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Spatially distributed coherent oscillations provide temporal windows of excitability that allow for
interactions between distinct neuronal groups. It has been hypothesized that this mechanism for neuronal
communication is realized by bursts of high-frequency oscillations that are phase-coupled to a low-
frequency spatially distributed coupling oscillation. This mechanism requires multiple physiologically
different interacting sources, one generating the low-frequency coupling oscillation and the others
generating phase-coupled high-frequency oscillations. Using human intracranial EEG (iEEG) data, we
provide evidence for multiple oscillatory patterns, as characterized on the basis of their spatial maps
(topographies) and their frequency spectra. In fact, we show that the spatial maps for the coupling
oscillations are much more widespread than the ones for the associated phase-coupled bursts. Second, in
the majority of the patterns of phase-amplitude coupling (PAC), phase-coupled bursts of high-frequency
activity are synchronized across brain areas. Third and last, working memory operations affect the PAC
strength in a heterogeneous way: in some PAC patterns, working memory operations increase their
strength, whereas in others they decrease it.

© 2010 Elsevier Inc. All rights reserved.

Introduction

It is often proposed that oscillations play a central role in the
spatiotemporal coordination of neuronal activity (Buzsaki and
Draguhn, 2004; Engel et al., 2001; Fries, 2005; Klausberger and
Somogyi, 2008; Schroeder and Lakatos, 2009; Varela et al., 2001). The
central idea is that spatially distributed coherent oscillations provide
temporal windows of excitability that allow for interactions between
distinct neuronal groups. One way in which these interactions can
occur involves coupled oscillations of different frequencies (Jensen
and Colgin, 2007). In this pattern of neuronal activity, the time-
varying amplitude of a high-frequency oscillation is phase-coupled to
a low-frequency oscillation (phase-amplitude coupling, or PAC). In
the following, periods with high amplitude in some high-frequency
range will be called bursts. If these bursts are coupled to the phase of
some low-frequency oscillation, then this latter oscillation will be
called a coupling oscillation, and the bursts are said to be phase-coupled
to this coupling oscillation. In Fig. 1, we show simulated field
potentials with bursts of gamma oscillations (60 Hz) that are phase-
coupled to the rising phase of a theta oscillation (5 Hz). Similar

patterns of cross-frequency interactions have been observed in rats
(Chrobak et al., 2000; Sirota et al., 2008; Tort et al., 2008), cats (Schanze
andEckhorn, 1997; von Stein et al., 2000),monkeys (Lakatos et al., 2008,
2005; Schanze and Eckhorn, 1997), and humans (Bruns and Eckhorn,
2004; Canolty et al., 2006; Mormann et al., 2005; Schack et al., 2002).
This suggests a form of spatiotemporal coordination in which low-
frequencyactivity, oscillating coherently overmultipleneuronal groups,
provides the timing information that is required for interactions
between distant neuronal groups. This could be implemented in a
mechanism that allows local neuronal groups to “listen” to the global
low-frequency oscillation, and to concentrate high-frequency oscilla-
tions at an appropriate phase of the global oscillation.

In principle, PAC can be generated by many different patterns of
interacting sources. For example, one source of low-frequency activity
can be coupled to one or more sources of high-frequency activity.
Also, there may be multiple sources of low-frequency activity, each
coupled to its own set of sources of high-frequency activity. These
patterns have not yet been systematically investigated, and this paper
attempts to fill this gap. We analyzed human intracranial EEG (iEEG)
recordings from patients that had at least 40 implanted electrodes.
With this coverage, it is possible to identify the sources via the
electrical potential distribution they generate. That is, through volume
conduction, the current that is generated by a particular source is
picked up to a different extent by the different electrodes, and this
produces a discrete spatial map (topography, lead field) that
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characterizes this source. By means of tensor decomposition (Bro,
1997), we extracted the spatial maps of the sources that are involved
in the pattern of PAC. Importantly, this PAC was evaluated for all pairs
of different channels, with one channel measuring the low-frequency
phase, and the other channel measuring the bursts of high-frequency
activity. The pattern of cross-channel PAC provides information about
two sets of spatial maps: the spatial maps of the low-frequency
coupling oscillations, and the spatial maps of the associated high-
frequency phase-coupled bursts. These maps characterize the sources
that generate the PAC.

We used these spatial maps to address a serious problem in the
empirical identification of PAC, namely that other patterns in the data
can easily be misidentified as PAC. For example, Kramer et al. (2008)
showed that all existing PAC measures produce erroneous values if a
single source produces a rhythmic signal of which the repeating
waveform has sharp edges (e.g., interictal spikes). This creates a
problem because PAC has been proposed as a mechanism of
spatiotemporal integration, which requires multiple interacting
sources, one generating a low-frequency coupling oscillation and
the others generating phase-coupled bursts of high-frequency
activity. In electrophysiological recordings, the signals produced by
these two sources are always superimposed. This creates a serious
challenge for identifying the coupling between the two, because the
two activities have to be separated before one can quantify their
coupling strength. This separation requires digital filtering, a
technique that can extract any number of band-limited components
from the raw electrophysiological recordings, regardless of the
number of sources. Importantly, these extracted components may
very well exhibit PAC even though only a single source is active,
namely if the waveform has sharp edges (Kramer et al., 2008).

We do not attempt to identify the physiological mechanism that
produces PAC. However, we do want to make some claims about the
source configuration that underlies PAC. To do this, we define a source
as activity in the neuronal tissue that is characterized by (1) the
spatial map that it produces at the level of the sensors, and (2) its
frequency content (spectrum). Not all conceivable physiological
mechanisms can be fully described in this way. To appreciate the
limits of our approach, in Materials and methods, we give two
examples of physiological mechanisms that cannot be fully charac-
terized in terms of a spatial map and a frequency spectrum.

We propose a solution for the problem that repeating waveforms
with sharp edges are easily misidentified as PAC. This solution makes
use of the two spatial maps that characterize the sources of a pattern
of PAC, one for the coupling oscillation and one for the associated
phase-coupled bursts. Importantly, if these two spatial maps are
identical, then the pattern of PAC may very well be produced by a
single source that produces a rhythmic signal with a sharp-edged
waveform. On the other hand, if the two spatial maps are different,
then they can only be produced by multiple sources. In our study, we
found that the spatial maps for the low-frequency coupling oscilla-
tions are more widespread than the spatial maps for the high-

frequency phase-coupled bursts. Thus, we found evidence for PAC
being produced by multiple sources.

Our analysis of PAC differs from the analyses in most other human
iEEG studies (Canolty et al., 2006; Mormann et al., 2005).We analyzed
the PAC across all channel pairs, whereas most existing studies
analyzed it within the separate channels, with the same channel
providing both the low-frequency phases and the bursts of high-
frequency activity. As we will show in Results, analyzing cross-
channel PAC is essential to be able to separate the spatial maps for the
coupling oscillations and the associated phase-coupled bursts. It must
be noted that the existence of cross-channel PAC alone does not allow
one to conclude that multiple sources are involved in this coupling. In
fact, a distributed rhythmic signal with a sharp-edged waveform will
result in a significant cross-channel PAC. However, if we observe
different spatial maps for the coupling oscillation and the associated
phase-coupled bursts, then the cross-channel PAC must be the result
of an interaction between different sources.

Our analysis takes as its input a huge four-dimensional array
(channels-by-channels-by-frequencies-by-frequencies) of PAC mea-
sures, much larger than the one used in the existing studies. In fact,
with 40 iEEG channels and 30 frequencies (each indexing both the
amplitudes and the phases), we would characterize the PAC with an
array of 40×40×30×30=1,440,000 numbers. The analysis of such a
huge four-dimensional array requires an approach that identifies
structural patterns in this array. We have developed such an
approach, based on tensor decomposition (Bro, 1997), and it extracts
spatial maps and frequency spectra from this array.

If neuronal information processing occurs during bursts of high-
frequency activity, then effective spatiotemporal coordination of
neuronal activity can only occur if bursts at different locations occur
in overlapping time windows. This type of synchronization could be
achieved by a mechanism that concentrates bursts at the same phase
of a common coupling oscillation. Using tensor decomposition, we
could show that, in the majority of the PAC patterns, the phase-
coupled bursts of high-frequency activity are synchronized across
brain areas. As will be explained in the following, this synchronization
is between amplitude envelopes, and not necessarily between the
oscillations of which the amplitudes were calculated.

PAC has been linked to working memory operations. In fact, it has
been proposed as the cornerstone of a model for temporal
segmentation and integration of items that are kept in working
memory (Lisman and Idiart, 1995). This model predicts that theta-
gamma PAC is stronger during periods that involve working memory
operations than during periods that do not. Inspired by this
prediction, we analyzed iEEG recordings that were obtained while
the patients performed in a working memory task (Sternberg, 1966).
We found that, for some PAC patterns, the coupling strength is
modulated by working memory operations.

Materials and methods

Data collection

We analyzed iEEG recordings from 26 patients having implanted
electrodes for the purpose of presurgical diagnosis. These were
selected from a larger pool of patient data sets, based on the criterion
that every data set must have artefact-free recordings from at least 40
grid and/or strip electrodes (see Electrophysiology). Patients volun-
teered to participate in our cognitive testing in their free time
between clinical procedures. The research protocol was approved by
the appropriate institutional review boards at the Hospital at the
University of Pennsylvania (Philadelphia, PA), Children's Hospital
(Philadelphia, PA), University Clinic (Freiburg, Germany), Children's
Hospital (Boston, MA), and Brigham and Women's Hospital (Boston,
MA). Informed consent was obtained from patients (or their
guardians, in the case of children). Some of these data sets have
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Fig. 1. Simulated field potentials with bursts of gamma oscillations (60 Hz) that are
phase-coupled to the rising phase of a theta oscillation (5 Hz).
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been examined previously (Jacobs and Kahana, 2009; Raghavachari et
al., 2001, 2006; Rizzuto et al., 2003; van Vugt et al., 2010, 2009), but
the data analyses described here are novel.

Electrophysiology

The positions of the electrodes were determined by neurologists to
identify seizure foci and functional brain regions. Because the clinical
procedure of identifying seizure foci involves placing electrodes in any
region that is merely potentially epileptogenic, the majority of
recordings come from brain regions outside the area that is
subsequently determined to be involved in seizures. Recordings
were made using grid, strip, and depth electrodes. However, in our
analyses, we only used the recordings from the grid and the strip
electrodes, which are placed under the dura on the surface of the
neocortex.

To determine the electrode locations, a postoperative computed
tomography scan was co-registered with a higher-resolution preop-
erative magnetic resonance image. Every patient's image was
normalized to a standard-sized brain, and subsequently Talairach
coordinates (Lancaster et al., 2000; Talairach and Tournoux, 1988)
were computed. We used brain images from the WFU Pick-Atlas for
data visualization (Maldjian et al., 2003).

iEEG activity was recorded at a sampling rate between 256 and
1024 Hz using different recording systems, depending on the hospital.
The iEEG recordings were synchronized with the stimulus events and
the patient's behavior in the task by means of pulses on a spare
recording channel. To eliminate potential line noise, the recordings
were filtered by removing from its Fourier transform the three
coefficients centered at 60 and 120 Hz (United States) or centered at
50 and 100 Hz (Europe), followed by the inverse Fourier transform.
The recording from each electrode was rereferenced to the average of
all electrodes.

Task

These iEEG recordings were obtained while the patients per-
formed in a working memory task (Sternberg, 1966) (see Supple-
mental Fig. 1). In this task, patients were presented a series of letters
(from 1 to 6) at a rate of approximately one letter per second. At the
beginning of a trial, first a fixation cross appeared, and then the letters
(all consonants) were displayed sequentially on a computer screen.
Each letter was on screen for 700 ms, followed by 275–350 ms
(uniformly distributed) of blank screen. Patients were instructed to
closely attend to each stimulus presentation and to silently hold the
identity of each item in memory. The last letter was followed by an
additional retention interval of approximately 500 ms, after which a
probe letter was presented and the patient had to respond with a key
press whether or not it had been presented in the series just before.
After the key press, the computer indicated whether the response was
correct, and the participant could initiate the next list with a key press.

Because of the limitations of the hospital testing environment, we
were unable to measure patients' eye movements during the task.
However, we frequently reminded patients to fixate their gaze to
minimize unnecessary eye movements.

Weighted phase-locking factors

Wemeasured the strength of the PAC by a weighted phase-locking
factor (wPLF) (see Lachaux et al., 1999, for the original definition of
the phase-locking factor for the purpose of quantifying phase
consistency). This wPLF is a complex-valued association measure of
which the magnitude measures the coupling strength and the phase
gives the preferred phase angle of the high-frequency bursts in the
low-frequency oscillation. The calculation of the wPLF is shown
schematically in Fig. 2. The basis of this calculation is a complex-

valued signal, obtained from a convolution of the raw signal with a
complexwavelet.With this convolutionwe estimate the time-varying
amplitudes and phases for the different frequency bins that are
provided by a wavelet filter bank. The time-varying amplitudes are
obtained by the taking the absolute value of the wavelet transform,
producing the so-called amplitude envelope. The wavelet transform
and the amplitude envelope aremean-centered1 and normalized.2We
then take the inner product3 of these two signals. This results in a
complex number of which the magnitude is bounded by 1. Finally, the
wPLFs are obtained by averaging the epoch-specific complex inner
products over the epochs.

We now describe the calculation of the wPLFs in more detail. The
signal recorded at channel i is denoted by xi. The continuous wavelet
transform of xi is denoted by wav(xi; f). The wavelet coefficients are
chosen such that this transform provides an estimate of the time-
varying amplitudes and phases in the frequency band indexed by f. In
our analyses, we used three cycles of a complex sinusoid exp(jt)
(t=time, j =

ffiffiffiffiffiffiffiffi

−1
p

) multiplied by a Hanning taper. In principle, we
could also have started from analytic signals that are obtained in a
different way, for instance, by band-pass filtering followed by the
Hilbert transform (Bruns, 2004; Le Van Quyen et al., 2001). The
essential point is thatwe need complex-valued signals that estimate the
time-varying amplitudes and phases in a number of frequency bands.

The element-wise absolute value (magnitude) of the wavelet
transform, abs(wav(xi; f)), is the amplitude envelope. We mean-
centered this signal to remove the positive offset that is produced by
taking the absolute value of the wavelet transform. Mean-centering is
required if one wants to compare PAC across experimental conditions
by means of wPLFs. These conditions may differ with respect to the
mean amplitude in the wavelet's frequency band, and we do not want
the cross-condition differences between the wPLFs to be affected by
these amplitude differences. Subsequently, this mean-centered signal
was normalized, that is, divided it by its norm. The resulting signal is
denoted by aif. The same two operations (mean-centering and
normalization) were also applied to the wavelet transform, wav(xi; f),
and the resulting signal is denoted by pif. The phase angle of the
complex-valued signal pif estimates the phases in xi with respect to
frequency band f.

The basis for the calculation of the wPLF is the inner product of the
two signals, aif and pi′f′. This inner product is denoted by 〈aif, pi′f′〉. The
two signals can belong to the same (i= i′) or to different channels
(i≠ i′). Also, they can be obtained using wavelet coefficients of the
same frequency (f≠ f′) or of different frequencies (f≠ f′). Because pi′f′

is normalized, 〈aif, pi′f′〉 gives the explained variance in the mean-
centered amplitude envelope aif by the phase information in the
normalized wavelet transform pi′f′. This explained variance is a
complex number of which the absolute value is the explained
variance and the angle is the preferred phase of the PAC.

The wPLF is obtained by averaging4 〈aif, pi′f′〉 over independent
epochs:

wPLF = Avg 〈aif ;pi′f ′〉 ð1Þ

In our study, the epochs are trials, each corresponding to one item
of the Sternberg working memory task. Because the inner products

1 “Mean-centering” is performed by first calculating the mean of the signal (by
averaging over the samples) and then subtracting this mean from the signal.

2 “Normalizing” is performed by first calculating the norm of the signal (the square-
root of the inner product of the signal with its conjugate transpose) and then dividing
the signal by this norm.

3 The inner product of two centered and normalized vectors is equivalent to a
correlation coefficient. The inner product of two centered unnormalized vectors is
equivalent to a covariance.

4 As an alternative to averaging over epochs, one can also concatenate the epoch-
specific amplitude envelopes and raw wavelet transforms, mean-center and normalize
these concatenated vectors, and calculate a single inner product.
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〈aif, pi′f′〉 are complex, their average over independent epochs can be
seen as a weighted phase-locking factor. It is a phase-locking factor
because the average depends on the consistency over epochs of the
phase angles of the epoch-specific 〈aif, pi′f′〉, and it is weighted because
these phase angles are weighted by the magnitude of the 〈aif, pi′f′〉, the
square-root of the variance in aif that is explained by pi′f′.

Because, prior to calculating the inner product, the amplitude
envelopes are normalized, the resulting wPLFs will also be called
normalized. The maximum magnitude of the normalized wPLFs
(square-root of the explained variance) is 1.5 We chose to normalize
the amplitude envelopes because, otherwise, the resulting non-
normalized wPLFs would not only reflect the PAC strength but also
the power in the particular (channel, frequency)-pair for which the
amplitude envelope was calculated. For instance, non-normalized
wPLFs reflect the 1/f-dropoff in power with frequency, typical for
electrophysiological data. Also, iEEG-channels often show large
differences in power, and this is reflected in the non-normalized
wPLFs.

Canolty et al. (2006) proposed a measure that is closely related to
the non-normalized wPLF. The main difference is that in the measure
of Canolty et al. (2006), instead of the normalized wavelet transform
pi′f′, a complex phase variable is used that is obtained from pi′f′ by
element-wise division by its amplitude abs(pi′f′). Canolty et al. (2006)
derived their measure as the time average of an analytic complex-
valued signal and not as an inner product. However, except for the
element-wise division of pi′f′ by abs(pi′f′), the two calculations are
equivalent.

The precise calculation of the wPLFs depends on a number of
parameters of the data sets that are analyzed: the sampling rate, the
trial length, and the number of trials. First, the maximum frequency of
the wavelet transform is determined by the sampling rate.Wewanted
every cycle of a wavelet to consist of at least four samples. This set the
maximum frequency of the wavelet transform equal to the sampling
rate divided by four. We analyzed data sets of four different sampling
rates, 256, 400, 512, and 1024 Hz, and therefore the maximum
frequencies were 64, 100, 128, or 256 Hz, depending on the data set.
Second, the minimum frequency of the wavelet transform is
determined by the trial length. In our study, the trials had a length
between 1.5 and 6.5 s. The trial length depends on the number list
items in the Sternberg working memory task, which ranges from 1 to
4. Because we wanted the minimum frequency to be 1 Hz, prior to

calculating the wavelet transform, we pre- and post-padded the trials
with data segments of 2 s. From the wavelet transform, obtained from
a convolution with padded trials, we then removed all samples that
correspond to that part of the convolution that was obtained with less
than 50% of the samples in the non-padded (original) trials. That is, we
removed samples for which the overlap between the wavelet and the
original trial samples was less than 50%. In this way, we obtain
wavelet transforms of the same length as the original trials. Finally,
the calculation of the wPLF involves an average over trials (see
Eq. (1)). The number of trials differed across patients and ranged from
90 to 336. Trial averages were calculated separately for every patient.

The characterization of the spectral signature of PAC depends on
the frequencies for which we estimate the amplitude envelopes and
the frequencies for which we estimate the phase. We used the same
frequencies for the amplitude envelopes and the phases. To estimate
the amplitude envelopes and the phases, we used wavelets that span
exactly three cycles. These wavelets were constructed by concatenat-
ing three discretely sampled one-cycle complex sinusoids. The time
interval between all adjacent samples in the three-cycle wavelet must
be equal, and this constrains the possible frequencies, especially at the
high end of the spectrum.We attempted to construct a linearly spaced
frequency axis between 1 Hz and the maximum frequency (as
determined by the sampling rate) with a distance of 1 Hz between
adjacent frequencies. However, because of the constraint of an equal
interval between adjacent samples, the frequency axis was more
narrowly spaced in the low frequency then in the high frequency
range (i.c., with a sampling rate of 256 Hz, the first three frequencies
are 1 Hz, 2 Hz and 3.0118 Hz, and the last three are 42.6667 Hz,
51.2 Hz, and 64 Hz).

Source characterization

The wPLFs are organized in a four-dimensional array with two
spatial and two frequency dimensions: (1) the channels from which
the amplitudes were estimated, (2) the channels from which the
phases were estimated, (3) the frequency bins of the amplitude
estimates, and (4) the frequency bins of the phase estimates.Wewant
to extract the underlying sources from the patterns of PAC in this
array. In the following, we show that this is possible using tensor
decomposition. This technique is based on the assumption that a
source is characterized by two patterns: (1) a real-valued spatial map
that specifies how strongly source activity affects the measurements
at the level of the sensors, and (2) its frequency spectrum. More

Fig. 2. Schematic of the calculation of the weighted phase-locking factor (wPLF). Raw signals from channels i and i' are convolved with a frequency-indexed wavelet, with indices f
and f', producing complex-valued signals. With this convolution we estimate the time-varying amplitudes and the phases for the different frequency bins that are provided by our
wavelet filter bank. The wPLF is obtained by taking the average over epochs of the inner products (complex covariances) of an amplitude envelope and a wavelet transform. Prior to
calculating the inner product, the amplitude envelopes and the wavelet transform are centered (i.e., their mean is subtracted) and normalized (i.e., dividing the signal by its norm,
the square-root of the inner product of the signal with its conjugate transpose). The wPLF is a complex association measure, with absolute value between 0 and 1.

5 This follows from an application of the Cauchy-Schwarz inequality to the
normalized vectors aif and pi ' f ' .
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specifically, let ai be the weight of the i-th sensor in the spatial map
that characterizes the source, then the frequency spectrum of the
source activity measured by this sensor equals ai times this frequency
spectrum. As a consequence, the frequency spectra recorded at
different sensors are proportional. This type of source can be produced
by a connected network of neurons of which the constituent neurons
receive synaptic input with the same oscillatory dynamics.

Not all patterns of neuronal activity can be fully described by a spatial
map and a frequency spectrum, and we now give two examples.6 First,
consider a small patch of cortex that shows bursts of high frequency
activity which triggers inhibition both locally and in surrounding areas.
This inhibition has a longer decay time than the duration of the high
frequency bursts. When inhibition wears off, the localized high-
frequency burst reoccurs, and the pattern repeats to produce periodic
activity. Clearly, the small patch showing high frequency bursts and the
surrounding areas have different frequency spectra, and therefore this
pattern of neuronal activity will not be considered a single source; for
the definition of source used here, all sensors oscillate at the same
frequency (but perhaps with different amplitudes).

As a second example, consider coherent distributed neuronal
activity that is characterized by a sinusoidal waveform for some part
of the source and a sawtooth waveform for the rest. The part with the
sawtooth waveform has a frequency spectrum with a different shape
than the one in the part with the sinusoidal waveform: the former has
relatively more energy in the high frequencies and as a result the two
frequency spectra are not proportional. Therefore, this pattern of
neuronal activity will not be considered a single source.

Tensor decomposition of weighted phase-locking factors

A source configuration that generates PAC is characterized by two
spatial maps and two frequency spectra: (1) the spatial map of the
high-frequency phase-coupled bursts, (2) the spatial map of the low-
frequency coupling oscillation, (3) the frequency spectrum of the
phase-coupled bursts, and (4) the frequency spectrum of the coupling
oscillation. Crucially, these maps and spectra can be extracted from
the four-dimensional array of wPLFs by means of tensor decompo-
sition (Bro, 1997). This important result follows from (1) the fact that
this array of wPLFs can be decomposed as a sum of tensor products,
one for every source configuration that generates a pattern of PAC and
(2) the fact that this tensor decomposition is unique up to
permutation and scaling (see Supplemental Material).

Tensor decomposition is a generalization of singular value
decomposition (SVD) to arrays with more than two dimensions.
Using SVD, one can express every two-dimensional array as the tensor
product of two sets of scaled singular vectors. However, this tensor
decomposition is not unique, because the result of the tensor product
does not change if the two sets of scaled singular vectors are rotated.
Therefore, it does not make sense to interpret these scaled singular
vectors in terms of the mechanism that produces the two-dimen-
sional data array. In contrast, with the exception of a few exotic cases,
all tensor decompositions of three- and higher-dimensional arrays are
unique (Harshman, 1972; Kruskal, 1976, 1977; Leurgans et al., 1993;
Sidiropoulos and Bro, 2000). This uniqueness7 of a tensor decompo-

sition is crucial for its interpretation in terms of the spatial maps and
the frequency spectra of the source configuration that produces the
sensor-level PAC. In fact, if multiple tensor decompositions would
exist for a given four-dimensional array of wPLFs, then one would not
know which one of these decompositions would correspond to the
spatial maps and the frequency spectra of the true source
configuration.

The tensor decomposition of an array of wPLFs is described in
detail in the Supplemental Material. In the Results section, we present
the main ideas behind the technique by means of an example that
shows part of the results for one of the patients in our study.

The uniqueness of the tensor decomposition has been exploited
previously in the neuroscience literature: three-dimensional tensor
decomposition has been proposed both for the analysis of EEG/MEG
and for the analysis of fMRI data (Beckmann and Smith, 2005;
Miwakeichi et al., 2004; Mocks, 1988; Morup et al., 2006). We
contribute to these methodological developments by proposing a
tensor-decomposition that is (1) model-driven (because it can be
derived from a few plausible assumptions; see Supplemental
Material) and (2) that can deal with phase relations between
neuronal signals. Phase relations are at the core of cross-frequency
PAC. To identify this coupling, we developed a complex-valued tensor
decomposition, complementing the existing real-valued tensor
decomposition (see Supplemental Material). The algorithm for this
complex-valued tensor decomposition is currently an experimental
module in FieldTrip (http://www.ru.nl/neuroimaging/fieldtrip), an
open source Matlab toolbox developed at the Donders Institute for
Brain, Cognition and Behavior (Nijmegen, the Netherlands). This
module will become part of the official Fieldtrip release in the course
of 2011.

Data analysis

For every subject, we calculated two arrays of wPLFs: one for the
activation period of the Sternberg task, involving encoding and
retention of the list items, and one for an equal-length baseline period
prior to the presentation of the first list item. These two arrays were
analyzed separately as well as jointly. In this joint analysis, all PAC
patterns were extracted: baseline-period specific patterns, activation-
period specific patterns, and patterns that are observed in both
periods (see Supplemental Material). This joint analysis allows us to
compare the baseline and the activation period with respect to the
amount of variance in the wPLFs that is explained by a particular PAC
pattern.

To perform a tensor decomposition, one must know the so-
called rank of the array of wPLFs. This rank is the number of
components into which the array is decomposed (see Supplemental
Material). For every data set, this rank was estimated on the basis of
the split-half reliability8 of the tensor decomposition. For a given
data set, we randomly split the trials in two halves, and separately
for every half, we calculated the array of wPLFs. We then applied
tensor decomposition to both arrays for increasing ranks (beginning
at rank 1) and calculated between-half correlations for each of the
two spatial maps and the two frequency spectra. The algorithm for
least-squares estimation was iterative and started from random
starting values.

For every number of components, we calculated correlations
between the corresponding spectra in a pair. For a K-component
decomposition, this produces four K-by-K matrices of split-half
correlations, one for every spectrum. For every rank K, we evaluated
whether the two decompositions had matched components with a

6 Both examples were suggested by a reviewer.
7 There are a two transformations of the tensor decomposition that violate

uniqueness in a strict sense, namely permutation and scaling. However, these
transformations do not hamper the interpretation of the decomposition in terms of
the spatial and frequency spectra of the underlying physiological sources. This is
obvious for permutation, which involves a redistribution of spectra over the
components of the tensor decomposition (e.g., the four spectra of component 1
become the four spectra of component 2, and vice versa). The scaling transforma-
tion involves multiplication of one spectrum by a factor x and another spectrum by
the factor 1/x. It is important to note that this transformation does not affect the
shape of the spectra, and therefore the characteristics of the underlying
physiological sources that are important for the interpretation are visible in every
decomposition (i.e., regardless of the transformation).

8 Split-half reliability is a method that has its origin in classical test theory (Lord FM,
Novick MR. 1968. Statistical theories of mental test scores. Reading: Addison-Wesley). It
is commonly used to calculate the reliability of a psychological test score.
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split-half correlation larger than 0.85 for each of the four spectra. The
highest rank for which this was possible, was our rank estimate.

With a critical correlation of 0.85, we never falsely detected PAC
patterns in simulated data structures without PAC (data not shown).
These simulated data structures were constructed by randomly
pairing the amplitude envelopes of one trial with the wavelet
transforms of a different trial of the same length. After this random
pairing, the wPLFs were calculated as described above.

Quantifying and testing the extent of the spatial spectra

To find evidence for the hypothesis that patterns of PAC are
generated by multiple sources, we compared the spatial maps for the
phase-coupled bursts with the associated spatial maps for the
coupling oscillation. For each of the pairs of spatial maps, we
quantified their spatial extent by means of a weighted sum of the
inter-electrode distances.

We calculated the inter-electrode distances dij from the
electrode positions in MNI coordinates. Then, to quantify the
extent of a spatial map, we first normalized this map (i.e., divided
it by its Euclidean norm). The resulting coefficients are denoted by
a=(a1, …, aI), in which I denotes the number of electrodes. The
larger the coefficient ai, the more the signal at the corresponding
electrode reflects the source that is characterized by this spatial
map. We then calculated the following weighted sum of inter-
electrode distances9:

∑
I

i
∑
I

j
jaijjajjdij;

in which |ai| and |aj| are the absolute values of ai and aj. This weighted
sum is small if the large coefficients in a spatial map are at a short
distance from each other, and large if they are at a long distance.

In this way, we quantified the extents for every pair of spatial
maps. We then statistically tested the difference between the
members of these pairs by means of a pair-wise t-test. Some patients
contributed multiple pairs of spatial maps to this t-test.

Calculating the central frequency of a spectrum

We want to characterize the patterns of PAC by the frequency
spectra (see the Results section and the Supplemental Material) of the
coupling oscillations and the associated phase-coupled bursts. We
summarized every frequency spectrum by its central tendency, which
will be called the central frequency. The central frequency is calculated
as a weighted average of frequencies, with the weights being the
coefficients of the frequency spectrum.

Quantifying the consistency over channels of the preferred coupling
phases

We quantified the cross-channel consistency of the preferred
coupling phases by a weighted phase locking factor, which we will
call the cross-channel wPLF to distinguish it from the cross-trials
wPLF with which we quantify the PAC. From the tensor decompo-
sition we obtained a complex-valued spatial map of the phase-
coupled bursts of high-frequency activity. This spatial map is
denoted by a=(a1,…,aI)t. The magnitudes of these complex
coefficients reflect the coupling strength and their phases reflect
the preferred phase of the coupling. To quantify the cross-channel

consistency of these preferred phases, we calculate the following
wPLF:

∑I
i = 1ai

∑I
i = 1jaij

This cross-channel wPLF is a phase-locking factor because the
magnitude of the numerator depends on the cross-channel consis-
tency of the phases of the complex coefficients, and it is weighted
because it depends on the amplitudes of these complex coefficients.
We took the magnitude of the cross-channel wPLF as our quantifi-
cation of the cross-channel consistency of the preferred coupling
phases.

Comparing the activation and the baseline period

We want to compare the activation and the baseline period with
respect to the PAC strength of the different patterns. As described
before, the squared magnitude of a normalized wPLF can be
considered as the proportion of explained variance in the amplitude
envelope of some channel by the phases of some other channel. We
use the explained variance metric to compare the activation and the
baseline period with respect to the PAC strength. In fact, using tensor
decomposition, we can calculate the total variance in some array of
wPLFs (over all channels and all frequencies) that is explained by a
particular PAC pattern (see Supplemental Material). It is also possible
to calculate this PAC-pattern-specific total variance separately for the
activation and the baseline wPLFs. We do this in a joint tensor
decomposition of the activation and the baseline wPLFs, in which we
use plug-in estimates of the spatial map of the coupling oscillation and
the two frequency spectra obtained from the separate analyses of the
activation and the baseline wPLFs. For every PAC pattern identified in
the activation and/or the baseline wPLFs, we then calculate the
amount of explained variance, separately for the activation and the
baseline wPLFs.

We compared the activation and baseline explained variances by
means of a paired-samples t-test, in which the pairs are the PAC
patterns that were identified in either the activation or the baseline
wPLFs, or in both. A disadvantage of this t-test is its inability to detect
reliable differences between the activation and the baseline period
that cancel each other out, that is, reliable differences that are positive
for a subset of PAC patterns and negative for another subset. To test for
the existence of such a scenario, we used the random split-half arrays
of wPLFs that were also used for determining the rank of the tensor
decomposition. We applied the joint tensor decomposition of
activation and baseline data to each of the two random split-half
arrays. If there are reliable differences between the activation and the
baseline period, then they should show up in both analyses. To test
this, we calculated the number of PAC patterns for which the
difference between the activation and the baseline explained variance
had the same sign (both positive or both negative). This number was
subsequently tested for significance using a binomial test of the null
hypothesis that the probability of a same-sign difference is 0.5.

Results

We did a systematic analysis of the PAC that is present in the iEEG
of 26 patients. With this analysis, we want to answer the following
four questions: (1) is PAC in a working memory task produced by a
single or multiple sources, and (2) what are the frequency bands of
the coupling oscillations and the associated phase-coupled bursts, (3)
does the coupling oscillation synchronize the phase-coupled bursts,
and (4) is PAC involved in working memory operations?

The input of our analysis is a four-dimensional array of weighted
phase-locking factors (wPLFs, see Materials andmethods). A wPLF is a

9 We also tried several other quantifications of spatial extent, but always obtained
the same results. For instance, we also calculated a measure which normalizes the
weighted inter-electrode distance by dividing it by the summed unweighted inter-
electrode distance. This quantification normalizes for differences across subjects in the
physical dimensions of the electrode montage.
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complex-valued association measure of which the magnitude mea-
sures the coupling strength and the phase gives the preferred phase
angle of the high-frequency bursts in the low-frequency oscillation.
We calculated this wPLF for every (channel, channel, frequency,
frequency)-quadruplet, in which the first channel and the first
frequency index the amplitude envelope and the second channel
and the second frequency index the time-varying phase. PAC patterns
can be described using two spatial maps (one for the phase-coupled
bursts and one for the associated coupling oscillation) and two
frequency spectra (one for the phase-coupled bursts and one for the
associated coupling oscillation) (see Materials and methods). Using
tensor decomposition, we extracted the spatial maps and the
frequency spectra from the off-diagonal (cross-channel) elements of
this four-dimensional array of wPLFs.

Representative tensor decomposition output

We now present the main ideas behind the tensor decomposition
by means of the example in Fig. 3, which shows part of the results and
part of the array of wPLFs for one of the participants in our study. In
panels a–e, we show the spatial maps and the frequency spectra that
are produced by the tensor decomposition. In panels f–j, we show
three two-dimensional slices in the frequency-by-frequency plane
taken from the four-dimensional array of wPLFs for three selected
channel pairs. In panels a and b, we show the complex-valued spatial
map of the phase-coupled bursts. The magnitude of this map,
superimposed on an anatomical MRI (panel a), reflects the coupling
strength. The phases of this map, shown in a compass plot (panel b),
reflect the preferred phases of the phase-coupled bursts. Note that not
all channels have the same preferred phase. However, as will be
discussed later in this Results section, the general tendency across all
subjects is that the preferred phases are predominantly clustered in
one direction. In panel d, we show the frequency spectrum of these
phase-coupled bursts, which has a peak at 33 Hz. In panel c, we show
the real-valued spatial map of the coupling oscillation, and in panel e
we show its frequency spectrum, which has a peak at 9 Hz.

Channels with positive and negative values in the spatial map of
the coupling oscillation show this oscillation in antiphase. This aspect
of the spatial map reflects the pattern in the wPLFs that is exemplified
in the bispectra in panels f–j. All bispectra were obtained from the
amplitude envelopes of the channel whose bursts of 33 Hz activity are
most strongly modulated by the phase of the coupling oscillation (i.e.,
the red channel in panel a). The phases were estimated from three
different channels: a channel that has a negative value in the spatial
map of the coupling oscillation (panels f and g), a channel that has a
positive value in this map (panels h and i), and a channel that has a
near-zero value (panel j). Panel f, h, and j show the magnitudes of the
complexwPLFs, and panels g and i show the phases that correspond to
panel f and h, respectively. Because the phases can only be reliably
estimated when there is coupling between the high frequency
amplitude envelope and the low frequency phases, the phase
bispectra in panels g and i are masked by the corresponding
magnitude bispectra. The phase bispectrum that corresponds to
panel j is omitted because its figure would be completely opaque.
Note that the bispectra show two patterns of PAC, one centered at the

pair (9 Hz, 33 Hz), and one centered at the pair (1 Hz, 8 Hz). In panels
a–e, we only show the spatial maps and the frequency spectra of the
first pattern. The second pattern has different spatial maps and
frequency spectra. In the final paragraph of this section, we return to
this issue of multiple patterns of PAC in the same data set.

The most important observation with respect to the bispectra in
panels f-j is that the magnitude bispectra in panels f and h are very
similar (they only differ in strength and not in pattern) whereas their
corresponding phase bispectra differ by approximately π=3.14. This
reflects the fact that, in the first channel, the bursts of 33 Hz activity
are locked to the trough of the 9 Hz oscillation (panel g), and in the
second channel, they are locked to its peak (panel i). This pattern in
the wPLFs is captured by the fact that these two channels have values
with opposite signs in the spatial map of the coupling oscillation
(panel c).

Note that the extent of the spatial map that characterizes the
phase-coupled bursts (the red and green electrodes in panel a) is
much smaller than the extent of the spatial map that characterizes the
coupling oscillation (the orange, green and blue electrodes in panel c).
This was observed in almost all PAC patterns in this pool of
participants.

The wPLFs depend on the spatial maps and the frequency spectra
via their tensor product. That is, for a given cell in the four-
dimensional array of wPLFs, (1) the contribution of a particular PAC
pattern is obtained as the product of the corresponding coefficients in
the two maps and the two spectra, and (2) the contributions of
different PAC patterns add up.

In Fig. 3, we show the spectra of only a single pattern of PAC.
However, an array of wPLFs may very well contain multiple patterns
of PAC, each characterized by its own set of spatial maps and
frequency spectra. In fact, it is clear from the bispectra that there is
also a PAC pattern centered at the pair (1 Hz, 8 Hz). Mathematically,
this translated into the fact that the rank of the array of wPLFs is larger
than 1. In Fig. 3, this is indicated by the ellipsis on the right-hand side
of the equation.

Existence of reliable phase-amplitude coupling patterns

In the analysis of the activation period wPLFs, 36 reliable PAC
patterns were identified: two subjects had four reliable PAC patterns,
eight had two, 12 had one, and four had none. In the analysis of the
baseline period wPLFs, 17 reliable PAC patterns were identified: four
subjects had two reliable PAC patterns, nine had one, and 13 had none.
Reliability was defined in terms of the split-half correlation between
two independent estimates of the spatial and the frequency spectra
produced by the tensor decomposition. All identified PAC patterns
had reliabilities much larger than what can be expected under the
hypothesis of a random PAC (see Materials and methods). A
representative selection of reliable PAC patterns is shown in
Supplemental Fig. 3.

The existence of reliable PAC patterns shows that there is spatial
and spectral structure in the array of wPLFs. Because we analyzed the
wPLFs that were obtained from pairs of different channels, this
structure must result from physiological activity that is measured at
multiple sites. From this observation alone, we cannot conclude that

Fig. 3. Illustration of a tensor decomposition of the four-dimensional array of weighted phase-locking factors (wPLFs). The two spatial maps and the two frequency spectra (see text) are
each denoted by a different color (red, yellow, green, and blue) and a different index (i, i', f, f'). The same colors are used both for the boundaries of the panels and the symbols in the
formula for the wPLF. In panels a and b, with red and index i, we show the complex-valued spatial map of the high-frequency bursts that are coupled to a common low-frequency
oscillation (the coupling oscillation). In panel a, we show the magnitude (absolute value) of this complex-valued spatial map (one colored circle per channel), which expresses the
strength of the coupling. In panel b we show the phases of the coupling oscillation to which the high-frequency bursts are locked (one arrow per channel). In panel c, with yellow and
index i', we show the spatial map of the coupling oscillation (one colored circle per channel). Themore a coefficient bi’ deviates from zero, themore this channel is affected by the coupling
oscillation. In panel d,with green and index f, we show the frequency spectrum of the phase-coupled bursts (shown on a logarithmic scale). In panel e, with blue and index f', we show the
frequency spectrum of the coupling oscillation. The spectra shown in panels a, b, c, d and e are all in arbitrary units (a.u.). This is because the spectra are produced by a tensor
decomposition which involves an arbitrary multiplicative scaling (see Supplemental Material). In panels f, h, and j, we show the magnitudes of the complex wPLFs for three selected
channel pairs (see text). Bymeans of arrows, we connect the channels in panels a and c for which these wPLFs were calculated, with the corresponding x-axes (showing the frequency of
the coupling oscillation), respectively, y-axes (showing the frequency of the phase-coupled bursts), in panels f, h, and j. In panels g and i, we show the phases of the complex wPLFs that
correspond to panels f and h, respectively.
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multiple sources are involved in the PAC. In fact, a single source that
produces a rhythmic signal with a sharp-edged waveform will result
in a significant cross-channel PAC, at least if it is measured at multiple
sites. However, if there is only a single source active, then the spatial
maps of the coupling oscillation and the phase-coupled bursts will be
identical.

Comparison of the extent of the two spatial maps

To find evidence for the hypothesis that PAC patterns are
generated by multiple sources, we compared the spatial maps for
the phase-coupled bursts with the associated spatial maps for the
coupling oscillation. For each of the pairs of spatial maps, we
quantified their extent by means of a weighted sum of the inter-
electrode distances (see Materials and methods). In Fig. 4, we show
scatter plots of the extent of the spatial spectra of the phase-coupled
bursts (horizontal axis) against the extent of the corresponding
spatial spectra of the coupling oscillation (vertical axis). For the vast
majority of the pairs, the extent of the spatial map of the phase-
coupled bursts is substantially smaller than the extent of the spatial
map of the coupling oscillation. This holds both for the activation
(Fig. 4b, t(35)=−6.194, pb0.001) and the baseline period (Fig. 4a, t
(16)=−4.1027, pb0.001). This finding cannot be produced by a
single source.

Analysis of the within-channel wPLFs

Until now, we have reported on the results of a tensor
decomposition of the off-diagonal (cross-channel) elements of the
four-dimensional arrays of wPLFs. Thus, we excluded the diagonal
(within-channel) elements, which are obtained from single channel
data that are filtered twice. However, within-channel PAC is what has
been investigated in several previous studies (Canolty et al., 2006;
Mormann et al., 2005). Therefore, it is of interest to ask whether the
within-channel wPLFs contain the same information as the cross-
channel wPLFs. We will show that this is not the case.

In Fig. 5, we give a schematic representation of a two-dimensional
slice from the four-dimensional array of wPLFs. The group of yellow
entries is produced by bursts of high-frequency activity that are
measured by three channels and that are phase-coupled to an
oscillation that is measured by eight channels. This pattern of PAC
produces significant within-channel as well as cross-channel wPLFs.
In contrast, the group of red entries is produced by PAC that is only
observed in the within-channel wPLFs. This PAC cannot be produced
by a common coupling oscillation that is measured by multiple

channels, because this would have resulted in significant cross-
channel wPLFs. However, it can be produced by multiple local
coupling oscillations that are only measured by the same channel
that also measures the associated phase-coupled bursts. Clearly, such
a local PAC cannot play a role in the coordination of neuronal activity
over distributed areas (i.e., an area that is covered by more than one
electrode). Moreover, and crucial for this paper, it cannot be excluded
that these significant within-channels wPLFs are produced by local
sources that produce sharp-edged waveforms. In contrast, the yellow
group of significant cross-channel wPLFs can only be produced by
multiple sources. This is because the extent of this pattern is different
for the two spatial dimensions.

The two patterns of PAC will show up differently in the tensor
decomposition of the cross-channel and the within-channel wPLFs
(see Fig. 5). Remember that the within-channel wPLFs are on themain
diagonal of the array. In the analysis of the cross-channel wPLFs, we
will only identify patterns of PAC that involve a common coupling
oscillation, such as the pattern that produces the yellow group of
channel pairs. In the analysis of the within-channel wPLFs, we will
also identify the PAC that is produced by multiple local coupling
oscillations, such as the pattern that produces the red group of
channel pairs. Note that the spatial maps of the coupling oscillation
and the associated phase-coupled bursts that describe the structure in
the within-channel wPLFs have exactly the same spatial extent (see
Fig. 5). This also holds for PAC patterns that are produced by a spatially
distributed coupling oscillation, as is clear from the within-channel
spatial maps for the yellow group of channel pairs. Thus, the spatial
extent of these PAC patterns is incorrectly characterized by the
within-channel wPLFs. This is why, to characterize the spatial extent
of the PAC patterns, we analyzed the cross-channel wPLFs.

For comparison with our analysis of the four-dimensional array of
cross-channel wPLFs, we also applied tensor decomposition to the
three-dimensional array of within-channel wPLFs (channels-by-
frequencies-by-frequencies). Contrary to the tensor decomposition
of the four-dimensional array of cross-channel wPLFs, for every
pattern of PAC, we now extract only a single spatial map. This single
spatial map corresponds to the element-wise product of the two
spatial maps for the cross-channel wPLFs. That is, if ai and bi are the
loadings for the i-th channel in a spatial map for, respectively, the
phase-coupled bursts and the associated coupling oscillation, as
obtained from the analysis of the cross-channel wPLFs, then the
corresponding loading for the within-channel wPLF analysis is ai×bi.
Of course, this only holds if the corresponding spatial maps are indeed
extracted in the tensor decompositions of both the within- and the
cross-channel wPLFs.
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Fig. 4. Spatial maps of the phase-coupled bursts are smaller than the spatial maps of the associated coupling oscillation. Both panels show scatter plots of the extent of the spatial
maps of the phase-coupled bursts (horizontal axis) against the extent of the corresponding spatial maps of the coupling oscillation (vertical axis). Panels a and b show the scatter
plots for, respectively, the baseline and the activation period. Panels a and b show the scatter plots for, respectively, the baseline and the activation period. In both periods, for most of
the PAC patterns, the extent of the spatial map of the phase-coupled bursts is substantially smaller than the extent of the spatial map of the associated coupling oscillation.
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Using the same split-half reliability criterion, we foundmuchmore
reliable PAC patterns in the tensor decomposition of the within-
channel wPLFs than in the tensor decomposition of the cross-channel
wPLFs. In the analysis of the activation period within-channel wPLFs,
we extracted 105 PAC patterns, as compared to 36 in the analysis of
the corresponding cross-channel wPLFs (paired-samples t-test over
patients, t(25)=9.015, pb0.001). And in the analysis of the baseline
period within-channel wPLFs, we extracted 35 PAC patterns, as
compared to 17 in the analysis of the corresponding cross-channel
wPLFs (paired-samples t-test over patients, t(25)=3.9931, pb0.001).

The PAC patterns extracted from the within-channel wPLFs are not
only more numerous, they are also more widespread. We calculated
the spatial extent of the PAC patterns using the same index that was
also used for comparing the spatial extent of the phase-coupled bursts
with the spatial extent of the corresponding coupling oscillations (the
weighted sum of the inter-electrode distances; see Materials and
methods). For the PAC patterns that were extracted from the cross-
channel wPLFs, we calculated the element-wise product of the two
spatial maps, and compared the extents of these product spatial maps
to the extents of the single spatial maps that were extracted from the
within-channel wPLFs. Per subject, we calculated the average extent
(over the PAC patterns of this subject) for the two corresponding
types of spatial maps, one extracted from the cross-channel wPLFs
(the product spatial map) and the other from the within-channel
wPLFs. In Fig. 6, we show scatter plots of these average spatial extents.
For all subjects, the average extent of the product spatial maps
extracted from the cross-channel wPLFs is smaller than the one
extracted from the within-channel wPLFs. This holds both for the
activation (Fig. 6b, t(22)=−7.9085, pb0.001) and the baseline
period (Fig. 6a, t(9)=−4.7793, pb0.001). The widespread PAC
patterns in the within-channel wPLFs are in line with the observation
by Canolty et al. (2006) that 84.3% of their electrodes showed
significant theta/gamma coupling.

These findings are in line with our theoretical analysis of the
difference between the tensor decompositions of the within- and the
cross-channel wPLFs. In fact, our findings are consistent with the
existence of multiple local coupling oscillations, which are only
extracted in the tensor decomposition of the within-channel wPLFs.
Of course, we cannot rule out that this within-channel PAC is
produced by local (channel-specific) sharp-edged waveforms. Fur-
ther, the more widespread PAC patterns in the within- as compared
with the cross-channel wPLFs are most likely produced by local
sources with the same bispectral structure (same frequency spectra
for the coupling oscillation and the phase-coupled bursts). In fact, if
these PAC patterns were produced by spatially distributed sources,
then they would also have been observed in the cross-channel wPLFs.

Spectral content of the oscillations

In Fig. 7, we summarize the spectral content of the phase-coupled
bursts and the associated coupling oscillations by their central
frequencies. The central frequency of the phase-coupled bursts is
always larger than the one for the associated coupling oscillations. It is
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Fig. 6. PAC patterns extracted from the cross-channel wPLFs are smaller than PAC patterns extracted from the within-channel wPLFs. Both panels show scatter plots of the average
extent (with averaging over the PAC patterns within a subject) of the product spatial maps extracted from the cross-channel wPLFs (horizontal axis) against the average extent of the
spatial maps extracted from the within-channel wPLFs (vertical axis). Panels a and b show the scatter plots for, respectively, the baseline and the activation period. In both periods,
for most subjects, the average extent of the product spatial maps extracted from the cross-channel wPLFs is substantially smaller than the average extent of the spatial maps
extracted from the within-channel wPLFs. Because there are more subjects with reliable PAC patterns in the activation than in the baseline period, there are also more dots in the
scatter plot for the activation than in the one for the baseline period.

W

WC

C

Fig. 5. Differences between cross-channel and within-channel wPLFs with respect to
the PAC patterns that they can identify. The two-dimensional array represents a slice
that was taken from the four-dimensional array of wPLFs. This slice was taken for a
particular pair of frequencies for the amplitude envelopes and the phases. The rows of
this slice correspond to the channels for which the amplitude envelopes were
calculated, and the columns to the channels for which the phases were calculated. The
colored cells indicate significant wPLFs. The spatial maps that characterize the PAC
patterns are shown to the right and below the two-dimensional slice. The spatial maps
of the phase-coupled bursts and the associated coupling oscillation, as obtained from
the tensor decomposition of the cross-channel wPLFs, are shown under, respectively, to
the right of the letters B. The single spatial map obtained from the tensor decomposition
of the within-channel wPLFs is shown under and to the right of the letters W.
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important to see that there is not a dominant frequency, neither for
the coupling oscillations nor for the phase-coupled burst: phase-
coupled bursts are in the range 7–70 Hz and coupling oscillations are
in the range 2–25 Hz.

Consistency of the preferred coupling phases

A straightforward way to achieve spatio-temporal coordination of
neuronal activity is by spatially distributed bursts of high-frequency
activity occurring at the same time. Phase-amplitude coupling could
be the vehicle via which this coordination is realized, namely if the
bursts all occur at the same phase of the coupling oscillation. This can
be investigated using the tensor decomposition. In fact, the tensor
decomposition allows that the bursts of high-frequency activity in the
different channels have a different preferred phase in the coupling
oscillation. This is because the spatial spectrum of the phase-coupled
bursts is complex-valued. We examined the consistency across the

channels of these preferred coupling phases (see Materials and
methods) and found that the majority of the PAC patterns exhibits a
strong consistency (Fig. 8). Thus, in the majority of the PAC patterns,
the phase-coupled bursts of high-frequency activity are synchronized
across brain areas.

Comparison of the baseline and the activation period

PAC has been proposed as the cornerstone of a model for temporal
segmentation and integration of items that are kept in working
memory (Lisman and Idiart, 1995). This model predicts that theta-
gamma PAC is stronger during periods that involve working memory
operations than during periods that do not. Inspired by this
prediction, we tested whether patterns of PAC are differentially
involved in epochs that differ with respect to these working memory
operations. In particular, we jointly analyzed thewPLFs of the baseline
and the activation period of the Sternberg task. In this joint analysis,
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Fig. 7. Spectral signature of the PAC patterns. Panels a and b show the results for, respectively, the baseline and the activation period. Both panels show a scatter plot of the central
frequencies of the phase-coupled bursts (horizontal axis) against the central frequencies of the coupling oscillations (vertical axis). The central frequency of the phase-coupled bursts
is always smaller than the one for the associated coupling oscillation. For all PAC patterns above the thick black line, the central frequency for the phase-coupled bursts is larger than
the central frequency for the associated coupling oscillation. There is not a dominant frequency, neither for the phase-coupled bursts, nor for the associated coupling frequencies.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

N
um

be
r 

of
 P

A
C

 p
at

te
rn

s

N
um

be
r 

of
 P

A
C

 p
at

te
rn

s

Over-channel consistency of the preferred coupling phases Over-channel consistency of the preferred coupling phases

a b

Fig. 8. Consistency over the channels of the preferred coupling phases. Panels a and b show the results for, respectively, the baseline and the activation period. Both panels show a
histogram of the absolute values of a cross-channel weighted phase locking factor that quantifies the over-channel consistency of the preferred coupling phases. Next to the
histograms, there are example compass plots that illustrate different values of this consistency measure. Both in the baseline and the activation period, the majority of the PAC
patterns exhibits a very strong consistency.
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all PAC patterns were extracted: baseline-period specific patterns,
activation-period specific patterns, and patterns that are observed in
both periods (see Materials and methods).

To quantify the differential involvement of the PAC patterns in the
baseline and the activation period, we calculated the variance in the
high-frequency amplitude envelopes that is explained by the coupling
oscillation, separately for these two periods, and then calculated the
difference between the logarithms of these two variances, which is
equivalent to calculating their log ratio. The histogram of these log
ratios is approximately centered at zero (see Fig. 9), which indicates
that working memory operations do not uniformly shift the PAC
strengths in either direction (paired-samples t-test of the log
variances, t(42)=−0.4935, p=0.6242). We arrived at the same
conclusion when the non-logarithmically transformed variances were
contrasted (t(42)=0.6130, p=0.5432).

The absence of a difference between the average log variance (over
PACpatterns) between the activation and the baseline variancedoesnot
rule out the possibility that some subset of PAC sources exhibits a
stronger coupling in the activation than in the baseline period, whereas
the reverse holds for another subset. Positive and negative differences
between the activation and the baseline period may compensate for
each other in the calculation of the average difference. In fact, this is
what happened, andwe showed it by separately analyzing two random
split-half arrays of wPLFs and evaluating the consistency of the output.
The consistency between the two random split-half analyses can be
visualized in the scatter plot of the variance log ratios for the two
random split-halves (see Fig. 10). The consistency was quantified by
means of a binomial test of the number of PAC patterns that have a
same-sign variance log ratio between the activation and the baseline
period (32 PAC patterns with consistent signs out of 43, p=0.0003).
Thus, working memory operations affect the PAC strengths in an
heterogeneous way: for some PAC patterns, the strength increases
during working memory operations, whereas for others it decreases.

We hoped to increase our understanding of the relation between
PAC andworkingmemory by attempting to identify anatomical clusters
that show PAC increases and others that show PAC decreases. We
selected five components of which the strength reliably decreased by at
least 50%, going from baseline to activation, and seven components of
which the strength reliably increased by at least 50%. Separately for each
of the two sets of components, we plotted the electrodes that exhibit a
strongmodulation of the coupling strength of the phase-coupled bursts
that are measured at these electrodes (see Fig. 11). Because of the low

number of components, and the large heterogeneity across subjects in
the electrode layout, one should be careful in interpreting these results.
This being said, it seems that PAC decreases (baselineNactivation) are
predominantly observed over the right temporal lobe, but there also
decreases over a few left frontal and left temporal areas. PAC increases
(activationNbaseline) are predominantly observed over the right
temporal and the right parietal lobe, but there are also increases over
a few left parietal, left temporal, and right frontal areas.

Discussion

We investigated cross-frequency PAC by identifying structural
patterns in four-dimensional arrays of wPLFs that were obtained from
iEEG recordings from 26 patients. From the off-diagonal elements of
these arrays, we identified 36 reliable patterns in the activation period
and 17 in the baseline. This did not require an exhaustive search of the
four-dimensional arrays of wPLFs. Instead, the patterns were identified
automatically and objectively by means of a tensor decomposition.

It is important to note that the wPLF is not a measure of the spectral
contentof a single channel, but instead is a spectral associationmeasure:
it will deviate from zero if the spectral content of one channel (i.e., its
amplitude envelope at a particular frequency) is associated in a
particular way with the spectral content of another channel (i.e., its
phase at a particular frequency). As a consequence, one cannot expect
the same oscillations to show up that were previously identified in the
samedataset on thebasis of their spectral content, namelyoscillations in
the theta and the gammaband (Howard et al., 2003; Raghavachari et al.,
2001, 2006; Rizzuto et al., 2003; Sederberg et al., 2003; van Vugt et al.,
2010, 2009). In our analysis, we only identified those oscillations that
are involved in patterns of cross-channel PAC.

We extracted the spatial maps and the frequency spectra that
characterize patterns of cross-frequency PAC. We found that the spatial
maps of the coupling oscillations are much wider than those of the
corresponding phase-coupled bursts (Fig. 4). Every coupling oscillation
represents a spatially distributed pattern of phase-consistent oscillatory
activity. On a subset of the areas that show this spatially distributed
activity, we observe phase-coupled bursts of high-frequency activity.
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Fig. 10. Reliable differences in PAC strength between the activation and the baseline
period. Scatter plot of the log ratios of the activation-over-baseline explained variance
calculated separately for two random split-halves of the trials. The log ratios are printed
black and their corresponding ratios are printed red. There is a positive correlation
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centered at 0 and, together with the positive correlation, this shows that there are both
positive and negative reliable differences between the activation and the baseline
period.
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From the difference in the spatial extent of the coupling oscillations and
the corresponding phase-coupled bursts, we conclude that there are
patterns of cross-frequency PAC that involve multiple sources.

It is important to note that the tensor decomposition in no way
constrains the spatial maps of the coupling oscillations to be wider

than those of the corresponding phase-coupled bursts. In fact, if the
relation were reversed (less extended spatial maps for the coupling
oscillations than for the phase-coupled bursts), the method would
also have revealed it, as is clear from simulation studies (data not
shown).
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Fig. 11. Localization of components showing a reliable modulation in PAC strength between the activation and the baseline period. The upper panel shows the location of the
components with a PAC strength that decreases from the baseline to the activation period. Every component is denoted by a different color. Electrodes are denoted by disks with a
diameter proportional to the magnitude of their loadings in the spatial map of the high-frequency bursts. PAC decreases are predominantly observed over the right temporal lobe,
but there also decreases over a few left frontal and left temporal areas. The lower panel shows the location of the components with a PAC strength that increases from the baseline to
the activation period. PAC increases are predominantly observed over the right temporal and the right parietal lobe, but there are also increases over a few left parietal, left temporal,
and right frontal areas.
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The more widespread spatial spectrum of the coupling oscillation is
in linewithprevious studies showing that slowoscillationsare generally
more widespread (spatially coherent) than fast oscillations. This has
been shown using extracranial EEG (von Stein and Sarnthein, 2000),
intracranial EEG (Crone et al., 1998a,b), extracellular recordings in
monkeys (von Stein et al., 2000), and intracellular recordings in cats
(Destexhe et al., 1999). Especially the latter study is convincing, because
it is based on signals that are not contaminated by volume conduction.
Destexhe et al. (1999) show that oscillations in the 0.1–4 Hz range,
which are observed during slow-wave sleep and under anaesthesia, are
much more widespread than fast oscillations in the 15–75 Hz range,
which are observed during wakefulness and REM sleep.

Our conclusion about the different spatial extents of the coupling
oscillations and the associated phase-coupled bursts crucially
depends on the information in the cross-channel wPLFs. In fact,
from the within-channel wPLFs one can only estimate a single spatial
map. Nevertheless, the tensor decomposition of the within-channel
wPLFs shows an interesting pattern (more and more widespread PAC
patterns than in the tensor decomposition of the cross-channel
wPLFs) that may be produced by multiple local PAC sources with the
same bispectral structure. However, it cannot be ruled out that this
pattern is produced by local sharp-edged waveforms.

Published iEEG studies on PAC (Canolty et al., 2006; Mormann et al.,
2005)have reported couplingbetweenbursts of gammaactivity (N30 Hz)
and the phase of a coupling oscillation in the theta band (4–7 Hz). In our
study, we did not observe a dominant frequency, neither for the coupling
oscillations nor for the phase-coupled bursts: coupling oscillations are in
the range 2–25 Hz and phase-coupled bursts are in the range 7–70 Hz.
Onepossible reason for this discrepancy is that coupling oscillations in the
theta band may be associated with high-frequency bursts in a range that
falls outside the frequency range of our wavelet filter bank. Our analyses
are dominated (in 16 out 26 patients) by data setswith a sampling rate of
256 Hz, which is low compared to other studies. For these data sets, the
maximum wavelet frequency was 64 Hz (see Materials and methods).
However, neither in these data sets, nor in the ones with a higher
maximum wavelet frequency (100, 128 and 256 Hz), we observed
patterns of PAC in which the coupling strength increased or asymptoted
with increasing frequency, as was observed by Canolty et al. (2006). It is
thus unlikely that the sampling rate explains the fact that we observed
only a small number of couplingoscillations in the theta band. Instead, our
results show that PAC is not restricted to the theta-gamma frequency pair.
PAC may be a general phenomenon, produced by a particular network
architecture in a way that is largely independent of the membrane time
constants that characterize the different neuron types participating in this
network.

Using the phase information in the spatial maps of the phase-
coupled bursts, we showed that, in the majority of the PAC patterns,
these bursts are synchronized across brain areas (Fig. 8). This
observation is in line with the hypothesis that PAC plays a role in
the spatiotemporal coordination of neuronal activity. Importantly,
this synchronization is between amplitude envelopes, and not
necessarily between the oscillations of which the amplitudes were
calculated.

Inspired by the Lisman and Idiart (1995) model, we investigated
whether PAC plays a role in the workingmemory operations encoding
and retention. From this investigation, we can conclude that working
memory operations do not uniformly shift the PAC strengths in either
direction (stronger or weaker than during the baseline period).
Instead, working memory operations affect the PAC strengths in a
heterogeneous way: in some PAC patterns, the strength increases
during working memory operations, whereas in others it decreases.
Especially the right temporal lobe appears to be involved in WM-
induced modulations of PAC.

Our conclusion about the number of sources involved in PAC
depends on our definition of a source. We defined a source in terms of
two patterns: (1) a spatial map that specifies how strongly source

activity affects the measurements at the sensor level, and (2) its
frequency spectrum. We showed that, with this source definition, the
array of PAC-measures (wPLFs) can be written as a tensor product of
two spatial maps (one complex- and one real-valued) and two
frequency spectra (both real-valued), which is exactly the structure
that is extracted by our tensor decomposition (see Supplemental
Methods). However, we cannot exclude PAC-generating source
configurations that cannot be characterized in this way. In fact, we
have argued that PAC-patterns may also be generated by a source
configuration that would be considered a single source when viewed
from the perspective of the mechanism that generates the physio-
logical signal. This confronts us with the problem that sources can be
defined both in terms of their formal characteristics (i.e., in terms of a
spatial map and a frequency spectrum) and in terms of the neuronal
network that generates the physiological signal. The difference
between the two definitions is most clear if the physiological
mechanism consist of multiple components, such as networks of
inhibitory neurons that are connected to one or multiple classes of
principal neurons, each with its own network topology. This whole
multi-component network may be considered as a single source, but
also as multiple sources, each one corresponding to one component.
Importantly, if these components differ with respect to their spatial
maps and frequency spectra, then they can be extracted by means of
tensor decomposition. This shows there may be a need for a linking of
the set of extracted source configurations on the basis of the neuronal
interactions that may have produced them.

In conclusion, we have shown that PAC is a spatially distributed
phenomenon in which the low- and the high-frequency oscillations
are characterized by different spatial maps. Second, in the majority of
the PAC patterns, phase-coupled bursts of high-frequency activity are
synchronized across brain areas. Third and last, working memory
operations affect the PAC strength in a heterogeneous way: in some
PAC patterns, working memory operations increase their strength,
whereas in others they decrease it.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2010.09.029.
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