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A table-top femtosecond, non-relativistic, electron diffraction setup is combined with a low-jitter,

photo-triggered streak camera to follow the optically induced structural dynamics in complex

solids. A temporal resolution of 550 fs is experimentally demonstrated, while the route to streaking

with sub-250 fs temporal resolution is outlined. The streaking technique allows for parallel

capturing of temporal information as opposed to the serial data acquisition in a conventional

scanning femtosecond electron diffraction. Moreover, its temporal resolution is not corrupted by

increasing the number of electrons per pulse. Thus, compared to the conventional scanning

approach, a substantial increase in signal-to-noise ratio (SNR) can be achieved. These benefits are

demonstrated by studying a photo-induced charge density wave phase transition in 4Hb-TaSe2

using both methods. Within the same data acquisition time a three-fold increase in SNR is achieved

when compared to the scanning method, with ways for a further improvement outlined. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4798518]

Dynamics in matter on their intrinsic atomic timescale

have been experimentally investigated extensively over the

past two decades by femtosecond laser spectroscopy.

Monitoring the evolution of optically allowed transitions,

specifically electronic excitations, has revealed a wealth of

coherent and incoherent photo-physics and photo-chemistry.

Recently x-ray and electron diffraction techniques with sub-

picosecond resolution have been developed for direct obser-

vation of sub-Ångstr€om atomic dynamics in crystalline

matter.1–5 Both techniques, i.e., ultrafast x-ray diffraction

with laser driven sources or free electron lasers and

Femtosecond Electron Diffraction (FED), still hold great

maturing potentials. Higher flux, increased signal-to-noise

ratio (SNR), and higher temporal resolution are the main tar-

gets for improvement. While sub-picosecond x-ray and elec-

tron diffraction essentially strive for similar observations,

FED has the appeal of experimental compactness and high

scattering efficiency of electrons in matter.

One of the major hurdles in femtosecond electron

diffraction at non-relativistic energies is achieving sub-

picosecond temporal resolution: When increasing the electron

number to above 103 electrons per pulse, space charge repul-

sion dramatically broadens the electron bunch laterally and

longitudinally as it propagates towards the sample.6 Thus one

tries to keep the experimental setup as compact as possible and

the electron number low. However, a meaningful diffraction

pattern with sufficient signal-to-noise ratio requires 106–107

electrons calling for extensive averaging and long data collec-

tion times. Another challenge in the case of non-reversible,

photo-triggered dynamics is the necessity of replacing the sam-

ple with a fresh one after each shot. Nevertheless, FED has

been successfully applied to studies of ultrafast irreversible-

reversible phase transitions in, e.g., metals or transition metal

dichalcogenides.1–3,5,7,8 Exciting approaches to counteract the

problem of Coulomb repulsion while accommodating large

electron numbers have also been developed recently. While re-

compressing the temporally broadened electron pulse with

radio-frequency (RF) cavities has been governed by substantial

timing jitter between the RF-electronics and the electron pulse,

recent experimental work demonstrated an overall temporal re-

solution of 400 fs over the course of an experiment.9,10 Photo-

triggered open cavity compressors have the intrinsic advantage

of a sub 100 fs timing jitter, experimentally demonstrating a

temporal resolution of less than 750 fs.11

In this letter we demonstrate an alternative solution to

achieving sub-picosecond resolution and improved signal-to-

noise ratio, which utilizes long electron pulses to its advant-

age. As in the conventional pump-probe setup a femtosecond

laser pulse is used to excite the sample, but instead of a short

electron pulse an electron pulse of several picoseconds acts

as the probe. In this concept different temporal components

of the electron pulse are diffracted off the sample at different

times relative to the photo-excitation pulse (see Fig. 1). The

different temporal components of the diffracted signal are

then spatially separated on the detector screen by means of

the rapidly changing electric field in a photo-triggered, elec-

tron streak camera12 (see Figs. 1 and 2). The transient signal

can then be obtained by analyzing the intensity profile of the

streaked image. The technique of streaking an electron pulse

to spatially separate different temporal components was al-

ready proposed in the 1980s13 with picosecond resolution.

Recently it was implemented in time resolved electron dif-

fraction with relativistic electrons using an electronically

synchronized high-Q RF-cavity based streak camera.14

Photoinduced melting of gold on a 10 ps time scale was

observed in single shot mode.15a)M. Eichberger and N. Erasmus contributed equally to this work.
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Our streaked electron diffraction setup combines a fem-

tosecond non-relativistic electron gun8 with a photo-

triggered, low jitter streak camera.12 The low jitter of the

streak camera allows for maintaining sub-picosecond tempo-

ral resolution in accumulation mode, i.e., while integrating

over an arbitrary number of shots. We apply the technique to

track the complex dynamics in the charge density compound

(CDW) 4Hb-TaSe2 excited with intense near-infrared pulses.

Despite the small changes and weak satellite reflection inten-

sities the dynamics of the photo-induced phase transition

between the commensurate and incommensurate CDW phase

could be mapped out within one hour data acquisition.

In this experiment 200 fs laser pulses (k ¼ 775 nm, repe-

tition rate 1 kHz) are divided into three paths: one drives the

electron gun and generates electron pulses, one excites the

sample, and one triggers the streak camera. After exiting

the electron gun, the 30 keV electrons are focused by a mag-

netic lens through the sample and onto a micro channel plate

amplified phosphor screen; the scintillating screen is imaged

onto the charge coupled device (CCD) camera by a macro

lens. Sample and streak camera are placed 90 mm beyond

the magnetic lens to allow the 20 000 electrons per pulse to

Coulomb-expand to a pulse duration of �6 ps (see Fig. 1(b)).

The 90 nm thick 4 Hb-TaSe2 sample is mounted directly on

the streak camera’s 100 lm entrance aperture located 2 mm

in front of the streaking plates (4� 4 mm2; 600 lm separa-

tion). This configuration allows several diffraction orders to

be streaked without being clipped by the plates. A GaAs

photo-switch (3� 6 mm2) is mounted directly at one side of

the streak plates. The plates are charged by 700 V with a

20 ns long high voltage pulse. Exciting the GaAs switch with

the laser pulse triggers the discharge of the streak plates

yielding a damped oscillating electric field at 6 GHz with a

maximum rate of change of electric field of 30 kV
m ps

. The trig-

ger laser pulse is timed such that the temporal center of the

electron pulse passes the streak camera at the E¼ 0 position

(zero deflection) of the first oscillation. This allows streaking

to occur during the linear part of the transient change in elec-

tric field. The pump pulse counter-propagates the electron

pulse and travels through the streak plates before exciting

the sample. The fluence on the sample was set to 3 mJ/cm2,

which is sufficient to drive the phase transition and hence

leads to the complete disappearance of the CDW diffraction

satellites. The pump laser pulse was delayed such that it

excites the sample after roughly one fifth of the electron

pulse has passed through the sample as sketched in Fig. 1(a).

Once the respective timing of the three pulses has been

adjusted, no physical movement of any part of the setup is

required, thus eliminating a potential noise source.

Fig. 2(a) displays a diffraction pattern of 4Hb-TaSe2.

Here the bright peaks are the Bragg peaks of the underlying

host lattice, while the ð
ffiffiffiffiffi
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p

�
ffiffiffiffiffi
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p
ÞR13.9 CDW superstruc-

ture appearing below 410 K gives rise to 6 faint peaks

(referred to as CDW peaks) surrounding each of the bright

lattice reflections.16 To extract the transients from the

streaked diffraction patterns as seen in Fig. 2(b), all streaks

were superimposed for improved SNR (see Fig. 3(a)). In

order to retrieve the transient changes in the diffraction in-

tensity, the diffraction profile in vertical direction of the dot-

ted rectangular boxes is analyzed for pumped (Ip) and

unpumped (Iup) images. The transient signals plotted in

Fig. 4 represent the relative changes in scattering intensity:

DI=I0 ¼ ðIp � IupÞ=Iup. The obtained data can be qualita-

tively explained by considering two photo triggered proc-

esses: (i) the photoinduced changes in the interatomic

potential launches a coherent atomic motion towards the

unmodulated phase and (ii) a rapid transfer of energy

into the phonon subsystem gives rise to a conventional

Debye-Waller effect. Since (i) affects the lattice and super-

lattice reflections in the opposite way,5,8 the traces are

fitted with the function: DI=I0ðtÞ ¼ C1ð1� expð�t=scohÞÞ
þC2ð1� expð�tÞ=sicohÞ, with C1;C2 < 0 for the case of the

CDW reflections and C1 > 0;C2 < 0 to fit the dynamics of

Bragg reflections (see Ref. 8) for details on the model. This

function has been convoluted with the measured experimen-

tal temporal resolution of the setup of 550 fs. The time con-

stants used in the fit model are the extracted time constants

from the conventional scanning experiment,8 scoh ¼ 150 fs

and sicoh ¼ 500 fs, and demonstrate the good agreement of

the results from both techniques. For comparison, panels (b)

and (d) of Fig. 4 show the transients obtained by a conven-

tional scanning measurement obtained during the measure-

ment time of 70 min.

FIG. 1. (a) Principle of streaked diffraction: t0 is chosen such that section b
of the long electron pulse passes through unpumped sample while section a
of the pulse records the temporal evolution of the sample’s structure after it

has been pumped. (b) These slices of the probe pulse are afterwards spatially

separated via a photo-triggered streak camera on to the detector screen.

FIG. 2. Scanned and streaked diffraction patterns: (a) diffraction pattern of

4 Hb-TaSe2 with the streak camera voltage switched off. The layered hexag-

onal crystal structure results in hexagonally arranged, bright Bragg diffrac-

tion peaks. The CDW supermodulation results in the appearance of six weak

satellite reflections surrounding each Bragg reflection, referred to as CDW

reflections. Panel (b) shows the streaked diffraction pattern.
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In order to determine whether streaked electron diffrac-

tion can compete with the conventional scanning technique,

we need to consider three aspects: (i) temporal resolution,

(ii) observable time-window per measurement, and (iii) SNR

of the measurement.

(i) In conventional scanning electron diffraction the tem-

poral resolution is determined by the convolution of the opti-

cal pump pulse and the electron probe pulse and is in our

case �400 fs. On the other hand, in streaked electron diffrac-

tion the temporal resolution is determined by the optical

pump pulse duration Dso ¼ 200 fs, the streak camera’s tem-

poral resolution Dss, and the temporal jitter Dsj between the

streaking field and the electron pulse arrival. Here,

Dsj < 100 fs as our photo-triggered streak camera relies on

optical rather than electronic synchronization.12 The tempo-

ral resolution of the streak camera is given by the ratio of the

width (FWHM) of the unstreaked diffracted beam and the

streak length, governed by the streak velocity. The streak ve-

locity is directly determined by measuring the electron beam

deflection vs. arrival time of the photo-switch trigger pulse.

In the present configuration Dss ¼ 500 fs. Thus, including

Dsj and Dso, the overall temporal resolution of the experi-

ment is Ds � 550 fs.

(ii) The observable time-window of the transient is

determined by the temporal length of the incoming electron

pulse but cannot be increased arbitrarily. Individual streaks

of two adjacent diffraction spots should not overlap on the

detector (Fig. 2), setting up an upper boundary for the time

window. This condition can be relaxed if the sample is

rotated in such a way that the vertical streaks will pass next

to each other as is the case in Fig. 2(b). For the given elec-

tron beam parameters and lattice constants of 4 Hb-TaSe2 a

chosen time window of 6 ps is feasible. Longer time dynam-

ics can, however, easily be studied if the electron pulse is

prolonged and the streaking velocity accordingly reduced.

This results in a reduced temporal resolution, which however

is not really required for slower, long timescale dynamics.

(iii) In order to compare the SNR of both methods, we

refer to the data displayed in Fig. 4. Let us directly compare

the obtained transients for the Bragg dynamics, shown in

Figs. 4(a) and 4(b). For the streaking experiment, �2� 104

electrons per pulse were used, 30 images taken (exposure

time 120 s, each), and 13 streaks were superimposed. In the

scanning experiment, �1:5� 103 electrons per pulse, 70

images (exposure time 60 s, each), and 15 reflections were

used. Thus, in the streaking experiment five times more elec-

trons were collected during roughly the same acquisition

time and for the same length of the transient of 3 ps. Since

the streak camera resolution is the same as the scanning

method, the expected increase in SNR will be by a factor of
ffiffiffi

5
p
¼ 2:2. This estimate can be directly compared to the

experimentally obtained SNR ¼ AS

rN
, with AS being the ampli-

tude of the signal and rN being the standard deviation of the

noise. As signal amplitudes AS for the streaking and the

scanning experiment are nearly the same, SNR is governed

by rN. By subtracting the fitted curve from the measured

data, the remainder represents the noise, from which rN can

be determined. For the two curves, rstreaking ¼ 0:003 and

rscanning ¼ 0:011 is extracted, demonstrating an increase in

SNR by a factor of rscanning=rstreaking � 3:7. The SNR is not

improved in the CDW transients shown in Figs. 4(c) and

4(d); the reason for this is that in the streaking experiment

only one out of the six satellites could be analyzed (due to

overlapping of streaks) compared to all six well separated

CDW peaks in the scanning experiment.

The fact that the increase in the SNR of the streaking

configuration is higher than expected based on statistics can

be attributed to the parallel data acquisition. Here, the entire

transient is recorded by each shot. Thus, intensity fluctua-

tions, laser drifts, etc. are effectively averaged out. In fact, in

the current configuration we are largely limited by the detec-

tor noise. Further improvement of SNR can be achieved by

using gated MCP detectors and reducing the background sig-

nal due to inelastically scattered electrons and photoelectrons

from pumping the sample.

This is the first demonstration of streaking a sub-

relativistic diffracted electron beam with a photo-triggered

FIG. 3. Panel (a) shows the averaged streak of all available Bragg peaks.

The much weaker CDW streaks are not visible due to the intensity scaling of

the image. With an adjusted intensity scaling one of the six CDW streaks is

displayed in panel (b) with panel (c) indicating the CDW streak with the

pump beam on, t0 is clearly visible. Panel (d) shows the pumped and

unpumped images subtracted from each other.

FIG. 4. Comparison of transients obtained by streaking (data acquisition

time 60 min, fluence of 3 mJ=cm2) and scanning methods (data acquisition

time 70 min, fluence of 2:6 mJ=cm2). Although the streak length was �6 ps,

only 4 ps are plotted for direct comparison. The streak data were binned with

a 100 interval, i.e., 3 data points were averaged, for better comparability to

the scanned data. The fit model (solid lines) is briefly outlined in the text

and elaborated in Ref. 8.
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streak camera. Already at this proof-of-principle stage, the

streaking experiment outweighs the scanning technique in

terms of SNR while almost matching the temporal resolu-

tion. However it can quite easily be further improved. First,

a resolution on the order of �250 fs can be achieved by

increasing the streaking voltage by 50% and by halving the

streak plate separation. These modifications are realistic,

avoiding surface tracking across the GaAs photo switches

and leaving sufficient free solid angle for accommodating

several diffraction orders. Second, a further increase in SNR

requires an additional increase in the number of electrons per

pulse. In the current experimental configuration, a minimum

distance of 3 cm from the cathode to the sample is required.

Particle tracking of space charge dominated electron pulses

show that 106 electrons per pulse yield a 3 ps electron pulse

at the sample. This would theoretically yield a SNR increase

by a factor of 16. To be able to tune the pulse length inde-

pendently from the electron density, the photo-cathode can

be driven with a stretched UV pulse; thus, starting with a

longer electron pulse where the Coulomb strain also in lat-

eral direction is relieved.

In conclusion, we have experimentally demonstrated a

novel concept of ultrafast, non-relativistic electron diffrac-

tion to study structural dynamics in complex matter. The

concept allows for capturing a transient diffraction signal

with a high temporal resolution in a single exposure. This is

accomplished by inserting a compact, photo-triggered streak

camera into the diffracted electron beam path. We experi-

mentally demonstrated a temporal resolution of 550 fs and

outlined the way to achieve the time-resolution of 250 fs.

The method would be absolutely crucial for studying light-

sensitive materials and/or irreversible processes in a single-

shot fashion. However, the increase in the signal-to-noise

ratio demonstrated here in our case study points out its

advantages also for studying reversible phenomena.
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