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Segmented Shape-Symbolic Time Series Representation

Herbert Teun Kruitbosch1, Ioannis Giotis2 and Michael Biehl1

1- University of Groningen - Johann Bernoulli Institute
Nijenborgh 9, 9747 AG Groningen - The Netherlands

2- Target Holding B.V., Nettelbosje 1, 9747 AJ Groningen - The Netherlands

Abstract. This paper introduces a symbolic time series representation using
monotonic sub-sequences and bottom up segmentation. The representation min-
imizes the square error between the segments and their monotonic approximations.
The representation can robustly classify the direction of a segment and is scale in-
variant with respect to the time and value dimensions. This paper describes two
experiments. The first shows how accurately the monotonic functions are able to
discriminate between different segments. The second tests how well the segmenta-
tion technique recognizes segments and classifies them with correct symbols. Fi-
nally this paper illustrates the new representation on real-world data.

1 Introduction
A time series is a sequence of measurements taken at successive moments in time and
often contain a large number, N, of measurements, T = t1, . . . , tN with ti ∈ R, possibly
too many to store in memory or do calculations. Two important reduced time series
representations are PLR [1] and SAX [2]. PLR segments a time series into pieces
of possibly different sizes and approximates them with linear curves. Other higher
order polynomial representations are SwiftSeg [3] and the shape space representation
[4]. These representations have been used by various researchers to support clustering
[1, 2, 5], classification [2, 5], association rule mining [2, 6], query by content [2] and
anomaly detection [1, 7, 8] in time series data. SAX splits a time series into segments
of an equal, predefined size and assigns a symbol to each piece, depending on the range
in which the mean value of the segment lies. The SAX representation is not scale-
invariant with respect to time, does not store information about the shape of a segment
and requires a parameter to state the size of an individual segment. The value of this
parameter can prevent us from detecting small or big patterns.

This paper introduces a piece-wise representation which tries to find monotonic
pieces, which may differ in length. Each piece is represented by a symbol, indicating
direction and curvature. Hence our representation is symbolic like SAX, but the sym-
bols also capture shape and direction and have variant size pieces like PLR. Section 2
gives a brief overview of the used techniques, section 3 discusses the method, section 4
tests our representation on synthetic data and data from the IJkdijk project[9]. Finally,
section 5 discusses the conclusions and directions for future work.

2 Background and related work
Our representation uses least square estimations (LSE) to approximate and classify the
direction and shape of a segment. This section will discuss linear LSE and a relevant
Bayesian consideration regarding classification. Next we discuss bottom up segmenta-
tion. Finally, we explain the GAP statistic [10] to determine the number of segments.
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Linear least squares estimation In order to approximate and assign a symbol to a seg-
ment, we use LSE. We assume a segment s = s1, . . . ,sN , such that sn = ∑

M
m=1 θm fm(n)+

wn, where f1, . . . , fM is a set of basis functions and wn ∼N (0,σ2) is white Gaussian
noise, independent and identically distributed (i.i.d.). A LSE determines the unknown
parameters θ1, . . . ,θM , such that the error between sn and ∑

M
m=1 θm fm(n) is minimal:

θ̂LSE = argminθ Σ
N
n=1
(
sn−Σ

M
m=1θm fm(n)

)2
. (1)

We only consider linear estimations of the form α +θ f (x) (based on M = 1 mono-
tonically increasing basis function f = f1 and a constant), which is monotonic for any
α and θ . We set f to have zero mean: ∑

N
n=1 f (xn) = 〈 f (x),1〉 = 0, such that the basis

f ,1 is orthogonal, allowing for LSE in linear time.
Bayesian classification In order to classify a segment s, i.e. cl : Segment 7→ f1, . . . , fM ,
we need to find the model with the highest posterior probability P( fi|s) = P(s|α +
θ fi(x))P(α + θ fi(x))/P(s). Hence we could classify by maximizing the posterior
probability: cl(s) = argmaxα+θ fi P(s|α +θ fi(x))P(α +θ fi(x)). This expression clas-
sifies, whereas (1) fits, hence the meaning of i in fi is different. The prior probabil-
ity P(α + θ f (x)) is hard to determine, since P(α,θ | fi) and P( fi) are often unknown.
Therefore, our classification model is simplified to maximum likelihood classification:

cl(s) = argmaxα+θ fiP(s|α +θ fi(x)) = argmaxα+θ fi −Σ
N
n=1(α +θ fi(xn)− sn)

2. (2)

Bottom up Segmentation Bottom up segmentation [1] is one of many segmentation
techniques, like sliding window and top down segmentation. None of them consider all
possible segmentations and hence have to deal with avoiding local optima. In general
bottom up outperforms other methods [11] and can use of the GAP statistic to determine
the number of segments. The bottom up approach starts with a fine grained segmenta-
tion, with small equal sized segments. Based on the introduced error, adjacent segments
are merged greedily and iteratively until some condition is met (Figure 2).

A local optimum occurs when merging 3 adjacent segments is beneficial, but merg-
ing any two of them is expensive. Assuming that merging two same-direction mono-
tonic segments is never expensive and that merging two different-direction monotonic
segments always is, such a local optimum will not occur.
GAP statistic We use the GAP statistic [10] to determine the optimal number of seg-
ments. However, we use a different error function than the original GAP statistic, since
we are segmenting instead of clustering:

εsegment(s) = ‖s− f it(s)‖2
2, εsegmentation(S) = Σs∈Sεsegment(s),
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Legend of (e): εsegmentation of t, εsegmentation of u, gap(k|t)
Fig 1. Bottom up segmentation of a 4-piece piece-wise linear time series t into k
segments. The right-most figure shows the GAP statistic as discussed in section 2.
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where f it approximates a segment s and S is the set of segments. The GAP statistic is
based on the error of a segmentation of a time series, and the expected error of a uniform
distribution in the same range. Therefore we define a reference signal u = u1, . . . ,uN
where ui ∼U (0,1): uniformly randomly distributed between 0 and 1. We also define a
time series t = t1, . . . , tN with values normalized between 0 and 1. The optimal number
of segments is determined from:

gap(k|t) = log
(
εsegmentation(St,k)

)
− log

(
εsegmentation(Su,k)

)
,

where St,k and Su,k respectively are segmentations of t and u of k segments. We esti-
mated εsegmentation(SU,k) by taking the mean of Z = 10 instances of u, û = û1, . . . , ûZ ,
and corrected it with the standard deviation.

The elbow of gap(k|t) (Fig. 2e) is the point where adding more segments will only
result in fitting to noise. This elbow may not be located at argminkgap(k|y), due to
fitting to noise or numerical instability. We selected the kelbow such that the second
order derivative of gap(k|t)−gap(k+1|t) is maximal.

3 Method
Our representation is created by first segmenting a time series using an approximation
as described in algorithm 1. The GAP statistic determines the amount of segments and
each final segment is classified according to algorithm 1. The result is a symbolic string
which can then be used by various machine learning algorithms.
Assigning Shapes to Segments To detect non-monotonic structures in time series, this
paper focuses on finding monotonic segments. This way a concatenation of monotonic
segments defines a more general non-monotonic structure. We classify a segment as
one of four shapes, shown in figure 2. Except for the first, each shape is monotonically
increasing. However, we also classify whether the fit of such a shape goes up or down.
This results in a classification tree for shapes:

Detecting flat segments In order to classify the flat shape of figure 2, we could fit a
segment f0(x) = 0. However, for θi = 0, each of f1, f2, f3 will have the same likelihood
as f0. This disallows us to distinguish between f0 and any of f1, f2, f3. We could solve
this by adding a prior, but like stated in section 2 this can not always be determined.

Algorithm 1 Classification and approximation of a segmented time series
Require: Segment S = (s1, . . . ,sN) with mean 0 and std dev 1, Threshold T (Sec 3)
Ensure: Classification C ∈ { f0, f1, f2, f3}×{none,up,down} and approximation of S.

Set x1, . . . ,xN equidistant on [0,1]
for i = 1,2,3 set θi = ΣN

n=1 fi(xn) · sn / ΣN
n=1 f 2

i (xn) . Linear LSE (for fi see Fig. 2)
i = argmaxi = ∑

N
n=1(θi fi(xn)− sN)

2 . Likelihood based classification
if |θi|< T then i = 0; dir = none; θ0 = 0; f0(x) = 0 . Flat segment
else if θi < 0 then dir = down else dir = up . Down / Up
C = ( fi,dir) . Symbol of the segment
Set A = (a1, . . . ,aN) such that an = θi fi(xn) . Approximation of the segment
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Fig. 2: Five monotonic
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Fig 3. In (a) the fit of f on the data of a flat model sn = wn
(gray) and a non-flat model s̃n = θ f (x)+ w̃n (black) are
shown. See Sec 3. In (c) the probability distribution of θ

for both models for θ = 1, σ = 1 and N = 5 is shown.

Therefore, we introduce a heuristic based on the signal to noise ratio to classify flat
segments. We consider a noisy, flat segment s = s1, . . . ,sN , sn = wn (wn ∼N (0,σ2)),
shown in figure 3a, for which we want to determine whether it is flat or has some non-
flat f shape. We consider a simple case where f has the first half of the points equal
to −1 and the second half equal to 1, hence Var( f ) = 1. Then we normalize s to have
variance 1. Due to f ’s shape, estimation of θ will result in the average of the right half’s
average and the left half’s negative average. Therefore the distribution of the LSE |θ |
for f depends on the distribution of the average value of s: P(|θ |) = 2N (|θ |;0,1/N).

Now we consider a noisy, non-flat segment s̃n = θ f (xn)+w̃n (w̃n∼N (0,σ2)) (Fig.
3a). We have that Var(s̃n) = θ 2 +σ2. Hence if we normalize s̃ to variance 1, we get
w̃n ∼N (0,σ2/

√
θ 2 +σ2), and the probability of a LSE |θ̃ | for f is:

P(|θ̃ |)≈N (|θ̃ |;θ/
√

θ 2 +σ2,σ2/(N
√

θ 2 +σ2)).

Notice that θ/
√

θ 2 +σ2 is a normalized θ . The variance of θ for the flat shape
and the f shape depends on the number of samples by a factor 1/N and on the signal
to noise ratio σ2/

√
θ 2 +σ2 in case of a non-flat signal. Hence more noise moves the

means closer to each other; decreasing the discriminative power of |θ |.
Figure 3b shows an example of both distributions and suggests a threshold |θ | ≈

0.26, such that |θ |< 0.26 would classify as flat and |θ | ≥ 0.26 as not flat. This threshold
T is used in 1. We assumed a block-shaped f . Assuming other shapes of f makes it
harder to determine the distribution of |θ̂ |, because the variance Var( f (x)+wx) is not
necessarily Var( f (x))+Var(wx), the idea is however similar.
Summary In contrast with PLR, the introduced method is symbolic and allows for
processing using discrete algorithms and data structures. In contrast to SAX, the pro-
posed representation uses segmentation and can identify two similar segments with a
different number of samples as the same, allowing for scale invariance. Whereas SAX
symbols are based on mean values, the introduced symbols are based on shapes. In
summary, the introduced method is based on a symbolic representation like SAX but
retains the scale invariance of the shape based PLR.
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4 Results
The accuracy of our symbolic representation is quantified using two measures. These
two measures are used to first determine how often the classification of a synthetic seg-
ment matches the label in section 4; this tests the accuracy of algorithm 1 and illustrates
how well the classifier is able to discriminate between shapes. Section 4 illustrates
the accuracy of our representation including segmentation. Finally an example of real
world data from the IJkdijk project is represented using our method.

The two accuracy measures are based on the symbol tree of section 3. The first
measure quantifies the fraction of segments or samples for which the direction of the
shape is correctly classified: the direction accuracy, the second quantifies the fraction
for which both the direction and the shape are correct: the shape accuracy.
Classification accuracy To measure the discriminating ability of our classification de-
scribed by algorithm 1, we created 100 synthetic shapes with variance 1 for each direc-
tion of the 4 template functions (Figure 2). Then we tested the accuracy as the fraction
of correctly classified segments, with respect to the amount of i.i.d. white Gaussian
noise, the number of samples in a segment and both measures. The results are shown in
figure 4. The direction accuracy stays above 80% up to σ = 0.7 and the direction accu-
racy up to σ = 0.4. Note that the curvature gets lost with more noise, but the direction
does not. For σ ≥ 1 both accuracies drop as all segments are classified as flat.
Segmentation and classification accuracy To further evaluate the accuracy and robust-
ness of the proposed technique we measured the fraction of correctly classified samples
of a segmented time series. We created 100 time series of 1001 samples by concatenat-
ing 4 monotonic segments of random size with at least 50 samples based on the shapes
in figure 2. The time series have variance 1. We label each sample as the shape it
was created from. The segments are concatenated such that there are no gaps in the y
direction. Finally the synthetic time series is segmented and each sample is classified
by classifying the encapsulating segment using algorithm 1. The fraction of matching
classified and labelled samples is shown in figure 5. The direction accuracy is robust
with respect to noise; it remains above 0.8 for up to noise σ = 1, whereas the shape
accuracy scores lower, showing that shape information is lost when noise is added.
IJkdijk data example Finally, some subsequences from the LiveDijk Eemshaven[9]
measurements were taken and translated into symbolic strings. The results are shown
in figure 6. The plots show that indeed monotonic structures can be found, the first
and third figure have smaller patterns and the middle figure has larger ones. This illus-
trates the scale invariance of our representation. This behaviour, i.e. finding small or
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Fig. 4: Accuracy of identifying the segment
of one synthetic shape for respectively 501
and 1001 samples. The MC classification
accuracy is of a classifier which randomly
assigns a direction and shape.
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Fig. 5: Segmentation and segment classifi-
cation accuracy as described in section 4.
The gray area is half of the standard devia-
tion of the simulation. In this case T = 0.26
and 500 simulations were run.

Accuracy legend: direction, shape, MC direction, MC shape
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Fig. 6: All three figures show a segmentation of sub-sequences taken from measure-
ments on the LiveDijk at different locations. The flat-threshold was set to T = 0.26.

large patterns is influenced by the estimation of the number of segments. Changing the
trade-off between the amount of segments and the amount of error will change how the
representation deals with smaller, less defined monotonic segments.

5 Conclusion and future work
We introduced a scale-invariant, symbolic representation of a time series, based on
monotonic segments of possibly different sizes, which captures direction and curvature.
The representation enables machine learning algorithms to efficiently find anomalies or
structures in a time series based on the shape of monotonic sub-sequences. However,
selecting the number of segments is still an ill-defined problem. Future work could
define a hybrid representation, representing both smaller and larger, encapsulating seg-
ments, for example by finding a tree instead of a sequence of segments. Clustering
patterns generated by our representation on the IJkdijk data may give insight in the
general behaviour and hence help define and determine anomalous sub-sequences.
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