions. We find
that instead the convergence radius rconv (defined as the threshold
κ = 7 in the ratio between the local relaxation time and the dynam-
ical time at the virial radius; Power et al. 2003) provides a good
estimate of the radius where the axis ratios are robustly determined
(with an error <8 per cent).

We have found that the typical axis ratios of isolated haloes in the
Aquarius simulations decrease with increasing mass, or equivalently
maximum halo circular velocity Vmax, i.e. low-mass objects tend to
be more spherical than Milky Way-like objects. These trends are
well approximated by a relation between the axis ratio measured at
the r95 radius c/a|r95 and Vmax, i.e. c/a|r95 ∼ −0.021 log Vmax, while
this relation is slightly steeper if the axis ratio is measured at rmax

contour in which case c/a|rmax ∼ −0.032 log Vmax. The differences
in the shapes of field versus satellite haloes are small and within
the intrinsic scatter of the samples. Nonetheless, at a fixed Vmax,
subhaloes tend to have larger axis ratios than isolated objects in the
field.

The similarity between subhaloes and field objects is also appar-
ent in the lack of significant trends in the axis ratios with distance
to the main host halo, d. We find, however, that the alignment of the
ellipsoids varies with d: dark matter haloes at close distances from
the host centre tend to be oriented preferentially with their major
axis pointing radially. The signal disappears only for d � 2.5 rvir,
where the orientations are consistent with random.

We have also focused on the properties of subhaloes likely to
host analogues of the classical satellites of the Milky Way (−13.2
≤ MV ≤ −8.6), according to the semianalytic model of galaxy for-
mation run on the Aquarius suite by Starkenburg et al. (2013). Our
analysis indicates that these galaxies are hosted by mildly triaxial
dark matter objects with minor-to-major axis ratios c/a ≈ 0.60 and
intermediate-to-major b/a ≈ 0.75 in the first kiloparsec with a clear
trend towards becoming axisymmetric in the outskirts. Their inter-
nal orbital structure shows evidence of being affected by tidal forces
from their hosts (i.e. the main Aquarius haloes), since the velocity
anisotropy becomes tangential with radius, in clear contrast to what
is found for isolated systems. We have also found that this orbital
structure may be modelled in the axisymmetric context, where the
velocity anisotropy βz ∼ 0 along the minor axis, and declines with
distance along the major axis. These results may be used to motivate
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more realistic models of the subhaloes hosting satellite galaxies like
those observed around the Milky Way.
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APP ENDIX A : EINASTO PROFILES AND
T H E SP H E R I C A L J E A N S E QUAT I O N

Following the method of Vera-Ciro et al. (2013) we fit a Einasto
profile to the circular velocity profile of each individual subhalo of
our sample. For each object we take 20 bins equally spaced in loga-
rithmic space between rconv < r < 0.9r95. We compute the cumula-
tive circular velocity profile and fit an Einasto model by minimizing
the merit function E = ∑Nbins

i=1 (ln v2
c (ri) − ln v2

c,i)
2/Nbins against the

free parameters r−2, ρ−2 and α. Here, vc, i is the circular velocity
corresponding to an Einasto profile with a scale radius r−2 (the ra-
dius at which the density profile has a slope −2), a characteristic
density at r−2 equal to ρ−2 and a shape parameter that controls the
overall slope of the profile, α. We deliberately chose the circular
velocity profile over the more widely used density profile which is
more sensitive to shot noise in each bin (see Vera-Ciro et al. 2013,
for more details).

The density profile can be written as

ρ(r) = ρ−2�(r/r−2), (A1)

where

ln�(x) = − 2

α
(xα − 1). (A2)

� is therefore a dimensionless function of the dimensionless variable
x = r/r−2. In this spirit, it is possible to define a set of scaling factors
in which we can express the dynamics of the system, namely, a
characteristic mass m−2 ≡ r3

−2ρ−2 and characteristic velocity v2
−2 ≡

Gr2
−2ρ−2 [note that v−2 is not vcirc(r−2)]. The enclosed mass within

a radius r is therefore m(r) = 4πm−2μ(r/r−2), where

μ(x) =
∫ x

0
dx x2�(x)

= 1

α
exp

(
3 ln α + 2 − ln 8

α

)
γ

(
3

α
,

2xα

α

)
, (A3)

with γ the lower incomplete gamma function. In a similar fash-
ion we can define a dimensionless version of the radial velocity
dispersion σ̃r(x) ≡ σr(r−2x)/v−2.

It has been previously reported in the literature that the pseudo-
phase-space density profile of isolated dark matter haloes can be
well modelled by a single power law Q ≡ ρ/σ 2

r ∼ r−χ , χ > 0
(Taylor & Navarro 2001; Dehnen & McLaughlin 2005; Navarro
et al. 2010; Ludlow et al. 2011). Fig. A1 shows Q measured for
our sample of subhaloes hosting luminous satellites. We have found

Figure A1. Pseudo-phase-space density profile Q/Q−2 = �/σ̃ 3
r for the

subhaloes hosting luminous dwarfs in our sample. The black line shows the
mean profile of all subhaloes and the red curve indicates the best power-law
fit Q ∼ r−1.47.

that the slope χ is slightly shallower than for objects in the field
(χ ∼ 1.6 versus χ ∼ 1.8 for isolated haloes). The best-fitting values
of the parameters, and their variance, are given in Table 1.

Notice that the pseudo-phase-space profiles start to deviate from
a power law in the outer regions, likely induced by ongoing tidal
stripping. This typically occurs for log r/r−2 ≥ 0.6, which is roughly
the same scale at which our fit for the radial velocity dispersion σ r

deviates from the mean subhalo trends shown in Fig. 8.
Using the dimensionless quantities introduced before, we can

now write the spherical Jeans equation as:

d

dx
(�σ̃ 2

r ) + 2
β

x
(�σ̃ 2

r ) = −4π�μ

x2

⇒ d ln �

d ln x
+ 2

d ln σ̃r

d ln x
+ 2β = −4πμ

xσ̃ 2
r

. (A4)

We can use equation (A2) to further reduce this expression:

3β(x) = −6πμ

xσ̃ 2
r

+ 5xα − χ. (A5)

The limiting value of this expression at small radii can be obtained
from a Taylor expansion around zero. For x � 1 we may use that
limx → 0γ (s, x)/xs = 1/s (Abramowitz & Stegun 1972). Finally

ln �(x) ≈ 2

α
,

μ(x) ≈ 1

3
x3e2/α,

σ̃r(x) ≈ A−1/3e2/3αxχ/3, x � 1,

which leads to

3β(x) ≈ −2πA2/3e2/3αx2(1−χ/3) + 5xα − χ, x � 1. (A6)
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