

 University of Groningen

3rd SC@RUG 2006 proceedings
Smedinga, Reinder; Avgeriou, Paraskevas

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Avgeriou, P. (Eds.) (2006). 3rd SC@RUG 2006 proceedings: Student Colloquium 2005-
2006. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/3rd-scrug-2006-proceedings(49373278-dc56-4490-806d-2d064f1b4ec9).html

SC@RUG 2006 proceedings

Rein Smedinga
Paris Avgeriou

editors

2006
Groningen

ISBN 90-367-2626-3
Publisher: Bibliotheek der R.U.

Title: Proceedings 3rd Student Colloquium 2005-2006
Computing Science, University of Groningen

NUR-code: 980

Contents

1 Three Methods for reducing clutter, a review – Hubert ten Hove, Marco van der Kooi 6

2 Perceptual Methods in Information Visualisation – Nick Kirtley, Robert Vrooland 14

3 Combining perception-based visualization techniques – Han Stiekema 20

4 Visual Textures for Displaying Multidimensional Datasets – Mai Ho, Gert-Jan de Vries 26

5 A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor 33

6 Multi-layer Visualization: A Review of Selected Methods – Caesar Ogole, Julius Kidubuka 43

7 Java versus C++ – Bart Postma, Remko de Jong 49

8 Tree-based Image Representation, Filtering and Segmentation – Joris Best, Roel Donker 62

9 (In)security of the Needham-Schroeder public-key protocol – Freek Vandeursen, Mark Speelman 72

10 The (in)correctness of a security protocol – Gerard Knap, Bart Hoenderboom 78

11 Capturing The Missing Link: Design Decisions – George Craens, Hielko van der Hoorn 85

12 Determining the impact of design decisions – Frans Kremer, Herman van Rink 91

13 Three methods for modelling variability in software products families – Mohammad Babai, Henk van der
Veen 99

14 Evolution of Architectural Patterns From the original concept to the architects toolbox – Reinder Kam-
phorst 105

15 On the evolution of architectural patterns from the original concept to the architects toolkit – Sjouke W.
Boersma, Rick van Buuren 111

16 Alias-Free Digital Synthesis using Band-Limited Impulse Trains – Ilja Plutschouw, Piter Pasma 118

17 A Comparison of Haskell and OCaml – Mark IJbema, Hilverd Reker 125

18 Software Architecture Document Management System – Anton Rademaker, Marten Veldthuis 132

Contents

4

SC@RUG 2006 proceedings

About SC@RUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2005-2006 SC@RUG was orga-
nized for the third time as a conference. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chairs during the conference.

The organizers Rein Smedinga and Paris Avgeriou
would like to thank all colleagues, who cooperated in this
SC@RUG by collecting sets of papers to be used by the
students and by being expert reviewers during the review
process. They would also like to thank Femke Kramer from
the Faculty of Arts for her help in organizing this course.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2006 was organized
as follows. Students were expected to work in teams, con-
sisting of two persons. The student teams could choose
between different sets of papers, that were made available
throughNestor, the digital learning environment of the uni-
versity. Each set of papers consisted of three papers about
the same subject (within Computing Science). Soms sets
of papers contained conflicting meanings. Students were
instructed to write a survey paper about this subject includ-
ing the different approaches in the given papers. The paper
should compare the theory in each of the papers in the set
and include own conclusions about the subject.
Some teams proposed their own subject.

After submission of the papers individual students were
assigned one paper to review using a standard review form
(see Appendix A of the first StudColl2004 proceedings).
The colleagues who had provided the set of papers were
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper throughNestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the

conference and act as a chair or as discussion leader during
one of the other presentations. The audience graded both
the presentation and the chairing or leading the discussion.
Femke Kramer of the Faculty of Arts gave an introductory
lecture about general aspects of presentation techniques to
help the students with their presentation. She also did a
workshop on writing scientific papers.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discussion
leader during the conference). For the grading of the pre-
sentations we used a selected number of judgements from
the audience and calculated the average of these.

On January 23rd and 24th, the actual conference took
place. Each paper was presented by both authors. Both
days, we had ten presentations, each consisting of a total
of 30 minutes for the presentation and 10 minutes for dis-
cussion. As mentioned before, each presenter also had to
act as a chair or as discussion leader for another presenta-
tion during that day. The audience was asked to fill in a
questionnaire and grade the presentations, the chairing and
leading the discussion.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the following
expert reviewers:
– Ronald van der Berg
– Sybren Deelstra
– Jan Jongejan
– Gerard Renardel
– Marco Sinnema
– Jan Salvador van der Ven
– Michael Wilkinson

Also, the organizers would like to thank theSchool for
Computing Sciencefor making it possible to publish these
proceedings.

Paris Avgeriou,
Rein Smedinga

5

Three Methods for reducing clutter, a review

Hubert ten Hove, Marco van der Kooi

University of Groningen, Dept. of Computer Science,
Oude Boteringestraat 44, 9712 GL Groningen, The Netherlands

h.ten.hove@student.rug.nl, m.r.van.der.kooi@student.rug.nl

Abstract. Every computer user has encountered images or screens that were
unreadable because of the fact that too much data was presented or because the
data was too closely clustered. This phenomenon is called clutter. Scientists
have addressed the problem of clutter and presented some methods to prevent
and locate clutter. The Visual Information Density Adjuster (VIDA) uses layer-
ing to reduce the amount of information displayed and works with the constant
information density principle. The Feature Congestion method is used to locate
clutter within images and screens. It provides methods to solve cluttering, for
example with the use of colours to bring the useful information to the front of
the image. Other methods involve sampling, displacement and user perception
of 2D scatter plots.

1 Introduction

Anyone who has been in front of a computer has seen screens or images that are so
full of information that nothing is reasonably understandable anymore. This phe-
nomenon is called clutter. There are several researchers that have studied the problem
of clutter. Several proposals have been made to measure or reduce the amount of
clutter. Rosenholtz, Li, Mansfield and Jin present a measuring technique for clutter,
their feature congestion [1]. Woodruff and Stonebraker propose a program called
VIDA [2] which is an extension of the Datasplash program [4]. Bertini and Santucci
have a solution to improve the readability of 2D scatterplots [3].

How can one judge if an image is cluttered, research by Rosenholtz, Li, Mansfield
and Jin [1] found that some people judge the amount of clutter by thinking of task and
how difficult it is to perform that task on a given screen. If a task is difficult to per-
form with the image presented to the user, the perception of the image is cluttered.
They also power that users judge the amount of clutter according to their experience
and knowledge. So by increasing the difficulty to perform a task, clutter affects the
work speed of the user. But not only speed is affected, if an image is too cluttered the
user might derive wrong conclusions about the data presented in the image. In that
case clutter also affects the results. This makes clutter a highly undesirable phenome-
non that has to be solved.

6

Clutter is known in many forms. On websites we see cluttering when the sheer
amount of options is at such a level that the user is not able to find what he is looking
for. In diagrams like scatter plots, the dots or lines can be so close together that a
good interpretation of the diagram is difficult.

Many things can cause clutter, for example the organization, structure of the sym-

bols and figures within an image can be so distorted that the image seems cluttered.
Reorganization of the data presented in the image can solve these problems. Further-
more the use of colour can decrease or increase the amount of clutter perceived by a
user. Too much text in an image or screen also does not improve the readability.

The goal of this paper is to inform the reader about clutter and what problems arise

with this phenomenon. Furthermore we review some methods that present a solution
for clutter and recognize clutter.

In this paper we first describe the methods that have been researched for solving

and measuring the problem of clutter and their results. The paper is concluded with a
discussion in which we will discuss the methods and results and also look at the pos-
sibilities of combining those methods.

2 Three methods to measure or reduce clutter

2.1 Feature Congestion

Feature Congestion is proposed by Rosenholtz, Li, Mansfield and Jin [1] and is used
to assess the amount of clutter a display or image contains. The method is based on
their saliency model. The statistical saliency model gives a representation of the local
distribution of features by their mean and covariance. This is equivalent to represent-
ing the distribution by a set of covariance ellipsoids in the appropriate feature space.

Fig. 1. The Statistical Saliency Model

SC@RUG 2006 proceedings

7

Figure 1 shows a graphical depiction of this model. Starting with the innermost
each ellipsoid is one more standard deviation away from the mean feature vector.
According to long term research in this area those features are contrast, colour, orien-
tation and motion [5]. Using this model a target with a feature vector on the n ellip-
soid has a saliency n. When adding lots of new items to a display it becomes more
and more difficult to add a new salient item, Rosenholtz, Li, Mansfield and Jin call
this Feature Congestion. Clutter is measured by the local variability in certain key
features. The easier it is to add a salient item to a display the less cluttered the display
is.

They have implemented their model and performed a study in which they had a

group of people who judged the amount of clutter in an image. They compared them
with the results of their method. The results from the Feature Congestion research
pointed out that their saliency model which they used to measure the amount of clut-
ter on a screen / image performed well. After performing a average Spearman rank-
order correlation and comparing the results for the users and the Feature Congestion
method they concluded that their was a significant correlation of 0.83. This result was
comparable with the measured correlation between the different observers, and leads
to the conclusion that the model performs well.

2.2 VIDA

VIDA, short for Visual Information Density Adjuster [2], is a measure to create clut-
ter free zoomable interfaces based on the DataSplash database visualization environ-
ment [4]. DataSplash has a system in which specific information from the database is
represented in different layers. While zooming, layers will become visible according
to the zoom ratio. At the overview level only the first layer might be visible, although
at the detail level the top level might be invisible, but a few bottom layers might be
shown. The layers can overlap each other, which can be controlled by the layer man-
ager [2] that can adjust which layers are shown at a certain zoom level.

An example of a DataSplash visualisation can be a country map. The application

user will only see a global representation of the country when viewing the entire map.
Only the important cities and borders are shown. As soon as the user zooms in on a
certain area of the map, the detail of the map increases. While the zoom ratio in-
creases, smaller villages and roads appear.

The idea on which VIDA is based is called the Principle of Constant Information

Density [2] guideline. According to this principle, the number of objects on a screen
should continuously remain at the same level. In order to achieve such a constant
information density old information has to be removed from the screen in case new
information is added. In a zooming environment like DataSplash this means the detail
of an object should increase when the user zooms into it. However to maintain a con-
stant information density, the surroundings of the object should contain less informa-
tion.

Three Methods for reducing clutter, a review – Hubert ten Hove, Marco van der Kooi

8

According to studies, the users of the original DataSplash application found it

quite difficult to create visualizations that had the right amount of detail at any zoom
ratio. The layer manager of DataSplash could not sufficiently indicate the amount of
information density on a certain layer at a certain elevation. An automated system to
adjust the amount of information was needed. To accommodate this need Woodruff
and Stonebraker extended the DataSplash database visualization environment [4] in
such a way that it would comply with the guidelines of Constant Information Density.
Furthermore a feature was added to the layer manager so it can display the informa-
tion density at certain zoom levels. This improved version of DataSplash with the
Visual Information Density Adjuster can be seen in figure 2.

Fig. 2. A visualization of selected companies from the Fortune 500 and Global 500 lists.

"The following text is quoted from [2]. The width of each layer bar at a given ele-
vation now represents the density of the layer at that elevation. The minimum and
maximum density bounds are set to 10 and 100 objects, respectively. The colors of the
tick marks on the left side of the layer manager indicate the density values at given
elevations. Elevations 40%-60% are too dense, elevations 14%-38% and 62%-100%
have appropriate density, and elevations 0%-12% are too sparse."

To prove the functionality of the Visual Information Density Adjuster, an informal

study has been set up to test it. A small group of participants was asked to perform a
set of tasks with and without a constant information density, using a prototype written
in Java. The participants were given instructions how to use the prototype before-
hand. The way the participants navigated through the applications was monitored.

The informal user study has shown that most participants could complete the tasks

that were set easier with the application with a constant information density. Further-
more many users responded positively to the fact that it was easier to read than simi-
lar methods without a constant information density. The exact implementation of the
navigation through the layers was criticized by the participants. This was done by a
panning mechanism, whereas most users would have preferred a more straightfor-
ward solution like scrollbars. The tasks that were set out for the participants were also
found confusing.

SC@RUG 2006 proceedings

9

2.3 Improving 2D Scatter Plots

Another form of clutter is encountered in scatter plots. Bertini and Santucci have
researched ways to improve scatter plots using sampling, displacement and user per-
ception [3]. In a scatter plot some of the items can overlap resulting in a cluttered
image. Bertini and Santucci divide the image into several sampling areas, within
those areas two values are calculated, real density and represented density. A target
density is calculated using the density data from all areas. When the represented den-
sity is lower than the target density they use pixel displacement to reveal overlapping
items until target density is reached. This process will result in a less cluttered scatter
plot which is a better representation of the data than the original image.

The difference between the various sampling methods as mentioned by Bertini and

Santucci can be seen in figure 3. The leftmost scatter plot is the original plot without
any improvements. The centre plot uses the old sampling method. The rightmost
scatter plot uses the methods developed by Bertini and Santucci.

Fig. 3. From left to right: The original scatter plot; the old sampling method; the new method.

To obtain knowledge about the perception of people a user study was performed.
The study focused on presenting the people with a uniform density screen which
contained three more dense zones, they were asked to find those zones. These ex-
periments were used to gain knowledge about the perception of people, so they could
make the scatter plots display the results in such a way that the user would get the
correct perception of the image.

The results of the user study performed by Bertini and Santucci were used to cal-

culated what increment they would have to choose to guarantee that 70% of the end
users would notify the density difference. So an area A must have at least a density
increment of X to be perceived denser than area B. They also tested their method
using a data set, the resulting images were showing more detail than the original im-
age, thus proving that their method is improving 2D scatter plots.

Three Methods for reducing clutter, a review – Hubert ten Hove, Marco van der Kooi

10

3 Discussion

3.1 Feature Congestion

As seen in the results of the user study performed by Rosenholtz, Li, Mansfield and
Jin [1], the Feature Congestion method is a good measure for clutter. By not telling
the participants of the study a sound definition of clutter, the participant were not
searching for a pattern which fit the definition but judged clutter to what according to
them clutter was. In their paper they mention that knowledge and expertise influence
the amount of clutter perceived. In the study a task was presented to the participants
were no specific knowledge and expertise was required, to single out these influ-
ences.

Feature Congestion is designed to handle clutter in maps. Some of the methods
used in Feature Congestion can also be used to aid designers in adding attention-
grabbing elements to the display. The methods can point out a position in the image
to add the element and what colour the element should be to grab the most attention.
A study is needed to check for the possibilities in this field which may result in the
integration of Feature Congestion methods into graphical software program

3.2 VIDA

Woodruff and Stonebraker who developed the Visual Information Density Adjuster
conducted an informal study in which they let a few participants use their system to
perform a set of tasks. The subject of these tasks was to find certain companies with a
specific economic growth, using data from the Fortune 500 and Global 500. The
survey they held after the study showed that the users found the method of zooming
with a constant information density practical. However they found the tasks to be
quite difficult and complex.

The goal of their research was to measure the time it took for the participants to
complete the tasks and to monitor through which different layers of the application
the user moved and how much time the users spent in each layer. However paragraph
6.8, User Response in [2] states the following:

"Several users stated that they found the task confusing. Our intent was that par-

ticipants would infer a relationship between the variables presented and the variable
they were supposed to predict (revenue growth). For example, they might infer that
companies with fewer employees would be smaller and therefore more likely to ex-
perience rapid growth. We hoped that they would infer this relationship by exploring
the relationships that were explicitly present in the graph. The participants who said
they had been confused appeared from their comments to have performed this infer-

SC@RUG 2006 proceedings

11

ential task, but were not certain they had been correct in doing so. In retrospect, the
inferential nature of the task should have been made more clear."

The users in this survey mentioned afterwards that the tasks were confusing. An

obvious result of this is that more time was needed to complete the tasks than would
have when the users would not have been confused. If this is the case, it will nega-
tively affect the result given in paragraph 6.6 of [2]. Therefore we think that using a
predefined group of participants, given tasks that suit them more would give a better
indication of the pros and cons of the Visual Information Density Adjuster. We sug-
gest a new user study with a well defined search question so that the data collected
from the monitoring process is more representative.

3.3 Improving 2D Scatter Plots

The article Improving 2D scatter plots effectiveness through sampling, displacement
and user perception by Bertini and Santucci is a report on how to improve the infor-
mation density at certain areas of a scatter plot. The methods created by Bertini and
Santucci try to create the preferred information density for a given part of the scatter
plot. By using sampling and displacement on just a small part of the plot, the informa-
tion becomes clearer for that area, whereas the areas that do already have the pre-
ferred information density remain unchanged. The loss of precision that occurs when
using these methods will not affect visualisations such as the scatter plot, but might
not be desired for other types of visual representations. Therefore the methods pro-
posed by Bertini and Santucci are very specific to scatter plots only.

3.4 Combining VIDA with Feature Congestion

VIDA works according the principle of constant information density. This means the
screen displays a constant degree of clutter. The measuring technique in VIDA that
asses the amount of clutter a display contains is not the most robust method. To im-
prove the working of VIDA the saliency model of feature congestion must replace the
current method for assessing the information density. Not only gives this model a
measure for the information density but it also calculates the features which have to
be added to and image if it is placed on the screen. With the model calculations can
be made to display new data, that is presented in the next zoom layer, in the most
effective way.

In VIDA all views have the same information density. Information density in an
image gives an measure of clutter for that image. The saliency model of feature con-
gestion measures the amount of clutter an image contains, so a constant measure of
clutter should give the same result as a constant measure of information density.
Therefore the algorithm for measuring constant information density in VIDA can be
replaced with the saliency model.

By replacing the methods, the saliency model should improve the measure of clut-

ter which VIDA uses. The improvement in method gives a more accurate measure of

Three Methods for reducing clutter, a review – Hubert ten Hove, Marco van der Kooi

12

clutter / information density. This will give a better result of constant information
density which is the core of VIDA. And with the ability to calculate the most effec-
tive way to display new data according to its features, more information can be dis-
played with the same information density.

References

1. Rosenholtz, R. Li, Y. Mansfield, J. and Jin, Z., Feature Congestion: A Measure of Display
Clutter, Cambridge, 2005.

2. Woodruff, A. and Stonebreaker, M., Visual Information Density Adjuster (VIDA), Univ. of
California, Berkeley, 1998.

3. Bertini, E. and Santucci, G. Improving 2D scatterplots effectiveness through sampling,
displacement, and user perception, Rome.

4. Aiken, A. Chen, J. Stonebraker, M. and Woodruff, A., Tioga-2: A Direct manipulation Da-
tabase Visualization Environment, Proc. 12th Int'l Conf. on Data Engineering, New Orleans,
Louisiana, Feb 1996, pp. 208-217.

5. Wolfe, J.M. Visual Search. in H. Pashler, ed., Attention. University College London Press,
London, U.K., 1998.

6. Woodruff,A. Wisnovsky, C. and Taylor, C., Zooming and Tunneling in Tioga: Supporting
Navigation in Multidimensional Space, Proc IEEE Symp. on Visual Languages, St. Louis,
Missouri, Oct. 1994, pp. 191-193.

7. Woodruff, A. Su, A. and Stonebraker, M., Navigation and Coordination Primitives for Mul-
tidimensional Browsers, Visual Database Systems 3: Visual Information Management
(Proc. 3rd IFIP 2.6 Working Conference on Visual Database Systems, Lausanne, Switzer-
land, March 1995) pp. 360-371, S. Spaccapietra and R. Jain (Eds) Chapman & Hall, 1995.

SC@RUG 2006 proceedings

13

Perceptual Methods in Information Visualisation

Nick Kirtley s1471651
Robert Vrooland s1494821

Computer Science Department, Rijkuniversiteit Groningen

Abstract

Arranging information in a way that a human can understand is of great importance.
Perceptual methods in information visualization helps a user to understand complex data by
arranging it in a specific way.

The type of visualization depends on a number of factors like user type, amount of data and
the complexity of the data. We will discuss several methods for the visualization of
information. These methods are needed in order to maintain the optimal flow of information
to any user. These methods can build a system such as a H.U.D. (Heads Up Display) or a
system that can extract data from large databases with information of high dimensionality.

1. Introduction

In this digital age information is everywhere. Infact there is often so much information that it
is difficult to understand what the information means. One of the easiest and most commonly
used ways of interpreting and relaying information is through visual means. With the increase
in the amount of information it is more difficult to decide how to visualize data. Realizing
how to display information is extremely important because it can affect the way that the
information is interpreted. Therefore the same data can be visually represented in different
ways and can cause confusion between users that try to interpret that data.

This review paper focuses on serveral methods of displaying complex information in a way
that important information is retained and can be interpreted by the user. The word
‘important’ can of course be interpreted in different ways to different people.

14

2. Human perception

From the many methods available to us for visualisation, it stands out that most of them are
based on the priciples of human perception. Several problems caused by human perception
when trying to interpret visual data are shown in this paper. To name a few examples. When
trying to increase the intensity of a visual dimension, the magnitude of the same increase can
be perseived differently, like in brightness or height.

When using color in a graph, using a continuous colormap could cause people to not clearly
see the diffrence of data in a region. Different shades of yellow can be hard to tell apart.
Data can be visualised in several ways. Sometimes 2 or more methods are combined to give
the user more information on the same graph. This can cause problems if the different layers
of the graph interact with each other.

Recent studies and experiments have shown that when we look at something, the following
classes are preattentively processed:

● Form

● line orientation, length, width and colinearity
● size
● curvature
● spatial grouping
● added masks
● numerosity (numeber of items)

● Color,hue and intensity

● Motion, flicker and direction

● Spatial position

● 2D position
● stereoscopic depth
● convexity/concavity (shape form shading)

Using these characteristics of the human perception will allow us to create better visual
representations of data. Building a rule-set on these characteristics will allow us to for
example make it easier to understand the data, focus on important bits of data or being able to
define a clear border between data.

SC@RUG 2006 proceedings

15

3. Visualization of one surface overlying another.

It is often important to visualize multiple layers of information. This can be the case with 3D
models where not only the outside (of the model) is of importance. For example the ocean can
be modelled with various temperatures represented as different layers. In such a case it is
important to be able to differentiate between the layers. Both surfaces must be textured and
the top layer must be partially transparent in order for them to be differentiated. The choice of
textures for both surfaces is not an easy one because it is dependant on a number of
parameters. The solution is a three step process.

The first step involves developing a parameterization of the problem. This should result in a
vector of parameters representing the visualization of the data. The number of parameters is
likely to be very large because it is for visualization purposes and that tends to contain a large
amount of information.

The vector is put in a genome so that step two can use a genetic algorithm where selection is
based on user preferences. A genetic algorithm is used because of the high dimensionality of
the parameter space and because it is able to rapidly explore promising regions. Each
generation of results should be evaluated by a human so the selection process progresses in
the ‘right’ direction.

Step three is needed to characterize results. This is based on what is important to the user. If a
specific solution is needed then the genetic selection process can be stopped as soon as a
satisfactory solution is found. If a more general solution is needed then a large set of solutions
can be analyzed.

4. How humans interpret visualization and how to use this knowledge to enhance
visualization

As stated before, human perception is important when creating visual representations of data.
To get a closer look at this phenomenon we will look at two examples of systems. These
visual systems build completly around the idea of human perception.

First theres the Stereoscopic Field Analyzer (SFA). This system allowes for effective
conveying of information from large multidimentional datasets. This system can represent
data in a 3D field filled with 2D glyphs. Every glyph in this field can have up to 9 variables.
Each of these variables are directly connected to the variables that the human perception is
good in identifying. These attributes range from location, size, shape and more.

The user this system can freely move around in the field looking at every possible angle.
When looking at one of these fields everyone will quickly be able to read the data correctly,
and be able to spot the most interesting regions.

This immeadiatly brings us to the second system. We will now look at a volume illustration
techniques. This system is used to enhance excisting illustrations in order to clarify the data it
represents. Before using a system like this we ask ourselves 3 questions:

1. What information should be displayed?
2. What display techniques should be used?
3. How should the display technique be implemented.

Perceptual Methods in Information Visualisation – Nick Kirtley, Robert Vrooland

16

The 3 most common illustration techniques are: feature, depth/orientation and regional
enhancements.
By using one of these techniques we are able to enhance an excisting illustration, and
highlight the regeons of interest.

5. Building a perceptual visualisation architecture

Visualising large multidimensional datasets can be a hard task. It is often a case of having too
much information so the hard task is determining what information is important to
visualize.Size of a dataset is based on three characteristics:

• The number of elements in the dataset
• The number of attributes or dimensions
• The range of values

The first task of visualizing a large dataset is managing the data. This can be done using data
mining classification algorithms and has the following results:

• Identifies dependencies
• Estimate missing or correct erroneous values
• Compress size and dimensionality of a dataset

After the data has been managed it is necessary to visualize the data. This consists of mapping
data attributes to visual features such as colour, intensity and texture. When visualizing the
information it is important to take into account how humans preattentively interpret
information. This has the advantage that visual analysis is rapid and accurate, output is
insensitive to display size and avoiding bad visual feature combinations.

Perceptual texture elements, or pexels, can be used to display 3D information and more
importantly can be interpretted preattentively. A pexel is basically a rectangle at a certain
position in a 3D map. The size of a pexel can vary by length indicating a certain value and the
density of all the pexels has meaning as well. Regularity of pexels can also quickly be
observed by people.

Colour can also be used to represent attributes in multidimensional datasets. It is important to
be able to quickly differentiate between colours.

SC@RUG 2006 proceedings

17

6. An architecture for perceptual rules into the visualisation proces using metadata

Representing data is difficult. Presenting data in a visual way is not the problem. Its how
people interped the data from the visual representation. There is a basic rule that is the cause
of this problem: ?Mathematically identical != Perceptually identical?.
The human perceptual and cognitive mechanisms are very important when trying to visualize
data.
The same data, like the temerature of an area, can be represented in different ways. Ways like
using grayscale, using contours or the height of the graph creating a landscape. All these
methods can produce a diffrent perception of the same data. Several methods have been
though up to combat this problem. One of them is the ?architecture for rule based
visualisation?.
This method in short works on 2 principles:

1. casting the visualisation operations to higher levels of representation of the
data, called metadata.
2. use a given set of visualisation rules based on priciples of human vision,
cognition and color theory.

These higher levels of representation called metadata is composed of data such as:
image statistics, if data is discrete ot continuous of spacial coherence. These kinds of data can
help when trying to create a structure for a visual operation. The meadata can also be used in
the visualisation itself. For example, it can be better to use a standard deviation instead of the
entire array for visual operations.

Now that we have established a structure for the visual data, we can start adding the data. We
do this with the second rule. Using the prinicples of human vision already previously
discussed, we start filling in the data.
We have choosen the proper format like using color, contours, heightmaps or any
combination, and put it in the structure created by the metadata.

Now we have a visual representation where the dataset is faithfully represented.

Perceptual Methods in Information Visualisation – Nick Kirtley, Robert Vrooland

18

Conclusion

An underlying theme found in all of the papers is the psychology of human visual perception.
It is important to understand this phychology and use it so that information is perceived
correctly. All of the papers use the theory of human perception as a basis for creating rule-
based systems. There seems to be little or no diffrence in the way the human perception is
used in all of the systems.

All of these systems are not the same though. They all use the same basis for perception but
then have their own technical problem. Each of these systems will then solve the different
problems in their own different way. So in a technical sence they do not overlap or contradict
each other.

References

1. Rogowitz B.E. , Treinish L.A. , An Architecture for rule-based visualisation
2. Ebert D.S. , Extending visualisation to Perceptualization: The importandce of perception in
effective communication of information
3. Wattenberg M, Fisher D, A model of multi-scale perceptual organisation in information
graphics
4. House D, Ware C, A method for the perceptual optimization of complex visualisations
5. Healey C.G. , Building a perceptial visualisation architecture

SC@RUG 2006 proceedings

19

Combining perception-based visualization techniques

Han Stiekema

Institute for mathematics and computer science (IWI),
Rijksuniversiteit Groningen, The Netherlands

H.Stiekema@student.rug.nl

Abstract -- In this article, four papers on perceptual visualization techniques will be reviewed. This paper will
cover two things: first, the described techniques are briefly explained and their applicability is discussed.
Second, a combination of the techniques is recommended that might result in an even better visualization of
the data. An example from one of the papers will be extended to give an indication of where this combination
of techniques could work.

1. Introduction

Making a good visualization of (scientific) data is a very difficult task, especially when this data consists of
several dimensions. Visualizing for instance ten data attributes understandably in a 2D, or even a 3D image
seems like an impossible task, especially when you also want to visualize the relationships between the data
attributes. Many studies have been conducted to find out how to make a good visualization that clearly shows the
data and allows interpretation of more complex structures. Some of these studies try to use characteristics of the
human visual system. In these studies, characteristics of the human visual systems were investigated to see how
they can be used to make visualization techniques more effective. Four papers ([1], [2], [3] and [4]) that discuss a
visualization technique using the human visual system in some way will be discussed in this article and the
applicability of the discussed techniques will be investigated.
Under the right circumstances, combining some of these techniques might result in even better results.
Therefore, a real life example, taken from one of the articles, will be taken one step further to possibly give a
better visualization of the data than already had been achieved.

2. Review of visualization techniques

The visualization techniques that will be discussed in this article have been taken from Rogowitz and Treinish
[1], House and Ware [2], Wattenberg and Fisher [3] and Healey [4]. Only a brief description of the techniques
will be given, for further details (on formulas, algorithms or statistical results of a study for example), see the
original documents. The description of each technique will be followed by a short note on the applicability of the
technique.

2.1 Rule based visualization

In many cases, it is possible to visualize the same data in different ways. This could lead to wrong interpretations
if the data is represented in a less visualization-favorable way. Also, visualization of one data attribute might
perceptually interact with the visualization of another attribute. For example, color and shape might interact,
because of shading effects. (See also [5], where Kim et. al. discuss the influence of texture on the perception of
shape).

To solve this kind of problems, Rogowitz and Treinish propose a rule-based approach to visualization in [1]. An
important part of this approach is that metadata should be added that gives extra information about the data. This
metadata could contain information about, for example, the interval that indicates possible values of a certain
data attribute, or the dimension of the data. This metadata can either be derived from the data, or it can be
obtained by interaction with the user.

This metadata can now be combined with perceptual knowledge to create rules that indicate how a certain data
attribute can be visualized effectively. Ideally, the system should be able to determine what type of visualization
to use with what type of data attribute. For instance, data about wind will usually contain some information

20

about direction and strength. If such information is available in the metadata, a visualization rule could say that
this data should be visualized by using arrows.

This method could be effective in certain situations. However, it might be hard to determine the rules that this
approach is based on. Especially, coming up with effective rules that do not interact can be quite difficult in
multidimensional data. The method is somewhat abstract and could prove to be difficult to generalize. Of course,
this does not imply that it is futile to use this type of visualization structure.

2.2 Overlaying surfaces, a genetic approach

House and Ware try to tackle visualizations of overlaying surfaces. In [2], they focus on the problem of showing
two overlaying surfaces in such a way that a user can see both surfaces. To solve this problem, they use a genetic
algorithm to reach visualizations that allow a user to clearly see the different surfaces that are being displayed.
The described algorithm uses vectors containing texture parameters for both surfaces. These vectors are the
genes that represent texture in the texture space (which is too large to try all possible textures). A generation
contains several of these genes. These genes are initialized randomly. The algorithm generates new generations
by performing two genetic steps (i.e., pair wise cross-over and mutation), and then asks the user to evaluate the
display that is formed by each specific gene. After a while the algorithm has reached a somewhat uniform
generation in which the display is optimized. The algorithm could be restarted with new initial gene values to get
a different optimized display.
After running the genetic algorithm, a clustering algorithm is used to find groups of displays that use similar
parameters (two solutions are clustered when their parameters have a Euclidian distance smaller than a certain
threshold). According to House and Ware, this approach usually results in two clusters, one big cluster and a
smaller one.

House and Ware have done a user study on this approach with 5 subjects, each completing 3 trials. Generally,
after about 20 generations, reasonable solutions were achieved, where good solutions were common. Performing
one trial took the subjects about two hours.

Even though this approach might result in acceptable results for this rather complicated problem, execution time
is simply too slow and takes too much effort to be a real visualization technique. The described method might be
considered an ‘escape’ method, used when other visualization techniques are unable to provide acceptable
results. However, the visualizations that have been found could be examined to see why they are better than, for
example, the random initial visualizations. In this respect, their research might be a starting point for a user study
to find out what the important elements of a successful visualization are. House and Ware give some suggestions
of what type of texture they believe is more successful.

2.3 Multi-scale visualization technique

In [3], Wattenberg and Fisher discuss a multi-scale model that is capable of finding structures in grayscale
images. As an example, they use the so called “Dr. Seuss” image (see figure 1) that gives an indication of how
information in an image is grouped.

SC@RUG 2006 proceedings

21

Fig. 1. Four different scales of the Dr. Seuss image (image taken from [3])

Wattenberg and Fisher model this idea of scales mathematically using Gaussians. They describe an algorithm
that uses this definition to link different scales together. This algorithm finds elements in the image that are
grouped at a high scale. These high-scale linked groups indicate that the specific region belongs together in a
way. In the Dr. Seuss image, these are, for example, the lines in the image. There are clear spaces between the
characters and the words, but the algorithm finds that at a certain scale, the words belong together and form a
line (which in turn forms the paragraph, together with the other lines).

Given this algorithm, we can analyze images to see whether parts that the algorithm links together actually
belong together. If certain elements in an image that have no real relation to each other and should not be
considered one element (for example, grid lines and a graph drawn in this grid), are linked by the algorithm, this
gives an indication that the visual system has difficulties in separating the individual elements. In this example,
the visual system would find it hard to distinguish between the graph and the grid lines if the graph and the grid
lines would be linked together by the algorithm. The illustration below demonstrates this example.

Fig. 2. Two versions of the same graph on grid with thin lines (left) and thick lines (right). The thin gridlines do not pose a
problem, whereas on a higher scale, the thick grid lines merge with the graph. This indicates that the human vision system
tends to see the graph and the thick grid as one object. (image taken from [3])

Combining perception-based visualization techniques – Han Stiekema

22

Because this algorithm gives a clear indication of where things might go wrong, we are able to improve images.
In the grid line example, thinner or dotted grid lines might result in a better image.

Even though this method does not generate good-quality images, it could be very useful in evaluating the quality
of images. A shortcoming of this method is that it only works on grayscale images, but the method might be
extended for the use of color. Wattenberg and Fisher do point out that this method has not been validated, but it
seems to be quite a promising one.

2.4 Perceptual visualization architecture

In [4], Healey describes a method for visualizing large, multidimensional datasets that uses characteristics of the
low-level human vision system. The method he describes is a step-by-step approach that gives a visualization
that shows the most important data in a way that it is easy to see the data.

The first step in this approach is to analyze the data with data mining techniques that are capable of giving a
reasonable estimation of missing data, and that indicate which of the data attributes are the most significant. By
only displaying the most significant data attributes, there is obviously a loss of data, but this loss is minimized;
the least important things are ignored. To provide a reasonably understandable visualization, only a limited
number of attributes can be visualized effectively. If necessary, more attributes can be included by making
several images. This could for example work quite well if another important attribute is time. Each image could
then show the data, that varies over time (a different image for each time step), which is quite intuitive in many
cases.

The actual visualization of the attributes that are selected in the previous step is the result of a rather extensive
study to find out how both texture and color can be used for data representation. First, a brief overview of the
texture study.
Perceptual texture elements (pexels) are used that contain little ‘towers’. Pexels can vary in the height of the
towers (the height of a pexel), the amount of towers contained by a single pexel (density) and the arrangement of
the towers (regularity).

Fig. 3. Different types of pexels used in the experiments (image taken from [4])

The study described in [4] showed that height and density of the pexels are characteristics that are easily
recognized by the human visual system, e.g., in a grid of low pexels, a tall pexel is easy to spot. Regularity is
considered to be very difficult to judge, and is therefore a bad way to visualize an attribute. It should be
remarked that height influences the ability of identifying density, taller pexels make it more difficult to spot
denser pexels. This led to Healey’s choice of using pexel height to represent the more significant data attribute
and density for other attributes.

As mentioned, color was studied in addition to the texture. This study showed that for a good visualization the
amount of colors that is used should be limited to about seven and that these colors should have a certain
distance between them. It helps if each color is selected from a different category (for example red, blue and
yellow). Colors that are a combination between for example green and yellow are sometimes hard to name, i.e.,

SC@RUG 2006 proceedings

23

users tend to give both green-yellow combinations and pure green the name ‘green’. Usually, users can see the
difference, but the further the colors are apart, the easier it gets.

Healey has used this approach to visualize plankton densities quite effectively. A disadvantage of this technique
is that some data is ignored, but in many cases, this is acceptable. Another disadvantage is that absolute values
are very hard to distinguish. For example, you cannot tell exactly how dense a certain pexel is by just looking at
the image, and therefore it is very difficult to get an idea of the value that the density represents. However, this
method is very suitable when differences are more important than exact values (e.g., ‘this pexel is twice as high,
so the wind speed will be twice as high’).

3. Visualization techniques combined

Not each of the techniques mentioned above is equally suitable for any given problem. Here, an outline will be
given of how these techniques could possibly be combined to form a technique capable of better visualizations and
the visualization of more complex data. Note that no studies on this combination have been conducted, and that
this combination is purely an attempt based on what is described in the discussed articles.

As a basis, the plankton density example from Healey [4] will be used. The image below is the visualization that
has been created by the method Healey has described. In this image, color indicates plankton density, height
represents current strength and texture density represents sea surface temperature.

Fig. 4. Visualization of the oceanography datasets, color used to represent plankton density (blue, green, brown, red, and
purple represent lowest to highest densities), height used to represent current strength, texture density used to represent sea
surface temperature. All in June, 1956. (image taken from [4])

Implicitly, Healey has already applied the rule based approach from [1], by deciding to use pexel height to
represent current strength and which color should represent what level of plankton density etc. These choices
could be included in the architecture, by adding visualization rules to Healey’s method. Rules can be used to
decide which data attributes to represent, how to represent certain types of attributes and to decide which color
should represent what kind of information (for example, use blue for low values and red for high values).
Another rule might be to always use pexel height for the most significant data attribute and density for the least
significant attribute.
This is just a simple example of a combination of techniques, which could make a method more general. Of
course, more complex and more detailed rules could be used.

For really complex data that is very hard to represent nicely, the overlaying surfaces method from [2] could be
used to add an extra ‘layer’ of information on top of the data that is already available. By making both layers
visible with the technique from [2], it might be possible to display more dimensions than is possible with the
original method. However, this kind of visualizations might become very hard to interpret and the extra layer
should be expected to interfere with other information. This added layer of information is therefore not directly
recommended, but perhaps a method for successfully overlaying two surfaces, while still being able to see all the
information contained in both surfaces, will be developed from the method in [2]. Perhaps, in combination with
the rule based approach, it can become useful.

Combining perception-based visualization techniques – Han Stiekema

24

The multi-scale approach from [3] is hard to fit in this example. First of all, because this method is grayscale
based, but as mentioned in [3], the method might be extended for color. Second, this method is based on two
dimensional images, and does not have real value in a three dimensional image. These are disadvantages
inherent in the method, but that does not imply that this method is useless. In two dimensional cases, it could
very well have evaluational value to make sure the visualization is interpreted in the right way by the human
visual system.

4. Conclusion

In this article, four visualization techniques have been discussed. The discussed methods all have some way in
which they could be applied, but in general, the rule based approach in [1] and the visualization architecture from
[4] are most likely to give a way to create a good visualization. Both of these techniques can also be combined to
get a more general technique.

The genetic overlaying surfaces technique mentioned in [2] might be useful to create clearly visible overlaying
surfaces, but it is a somewhat slow method that requires a little too much effort to be a good automatic
visualization method. On the other hand, it will probably give information to find out effective visualization
textures for this problem, which could lead to a real automatic visualization tool. It might even be combined with
the rule based approach, as described in [1].

The multi-scale approach from [3] probably has the highest value as an evaluation technique, to get an indication
as to how the human visual system interprets structures in an image, rather than a visualization technique.

5. References

[1]. An architecture for Rule-Based Visualization. B.E. Rogowitz and L.A Treinish, IBM, 1993;
[2]. A model of multi-scale perceptual organization in information graphics. M. Wattenberg and D. Fisher, IBM and

University of California, 2003;
[3]. A method for the perceptual optimization of complex visualizations. D. House and C. Ware, Texas A&M

University and University of New Hampshire, 2002;
[4]. Building a perceptual visualisation architecture. C.G. Healey, North Carolina State University, 2000;
[5]. Showing shape with texture – two directions seem better than one, S. Kim et. al. Univ. of Minnesota, 2003.

SC@RUG 2006 proceedings

25

Visual Textures for Displaying Multidimensional
Datasets

Mai Ho and Gert-Jan de Vries

Abstract. A technique for displaying multidimensional datasets is the
use of visual textures. Based on outcomes of psychophysical research and
experiments, methods have been developed to generate visual textures.
This paper discusses four of those methods: natural textures, using pat-
terns found in nature; oriented sliver textures, which use oriented stripes
and luminance; textures with paper strips, with varying height, density
and regularity; and OSC textures (with varying orientation, scale and
contrast) using Gabor functions.

1 Introduction

Information visualization is a field of science in which research is being done
on how to display data in a form that allows users to rapidly and accurately
explore a dataset. A typical graphic information display, such as a computer
screen, provides two spatial and three color dimensions. For displaying data
with a higher dimensionality, display channels like perspective, motion and visual
texture can be used. Although visual texture uses the dimensions ’reserved’ for
displaying shape and color, human vision can still easily distinguish the general
color and shape of an object from its texture, like for example a woolen jersey.
Therefore the use of texture, in most cases, does not largely affect the perception
of color and shape.

The data we consider consists of multidimensional data points spread along
a grid on a surface. Therefore each grid area contains a vector of, say, N > 1
dimensions that represent the values of N attributes (for example measurements)
connected to that location on the surface. Examples of scientific areas in which
this kind of data can be found, are meteorology (temperature, wind speed, air
pressure over Europe), physics (pressure, temperature along the surface of an
object), chemistry (concentration of chemical elements on a surface), etc.

The key in displaying multidimensional data is to optimally use the available
display dimensions to enable the viewer to observe patterns in the data, thereby
not causing interference between different data dimensions. In this paper we give
an overview of four techniques that use visual texture for this purpose.

2 Previous work

Texture has been studied extensively in the computer vision, computer graphics
and cognitive psychology communities. Results from cognitive psychology have

26

shown that height, density and regularity are detected by the low-level human
visual system [2]. The latter two have been identified in the computer vision
literature as being important for performing texture segmentation and classifi-
cation [3]. Healey and Enns [1] designed a perceptual technique for visualization
of multidimensional datasets that uses all three dimensions.

A similar technique using oriented sliver textures was introduced by Weigle
et al. [4]. This technique extends EXVIS [5] by allowing a viewer to estimate
relative values within an individual field, while still producing the characteristic
textures needed to highlight interactions between different fields.

The graphic design community has long held that perfectly regular synthetic
textures on a flat plane are discomforting to the eye and annoying to look at.
The use of natural textures, resembling those from photographic images [6], is
discussed by Interrante [7].

A mathematical model based on the Gabor function has been studied by
different people [8]. Ware and Knight [9] studied the suitability of a simplified
class of Gabor functions as primitives in the generation of texture.

3 Existing methods

In the previous section different techniques were mentioned that use visual tex-
ture to visualize multidimensional datasets. Here we discuss four of those tech-
niques.

3.1 Perceptual texture elements

Description This technique uses perceptual texture elements termed pexels
to represent each data element. Attribute values encoded in the data element
are used to vary the appearance of a corresponding pexel. The pexels are built
by controlling three separate texture dimensions: height, density and regularity.
They are three-dimensional and look like a collection of paper strips that “sit
up” on the underlying surface. See Figure 1 for an example.

Height and density both have a natural ordering that can easily be used to
order attribute values. Ordering regularity is more complex.

Experiments and results Controlled experiments have been conducted to
measure the effectiveness of textures built out of pexels. The most important
results:

– Taller pexels can be identified at preattentive exposure durations (within
150 msec.) with very high accuracy.

– Shorter, denser and sparser pexels are more difficult to identify than taller
pexels, although good results are possible at 150 and 450 msec.

– Irregular pexels are difficult to identify and regular pexels cannot be accu-
rately identified.

SC@RUG 2006 proceedings

27

Fig. 1. A map of North America, pex-
els represent areas of high cultivation,
height mapped to level of cultivation, den-
sity mapped to ground type, greyscale
mapped to vegetation type.

Fig. 2. A sliver texture displaying the
presence of several chemical elements, like
silicon (165◦) and oxygen (120◦), on a sur-
face.

Since some type of regularity is often used as one of the primary texture di-
mensions in texture segmentation and classification algorithms, the poor exper-
imental results for regularity were unexpected. Regularity targets can be made
easier to identify by increasing the size of the target patch or by increasing every
pexel’s density. Both methods involve tradeoffs in terms of the kind of datasets
we can visualize or in the number of attributes our pexels can encode. Therefore,
attributes with low importance are normally being displayed using regularity.

Future Combination of features like hue, intensity, orientation, motion and
isocontours with perceptual textures are suggested, to increase the number of
data values that can be displayed simultaneously. Another possibility is to apply
various orientations to a pexel.

3.2 Oriented sliver textures

Description This technique uses small line segments termed slivers to represent
data. Chosen constant orientations (angles over a scale of 0◦-180◦ are used, since
the slivers are rotationally symmetric) are assigned to attributes Ai. Luminance
changes with the value of attribute Ai where the minimum value of Ai is depicted
as black, the maximum value of Ai is depicted as white. The values in between
are distributed along the grey value scale using a perceptually based luminance
scale to compensate for the visual system’s response to luminance (which is
approximately logarithmic).

The actual texture is created by placing the orientated slivers onto a grid.
To remove possible visual patterns created by the regularity of the grid, each
sliver is moved by a small random distance in a random direction. An example
is given in Figure 2.

Visual Textures for Displaying Multidimensional Datasets – Mai Ho, Gert-Jan de Vries

28

Experiments and Results Conducted experiments have led to the following
results:

– Orientations of the sliver should differ at least 15◦ to be easily distinguished.
This led to the insight that at most 12 (180◦ contains 12 angles of 15◦) at-
tributes can be displayed. Note that 0◦ and 180◦ coincide because of sym-
metry of the slivers.

– The cardinal directions 0◦ and 90◦ form a special case: they can be dis-
tinguished from slivers rotated at least 5◦ (instead of 15◦). Further, they
form a good background patch, but not a good foreground patch. Therefore
these orientations should be treated with care and need to be assigned to
attributes which are present in large quantities (so they can act as kind of a
background). Keeping this in mind 14 different orientations can be chosen,
for example [0 10 25 40 55 70 85 90 95 110 125 140 155 170].

– When orientation varies over 45◦-90◦, subjects tend to take slightly more
time to give their answers than in the 0◦-45◦ experiment. For static (or slowly
changing) data the researchers concluded this result was due to differences
between subjects. However, for the use of oriented sliver textures in real-
time applications, more research has to be done to verify if this difference is
generally the case.

Future There has been no research to the effect of placing multiple slivers on the
same location. This is the case when regions with presence of different attributes
overlap. Of course overlap of large numbers of orientated slivers limits the ability
to observe the actual presence of attributes.

A large advantage of this method of texture creation is that it is relatively
efficient in terms of computational power and can be executed in parallel (slivers
with different orientations can be determined in parallel), which is certainly a
pre for real-time applications.

This texture has the potential to be combined with other texture dimensions
like the size or density. Furthermore future research will be done to use 3D
orientation in textures.

3.3 Natural textures

Description This technique uses texture patterns found in nature as elemental
primitives for data representation. To use this technique, a texture palette is
needed. An example of a small potential texture palette is shown in Figure
3. It is important to have a perceptually linear texture space to quantify the
perceptual distances between individual texture patterns.

Experiments and Results Interrante [7] only describes approaches to esti-
mate the magnitude of the perceived distance due to the differences along each of
the feature dimensions. No actual experiments have been conducted to measure
how effectively information can be visualized using natural textures.

SC@RUG 2006 proceedings

29

Fig. 3. A small potential texture palette. Scale increases along the horizontal axis and
regularity increases along the vertical axis.

Future Some important issues that have been overlooked in the past are the
following:

– What is the effect of uncontrolled-for influences of higher level processes,
when identifying the features according to which people tend to classify
texture patterns?

– The question of whether to control for rotation, scale, luminance and contrast
variance among texture samples when seeking insight into the perceptual
groupings of texture images.

A possibility is to consider textures that exhibit relief. This possibility introduces
the issue of how to properly deal with the lighting consistency problems that will
inevitably arise.

3.4 OSC (Gabor) textures

Description Research in electrophysiology and psychophysiology [10] indicates
that the human brain contains large arrays of neurons, which filter for orientation
and size and are sensitive to elongated shapes. Because of the large similarity
between these elongated shapes and Gabor functions, Ware and Knight [9] pose
the idea to use Gabor functions to create textures.

A Gabor function is a complex valued function, consisting of the product of
a Gaussian with a complex exponential and, in 2D defined by

e−
x2+y2

2 eif0y

with f0 specifying a frequency. Available for the use in textures are both the real
part (cosine Gabor) and the imaginary part (sine Gabor). Illustrations of these
Gabor functions are depicted in Figure 4.

Visual Textures for Displaying Multidimensional Datasets – Mai Ho, Gert-Jan de Vries

30

Fig. 4. A sine Gabor (left) and a cosine Gabor (right), both with frequency f0 = 4.

To form the so called OSC (Orientation, Size, and Contrast) texture, stan-
dard scaling and rotational operations can be used on the Gabor function prim-
itives and the contrast can be varied. The orientation can be scaled linearly over
the range 0◦ to 180◦ since the Gabor patterns are twofold symmetric (so 180◦ to
360◦ coincides). Size (i.e., the frequency of the Gabor function) has to be scaled
over a range of 2 to 16 cycles per degree of eyesight, which are limits of the
human vision [11]. An exponential scale is being used. Finally contrast is scaled
exponentially.

Experiments and Results Ware and Knight [9] have not conducted actual
experiments on how effective OSC textures based on Gabor functions are, i.e.,
how good patterns can be distinguished in these textures.

Future The example textures that are presented by Ware and Knight [9] are
vague due to the character of Gabor functions which seem to make detecting
patterns harder. The exact influence of this vagueness should therefore be re-
searched.

Furthermore research still has to be done in how humans associate some
kind of ’semantics’ to textures. Somehow humans seem to prefer certain texture
dimensions to be used for displaying certain data dimensions. For example it
seems more effective to display amounts of energy using texture contrast instead
of orientation.

4 Conclusion and future work

We studied four existing techniques that use visual texture for information visu-
alization. These techniques, using different textual dimensions, form a base for
techniques that allow us to display datasets of even higher dimensionality.

With the sliver textures, other shapes could be used instead of line segments.
An interesting research subject would be what shapes are suitable. It can easily
be seen that a higher order of rotational symmetry of the shapes limits the
freedom of the rotational dimension. Another extension on the sliver textures is

SC@RUG 2006 proceedings

31

to vary the size and density. In this technique areas of high density can become
too dense to be able to distinguish the other texture dimensions. Zooming in on
the surface could solve this, but can limit the overall view. This trade-off can be
another interesting subject for research.

The method using perceptual texture elements can be extended with orienta-
tion. The exact orientation can only be identified when the paper strip is limited
to a plane. To successfully visualize data, you do not want paper strips to touch
or overlap each other. So when using this new method, we first need to know
which orientations can be used. Another variation is to combine pexels with
natural or Gabor textures, resulting in decorated pexels. The decoration can be
applied to the pexels themselves, to the underlying surface or both. However, the
decorations may be distracting, making it more difficult to identify tall, short,
dense, sparse, regular or irregular pexels. Also, in case decorated paper strips
are used, the texture patterns may be small and not close together. This makes
it harder to identify perceptual distances between texture patterns.

The proposed changes and additions of dimensions to existing techniques
may interfere with the texture dimensions already present, limiting (and possi-
bly decreasing, in the case of dimensions already present) the number of data
values that can be displayed per dimension. Controlled experiments are needed
to provide the required insight to make optimal use of these new methods.

References

1. Christopher G. Healey and James T. Enns: Building Perceptual Textures to Visu-
alize Multidimensional Datasets. IEEE Visualization (1998) 111–118

2. J.M. Wolfe: Guided Search 2.0: A revised model of visual search. Psychonomic
Bulletin & Review 1(2) (1994) 202–238

3. A. Ravishankar Rao and Gerald L. Lohse: Identifying High Level Features of Texture
Perception. CVGIP: Graphical Model and Image Processing 55(3) (1993) 218–233

4. C. Weigle and W. Emigh and G. Liu and R. Taylor and J. Enns and C. Healey:
Oriented sliver textures: A technique for local value estimation of multiple scalar
fields. A technique for local value estimation of multiple scalar fields. In Graphics
Interface (2000) 163–170

5. Georges Grinstein and Ronald M. Pickett and Marian G. Williams: EXVIS: An
exploratory data visualization environment. Graphics Interface ’89 (1989) 254–261

6. Phil Brodatz: Textures: A Photographic Album for Artists and Designers. Dover
Publications (1966)

7. Victoria Interrante: Harnessing Natural Textures for Multivariate Visualization.
IEEE Computer Graphics and Applications (2000) 6–11

8. M. Porat and Y.Y. Zeevi: Localized texture processing in vision: Analysis and syn-
thesis in Gaborian space. IEEE Trans. on Biomedical Eng. 36(1) (1989) 115–129

9. Colin Ware and William Knight: Using Visual Texture for Information Display.
ACM Transactions on Graphics 14(1) (1995) 3–20

10. D.H. Hubel and T.N. Wiesel: Receptive Fields and Functional Architecture of
Monkey Striate Cortex. J.Physiol. 195 (1968) 215–243

11. Colin Ware and William Knight: Orderable Dimensions of Visual Texture for Data
Display: Orientation, Size and Contrast. Proceedings of CHI’92. (1992) 203–210

Visual Textures for Displaying Multidimensional Datasets – Mai Ho, Gert-Jan de Vries

32

A review of three Multi-Layer Visualization
methods

Joris Lops and Mickeal Verschoor

Rijksuniversiteit Groningen, Department of Computing Science, Blauwborgje 3, 9747
AC Groningen, The Netherlands,

Abstract. Visual perception of humans plays an important role when
graphical visualization of data is considered. Several psychophysical ex-
periments showed how the low-level human visual system perceives sev-
eral visual features. These features include orientation, luminance, blur
and texture. When complex multidimensional datasets have to be visu-
alized, problems may occur when the data has to be interpreted. In this
paper we review three methods for visualizing multidimensional data as
a set of different data layers. The final image contains all data of each
layer.

1 Introduction

The user plays an important factor in visualization. It does matter how the
algorithm performs, for example memory usage or/and speed, but it must com-
municate the data in a clear picture so that a user can interpret it without
difficulties. Visualization is therefore a study in which psychological aspects are
very important.

Multidimensional datasets are hard to visualize and for viewers it is hard to in-
terpret the information stored in such images. Multidimensional datasets can be
found in several disciplines of science, such as astronomy, physics and meteorol-
ogy. A common way to visualize multidimensional datasets is by using a number
of scatter plots. The problem with such visualizations is that the coherency of
the data dimensions is lost. This can be solved by visualizing al data dimensions
in one image. When we do this, perception of the human visual system plays an
important role in order to distinguish different dimensions from each other.

The problems that are encountered when multidimensional data are visualized
are that a viewer needs the coherency between several data dimensions. A better
approach than scatter plots is using several layers of representations, where each
layer corresponds with some dimension in the dataset. Each dimension in the
dataset is spatial dependent from each other in such way that we can easily stack
the different layers into one final image, where each data dimension is present.
The problem is how we can distinguish several layers in the final image.

33

In this paper we review three papers about visualizing multidimensional data
in a layered approach. Each paper presents some research methods and results
within the context of visualizing layered datasets.

2 Review of three methods

First we review the paper of C. Weigle et al.[1], which uses sliver textures
in combination with orientation and luminance to visualize the data. Next we
review the work of R. Kosara et al. [2], where the application of depth of field
is discussed in order to emphasize some parts of the data. At last we review the
results of D. House and C. Ware [3], which describes a method for texturing
surfaces in order to make two surfaces distinguishable by humans.

2.1 Oriented sliver textures

C. Weigle et al.[1] describes a texture generation technique that combines orien-
tation and luminance to support the simultaneous display of multiple overlap-
ping scalar fields. In order to display a scalar field, oriented sliver textures can
be used. Figure 1c gives an impression of an oriented sliver texture. The val-
ues of the scalar field are mapped to a luminance texture (grayscale swatches).
Figure 1b shows the corresponding luminance texture. The luminance map and
the oriented sliver texture are combined to produce the final sliver layer, which
is shown in figure 1d. Each dimension in the dataset is represented by a sliver
layer. When multiple sliver layers are displayed, the layers are rotated differently
to make them distinguishable from each other. Figure 1 gives an impression of a
visualization of two scalar fields using oriented sliver textures. The image allows
users to locate values in each individual dataset and the relation between the
values. To apply oriented sliver textures efficiently, it must be know when the
visual system can distinguish several sliver textures with different orientations.
I.e. how many distinguishable sliver layers can be shown in the final image?

To answer this question the minimal angle between two sliver textures must be
known. The researchers found the minimal angle between slivers by measuring
the response time and error rate. In the experiment several tests were taken with
a number of subjects. Each subject had to identify one ore more different slivers,
if present in the image. An example of a test image can be found in [1]. They
measured that if the angles between background slivers and target slivers was
smaller than 15 degrees, the subjects took more time to select target slivers and
they made more mistakes. For background slivers oriented at 0 and 90 degrees
they found that the minimum angle between background and target slivers could
be reduced to 5 degrees. The total number of different oriented slivers in one
image can be at most 14, so we can distinguish at most 14 attributes of the
dataset using oriented sliver textures.

A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor

34

Fig. 1. Left: The construction of one layer of slivers from a scalar field. (b) shows the
luminance of the scalar field. (c) Shows a layer with horizontal slivers. (d) Shows the
multiplication of the luminance and the slivers. Right: The visualization of two scalar
fields in one picture. (a) and (b) are two different layers which represent some data
using sliver textures. (c) is the combination of both layers.

When several sliver layers with a high intensity are overlapped, shapes like +,
x or stars are formed. Because these shapes are more prominent, a viewer can
distinguish these regions better, but these features were not measured during the
experiment. If some parts of the data have to be emphasized, a re-rotation of a
certain sliver layer is desired to obtain some patterns in the final image. If the
relation between two dimensions in the dataset has to emphasized, a rotation to
0 and to 90 degrees can improve the detection of both features. Figure 2 shows
a re-rotation of two sliver textures in order to emphasize two scalar fields in the
dataset. To remove strong artificial artifacts from the final image, each sliver
layer is jittered.

Using oriented sliver textures we can visualize up to 14 scalar fields which are
spatial dependent. For each dimension in the dataset we assign a different sliver
texture and the value of the scalar field defines the luminance of the slivers. The
final image contains up to 14 different sliver textures and the luminance of each
sliver corresponds with the value in the scalar field. Figure 2 shows the result of
a visualization of a multidimensional dataset using oriented sliver textures.

Using this technique several scalar fields can be display in one picture. A viewer
can use these images to:

– Determine which field is prominent for a region.
– Determine how strongly a given field is present.
– Estimate the relative weight of the fields values in a region.

SC@RUG 2006 proceedings

35

– Locate regions where all the fields have low, medium or high values.

Fig. 2. Left: an image containing several data layers using oriented sliver textures.
Right: the same data visualized after a re-rotation of some sliver layers.

2.2 Semantic depth of field

R. Kosara et al. [2] investigates the useful properties of semantic depth of field.
Semantic depth of field is a focus+context technique that uses selective blur
to make less important objects less prominent, and thus point out the more
relevant parts of the display to the user. The technique is based on the depth
of field technique used in photography, which depicts objects sharply or blurred
depending on their distance from the lens. This is used to guide the viewers
attention, and is quite effective and intuitive.

The researcher’s goal was to find out how semantic depth of field is an effective
method for guiding the user’s attention, and how it is useful in applications.
They first investigate how depth of field or blur can be applied. By measuring
response times of the subjects they found how depth of field can be applied.
After that, depth of field is compared with other techniques such as coloring.
Finally the blur perception of humans is measured.

Preattentivity Preattentive processes take place within about 200 ms after
the stimulus is presented. These processes involve a limited set of features for
which certain tasks can be performed easily. These features include: orientation,
closure, color, proximity, etc. The tasks are: detection, location, count estimation,
recognition of groups, etc. Using preattentive features for visualization makes
the information easier to see in order to get an overview. Especially methods for
pointing out information have to make the relevant objects immediately stand
out.

A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor

36

Test procedure The test procedure tests two preattentive abilities: able to
detect and locate sharp objects, and estimate percentage of targets among dis-
tractors. Each presented test image contains 3, 32, or 63 distractors and one or
none targets. For each distractor a blur level of 7, 11 and 15 pixels was used. The
blur level is measured by how much one pixel is spread when blurred. A blur
level of 1 gives a perfectly sharp image. An example of a test image is given in
[2]. Each participant was shown 210 different randomly generated images. They
had to answer in which quadrant contained the target, if present. Each image
was visible for 200 ms.

In the second test each participant had to estimate the number of targets with a
number of distractors in the background. Possible answers were few, intermediate
and many. The results of this experiment was that the accuracies for correct
locations of the targets were very high (>90%) or high (>60%) depending on
the blur level. When the lowest blur level of 7 pixels was present, the accuracy
dropped significantly, because we can not distinguish the distractors from the
targets.

Because humans can locate the target and estimate the number of sharp objects
within 200 ms, it must be a preattentive process.

Interplay Because semantic depth of field is not very likely used without any
other visual cues, the researchers investigated how semantic depth of field in-
teracts with other features, such as color, and orientation. The test was similar
as the previous test but now the target was always visible. The test used three
methods; simple, disjunctive and conjunctive searches. Simple searches are based
on the presence of one target feature in the image, with distractors not different
from one other. In a disjunctive search, the subjects looked for one target fea-
ture, but now the distractors could also differ from another one (e.g. if the red
object is the target, all distractors were black but could be sharp or blurred).
Conjunctive search required the participant to look for a combination of two
target features (e.g. the red and sharp object), while the distractors could have
any other combination of the two.

The researchers found that in terms of search time that semantic depth of
field was not significantly worse than color. This was what the researchers found
the most and surprising findings of the experiment. Furthermore, there was no
significant difference between a simple search for colored or for sharp objects.
Conjunctive searches for color and blur, orientation and blur, and color and
orientation differ significantly from each other, with color and orientation being
the slowest. Each of these two features combined with semantic depth of field is
faster than the simple and disjunctive searches, which was quite contrary from
what the researchers expected, because conjunctive searches are usually slower.

SC@RUG 2006 proceedings

37

Blur perception The researchers were planning to use semantic depth of field
as a separate visualization dimension that could be used in addition of existing
visualization dimensions, such as color and orientation. To do this, they needed
to know the minimal differences between blur that humans can perceive. The
researchers expected an exponential relation between the blur level and the per-
ceived blur (like the way luminance is perceived). The test showed that semantic
depth of field cannot be used as a full visualization dimension. Participants were
able to detect differences between objects with different blur levels with good
accuracy, but they were not able to correctly identify objects with the same blur
level. A blur higher than 7 did not improved the results. Furthermore, partic-
ipants commented that they disliked having to look at blurred objects and to
compare them. It therefore appears to be necessary to make sure that no im-
portant parts of the image is blurred and that the user can switch to a different
view to see a completely sharp image at any time.

Application results Some applications (Textdisplay, scatterplots and mapviewer)
were tested which uses semantic depth of field. The results of these tests are much
less conclusive, due to both technical and design problems of the applications.
The main results for the tested applications was that there was no significantly
difference between using semantic depth of field or other features, such as color
and orientation. Figure 3 gives an impression of the mapviewer application.

Fig. 3. An application of semantic depth of field. The image shows the mapviewer
application.

2.3 Perceptual Optimization of Complex Visualizations

D. House and C. Ware [3] describes a method for visualizing multiple layers of
three dimensional surfaces using a stereoscopic setup. A common problem within
visualization applications is to display multiple overlapping surfaces. They found
that texturing plays an important role for revealing surface shapes, but no gen-
eral guidelines are present for creating such textures. The problem they wanted
to solve was how to choose the pair of textures so that they both optimally reveal

A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor

38

surface shapes that are maximally visible to human subjects. Because of the com-
plexity of the problem, no standard psychophysical experimental methodologies
could be used, so they developed a new method for solving such problems.

Perceptual properties of textures Texturing surfaces is especially important
when they are viewed stereoscopically. This becomes obvious if we consider that
a uniform non-textured polygon contains no internal stereoscopic information
about the surface that it represents. When a polygon is textured, every texture
element provides stereoscopic depth information, relative to neighboring points.
Contours that are drawn on a shaded surface can drastically alter the perceived
shape of a surface. Figure 4 has shaded bands that are added to provide in-
ternal contour information. The contours that are drawn on both surfaces are
different and the two rectangular areas contain exactly the same shading. The
combination of contour information with shading information is convincing in
both cases, but the surface shapes that are perceived are very different. This
tells us that shape information is inherently ambiguous. It can be interpreted in
different ways depending on the contour.

Fig. 4. Left: a surface with a shading and contour texture. Right: the same surface
with the same shading, but with a different contour texture.

Problem of layered surfaces The problem which they encountered was that
is was not clear how to choose the texture characteristics that made use of
both stereoscopy and motion. They developed a parameterized texture space
that allowed a number of texture attributes that might bear on the layered
surface problem. The most important attributes they used for the textures are
orientation, foreground transparency, density of pattern, regularity of pattern,
softness and background color. For the texture elements the most important
attributes were transparency, size, linearity, orientation and color. Because of
these attributes, the search space for textures was too large, so another method
must be used to find the optimal texturing for both surfaces. They used a genetic
algorithm to find the attributes for creating optimal textures.

SC@RUG 2006 proceedings

39

Test results Each participant was shown two layered surfaces combined with
two generated textures. The textured surfaces were presented in stereo and with
motion. The participant should be able to detect the shapes of both surfaces.
For each pair of textures, participants grade the set of textures. At the end of
the test, new textures were generated according to the results of the previous
test. After about 20 generations, the genetic algorithm produces proper results.
Figure 5 shows a result of the algorithm. The problem of this approach is that the
process produces proper solutions for complex visualizations, but the resulting
textures are not necessarily the simplest and most elegant. Another problem was
that the algorithm produces proper, but different results for different participant,
so no general solutions were found using this method. By combining the results
of multiple participants, the researchers expect better and general results.

Fig. 5. A result produced by the genetic algorithm. Left: the upper surface. Right: the
lower surface.

3 Discussion

From the reviewed papers we can conclude that some properties of visual percep-
tion are useful when layered visualization of multidimensional data is considered.
Especially preattentive features, such as blur, color, luminance and rotation can
be used to distinguish different layers. Some features can be used as a display
dimension, such as luminance, which corresponds with the values of the scalar
field for a certain dimension.

C. Weigle et al.[1] presented a method which uses oriented sliver textures com-
bined with luminance to visualize a scalar field. The question the researchers
asked themselves was how humans can distinguish the sliver textures. From a
number of experiments they found that humans can distinguish sliver textures
when the minimal angle between the slivers is 15 degrees or more. The presented
method is very useful in the suggested application domains. Participants who
viewed at the final images were able to interpret the presented data and the

A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor

40

relations between the several dimensions. The paper itself gives a constructive
method which can be used for visualizing multidimensional data as a set of lay-
ers. The researchers suggested to extend the method by adding a thickness of the
slivers, but the impact of this was not tested within the pertinent experiments.

R. Kosara et al. [2] conclude that the use of blur is a functional addition to
the preattentive features, but it was not found significantly better than other
preattentive features. When blur was used in combination with other features,
it was found to be faster than any other combination of preattentive features.

The paper itself gives a clear indication where blur can be applied and where
not. As said before, they concluded that blur is a good addition, although they
also explicitly concluded that humans dislike looking at blurred objects. Fur-
thermore, humans can not distinguish objects with different blur levels, besides
that a blur level of 7 pixels is about the minimum that humans can distinguish.
Therefore, they concluded that the use of blur has to be avoided to express some
values of the scalar fields, but can be used to emphasize important objects by
blurring the less important one.

The authors found that semantic depth of field is not very likely to be used
in combination without other visuals cues. Why they mention this is not very
clear, we assume this is related to the results of the conjunctive search tests. The
result of each test was significantly better when visual cues were combined with
semantic depth of field.

D. House and C. Ware [3] presented a method for generating textures which are
used to visualize two different surfaces in combination with motion and stere-
oscopy. The researchers gave a proper indication of the problem with texturing
three dimensional shapes, but the paper does not give a constructive solution.
The solutions of the method are satisfying, but only for a specific type of person.
Combining the results of the tests, a more general result can be obtained. They
liked to develop a process for abstracting the texture attribute values in order
to make a simpler and cleaner solution. From this some guidelines can be given
about how certain texture attributes can be applied. One interesting question
could be how can humans distinguish both surfaces when no stereoscopy is used?

The reviewed methods can be applied when visualization of multi-layered data
is considered. Each method can be applied in a different way. The oriented sliver
method is perhaps the most intuitive method for visualizing multi-layered data.
The method can be applied when the dimensions of the data is limited by 14.
Semantic depth of field is not a technique to visualize multi-layered datasets,
but it can be used in combination with other techniques in order to guide the
user’s attention to some parts of the data. In [2] the authors tested a map-
viewer application were multi layered maps were visualized. Important layers
were emphasized by blurring other layers using semantic depth of field. Figure 3
gives an impression of this application. The method described in [3] can be

SC@RUG 2006 proceedings

41

used where three dimesional surfaces are overlaying other three dimensional
surfaces. Applications can be found in medical visualization where different kinds
of tissue overlaying other structures/surfaces. The surface of each stucture has
to be recognized properly. By choosing the proper texture, humans can reveal
the surfaces better.

Semantic depth of field can perhaps improve the oriented sliver texture tech-
nique. In [1] the authors did a re-rotation of the silvers to emphasize some parts
of the data. We think that semantic depth of field can also be used in combination
with oriented sliver textures to emphasize some parts of the data.

The test procedures of both semantic depth of field and oriented sliver textures
were very similar. For each test participants have to find some targets surrounded
by distractors. The main goal of the test for oriented sliver textures was to find
the minimum angle between slivers. For semantic depth of field the search time
was a goal. Comparing the search times of both tests using semantic depth of
field, a participant was much faster in finding the target than the other test.
Because blur is a preattentive feature, targets can be found within 200 ms. The
search time for the oriented sliver textures was higher because participants have
to search for the targets, which took more time. We think that the oriented sliver
textures technique can be improved with semantic depth of field, but this has to
be investigated.

Semantic depth of field could also improve the multi-layer visualization men-
tioned in [3]. For example, one texture can be blurred such that the other layer is
better perceived. Maybe humans can perceive the surfaces better when semantic
depth of field is used in combination with this technique without stereoscopy?

References

1. C. Weigle, W.G. Emigh, G. Liu, R.M. Taylor, J.T. Enns, and C.G. Healey. Oriented
sliver textures: A technique for local value estimation of multiple scalar fields. In
Graphics Interface, pages 163–170, May 2000.

2. R. Kosara, S. Miksch, H. Hauser, J. Schrammel, V. Giller, and M. Tscheligi. Useful
Properties of Semantic Depth of Field for Better F+C Visualization. Proceedings of
the Joint Eurographics–IEEE TCVG Symposium on Visualization (VisSym 2002),
pp. 205-210.

3. D. House and C. Ware: A method for the perceptual optimization of complex visu-
alizations. Advanced Visual Interface, Trento Italy, pp. 148-155, 2002.

A review of three Multi-Layer Visualization methods – Joris Lops and Mickeal Verschoor

42

Multi-layer Visualization: A Review of Selected Methods

Caesar Ogole, Julius Kidubuka
Institute for Mathematics and Computing Science

University of Groningen, The Netherlands
{C.Ogole, J.Kidubuka}@student.rug.nl

Abstract
While the advances in scientific visualization have made it possible to convert contextual data sets into
conspicuous meaningful images, some areas still need further exploration. One of these challenges, which is
the focus of this review, is the problem posed by the question: “Given large, complex and multi-dimensional
data sets that represent overlapping surfaces and fields in the real world, what visualization technique can be
applied to optimize the display of this class of images?” This problem is particularly difficult owing to the
fact that solution methods to multi-layer visualization problems do not only involve many variables such as
textures, colors, orientation and (the degree of) transparency of overlaying surfaces, but also, have to integrate
user-centered issues such as user feedback. Human perception is core to the considerations. Moreover, the
integration of these factors into a typical visualization system takes the form of parametizations of complex
and highly interactive algorithmic procedures. No standard guidelines to select suitable sets of parameters
exist. In this paper, we review three different techniques of enhancing multi-layer visualization.

1 Introduction
The goal of scientific visualization is to transform
sequences of numbers and character strings into
images from which useful information can be
inferred. These sequences fall into categories, each
of which may possibly be representing some
attribute(s) of the entity in question. The
representative values are called datasets. Since most
entities are complex, it is only possible for them to
be represented by large and multi-dimensional
datasets, which in general, have many different data
elements. The complexity of the datasets poses a
big problem to visualization processes, particularly,
in the case where the encoded image information in
the data patterns is multi-layer in nature. This
problem is not merely a classic case of investigation
in theoretical computations but it is also an area
having vast applications in the real world, for
example, in medical imaging where, in practice, a
subject has to view the tissues overlain by skeleton
or vice-versa.
The problem of multi-layer visualization can be
understood quite easily by thinking of an image
scenario where there are a collection of N surfaces
(or fields) that overlap one another in space (Figure
1). How do we view the overlaying surfaces?
Suppose the top surface is more opaque, can we
still view the bottom surface conspicuously without
having its shape distorted in any way? Obviously,
the viewer will not be able to extract useful
information. This is likely to render the visual
system, and hence the applied technique, not user-
friendly or even useless.

Fig.1. The “wedding cake” illustration of
overlapping surfaces

Thus, this paper provides a brief review of some of
the existing methods of enhancing multi-layer
visualization. At some point during its use, the
technique employed in such a system requires that a
user chooses values for system parameters so as to
guide the system in improving or refining its output.
This is the actual transformation phase where the
representative datasets are converted into multi-
layer (overlapping surface) images. Variables of
special interest include, but are not limited to,
surface texture colors, orientation, opacity (or
selective blur), shapes, distribution, sizes and
segmentation. While it would be a good idea to
study the effect of each of these variables over the
others (one at a time), it is practically not possible
given that the number of variables is very large.

2 Related work
The quest in finding effective solution to the
problem of multi-layer visualization is not a new
thing. Several attempts had hitherto been made by
various researchers and it is these contributions that
served as a starting point for the techniques

43

reviewed in this paper. We give a brief overview of
related work.
Methods of analyzing image textures using
statistical techniques have been shown to work well
under certain conditions [1], although it focused
mainly on a single task (texture). The big setback
with the previous methods was that they did not
take into account other relevant image attributes.
The texton theory [2], a contribution by Juliész,
pointed out that early vision detects three types of
texture features, namely, elongated blobs with
specific visual properties (for example, colors and
orientation), ends of line segments and crossings of
line segments. Closely related to multi-layer
visualization applications, Interrante[3] uncovered
that if one or both surfaces are given spatially
transparent texture, this can help to define and
distinguish them. Interrante further reported that
additional depth information provided through
stereoscopic viewing and motion parallax can make
them stand apart. However, none of these studies
gave guidelines for choosing texture pairs that both
optimally reveal the surface shape and do not
interfere with one another. The problem of
perception thus crops up.
All the works related to multi-layer visualization
are about image surface texture, because surfaces in
nature are generally textured. As explained by
Gibson [4], texture is an essential property of a
surface. A non-textured surface, he said, is merely a
patch of light.

Fig.2. Textures as an important surface property

Some authors such as Dawkins [5] and Sims [6]
went as far as giving useful hints into
methodological boundaries in generating solutions
to visualization problems. Notably, it is observed
that the structure of a genetic algorithm provides a
convenient means for visualization and user
feedback. This is the heuristic that has been used
extensively in the visualization techniques reviewed
in this paper. Genetic algorithms are particularly
good for this class of computational problems
because they allow prioritization of operations
within regions that are believed to be “promising”
in the context of generation of better or improved
results.

3 Review of Methods
In this survey, it is observed that no single
technique is best. To this effect, each technique is
first described to some satiable length and level of
detail before the pros and cons are shown. The hope
is that detailed understanding of these attempts will
lead to further refinement by other researchers who
will venture into addressing any pitfalls in the
methodological designs.

3.1 Method for perceptual Optimization of
Complex Visualizations
In this first technique [7], the tasks involved in the
solution method can be divided into three stages.
The first problem is to represent the datasets using
appropriate data structures. Arrays (or vectors) of
data elements, whose sizes depend on the
dimensionality of the datasets, are used for this
purpose. The term gene is used to refer to the
encoded parameter vector, tuned as an input to the
transformation procedure in the next phase. The
idea of encoding datasets at this stage is to define
the search space within which all derived solutions
must lie. In the second phase, gnome is fed into the
conversion process which is actually a routine that
falls under the family of genetic algorithms.
Notable at this phase is the involvement of the user
in supplying parameter values that reflect
preferences and hence, guiding the algorithm
during the iterative output refinement. The third and
final phase is to characterize the results so as to
select the palatable solution. This is done according
to the clustering criterion.

Why a genetic algorithm? The search space can be
overwhelmingly large for exhaustive search. A
genetic algorithm is useful because the search
proceeds only towards promising regions, and is
somewhat resilient in avoiding poor local minima.

3.1.1 Data Structure

Fig 3. A 6X6 lattice with dots

In this representation, each texture tile is structured
as a set of three lattices. Using standard texture
mapping approach, a complete texture across a
surface is tiled from a single base file. The tile is
divided into a uniform square grid by the lattices.

Multi-layer Visualization: A Review of Selected Methods – Caesar Ogole, Julius Kidubuka

44

3.1.2 The algorithm
The pseudo-code for the genetic algorithm is shown
in Appendix 1. It is important to understand the
terminology used in the procedure description.
Each encoded parameter is referred to as a gene.
Arrays of genes, or genotypes, are in turn stored in
an array of generation. It is the generations (arrays
of arrays, or multi-dimensional arrays) that are fed
into the algorithm as inputs. The gene is usually
encoded as an integer or floating point and each
gene controls an aspect of a texture pair. Prior to
the algorithm’s first run, the generations are
initialized to randomized values. Subsequent values
depend on the user preferences that guide the
interactive algorithm towards desired optimal
generation values.

3.1.3 Results
On average, it was found that generation of
acceptable solutions through the repetitive steps
took two hours per subject. This process was
successful in producing good results to the problem
of visualizing overlaying surfaces for all the
subjects. However, initial randomized data
(generation) values for the texture pairs did not
seem to have a good representation of the optimal
solution values. Iteration run time decreased with
increasing number of iterations, and after about
twenty minutes, there seemed to be less distinction
in the next and previous results. It was observed
that opacity of the top surfaces greatly affected the
visualization of overlapping surfaces (Figure 4).
However, variation in colors apparently had
negligible effects. This rendered colors only
important in attribute display.

Fig.4. Degree of transparency affects visualizing
overlapping surfaces. (Compare a and b)

3.2 Focus + Context Technique
Semantic Depth of Field (SDOF) [8] is the second
technique employed in the display of overlaying
surfaces. SDOF is based on the depth of field (DOF)
effect borrowed from cinematography and
photography that depicts objects (sharply or blurred)
depending on their distance from the lens. Selective
blur images based on relevance (rather than
geometry) are used to guide the viewer’s attention
to the unblurred objects in the image. The aim of
this technique is to efficiently and effortlessly
present information to the user/viewer. The sub-
techniques (stages) involved are split into three.
In the first stage, we make use of a process known
as preattentivity. Two preattentive abilities are
tested: being able to detect and locate a sharp object,
and being able to estimate the percentage of targets
among distractors. Experimental results showed
preattentivity provides a reliable technique of
finding sharp targets among blurred distractors. The
accuracies for correct location of targets were very
high (atleast 90 percent) or high (atleast 60 percent)
depending on the blur level. Significant drop in
accuracy was attributed to presence of the lowest
blur level. Preattentive processes take place within
a very short time (~200ms) and involves a limited
set of features (such as orientation, closure, color,
proximity, etc.) for which certain tasks (e.g.
location, detection) can be performed with ease.

In the second phase, interplay is used. Figure 5
depicts an example of the images used for this part.
The focus of interest is in the interaction of SDOF
with other features (color and orientation are
selected for use) because it is very likely that SDOF
will not be used without any other visual cue apart
from sharpness. Simple, disjunctive and
conjunctive searches are tested as a way of
detecting the presence of one or both features in the
target.

Fig.5. Example image for interplay

SC@RUG 2006 proceedings

45

In the last stage (known as blur perception), the
smallest difference that can be perceived in blur,
and the rate at which “steps” in blur are perceived
are assessed. This is based on the assumption that
there is an exponential relationship between the
blur level and the perceived blur. To do this, a test
is performed (with the help of some participants)
and it consists of a number of parts: testing the
ability to tell whether or not two objects have the
same blur level, the absolute thresholds of blur
perception and finally to tell the perceived relation
in blur in terms of a ratio of two numbers.
Effectively, multilayer visualization is enhanced in
that SDOF can then decide for every object whether
to display it sharply or blurred (Figure 6). The
decision is based on the object’s current relevance.

Fig. 6. Application example of a chess board, with
the chessmen threatening the knight on e3 in focus
(taken from Kosara et al.6)

3.2.1 Results
In terms of search time, SDOF was observed not to
be significantly worse than color; this was perhaps
the most interesting and surprising finding of the
study. There was no significant difference between
a simple search for colored or for sharp objects. The
conjunctive searches for color and blur, orientation
and blur, and color and orientation differed
significantly from each other, with color and
orientation being the slowest– each of these two
features combined with SDOF was faster. Also, the
conjunctive search for color and blur was not
significantly slower than the simple and disjunctive
searches, which was quite contrary to what was
expected, because conjunctive searches usually
were slower.

3.3 Local Value Estimation of Multiple Scalar
Field using Oriented Sliver surfaces
To support the simultaneous display of multiple
overlapping scalar fields, this texture generation
technique [9] combines orientation and luminance
that are selected based on psychophysical

experiments that studied how the low-level human
visual system perceives these visual features

3.3.1 Data Representation
Datasets in numerous practical applications can be
viewed as a collection of n scalar fields that overlap
spatially with one another. Rather than using n
visual features to represent these fields, only two
features are used: orientation and luminance. For
each scalar field (representing attribute Ai) a
constant orientation oi is selected; at various spatial
locations where ai ∈ Ai value exists, a
corresponding sliver texture is placed oriented at oi.
The luminance of the sliver texture depends on ai:
the maximum amax ∈ Ai produces a white (full
luminance) sliver, while the minimum amin ∈ Ai
produces a black (zero luminance) sliver. A
perceptually-balanced luminance scale running
from black to white is used to select a luminance
for an intermediate value. This scale was built to
correct for the visual system’s approximately
logarithmic response to variations in luminance.

3.3.2 Procedure
Values in a given scalar field are given orientations
(in degree angular measure, for example).
Combining these orientations form sliver layers.
Multiple scalar fields are displayed by compositing
their sliver layers together.
With varying backgrounds orientation, say from 0º
to 45º, in the intervals of 5º, (resulting in 10
different background subsections (0, 5, 10, ..., 45º),
a discrete function f(bg) is defined for the different
background orientations. The function f returns
rotational differences in the intervals (e.g.,d= 5º,
d= 10º, etc). Every possible target orientation was
tested for each separate background. Several trials
were run during the experiment

The goal of the experiment was to find how much
counter clockwise rotation is needed to differentiate
a group of target elements oriented tg=bg+ dccw, and
tg=bg- dccw where bg is set of background
elements orientations, dccw is the counter clockwise
rotation.

3.3.3 Results
In general, using multi-factor analysis of variance
(ANOVA) and least-squares line fitting, it was
found out that target oriented d = ±15°or more
from its background elements resulted in the
highest accuracies and the fastest response times,
regardless of background orientation.

4 Discussion
In this survey, we looked at three different methods
applied in multi-layer visualization. It is observed
that the major difference among the three lies in the
steps followed in generating acceptable solutions to

Multi-layer Visualization: A Review of Selected Methods – Caesar Ogole, Julius Kidubuka

46

multi-layer visualization problem. Some of the
procedures encompass more parameters than others

Whereas the first method (described in section 3.1)
focuses mainly on selecting appropriate texture
pairs that represent backgrounds and foregrounds of
superimposing surfaces, the F+C technique (section
3.2) concentrates on utilizing the useful properties
of Semantic Depth of Field (SDOF) for better
visualization. The property used in SDOF is the fact
that the selective blur aids in guiding user attention
to the most relevant objects. On the other hand, the
third visualization technique (section 3.3) is a
texture generation method that combines
orientation and luminance to support simultaneous
display of multiple scalar fields.

 As noted before, each method comes along with
trade-offs. While the method for perceptual
optimization of complex visualization has the
power of handling multivariate characteristics of
complex data, the criterion applied is not simple. It
does not automatically produce solutions that are
elegant. More abstractions are needed.
The method of local value estimation of multiple
scalar fields, too, has a number of limitations, for
example, as the number of attributes grows, it
becomes difficult to find additional features to
represent them. This technique does not provide a
mechanism to handle interference (a phenomenon
where different visual features will often interact
with one another producing visual distortion).
Nevertheless, it’s more practical.
The SDOF approach (section 3.3) seems to be
intermediate with respect to the first two techniques
except that the optimality of its solution needs
further investigation. Also, SDOF cannot be used as
a full visualization dimension since in most cases it
is used without any other visual cues.

From this survey, we may conclude the following.
Firstly, we observe that any approach to solving
visualization problems, multi-layer in particular,
requires interactivity between the user and the
system so that perceptual problems can be solved
through parameter adjustments, for example, by
changing color, brightness etc. Analysis of the
visualization techniques also reveals that genetic
algorithms are a promising way of improving multi-
layer visual problems. The solution to visualization
problems cuts across various disciplines including
computer science / graphics, psychology,
photography, cinematography, etc. Finally, we see
that appropriate combination of image attributes,
such as textures, and orientations is important in
visual display of overlapping surfaces. Poor
combination of the values of these parameters
results in orientations that may not be distinguished.

SC@RUG 2006 proceedings

47

5 References

[1] REED, T. R. AND HANS DU BUF, J. M. A
review of recent texture segmentation and feature
extraction techniques.
Computer Vision, Graphics, and Image Processing:
Image Understanding 57, 3 (1993), 359–372.

[2] JULÉSZ, B. A brief outline of the texton theory
of human vision. Trends in Neuroscience 7, 2
(1984), 41–45.

[3] Interrante, V., Fuchs, H., and Pizer, S.M. (1997)
Conveying shape of smoothly curving transparent
surfaces via texture.
IEEE Trans. On Visualization and Computer
Graphics 3(2)
98-117.

[4] Gibson, J.J. (1986) The ecological approach to
visual perception. Lawrence Erlbaum Associates,
Hillsdale, NJ.

[5] Dawkins, R. (1986) The Blind Watchmaker,
Harlow
Logman.

[6] Sims, K. (1991) Artificial Evolution for
Computer Graphics,
Computer Graphics 25, 319-328.

[7] House, C (2002) A method for the Perceptual
Optimization of Complex Visualizations

[8] Kosara, R (2001)Useful Properties of Semantic
Depth of Field for Better F+C Visualization

[9] Weigle, C (2000) Sliver Textures: A Technique
for Local Value Estimation of Multiple Scalar
Fields

[10] Christopher Healey and James Enns. Large
datasets at a glance: Combining textures and colors
in scientific visualization. IEEE Transactions on
Visualization and Computer Graphics, 5(2):145–
167, April 1999.

[11] Ivan Herman, Guy Melançon, and M. Scott
Marshall. Graph visualization and navigation in
information visualization:
A survey. IEEE Transactions on Visualization
and Computer Graphics, 6(1):24–43, January-
March 2000.

[12] SMITH, P. H. AND VAN ROSENDALE, J.
Data and visualization corridors report on the 1998
CVD workshop series. Technical Report CACR-
164 (sponsored by DOE and NSF), Center for
Advanced Computing Research, California Institute
of Technology, 1998.

Appendix 1: Pseudo-code for Perceptual
Optimization of Complex Visualizations

G is current generation, V is next,
N even
Generation G, V of size N;
Evaluation E of size N;
Phenotype P;
Restart from last saved or new
random generation
if restarting from a previous
session then

(G,E)= LoadFromHistoryFile();
goto restart;
else
RandomlyInitialize(G)
endif
Main evaluate – breed - mutate
loop
loop
extract visualization, display and
evaluate
for each genotype Gi in G do
P = Phenotype(Gi);
Ei = UserEvaluation(Display(P));
endfor
SaveEvaluatedGenotypesToFile(G, E);
restart:
breed probabilistically based on
evaluation, one
breeding pair produces 2 offspring
for k = 1 to N step 2 do breed
(i, j) = SelectBreedingPair(G, E);
(Vk, V k+1) = CrossoverBreed(Gi,
Gj);
endfor
G = V; make new generation the
current one
for each genotype Gi in G do
Mutate(Gi); mutate with low
probability
until UserRequestsExit; keep going
until user quits

Acknowledgement
Special thanks go to Dr. Ronald van der Berg, Dr.
R. Smedinga and Dr. J. Terlouw. We would also
like to thank fellow student reviewers, Mr. Nicholas
Edward Kirtley and Mr. Nestorgebruiker Dos
Santos Pires for their contribution.

Multi-layer Visualization: A Review of Selected Methods – Caesar Ogole, Julius Kidubuka

48

Java versus C++

Bart Postma1and Remko de Jong1

1 Department of Computing Science, Rijksuniversiteit Groningen
{s1339095, s1277081}@student.rug.nl

Abstract. Java was originally intended to replace C++. However, nowadays
both languages still coexist and neither one has been able to replace or subdue
the other. In this paper we will make a critical comparison of both languages
and try to discuss both differences and similarities of the two languages.

1 Introduction

C++ (originally named C with classes) was developed during the 1980's as an
enhancement to the regular C programming language. It introduces for instance some
object-oriented (OO) features to C. It offers classes, which provide the four features
commonly present in OO (and some non-OO) languages: abstraction, encapsulation,
polymorphism and inheritance. Since the 1990's C++ has been one of the most
popular commercial programming languages.

Java is an object-oriented programming language developed by Sun
Microsystems during the early nineties. Initially it was called Oak and it was
intended to replace C++. Because of its platform independence Java quickly
conquered the web. After a few years of popularity, Java's dominant place in the
browser gradually diminished due to the introduction of replacements such as
Macromedia Flash. On the server-side however, Java presently is more popular than
ever.

Nowadays both languages coexist and neither one has been able to replace
the other. Java and C++ each have their advantages and limitations and that is why
the choice for one of them usually depends on the type of application that has to be
built. In this paper we will discuss the differences and similarities between Java and
C++ and use these findings to fence off a global area of purpose for both
programming languages. We will look at different properties of each language,
varying from types and expressions to memory management and execution speed.

2 Types

Java has 8 different fundamental types and C++ has 13 different fundamental types.
In Java the fundamental types have a size that is specified by the language. This
means that for example an int is always 32 bit and a long is always 64 bit in Java.
In C++, the sizes of the fundamental types vary from one implementation of C++ to
another.

49

C++'s char uses the Latin-1 encoding, which includes the ASCII encoding,
and it is usually 8 bits. The Java char uses the Unicode encoding for its char type
and it is 16 bits. By making use of the Unicode encoding, Java permits the use of
characters from many languages, such as Greek, Hebrew, Japanese, etc.

The boolean type in Java can only have two different values, it is either
true or false. In C++ a bool represents false if it has the value zero and
true otherwise. C++'s bool is a relatively new fundamental type of the language.
This might give some problems, because old compilers might not always recognize
it. Also older software that defined a type bool itself may get errors because the
type is now built-in.

Both Java and C++ have support for enumeration types. Java supports
enumeration types only in later versions, starting from JDK 1.5. Two simple
examples of enumeration types in C++ are:

enum Days (sun, mon, tue, wed, thu, fri, sat)

enum (chemistry, mathematics, computer science,
economics)

Variables in Java either have to be initialized or receive a default value. This is not
the case in C++.

The difference between Java and C++ is not much when it comes to
fundamental types. C++ can cause confusion with its fundamental types, because the
sizes of them vary from one implementation of C++ to another, its bool type also
might cause problems with older compilers and software. Java handles booleans
more elegantly than C++, C++'s use of a zero to represent false and true
otherwise, can cause confusion to certain users. C++ unsigned types make it
possible to use space allocated for fundamental types more efficiently. Also C++
does not ask for the initialization of variables nor gives default values to them. This
saves a little bit computing time, but one has to be careful with this, otherwise errors
arise when variables are not initialized when they should have been. Java's use of
Unicode encoding has the advantage that programming is easier for people speaking
Greek, Hebrew, Japanese, etc. But the software developed is only well understood by
those people and not by anyone else.

3 Pointers and references

C++ has pointers and Java has reference types. Java's reference type has some
resemblance to C++'s pointer. A variable that is of reference type can be used to refer
(or point to) an object, which is done using the new operator. An example of this in
Java is:

Car someCar;
someCar =
 new Car(“Toyota”, “Avensis”);

Java versus C++ – Bart Postma, Remko de Jong

50

3.1 C++ reference operator (&)

C++'s pointers require some more explanation. The memory of a computer can be
imagined as a succession of memory cells. Usually these are bytes and they are
numbered in a consecutive way. The address that locates a variable within memory is
called a reference to that variable. This reference to a variable can be obtained in
C++ by preceding the identifier of a variable with an ampersand sign (&), known as
the reference operator, and you can translate it to “address of”. An example is:

var1 = 14;
var2 = &var1;

Assuming the number of the memory cell of var1 is 1078, the value of var2 is
1078. The second statement does not copy the value of var1 to var2, but a
reference to it. It can be read as “var2 becomes the address of var1”. The variable
that stores the reference to another variable (var2 in the example) is called a pointer.
Pointers “point to” the variable whose reference they store.

3.2 C++ dereference operator (*)

Using a pointer, it is possible to directly access the value stored in the variable to
which it points. To do this, you have to precede the pointer's identifier with an
asterisk (*), which is known as the dereference operator and can be translated to
“value pointed by”. An example is:

var1 = 14;
var2 = &var1;
var3 = *var2;

Again assuming the address of var1 is 1078. Then var3 would take the value 14,
since var2 is 1078, and the value pointed by 1078 is 14. The third statement can be
read as “var3 equal to the value pointed by var2”.

3.3 Declaring pointers

Because pointers can directly refer to the value they point to, it becomes necessary to
specify the data type it points to in its declaration. It is not the same thing to point to
a char as to point to an int. For example, a pointer that points to a char and a
pointer that points to an int are declared as following:

char * pointerToChar
int * pointerToInt

SC@RUG 2006 proceedings

51

Users not familiar with the syntax of C++ might get confused with this declaration.
The asterisk (*) used in the declaration is not the same as the deference operator,
which also uses an asterisk.

Pointers have different purposes. For example, they can be used with
passing arguments to functions or for manipulating arrays. Pointers can also be used
in association with the new operator to allocate space for a value at runtime:

Car * someCar;
someCar =
 new Car(“Toyota”, “Avensis”);

At runtime the new operator is executed and this creates an object of the class Car.
After that, the assignment statement causes the pointer variable someCar to point to
the Car object someCar.

The key difference between Java references and C++ pointers is that a
reference always refers to a valid object in memory. This is not the case for a pointer.
A pointer can be reassigned to point to something else than to what it first did. It is
also possible to apply arithmetic operations on a pointer, also causing it to point to
something else than to what it first did. Good use of pointers will speed up the
application and when they are used properly there should be no problem. But many
people do get confused by pointers and are unable to use them properly. In C++,
pointers can be a major source of undetected inconsistencies, which result in failures.
C++ is notorious for its pointers and therefore Java uses references. Pointers have
their advantages, but one has to be careful in using them.

4 Arrays

Declaring an array in both Java and C++ is very much similar. But also the
implementation of an array in both languages has much resemblance. To create an
array containing 3 floats, you use the following declaration in C++:

float v[3];

In Java this is:

float[] v = new float[3];

In both C++ and Java, the elements of the array can be accessed using the notation
v[0], v[1] and v[2]. C++ allocates storage for 3 floats at compile-time, while
Java allocates storage for 3 floats at run-time. So in Java it is possible to specify the
size of the array at run-time. In Java the array type is a class; in C++ it is not.

Pointers and references are very closely related to arrays. A C++ array is a
pointer to the first element of an array. Java has a reference variable that points to an
array, in the given example, v is the reference variable pointing to an array of 3
floats.

Java versus C++ – Bart Postma, Remko de Jong

52

Perhaps the biggest difference between Java arrays and those of C++ is that
C++ does not perform arrays bound checking and Java does. This might result in
errors in C++ applications. The downside of array bound checking in Java is that it
can report an array exception at run-time and exit the application. But the question
remains: what is worse? Exiting an application when array bounds are exceeded or
continuing with perhaps the wrong values? Applications are probably easier
debugged using array exceptions, because the application explicitly exits and reports
an error.

6 C++ functions and Java methods

In C++ functions can be called with two different types of parameters. A parameter is
called a call-by-value parameter if it behaves like a local variable of the function
which initial value is obtained from the argument passed in the call. Consider the
following for example:

int main() {
 int x = 4;
 f(x);
}

void f(int a) {
 a = a + 1;
}

Within the function f a local variable a is created with an initial value that is equal to
the value of x. After the function call a has value 5 and the value x still equals to 4.
In C++ it is also possible however to pass a reference to a variable as a parameter.
These kinds of parameters are called call-by-reference parameters.

int main() {
 int x = 4;
 f(x);
}

void f(int &a) { // notice the &
 a = a + 1;
}

Now we define a to be an alternative name for x. They both point to the same
location in memory space. Thus by incrementing a we also increment x, since a and
x are just two different names for the same thing.

It is often stated that Java passes primitive types by value and objects by
reference. This should prove that Java supports calling-by-reference. This is a
widespread misunderstanding. Java never uses call-by-reference. This can be proved

SC@RUG 2006 proceedings

53

by means of a simple test. Consider a traditional swap method for swapping two
integer values:

void swap(int a, int b) {
 int temp = a;
 a = b;
 b = a;
}

Notice that this does not work in Java because it does not support passing by
reference. Objects are not passed by reference. Object references are passed by
value! However, passing by reference can be faked and that is where the confusion
comes from. A holder or wrapper object can be passed to the callee for example.

Disallowing passing by reference in Java makes the language easier to use
for beginners, but more experienced users may find this a limitation. Working with
references (or pointers) on the other hand is extremely error prone and can lead to
very obscure, hard to find errors. If it is applied correctly however, one can gain
some performance improvement.

7 Memory management

7.1 Garbage Collection

In a good high-level language programmers can declare data without worrying about
memory allocation. In C++ however, the programmer must manually manage all
memory storage due to the lack of garbage collection. Some have the opinion that
this is something that should be implemented in C++, since it is 'a difficult
bookkeeping task that leads to two opposite problems.' [1] Here Joyner is referring to
the problems with dangling pointers and memory leaks. Dangling pointers occur
when objects are deallocated prematurely and valid references still exist. Memory
leaks are the opposites of dangling pointers. Dead objects that are 'forgotten', i.e. not
deallocated, gather in memory and fill up its resources. Both problems can lead to
very obscure and hard to find failures and attempts to correct either of them can lead
to overcompensation and the other problem occurring. Nowadays there are tools
available such as Purify that can detect memory leaks and memory corruption,
making the programmer’s life easier.

Garbage Collection (GC) is another way to solve these problems and
therefore it would be a logical choice to implement it in C++, one would say. As we
can see today, much research has been done in this field, but still GC does not form
an integrated part of C++. Some say that this is due to performance problems of early
garbage collectors, which caused it to have an undeserved bad reputation.

Research is even done on implementing GC in hard real-time systems with
promising results. [2] There are some side notes however. The garbage collector
must be predictable in both execution time and memory usage. And of course it must
also be guaranteed that the system does not run out of its memory because not

Java versus C++ – Bart Postma, Remko de Jong

54

enough of it is reclaimed. There are a few garbage collectors that can handle this, but
all possibilities have not been thoroughly explored yet.

Java does provide GC and this does greatly reduce the amount of
programming effort needed to manage the dynamic data structures. But does this also
make Java slower? Opinions differ on this one. Many still clinch to the idea that
garbage collection uses up a significant amount of CPU-time. However, in most
cases this is poorly grounded. Zorn [3] shows in his paper (dated from 1992!) that
some programs that were converted to use a garbage collector, e.g. Perl, ran even
faster with a garbage collector than without one. An interesting fact that he pointed
out was that both Perl and other applications spent roughly 25-30% of their time in
malloc/free calls, far more than the allocation and garbage collection overhead of
a normal Java application.

Nowadays however, various garbage collectors for C++ can be found on the
Internet, but these are not as good as Java’s GC. As shown above, there are a lot of
advantages with automatic GC. So why do garbage collectors still not form an
integrated part of the C++-language? Again, the main problem connects with the
backward compatibility of C++ with regular C. Because of the low-level aspects that
C++ provides due to this compatibility, programmers can intentionally undermine the
structures required for implementing correctly working GC. To circumvent this,
programmers should adopt a more restrictive way of programming, but this would
mean that the compatibility of C++ with C would be compromised.

7.2 Security

In Java there is no possibility to manage memory manually. There is a sound reason
for this. Manual memory management can easily lead to security violations. Since
Java applets are often downloaded and run in web browsers, security is an important
aspect. If manual management were allowed, it would be possible to write unsafe
applets that would be able to collect private information from unsuspecting users and
transmit this information back to the writer of the applet.

Concerning memory management, we can say that Java adheres most to the
standards of good OO practice. Because GC is there and cannot be avoided, it is
always used and makes Java easier to use than C++. If you are a more experienced
programmer and need full control over memory management, C++ should be your
choice. Because of the higher complexity this is not put away for the inexperienced
programmer though.

8 Exception handling

Exceptions provide a way to react to exceptional circumstances in an application by
transferring control to special statements, called handlers. The syntax of exception
handling in Java and C++ is almost identical. A try statement with one or more
catch statements is used to indicate that some code will handle the exceptions.
When an exceptional circumstance happens in a try statement, an exception is

SC@RUG 2006 proceedings

55

thrown that transfers control to the exception handler. The catch statements are the
exception handlers and take care of the exception.

Java has an extra possibility: in Java, a try statement can also have a
finally statement. This will be executed either after the try statement has
executed (when there was no exception), or after the catch statements (when there
was an exception). For example, in the finally statement one can put code for
freeing resources that were held, when an exception occurs. In C++ one has put this
code in the destructor of an object that has been created before the exception occurs.
This is a quite inconvenient way and often mistakes are made here leading to errors.

9 Data Abstraction

Data abstraction is a strong, well-defined division between interface and
implementation. This greatly improves code reuse and sharing. As long as the
interface remains the same the implementation (internal representation) can be
modified without changing anything else in the application. The key aspect of object
oriented programming languages is that they enable a high level of data abstraction.
In Java and C++ classes are used to express this. Due to earlier mentioned
compatibility issues C++ also features the struct type constructor next to classes.
A struct is the same as a class that has public components by default.
Purely seen, this means that the whole class type is redundant and could be
removed from C++.

From the two languages, Java practices most OO aspects in a purer way than
C++. This is mainly because there is no backward compatibility and Java has been
designed from the beginning as an OO language.

9.1 Friends

In C++ class A can access private and protected members of class B if class B
declares class A to be a friend. Friendship is not inherited. This means that classes
derived from class B have no access to these members. Java does not support explicit
friends, but does allow classes within the same package to access each other’s
instance variables. Strictly seen this is not considered good programming practice
and OO design, since things can be accessed without going through the published
interface of a class.

9.2 C++ templates and Java generics

Many applications use common data structures such as queues, vectors or stacks. The
contents of these structures may vary however. There may be a queue of customers
and in the next case a queue of packages. Instead of creating a queue for each type it
seems to make more sense to implement a queue that can handle arbitrary types. This
is called type parameterization and is more commonly referred to as templates.

Java versus C++ – Bart Postma, Remko de Jong

56

Besides template classes C++ also supports template functions. Below an example of
a template function in C++ is given.

Template <class AType>
AType min(AType a, AType b) {
 if (a < b) {
 return a;
 } else {
 return b;
 }
}

In the past Java didn’t support templates or something alike, but this has changed
since J2SE 5.0. They are called generics and though they are not exactly the same as
C++ templates, they are very much alike. Differences are for instance that Java
generics provide compile-time type safety and C++ does not. When a template in
C++ is instantiated with a new class, the entire code for the class is reproduced and
recompiled whereas Java Generics use type erasure. This means that the compiler
erases all generic type information, replaces type variables with their upper bound
and inserts explicit casts where needed.

10 Inheritance

Inheritance allows classes to be defined in terms of other classes. Each class inherits
variable declarations and methods/functions from its superclass. An example of
inheritance is a class horse that inherits the properties of a superclass animal.
Both Java and C++ allow inheritance, but C++ also provides so called multiple
inheritance. Multiple inheritance means that a class can inherit properties from
multiple superclasses. Instead of multiple inheritance Java has interfaces. With its
interfaces Java implements multiple inheritance with only one important difference:
all inherited interfaces must be abstract classes.

There are some drawbacks to multiple inheritance. A well-known example
is the 'Diamond of Death'. It refers to the possibility that a class may have the same
base class appear more than once as an ancestor. Consider for example the following
structure:

A
/ \
B C
\ /
D

Class D inherits from A twice; once via B and once via C. C++ tries to catch this by
introducing an extra feature: virtual inheritance. If D should only have one A as a
superobject, A must be declared as a virtual base class in B and C. Otherwise A can be
a normal, nonvirtual base class. This raises questions about what is going to happen

SC@RUG 2006 proceedings

57

if A is declared virtual in only one of B and C. And what will happen if we define
another class E that wants to inherit multiple copies of A via B and C? This stresses
once again that C++ has unclear semantics and is much more difficult to comprehend
than Java.

10.1 Polymorphism

Functions or methods may have more than one definition. Consider for example a
Java method add(int i, int j)that adds two integers. Now consider a similar
function that adds two floating point numbers: add(double i, double j). In
this example the method add is said to be overloaded. Although Java supports
overloading of methods it does not support overloading of operators. C++ on the
other hand does not have this restriction. A language that supports overloading is
called polymorphic.

Another aspect of polymorphism is overriding or shadowing. This occurs
when two methods or functions with the same name, the same number of parameters,
and the same parameter types are defined in different classes, one of which is a
superclass of the other.

In Java all methods are potential candidates for overriding. In C++ functions
must be specified virtual in order to allow this. This means that the programmer
has to foresee that a descendant class might need to redefine a function. Some
consider this a serious flaw in C++ because it reduces the flexibility of the software
components and therefore the ability to write reusable and extensible libraries.

As can be read above pleas can be made for and against multiple
inheritance. As a sort of workaround Java supports interfaces which can be used to
simulate a sort of multiple inheritance. But if the programmer needs the full power of
inheritance, C++ is to be recommended. Using multiple inheritance implies that you
know what you are doing since there are a lot of pitfalls regarding that field, so it
might not be suitable for the inexperienced programmer.

11 Execution speed and portability

How fast an application executes is in many cases an important issue. Also, the
ability of an application to execute on different hardware platforms (portability) can
also be very important. Java and C++ have specific properties that have a direct
impact on both these two important issues.

11.1 Portability

C++ compilers compile the source-code of the application into machine-instructions
that can then be executed. Java uses a different approach. In Java, the compiler is
called a class-compiler. This class-compiler compiles Java source-code into
assembly-like instructions known as Java bytecode. This bytecode can be interpreted
and then executed by the Java virtual machine. There are many implementations of

Java versus C++ – Bart Postma, Remko de Jong

58

the Java virtual machine for a wide variety of hardware platforms, but all of them
support the same bytecode. Because the source-code is no longer directly compiled to
machine-instructions, it is possible with the virtual machine to execute the same
application on different hardware platforms, even without recompilation. Especially,
the Internet has benefited from this, since it exists out of a wide variety of computers
with different hardware platforms.

The advantage of C++ of getting easy access to machine level details comes
with a down side. By making too much use of this, it is very difficult or expensive to
port applications. One of Java's greatest strengths is its portability.

11.2 Execution speed

In early implementations of Java, there was only an interpreter that translated the
bytecode to machine-instructions. Since interpretation is slow, Java was unable to
compete with C++ regarding execution speed. In general, a Java application executed
about 20 times slower than the same application written C++. To handle this
problem, Just-in-time compilers were invented. When some bytecode now is
translated to machine-code, the Just-in-time compiler keeps a copy of the translated
code for potential reuse. This way, a piece of code never has to be reinterpreted a
second time. Only new bytecode that has not been previously executed needs to be
interpreted. Applications written in Java therefore start relatively slow, but after that,
they can achieve speeds comparable to those written in C++.

Benchmarks on the Intel architecture, which is the most used for personal
computers, show that in performing numerical calculations, Java is getting very close
to C++ [5]. On the Intel architecture and Linux as operating system, a Java
application executes about 7% slower than the same application in C++. On
Windows, this is about 23%. On other architectures, the gap between Java and C++
is greater. On an Ultrasparc, Java applications execute about 61% slower than
equivalent applications in C++, and on the Compaq Alpha, Java applications execute
about 4 times slower than equivalent applications in C++. This is mainly due to the
greater efforts spent in optimizing Java for the Intel architecture, than for less popular
architectures.

We are interested in how Java and C++ compare to each other in large and
complex object-oriented applications, but were unable to find any results on this
topic. This is probably due to the fact that nobody is willing to spend the time and
money in building large and complex applications twice, only to see how they
perform relative to each other.

If an application has to execute on different hardware platforms and
execution speed is not of the utmost importance, then Java is a very good option to
consider. If speed is of the utmost importance and portability is not, then C++ is a
better option than Java, especially on non-Intel architectures. One should keep in
mind that the execution speed listed above might not count for large and complex
object-oriented applications. Just-in-time compilers are relatively new and they have
much potential [6].

SC@RUG 2006 proceedings

59

12 Libraries

Libraries are important when it comes to lowering development times for software.
By making use of libraries, the programmer can focus on his application, instead of
security, threading, database connection, distributed objects, compression, e-
commerce, etc. Java has many API's, which provide a huge set of classes that can be
used for these tasks. Such as, database connection, XML, security, threads, graphical
user interfaces, sound, many data structures and algorithms, etc. In this case, C++ lies
far behind Java, because it relies mostly on non-standard third-party libraries. It does
have a standard library providing basic functionality to interact with the operating
system and has standard classes, objects and algorithms that may be commonly
needed. There are a lot of open-source libraries available for C++, but they often
have certain licenses to which one has to comply if one wants to make use of it. This
may not need to cause a problem, but there are also many cases where it does cause a
problem.

13 Conclusions

After comparing the most important features of the two programming languages, we
can conclude that both languages will probably coexist for some years. Java has
gained much popularity since it was introduced.

Java is used extensively in enterprise applications. The simplicity,
portability, scalability, and legacy integration of the J2EE (Java 2 platform,
Enterprise Edition) platform make it very popular for enterprise applications. At this
time of writing, hard real-time systems are probably better off with C++, since C++
does not have an unpredictable garbage collector. GC in hard real-time systems is
still in research. Also, performance-hungry applications (e.g. 3D-games) are better
off with C++ than Java, because they need that extra performance C++ can give.

From a programmer's view, we can conclude that C++ is more complicated
than Java. It is not suitable for inexperienced programmers, because errors are made
very easily with C++. The C++ standardization committee warns: “C++ is already
too large and complicated for our taste”. Nevertheless, its high performance makes it
still popular today. Java is safer to use and also its many API's relieve the
programmer from concerning himself with things like security, threading, database
connection, etc. and enable the programmer to focus on the application. Its high
portability makes Java ideal for running the same application on different hardware
platforms. However, it still cannot meet the levels of performance of C++. On the
other hand, Java's performance keeps getting better, so C++ might lose some terrain
over the coming years.

References

[1] Ian Joyner, C++??: A Critique of C++ and Programming and Language Trends
of the 1990s (3rd edition), 1992.

Java versus C++ – Bart Postma, Remko de Jong

60

[2] Tobias Ritzau, Memory Efficient Hard Real-Time Garbage Collection, 2003.

[3] Benjamin Zorn, The Measured Cost of Conservative Garbage Collection
Software - Practice and Experience 23(7): 733-756, 1992.

[4] David L. Shang, Transframe, Java & C++: A Critical Comparison, 1996.

[5] J.M. Bull et al, Benchmarking Java against C and Fortran for scientific
applications

[6] Kirk Reinholtz, Java will be faster than C++

[7] Barry Cornelius, Java versus C++

SC@RUG 2006 proceedings

61

Tree-based Image Representation, Filtering and
Segmentation

Joris Best(s1494848), Roel Donker(s1492144)

Abstract. Images can be stored in many ways, one of the most promising way
is storing an image in a tree-structure. Processings on an image means in this
case processing the tree-structure which represents the image. The use of a tree-
structure makes processings on a tree both simple as efficient. This paper
describes three different ways of representing images by a tree-structure. The
three representations being researched in this paper are: “binary partition tree”,
“component tree” and “foresting transform”. The last section of this paper
evaluates the efficiency of all three tree-structures related to image-processing
(especially filtering and segmentation).

1 Introduction

There are many different ways to represent images in a tree-structure. But each way
has its own advantages and drawbacks. The problem that occurs is that for example an
image-processing technique is easy to perform on one tree whereas it is difficult to do
it on another tree. This can be explained by looking to the processing techniques like
segmentation and filtering which are used to process an image and building such a
tree. We want to explain which method to represent an image in a tree is best for a
particular image-processing technique. This is done by comparing the methods
“binary partition tree”, “component tree” and “foresting transform”. The first two
methods are region-based and the foresting transform stays on the pixel-level.
The next section explains how to build such trees. Section three handles the image-
processing techniques “filtering” and “segmentation” in relation to these trees. After
that the major advantages and drawbacks are summarized followed by a conclusion in
section four.

2 Methods

2.1 Binary Partition Tree

A binary partition tree is constructed by using two techniques which are used in the
fields of image processing. These techniques are called connected regions and

62

segmentation. In this section we will explain what these two techniques involve and
after that we will explain how a binary partition tree can be computed.

Connected regions. Connected regions are some kind of filters which can be used to
describe a piece of an image which is constant in a certain way. That means that
pixels in an image which are lying next to each other and have the same color or gray-
value are merged into a region. In 3-D representations the filter could merge those
pixels which are not only lying next to each other, but are also constant in a certain
direction (for example the x-component of the pixels is constant). Most times a
connected region is used in combination with certain rules, for example a region
consisting of merged pixels may not be smaller or greater than 500 pixels.

Segmentation. Segmentation techniques are used to merge pixels and regions (note
that regions are a group of pixels which are similar in some way). These pixels or
regions are related to each other with so called links. The merging of pixels and
regions (linking) relies on three notations, namely: merging order (the order in which
the links are merged), merging criterion (the criteria on which is decided if something
has to be merged or not) and the region model (when a merging has taken place, this
defines how to represent the merged regions).

Construction of a Binary Partition Tree. A binary partition tree can be constructed
using filters (connected regions) and segmentation. The filters are responsible for
making regions and segmentation can be used to merge these regions into a binary
tree. In this way the nodes of the tree are representing both the segmentation steps that
are taken and a region. The leaves of the tree are only representing regions. It appears
to be clever to put large regions close to the root of the tree, while the details of an
image are put into the leaves (merging of regions, efficiency, information retrieval,
etc.). The biggest difficulty of constructing the tree is the criteria on which the
merging of the regions takes place. If we take a picture of a face with a blue hat on
top of it and on the background a blue sky. If the hat has approximately the same
color as the sky, then the hat could end up in a different part of the tree than the face.
Obviously this may result in various problems like shape recognition, information
retrieval, etc. An example of a constructed Binary Partition Tree is given in Appendix
“Binary Partition Tree”.

2.2 Component tree

The Component tree is a structured representation of a gray-level image. The
component tree was developed to deal with properties such as anti-extensivity, idem
potency, increasingness and utilizing links. The component tree can only represent
binary or gray-level images. In order to construct the component tree, the image can
be considered as a 3D image. Each node in the tree is a representation of a component
at a specific gray-level. A component can be defined by the following notation which

SC@RUG 2006 proceedings

63

is different from a flat-zone (A flat-zone is a connected set of pixels with the same
gray value):

Ct,n: Ct,n is the nth component in Xt(f); t is any gray-level in f (1)

Where Xt(f) is a threshold set at threshold t:

x ∈ F: f(x) ≥ t; F is the gray-level image grid(f maps each image coordinate
in the grid F to a single gray level); t is the threshold value

(2)

Summarized briefly: a component Ct,n in a image f is defined as a connected set of
pixels in a threshold set Xt(f). An important property of the threshold set is that Xt+1(f)
is a subset of Xt(f). This means that there exists some component Ct,m for every
component Ct+1,n. These two components (Ct,m , Ct+1,n) are linked with each other,
where Ct,m is the parent and Ct+1,n is the child. The root node (Cmin,n) at the minimum
gray-level is a superset of all the components in the image. A component that is not
linked to a component with a higher gray-level is called regional maximum (leaves).
As said earlier the node is an abstract representation of a component. For the filtering
and segmentation (see 3 Segmentation and filtering) a node only needs to store four
properties.
1. Gray-level of the component
2. Location of one of the pixels within the component
3. The value of some attribute of a component (area, perimeter, etc.)
4. Is the component active or not?(discussed in section segmentation and filtering)
How long is the path from a leave node to the root node? In the component tree this
path is called a branch. A branch is defined as the shortest sequence of linked nodes
from a leave node to the root node. The path cannot be longer then the maximum
gray-level + 1, because root node has gray-level 0. Many other types (min tree,
opening tree and max tree) of trees look almost the same as the component tree
according to Jones2 but they are not, especially in relation to connected filters. An
example of the component tree is illustrated in figure 1.

Fig. 1. Construction of a component tree: a) gray-level input image b) perspective view of
threshold sets (3D image) c) Component tree.

The figure 1a above contains nine components (same as number of nodes in the tree)
and has six different gray-levels. This is different from the number of flat-zones

Tree-based Image Representation, Filtering and Segmentation – Joris Best, Roel Donker

64

because that is eleven, so a component tree is less complex and smaller then a binary
partition tree. The number of branches is three because there are only three leaves in
the tree. The lines in the tree indicate the links between the nodes in the tree. The
gray-levels stored in the nodes are displayed on the left side of the tree. As example of
an attribute value stored in a node, the component area is shown as a number by the
node. A second example of a Component Tree is given in Appendix “Component
Tree”.

2.3 Image Foresting Transform

The IFT is meant to unify and extend existing image analysis techniques. In an IFT
every pixel of the image is a node. Every node is connected to its surrounding nodes
and has a certain attribute value (colour-value, grayscale, etc.). An image forest
consists of several trees. The number of trees depends on the number of seeds. The
seeds are the nodes with the minimum attribute value. The values are given to the
nodes by using an image analyses technique. A drawback of this manner is that we
have complex and large trees in the forest.
We can construct a tree with a seed as root by looking at the connectivity and the
minimum cost path (extended Dijkstra algorithm) between the nodes. One starts
looking at the root of the tree and chooses a surrounding node, the node with the
lowest attribute value will be the child of the parent (in this case the parent is the
root). It may be obvious that this is the minimum cost path. Because there are multiple
seeds in the image it is necessary to have some rules on claiming a node. Consider the
situation that there are two or more nodes claiming the same node. For example we
could use the rule that the first claim made is the one that gets connected. Furthermore
FIFO or LIFO could also be used (see example in figure 2). A real example of an IFT
Forest is given in Appendix “Image Foresting Transform”.

Fig. 2. The values above the nodes represent the attribute value of the pixel. (a) FIFO
policy and 4-connected adjacency. (b) LIFO policy and 4-connected adjacency. (c)
FIFO policy and 8-connected adjacency.

SC@RUG 2006 proceedings

65

3 Filtering and segmentation

3.1 Filtering

Filtering techniques are derived from mathematical morphology. A filter remove parts
of the input image content, however the remaining parts will contain their contour
information. Summarized briefly: A filter is able to remove or merge regions.

Binary Partition Tree. Filtering an image means that one throws away the details
which are not interesting. In the case of a binary partition tree this means that
throwing away a region results in throwing away a node. But throwing away a node
means that all its children are also thrown away. If this is not a problem then the
filtering algorithm will be very efficient (since it does not have to filter the complete
tree). This is often the case when the tree is built up in an increasing way. For
example each node consists of more pixels than its siblings. On the other hand we
have the case in which it is undesirable when a sibling is also removed. Then the
filtering algorithm can use a so called Viterbi algorithm. Shortly said the Viterbi
algorithm is an algorithm which tries to find the most efficient way through a
problem. We will not explain the algorithm in this paper, the interested reader can
easily find articles about this subject.

Component Tree. Filtering of the component tree is very efficient and simple. A tree
node will be pointed out as active (see section “2.2 Component tree”) if the
component is to be preserved by the filter. The root node of the tree is always active.
The success of filtering a tree depends on the decision we have made related to the
type of attribute used for the filtering. There are two kinds of component tree filters:
The flat image filters and the more general non-flat image filters.
• flat image filter

A flat image filter can be notated by the following definition:
“A node with a certain number and gray-level value is active when it satisfies a
certain criterion”.
The flat image filters ignore the links between the nodes. The problem which can
arise (because of ignoring the links) is that it is possible to have gaps between
active nodes. An ugly solution is to make all the nodes from n to the leaves “not
active”.

• non-flat image filter
A non-flat filter is based on the concept of an attribute signature. An attribute
signature is the sequence of node attributes in a branch. The non- flat image filter
can be notated by the following definition:
“A leaf is active if the branch (see section “2.2 Component tree”) satisfies a
certain criterion”
The complexity of this kind of filters is hidden in the criterion. To ensure that there
are not gaps between active nodes the whole branch of a leaf must be active.

Tree-based Image Representation, Filtering and Segmentation – Joris Best, Roel Donker

66

The following definition is the general gray-level filter of a filtered component tree:
“Look for the maximum gray-level value node in the tree of a specific region which is
active”.
In many cases it is not possible to get the right result with one attribute signature
(area, eccentricity, etc.) in the criterion. A solution in most cases is to combine several
signatures, but sometimes even this will not help. Example: if you have a bright
background and the object is bright, then the filter cannot separate the two regions.

Image Foresting Transform. Earlier in this paper we explained that an IFT consists
of multiple trees. Each tree represents a region of the original image. The shape of a
region can be derived from the leaves of a tree (since the leaves are forming the
border of the region). So when a threshold (threshold is based on the attribute value)
is performed a region shrinks. The threshold method is particularly used to recognize
a certain shape in an image.
The seeds represent the most interesting pieces of the image. Because the seeds are
forming the roots of the trees. So the places of the image that are interesting to look at
are most likely found in the seeds. Keep in mind that the seeds were found by some
kind of filtering technique.
Imagine that we are performing a threshold between two values. Then it is possible to
have a gap between two nodes. So the whole tree has to be rebuilt, which is very
inefficient.

3.2 Segmentation

Splitting an image into several regions which are related to each other is known as
image segmentation. Each region is homogeneous to a certain property and is labeled.
As called earlier image segmentation can be used for image representation and
interpretation (see section “2 Methods”).

Binary Partition Tree. In section “2.1 Binary Partition tree” we already pointed out
that segmentation is used to construct a tree. Now we show that a binary tree
representation of an image can be used to generate segmentation results. This can be
done in a simple way by merging the regions that are pretty much the same and in a
hard way by giving certain regions a marker. The simple way is kind of
straightforward and could result in the problem where regions are divided into
different sub trees while one does not want that to happen.
We can give regions a marker automatically or manually. In this paper we will not go
into the algorithms that give markers to regions automatically, but giving markers
(automatically or manually) gives a simple solution to the problem of the blue hat.
Let’s take again the blue hat example of section “2.1.3 Construction of Binary
Partition Tree” where we had a picture of a face with a blue hat and a blue sky on the
background. Now we give the hat (assuming that it consists of one color) a marker
and the regions which represent the face also a marker. Now the merging is done
based on the markers of the regions resulting in a tree in which both the face and the

SC@RUG 2006 proceedings

67

hat are in the same sub tree. Keep in mind that unmarked regions will be put into
another sub tree, like the sky in this example.

Component Tree. The component tree can be used for image segmentation as well
for image filtering (see section “3.1.2 component tree”). Segmentation means to point
out one or more regions of an image (example: only display the face of a human). The
segmented image in the component tree is a binary image, which marks only those
regions that were changed by filtering. The exact definition is:
“If the original region (pixel) has the same value as the filtered region (pixel) then that
region (pixel) get the gray value zero else the gray value is one”
A great advantage of this definition is that it is really simple to implement as a fully
automated procedure to segment the interesting regions. Furthermore this approach
lends itself well to filtering based on attribute signatures.

Image Foresting Transform. In section “2.3 Image Foresting Transform” we
explained that an image analysis technique can be used to give a certain value to the
pixels (nodes). For example we want to analyze if a pixel is dark or bright. If it is
bright it will get a high value and when it is dark it will get a low value. Let’s flow
water into this “map” of values, starting at the low values (these pixels forms the
seeds). The water will flow to the lowest values in the neighborhood (lowest cost
path). If two flows meet each other then it will stop flowing at that point. This is
called the Watershed transform and forms the base of the segmentation, which is used
to build an IFT. The detection of boundaries and shapes is in this case easily because
the leaves are the boundaries. A drawback of this method is that we have to analyze
several trees (with a lot of nodes), which will take more time to analyze the trees in
contrast to the other methods.

3.3 Discussion

The aspects related to filtering, segmentation and building a tree have been discussed
in the sections above. These aspects can be compared to each other. In table 1 the
three discussed methods are shown and scored on their performance, complexity, tree-
size, etc.

 Binary

partition tree
Component tree Image foresting

transform
Tree complexity -- ++ +/-
Tree size + ++ --
Time to perform an operation
on the tree + ++ -

Automatic segmentation -- ++ ++
Shape recognition + -- ++
Anti-extensive filters + + -
Scalability + + -

Tree-based Image Representation, Filtering and Segmentation – Joris Best, Roel Donker

68

Human made decisions -- - +

Table 1. Comparing the aspects of three image-trees

In the next section the scores in table 1 are elaborated.

4 Conclusion

Based on the arguments in the last sections and the scores that are given in table 1 of
section 3.3 the following conclusions can be made:
Binary partition tree: The segments that form this tree have underlying relations,
which could not be seen by an algorithm, for example the tree builder want to have a
certain part(e.g. head) of the image in the right side of the tree. Therefore it is
necessary to monitor the building process by a human. Resulting in a complex tree,
which is very efficient in later filtering techniques.
Component tree: In contradiction to the binary tree, the component tree is easy to
build. But the success of filtering depends on the complexity of the filter and human
made decisions (area, eccentricity, etc.).
Image foresting transform: This tree stays on the pixel level, resulting in a tree with
more nodes than the other trees. The details of the image are preserved, but because of
the tree-size all later operations will take long to perform. Boundaries of an image are
easy to find in this tree, since the leaves of a tree forms the boundary. Because of this
shape-recognition is very easy.
We can make the final conclusion that the component tree method is the simplest one.
The image foresting transform is the opposite of it (since it is more complex). The
binary partition tree hangs between the other two trees and its efficiency is based on
the human role played during the building of the tree. If time does not play a role, one
can choose to use the image foresting transform. Since it leaves the details intact.

References
1. Alexandro X. Falco, Jorge Stolfi, Roberto De Alencar Lotufo: The Image Foresting

Transform: Theory, Algorithms and Applications. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 26, No. 1, January 2004.

2. Ronald Jones: Connected Filtering and Segmentation Using Component Trees. Computer
Vision and Image Understanding Vol. 75, No. 3, September 1999(215-228).

3. Philippe Salembier and Luis Garrido: Bainary Partition Tree as an Efficient Representation
for Image Processing, Segmentation an Information Retrieval. IEEE Transactions on Image
Processing, Vol 9. , No. 4 , April 2000.

SC@RUG 2006 proceedings

69

Appendix: Binary Partition Tree

Appendix: Component Tree

Tree-based Image Representation, Filtering and Segmentation – Joris Best, Roel Donker

70

Appendix: Image Foresting Transform

SC@RUG 2006 proceedings

71

(In)security of the Needham-Schroeder public-key protocol

Freek Vandeursen [f.vandeursen@student.rug.nl]

Mark Speelman [m.speelman.1@student.rug.nl]

Abstract.

The role of security in computer communication is greatly increasing since more and

more important communication takes place over computer networks, e.g. the Internet. The
starting point of secure communication is the authentication, verifying the identity of the
participants. Authentication can be established with the Needham-Schroeder protocol.
This protocol was first published in 1978 by Roger Needham and Michael Schroeder, and it
took 17 years before it was broken by Gavin Lowe. Lowe proved that this protocol could
be broken by a “man-in-the-middle” attack. In 1990 Gong, Needham and Yahalom
published an article in which they presented a method to reason about security protocols.
This method emphasizes the reasoning about what the participants in the protocol know
and belief. We will show that the vulnerability found by Lowe could also have been found
using this method from Gong, Needham and Yahalom, and subsequently we show that the
improved protocol is secure. The fact that the vulnerability was not spotted before shows
how difficult reasoning about security protocols is, and how difficult it is to guarantee full
security.

1. Introduction

In the world of computer communications security is getting more and more important. Since
communication tend to take place over insecure media like the Internet, it is important to shield your
messages from others than the intended receiver.

The starting point of secure communication is the authentication. The participants in the communication

(Alice and Bob) have to be sure they are talking to each other and nobody else. Authentication can be
established with the Needham-Schroeder protocol.

This protocol was first published in 1978 by Roger Needham and Michael Schroeder [NS78], and it took

17 years before it was broken by Gavin Lowe [Lowe96]. This long time is typical for the subtle and hard-
to-spot vulnerabilities of security protocols. Lowe proved that this protocol could be broken by a “man-in-
the-middle” attack. He introduced a third participant in the communication; the intruder (Trudy). Trudy
communicates with Alice and Bob, but Bob doesn’t know he’s communicating with Trudy, because Trudy
makes him think she is Alice. Lowe also presents a solution to this problem as described in the section
“Methods and materials”.

We will show that this same problem can be discovered with the method that Gong, Needham, and

Yahalom introduces in 1990 [GNY90], 5 years before Lowe broke the Needham-Schroeder public-key
protocol.

72

The rest of the paper is organized as follows. In the next section we will outline the methods and
material used to come to our results that are presented in section 3. Section 4 will contain a discussion;
comparing the results of Lowe and ourselves.

2. Methods and materials

2.1 Notation for messages

We will use the following notation for messages:

XBA :→ A sends message X to B.

KBXBA +→ }{: A sends message X to B, encrypted with the public key of B

KAXBA −→ }{: A sends message X to B, encrypted with the secret key of A

2.2 Notation for reasoning

We make use of the reasoning mechanism as described by Gong, Needham and Yahalom [GNY90] in
order to prove the insecurity of the N-S protocol [NS78]. This mechanism allows us to reason about the
beliefs associated with the protocol.

We use the following notations:

XP < P is told formula X. In other words: P has received X, possibly after decryption.
XP ∋ : P possesses formula X. This includes all the formulae available at the start of a session,

all the formulae generated by P, and all the formulae received by P.
XP |~ : P has once conveyed formula X. So P has once sent X to someone else.
SP ≡| : P believes statement S.

)(| XP φ≡ : P believes that formula X is recognizable. In other words: P would recognize X when X
is received from someone else.

)(#| XP ≡ : P believes formula X is fresh. This means that X has not been used before for the same
purpose. Some articles refer to X as a “nonce”.

QP
K+

≡a| : P believes that K is a suitable public key for communication with Q.

3. Results

3.1 Description of the protocol

The Needham-Schroeder public-key protocol normally has 2 or 3 participants: Alice, Bob and possibly
Uncle Sam (a trusted authentication server).

The protocol starts with the message A,B from Alice to Uncle Sam, meaning: “I am Alice and I want the

public key from Bob”.:

1) BASA ,:→

SC@RUG 2006 proceedings

73

Uncle Sam returns the public-key of Bob, encrypted with his own private key. Because of this
encryption Alice can be sure that the message really originated from Uncle Sam.

2) KSBKBAS −+→ },{:

Now Alice sends a message to Bob, to indicate that she wants to start a communication. In order to do

this she sends a nonce, a unique number which has not been used before in previous sessions. The message
is encrypted with the public-key from Bob, so that Alice knows that only Bob can read it.

3) KBA ANBA +→ },{:

Now the first two steps are repeated, as Bob needs to know the public key of Alice.

4) ABSB ,:→

5) KSAKABS −+→ },{:

With this key present, Bob can respond to Alice. In order to prove that he really is Bob he returns the

nonce sent by Alice. Furthermore he sends a new nonce so that Alice can prove that she really is Alice. In
order to prove this, the message is encrypted with Alice’s public key.

6) KABA NNAB +→ },{:

The final step is the verification of Alice’s identity, by returning the nonce from Bob.

7) KBBNBA +→ }{:

If Alice and Bob store the public-keys of each other then Uncle Sam can be left out of the

communication. Only messages 3, 6 and 7 remain.

3.2 Gavin Lowe

In 1995 Gavin Lowe showed that this protocol was not as secure as everyone believed [Lowe96]. He
showed that an intruder (we call her Trudy) could fake part of the authentication process by faking the
identity of one of the participants. For simplification we assume that the public keys are known, so we
leave out the authentication server.

The security breach starts with Alice who starts a conversation with Trudy:

1a) KTA ANTA +→ },{:

Instead of responding Trudy starts a conversation with Bob, while pretending to be Alice (notated T(A)).

1b) KBA ANBAT +→ },{:)(

Bob has no means of detecting the fraud, so he sends a normal response to Trudy.

2b) KABA NNATB +→ },{:)(

Trudy can not decrypt this message, since she does not possess the secret key of Alice. Therefore she

forwards the message to Alice, pretending to have written the message herself.

(In)security of the Needham-Schroeder public-key protocol – Freek Vandeursen, Mark Speelman]

74

 2a) KABA NNAT +→ },{:

Alice decrypts the message and returns the nonce from Trudy (that originated from Bob).

3a) KTBNTA +→ }{:

Now Trudy has received Bob’s nonce, so she sends it to Bob while pretending to be Alice.

 3b) KBBNBAT +→ }{:)(

Now the authentication has finished. Bob is under the impression that he is communicating directly with

Alice while in fact Trudy is standing between them.

3.3 Reasoning

In 1990 Gong, Needham and Yahalom published an article in which they presented a way to reason
about security [GNY90]. We will use their method to show how the insecurity of N-S protocol could have
been discovered.

We start with the initial knowledge. In short: both Alice and Bob have a nonce which they believe to be

fresh and recognizable. Furthermore they have their own keys and believe them to be suitable keys. And
finally they possess the public keys of each other, which allows us to leave out Uncle Sam (the
authentication server).

ABKAB

BBKBBKBB

NBNBNB

BA
BAKBA

AAKAAKAA

NANANA

KA

KB
BBB

KB

KA
AAA

+

+

+

+

≡+∋

≡−∋+∋

≡≡∋

≡
≡+∋

≡−∋+∋

≡≡∋

a

a

a

a

|,

|,,

)(|),(#|,

)(|
|,

|,,

)(|),(#|,

φ

φ

φ

Now Alice starts the communication with her first message. Reception of this message by Bob is

formally described as:

KBA ANB +},{<

Since the message is encrypted with Bob’s public key, Bob is able to decrypt the message. Therefore we

can add the contents of the message to Bob’s knowledge.

ABNBKBBANB AKBA ∋∋⇒−∋∋ + ,,},{

Now we know that Bob possesses the nonce from Alice, his own nonce and the public key from Alice.

These are all components needed for the next message.

SC@RUG 2006 proceedings

75

KABABA NNBKABNBNB +∋⇒+∋∋∋ },{,,

Now Bob sends his response to Alice.

KABA NNA +},{<

Upon receiving the message Alice decrypts it. She recognizes her own nonce, and adds Bob’s nonce to

her knowledge. Because she recognizes her own nonce she knows that Bob has received her message since
he was the only one who could have decrypted that message.

BAKABA NANAKAANNA ∋∋⇒−∋∋ + ,,},{

AAA NBANANA ∋≡⇒≡ |)(|, φ<

At this point Alice should be sure of Bob’s identity. However, a summary of Alice’s current knowledge

shows the contrary.

AB

KB

KA
AAA

NBANA
BA

BAKBA

AAKAAKAA

NANANA

∋≡∋
≡

≡+∋

≡−∋+∋

≡≡∋

+

+

|,
)(|

|,

|,,

)(|),(#|,

φ

φ

a

a

In short: Alice knows that Bob received her message, but she has no knowledge of the origin of the last

received message.

Gavin Lowe encountered the same problem using the Failures Divergences Refinement Checker (FDR).

Because the problem consists of uncertainty about the sender, Lowe proposed to include a reference to the
sender in the second message.

KABA BNNAB +→ },,{:

So now we can add the sender to the knowledge of Alice. Since Alice is able to recognize B (as stated in

the initial knowledge) she will recognize Bob as the intended receiver.

KABA BNNBABABA +≡⇒≡ },,{|~|)(|, φ<

So at this point Alice is sure about Bob’s identity. We only need to make sure that Bob also is sure about

Alice’s identity. That is accomplished with the third message. Please note that a sender is not required in
this message (as it was in the first two). Bob already knows who Alice is supposed to be (AB ∋), he only
needs to confirm it.

KBBNB +}{<

So Bob decrypts the message and recognizes his own nonce.

KBBKBABB

BKBB

NABANABNBNB
NBKBBNB

++

+

≡≡⇒≡
∋⇒−∋∋

}{|~|,},{|~|)(|,
,}{
φ<

(In)security of the Needham-Schroeder public-key protocol – Freek Vandeursen, Mark Speelman]

76

So now both Alice and Bob know whom they are talking with, and can start their real conversation.

4. Discussion

Using methods like Lowe’s FDR [Lowe96] and Gong, Needham and Yahalom’s reasoning method
[GNY90], it is possible to find vulnerabilities in security protocols. But because the subtle and hard-to-spot
vulnerabilities of security protocols it is not guaranteed you will actually spot the vulnerabilities. Because
we knew the vulnerability of the N-S protocol from Lowe’s research, we were able to spot it using the
reasoning method of Gong, Needham and Yahalom, but without that prescience it would have been hard to
spot. So these reasoning methods give a fair indication about the vulnerability of a security protocol, but the
question remains in which degree these methods can guarantee full protection.

5. References

[GNY90] Gong, Needham, Yahalom, Reasoning about beliefs in cryptographic protocols, 1990
[Lowe96] Lowe, Breaking and fixing the Needham-Schroeder public-key protocol using FDR, 1996
[NS78] Needham, Schroeder, Using encryption for authentication in large networks of computers, 1978

SC@RUG 2006 proceedings

77

The (in)correctness of a security protocol

Gerard Knap and Bart Hoenderboom

Rijksuniversiteit Groningen
csg0006@wing.rug.nl,csg0031@wing.rug.nl

Abstract. In this paper we explain the mutual authentication protocol
from Needham and Schroeder. Although in the beginning the protocol
was assumed to be correct, it was later shown that there was a crucial
weakness in it. The protocol was vulnerable for the so called ”man-in-
the-middle attack”. Different adaptations to the protocol are proposed
to remove this weakness. The vulnerability is superficially analyzed and
an improved version is given. Finally it is shown that the new version
of the protocol is more secure. The importance of systematic analysis is
also covered.

1 Introduction

Different agents in a distributed computer system should be able to authenticate
each other. Because of the sensitive information they exchange, agents want to be
sure that they don’t communicate to an intruder impersonating the other agent.
Therefore they make use of an authentication protocol. In 1978 Needham and
Schroeder proposed such an authentication protocol [1]. The Needham-Schroeder
Public-Key Protocol was assumed to be correct. In 1987 however a revised pro-
tocol was proposed by Needham [3]. In the years after several scientists tried to
develop a formal logic to reason about authentication protocols. Around 1989
the development resulted in something which is referred to as BAN logic, called
after the developers Burrows, Abadi and Needham. The BAN logic inspired sev-
eral scientists to formally analyze the Needham-Schroeder protocol. In 1990 an
article was published by Gong in which the Needham-Schroeder protocol was
analyzed with a new method inspired by the BAN logic [5]. It was one of the
first articles which actually proved the correctness of the improved protocol. In
1996 Gavin Lowe proved again that the protocol was vulnerable for the man-in-
the-middle attack [6]. He proved it with a new method, CSP (language developed
by C.A.R. Hoare) and FDR (a model checker for CSP).
This paper shows how the Needham-Schroeder protocol works with a Key Dis-
tribution Center and also with public keys. The original protocol was revised
because of a weakness in it. We will explain the weakness and show how this
weakness can be exploited by a man-in-the-middle attack.
Since this article is a review we will omit the logic reasoning from the reviewed
articles. In those articles different notations and methods are used, which is out
of the scope of this article. Gavin Lowe used in [6] CSP in combination with
FDR to prove that his improved version is secure. CSP and FDR are completely

78

described in [2] and [4] respectively. In chapter 4 of this article there is however
a short description of what FDR and CSP is. Finally we discuss our findings.

2 Man-In-The-Middle Attack

This term is generally used in cryptography for an attack in which an attacker is
able to read, insert and modify at will, messages between two parties. Both par-
ties are unaware of this attacker. The attacker must be able to observe and inter-
cept messages going between the two victims. The first version of the Needham-
Schroeder protocol [1] was vulnerable for this type of attack. In this paper the
protocol is explained and the vulnerability for a specific man-in-the-middle at-
tack is shown.

3 Needham-Schroeder Protocol

The Needham-Schroeder protocol can be used for establishing mutual authenti-
cation between an initiator A and a responder B. The first version of the protocol
had a serious weakness. Needham revised his protocol in [3] to remove this weak-
ness. Both the original version and the revised version will be explained in this
chapter.
The protocol can be used in combination with different key systems, with the
Key Distribution Center or with public keys. Because the revised version of
the protocol has a subtle difference depending on the key system used, both
approaches are described.

3.1 Authentication with a Key Distribution Center

The basic principle of authentication with a Key Distribution Center (KDC) is to
exchange unique numbers between A, B and a secure server. This server, called
Key Distribution Center, shares a secret key with each of his clients. The role
of the KDC is to provide the keys which will be used by A and B for encrypted
communication. The unique numbers exchanged are called nonces. Every session
requires a new nonce. To prevent others from reading those nonces, encryption
is used. To authenticate each other the nonces will be manipulated. This must
be done in a predefined way. In this example the nonce is decreased by 1. When
the nonces are correctly manipulated by both A and B, they have established
each other’s identity.

3.1.1 Initially proposed protocol

The first version of the Needham-Schroeder protocol [1] will be showed in figure
1. It shows the five steps of the original protocol. After successful completion of
the five steps, A and B have authenticated each other.

SC@RUG 2006 proceedings

79

Fig. 1. First version of the Needham-Schroeder protocol.

A sends a request to the KDC containing a nonce (R A1) and the identity of A
and B. The KDC responds with a message. This message is encrypted with the
key that A shares with the server. This message contains:

– the nonce sent by A (RA1)
– the identity of B
– the shared key between A and B (KA,B)
– an encrypted message containing the identity of A and the shared key be-

tween A and B. (KB,KDC(A,KA,B))

A sends a message of two parts to B. The first part contains a new nonce (RA2)
encrypted with KA,B (KA,B(R,A2)). The second part of this message contains
KB,KDC(A,KA,B). B decrypts message KB,KDC(A,KA,B) and uses the shared
key KA,B to decrypt message KA,B(RA2). B sends a response RA2-1 along with
a new nonce RB (KA,B(RA2-1,RB)). A decrypts this message and responds with
RB-1 (KA,B(RB-1)).

3.1.2 Weakness in the protocol

The Needham-Schroeder protocol, as presented above, is vulnerable for the man-
in-the-middle attack. The first two messages are not linked to message 3. This
means that the first two messages could be skipped and an intruder could send
a previous intercepted message 3 in the protocol. In the rest of this article the
sending of an previous intercepted message is referred to as replaying a mes-
sage. If the intruder also has the shared key between A and B, he can perform a
fake authentication with B, while B thinking he is communicating with A. This
weakness can be fixed by linking step 3 to the first part of the protocol. This link
makes it impossible to skip the first messages. If the intruder replays message 3,
the message will be invalid.

3.1.3 Revised Version by Needham

The improved protocol will be expanded with two more messages which es-
tablishes the needed link.

The (in)correctness of a security protocol – Gerard Knap, Bart Hoenderboom

80

Fig. 2. Revised version of the Needham-Schroeder protocol.

The initiator A sends a message which contains his identity to responder B.
B replies with a message containing a nonce (RB1). This nonce is encrypted
by the key shared by B and the KDC (KB,KDC). A sends this message to the
KDC. The KDC constructs a new message (KB,KDC(A,KA,B ,RB1))containing
RB1 and sends it back to A. A sends KB,KDC(A,KA,B ,RB1) to B. B now can
check if RB1 is identical to the nonce in message 2.
This revised version of the Needham-Schroeder protocol is introduced in [3].

3.2 Authentication with Public Keys

In chapter 3 the first two steps were necessary to obtain the keys required for
the communication between A and B. When public keys are used these first
steps can be omitted, since A and B can communicate with each other by using
their public keys. All the messages to A and B are encrypted using their public
key. Gavin Lowe also analyzed the Needham-Schroeder Public Key protocol [6].
First the system is formally described using the CSP notation [2]. This notation
is used as input for the FDR checker to see if it is correct. The analysis is done
by considering the protocol as a state machine where every step in the protocol
can result in a new state. Every action that can be taken in the protocol can
result in a new state. When all the steps in the protocol are performed, the
authentication is completed. So when certain steps in the protocol can be skipped
while the authentication can still be accomplished, the protocol is not safe. Lowe
showed by systematic analysis of all the states and actions in the system that
it is possible to skip an action in the protocol and still finish the authentication
successfully.

3.2.1 Initially proposed protocol

A sends an encrypted message (PKB(RA,A)) to B containing a nonce (RA) and
his identity. B replies with a message (PKA(RA,RB)) consisting of the nonce RA

and a new nonce RB . A replies with the nonce RB .

SC@RUG 2006 proceedings

81

Fig. 3. Needham-Schroeder public key protocol

3.2.2 Weakness in the protocol

Again there still is a weakness which can be exploited with the man-in-the-
middle attack. To show an exploit of this weakness, an example will follow.
In this example M is the intruder as described in section 2. A wants to establish
a secure connection with M. In the meantime M will use the messages from A to
do an authentication with B in a separate session. Since M will use the messages
from A, B thinks he is communicating with A. At the end of both sessions, A
will have authenticated M, and B has falsely authenticated M as A. For com-
pleteness all the steps are shown below.
A sends a message which is encrypted with the public key of M (PKM). This

Fig. 4. Example of a man-in-the-middle attack

message consists of a nonce (RA) and the identity of A. Instead of replying to
this message, M decrypts the message and encrypts it with the public key of
B (PKB). This message is sent to B. Because of the included identity of A, B
thinks the message comes from A. B replies to M with a message encrypted with
the public key of A. M replays this message to A. A decrypts the message to
obtain nonce RB . A encrypts this nonce with the public key of M and returns the
message. M now can decrypt the message and can obtain the nonce RB which
he encrypts with the public key of B. Authentication can now be finished by
sending the encrypted nonce to B.

The (in)correctness of a security protocol – Gerard Knap, Bart Hoenderboom

82

3.2.3 Improvement by Gavin Lowe

Gavin Lowe proposed a solution for this vulnerability [6]. This solution is sim-
ilar to the one described in the previous section (3.1). By linking the different
messages M can’t just reply the message coming from B to A. This way the
vulnerability is removed. The improvement is done by a very small adjustment

Fig. 5. Improved Needham-Schroeder public key protocol

in message 2. Instead of only sending nonce RA and nonce RB , the identity of
B is also transmitted. Since A knows where the message is coming from, it is
impossible for M to perform the man-in-the-middle attack as described in the
previous section. This improved version of the protocol is also analyzed by using
CSP and FDR. This analysis did not show any safety flaws.

4 Systematically Analyzing Communication Protocols

It was only after nine years that Needham published an article with an improved
version of the protocol [3]. It still lacked any hard evidence about the security.
So it is clear that more powerful and scientific tools were needed. In the article
of Gavin Lowe [6], CSP was used together with FDR to analyze the original
Needham-Schroeder protocol. He proved that the original protocol had a serious
security flaw. He came up with a solution and used the same tools to prove the
solution was adequate. When these systems are used, protocols can be checked
faster and more efficiently. We shortly describe what CSP is and what can be
done with it in combination with FDR.

4.1 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) is a formal language for describ-
ing patterns of interaction. CSP was designed by C.A.R. Hoare in 1978. It is
used to describe general interactions between (parallel) processes. Because of its
properties CSP is well suited to describe communication protocols in general.
Gavin Lowe used it to describe the Needham-Schroeder protocol. CSP is only
a describing language. For a complete description of this language see [2]. For
further analysis CSP can be used as input for FDR.

SC@RUG 2006 proceedings

83

4.2 Failures-Divergence Refinement (FDR)

FDR (Failures-Divergence Refinement) is a software package which allows the
automatic checking of many properties of finite state systems. When a process
fails a check, it is possible to investigate the process with FDR. To do so, FDR
takes two CSP processes as input, the implementation and the specification.
With those two processes FDR can check whether the implementation is in
accordance with specification. Gavin Lowe used FDR to analyze the Needham-
Schroeder protocol [6].

5 Results

In the first part of this paper the development of the protocol is described which
did not use any formal analysis methods. This informal approach makes it im-
possible to make any meaningful assumption about the safety. The second part
described how Lowe used formal analysis methods on the protocol and proved
that there was a flaw. He also suggested an improvement and proved that this
version did not contain any flaws anymore.

6 Conclusion

The Needham-Schroeder protocol was first published without any formal analysis
about its security. This protocol was critisized because of a security flaw. Several
solutions followed, of which some were even incorrect. After almost 10 years after
the first publication (of the protocol), Needham mentioned a revised protocol.
This revision was not accompanied by any formal prove. Lowe showed again the
same flaw in the protocol using proper analysis and also gave a revised version.
However, Lowe provided a formal prove for the revised version. Only after this
prove the protocol was suitable for safe usage. This paper has shown that proper
logic tools are of vital importance when developing communication protocols.

References

1. Needham, Schroeder.: Using Encryption for Authentication in Large Networks of
Computers. Communications of the ACM (1978) 993-999

2. C.A.R. Hoare.: Communicating Sequential Processes. Prentice Hall (1985)
3. Needham, Schroeder.: Authentication revisited. ACM SIGOPS Operating Systems

Review (1987)
4. Formal Systems (Europe) Ltd.: Failures Divergence Refinement-User Manual and

Tutorial (1993) Version 1.3
5. Li Gong, Roger Needham, Raphael Yahalom.: Reasoning about belief in crypto-

graphic protocols. (1990)
6. Lowe.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using

FDR. (1996)
7. Andrew S. Tanenbaum, Maarten van Steen.: Distributed Systems. Prentice Hall

(2002) 432-440

The (in)correctness of a security protocol – Gerard Knap, Bart Hoenderboom

84

Capturing The Missing Link: Design Decisions

University of Groningen
The Netherlands

George Craens, Hielko van der Hoorn

 G.D.Craens@student.rug.nl; H.van.der.Hoorn@student.rug.nl

Abstract

One of the most important artifacts in the software engineering process is the software architecture. Er-
rors made in the design can lead to huge problems in a later stage of the project. Usually only the ar-
chitecture itself is described, but not the decisions that are made and the rationale behind these deci-
sions. Rationale in the context of architectures describes and explains the used concepts, considered al-
ternatives, and structures of systems [2]. Leaving design decisions and the rationale behind them in the
minds of the architects has several drawbacks. The first problem is that this information can easily be
lost. Not only when the architect leaves the company, but also the reasoning behind a decision can eas-
ily be forgotten. This can cause problems when the architecture will be expanded. Another problem is
that an architecture without explicit documented design decision is less clear to stakeholders such as
developers and customers. The logical solution that is proposed is to capture this information in the ar-
chitecting process. It is not clear how this should be done. Some people suggest to include this infor-
mation in text in the architecture document, while other people propose the use of software tools to
capture this information. In this paper we describe and compare different approaches to capture design
decisions.

Keywords: Software architecture, architectural knowledge, design decisions

Introduction
Knowledge of an architecture can be divided in a design and a set of decisions (Fig. 1) [1].

These decisions explain why the design is made in the way it is. The problem is that in practice,
design decisions will not be documented and in the end they might get lost. Losing this knowl-
edge makes it harder to evolve the system, increases the complexity and it makes reuse of the
design experience difficult [2]. The purpose of our research is to describe and compare different
approaches to capture design decisions and the rationale behind them. We will first explore what
design decisions are and why it is important to capture them in more detail. Finally we will de-
scribe and compare different approaches to capture these decisions. The methods we used for the
creation of the paper are desk research and literature review.

Figure 1: Venn-diagram, describing Architectural knowledge

Architectural knowledge

Architectural Artifacts Design Decisions

85

Design decisions in detail
As already explained design decisions and the rationale behind them are, together with the

software architecture a large part within the domain of architectural knowledge (Fig. 1). Design
decisions can be categorized in four types [1]:

• Implicit and undocumented: the architect is unaware of the decision, or the decision will be

assumed to be very clear for everyone anytime. For example retrieved experiences from other
projects, tacit company policies to use certain approaches, standards, etc.

• Explicit but undocumented: the architect takes a decision for a very specific reason (e.g.) the
decision to use a certain user interface policy, because of time constraints). The reasoning is
not documented and slowly gets lost over time.

• Explicit and explicit undocumented: the reasoning is hidden. There may be tactical company
reasons to do so, or the architect may have personal reasons (e.g. to protect his position).

• Explicit and documented: this is the preferred, but quite likely exceptional situation.

The last type of design decisions is preferred, but this is rare. Usually the decisions are not

documented. For some decisions this is not a problem since these will be visible in the software
architecture. These are usually so called existence decisions which state that some artifacts will
be in the architecture. This is however not the case for non-existence decisions which state that
something will not be in the architecture. Also hard to trace are decisions that affect the whole
system or decisions related to the business environment.

Reasons to capture design decisions
Although it is at the moment not common to capture the design decisions, there are good rea-

sons to do so. One of the key challenges within the software architecture community is the fact
that architectures need to be designed very carefully. This is because changes are very costly
after the initial design has been completed. It is believed that this is difficult and expensive be-
cause of knowledge vaporization [4].

All important design decisions will be embedded and implicitly present in the software archi-

tecture, but they are not explicitly documented. This is directly a problem, because decisions can
get lost easily when they are not explicitly documented. They are also often closely related to
other decisions and fragmented throughout the design, making it hard to find a decision. Another
problem is that changes to the software architecture can lead to violation of earlier decisions,
reducing the value of the architecture even further [5].

There are also other reasons to capture the design decisions. Thanks to explicit design deci-

sions the understandability of the software architecture increases. This can benefit other users
such as architects that are working on the same system, reviewers, software developers and even
software tools when the decisions are captured in a structured way [1].

Problem statement
Although it is clear that capturing design decisions is desirable, it is not clear what a good or

what the best approach is. Different authors suggest different methods of capturing design deci-
sions (or architectural knowledge in general) [1][2][3]. Another problem is that it is not clear

Capturing The Missing Link: Design Decisions – George Craens, Hielko van der Hoorn

86

what exactly should be captured. Capturing every single decision sounds attractive, but is usually
not feasible due to time and money constraints. There are no guidelines on what should and
should not be captured. This is however outside the scope of this paper. In the following part we
will focus only on comparing different methods of capturing design decisions. We will not an-
swer the question on what exactly should be captured.

Solutions
How can architectural knowledge be captured, in particular design decisions? Different ap-

proaches are discussed in the next paragraphs.

Perhaps the easiest solution is to capture all key architecture decisions in a separate document

[3]. In the method all ‘key’ architectural decisions are written down in a document using a fixed
template. For every decision it is necessary to specify why the decision is important, what the
decision is, the rationale behind the decisions, the assumptions, constraints and alternative deci-
sions considered. Also things like implications, related decisions, related requirements and a few
other fields are required.

In addition to the template filled in for every important decision, it is recommended to create a

second view for the management and business stakeholders. This view focuses on the key deci-
sions and the implications of these decisions. Another suggestion that is done is to use a simple
coloring scheme to point out incomplete or controversial decisions.

Although this approach is probably already a lot better than capturing no decisions at all, it is

not perfect. Research has shown that capturing design decisions will improve the understandabil-
ity of a software architecture, making reuse and changes easier [2]. It is however very time-
consuming to create and maintain a document with design decisions and rationale. This is in ad-
dition to the problem that capturing design decisions usually has no direct benefit for the person
that should be capturing them, the software architect. The real value of capturing design deci-
sions become visible in a later stage of the lifecycle, when the system should be changed, or
when the desire arises to reuse parts of the architecture [2]. Another problem of this approach is
the loose coupling between the design decisions and the software architecture, making it hard to
use the rationale and to keep it up to date [2].

A solution to this problem is to make the capturing of the design decisions an integral part of

the software architecting process [2].

The process of capturing the rationale behind decisions is closely related to the process of de-

signing the software architecture. The problems are derived from the requirements document and
the solutions that have been chosen will shape the software architecture. Based on this link, the
idea is to combine the artifacts of the software architecture design and on the other hand rationale
management.

To make this possible a tool called Archium has been created. Archium is capable of capturing

an architecture together with the rationale behind it [6]. It is an extension of Java, consisting of a
compiler and a run-time platform. It supports architectural concepts like components and connec-
tors that can be described using Architectural Description Language (ADL) concepts. Together

SC@RUG 2006 proceedings

87

with the architectural artifacts the design decisions and the rationale behind them can be cap-
tured. The tool also captures changes in the history of the design since architectural modifications
are part of design decisions. Archium forces the user to identify design decisions and to name
them, but providing the rationale behind the decisions is optional.

Using Archium reduces the amount of work needed to capture these decisions since they can

easily be entered while creating the software artifact. As already explained this is important since
capturing design decisions is a time consuming task, which does not have direct benefits for the
software architect.

Another important positive point of Archium is the fact that the software artifacts are linked

with the design decisions. This makes it easier to keep the design decisions up-to-date when the
architecture is evolving. It can make the developer aware of certain design constraints and when a
certain software artifact is removed, an obsolete decision can be removed automatically. It is also
capable of checking if rules and constraints are not violated, when they are imposed on the archi-
tecture by certain design decisions.

A second tool to capture design decisions is Sysiphus [1][7]. This tool has not been build to

show how easy it can be to integrate the process of capturing design decisions in the existing
workflow, but to show what is possible when design decisions and architectural knowledge in
general are captured in a systematic way. Sysiphus is a tool suite to provide a solution to manipu-
late system models and rationale in a distributed environment.

The implemented system models range from documents, requirements, use cases, nonfunc-

tional requirements to UML classes, components, sequence diagrams or test cases. Various use
cases are supported, some are basic like adding a decision, but also more complex ones are possi-
ble. Examples are the evaluation of a change in a component or cleaning up the system (making
sure all consequences of a removed decision are also removed). There are also some use cases
that could be supported, but are not yet implemented. Some examples of this are the use cases
“spot the subversive stakeholder” and “detection and interpretation of patters”. The first use case
is for spotting the stakeholder that has caused the most changes/damage to the system. The sec-
ond use case is for automatically finding patterns in the architecture(s) that could lead to guide-
lines for new designs [1]. This tool is still very experimental, but it shows a glimpse of what is
possible when design decisions are captured in a language a computer can understand.

Instead of using templates or tools, it is also possible to use design patterns. Patterns are de-

vices that allow programs to share knowledge about their design [8]. The general form for docu-
menting patterns is to define items such as:

1) The motivation or context that this pattern applies to.
2) Prerequisites that should be satisfied before deciding to use a pattern.
3) A description of the program structure that the pattern will define.
4) A list of the participants needed to complete a pattern.
5) Consequences of using the pattern., both positive and negative.
6) Examples

When using these patterns, it is not necessary to capture (most of) the architectural knowledge,

because it is already done. Another advantage of this approach is that it is cheap to use. A disad-

Capturing The Missing Link: Design Decisions – George Craens, Hielko van der Hoorn

88

vantage is that it not covers knowledge for example about a very specific reason, tactical com-
pany reasons or interface policy.

Discussion
Advantages of capturing design decisions are that it supports reuse and change of the architec-

ture, because earlier made decisions are transparent [2]. The risk of violating rules or constraints
from previous decisions will be minimized and it improves the quality of the architecture, be-
cause an overview of decisions will make it easier to get consistency between decisions [3]. The
third advantage is the support of knowledge transfer over time and location [2]. The last point is
very important since the main goal of a software architecture is to transfer knowledge, but with-
out design decisions not all relevant knowledge can be transferred.

There is little doubt within the software engineering community about the value of capturing

design decisions. Although these are at the moment almost never explicitly documented, there is
a consensus that they should be captured to make the software architecture easier to understand
and to prevent knowledge erosion when the system is evolving [4].

One big reason why design decisions usually are not captured is the fact that there is no stan-

dard approach to do this. Documenting the software architecture has become a common practice,
but the realization that capturing the design decisions is also valuable is new. Therefore there is
not yet a standard approach or process like there is for capturing the software architecture. In this
paper we have compared three different approaches to capture design decisions (Table 1).

The simplest approach is to store this information in a separate document while designing the

software architecture, but this solution is not perfect. Keeping this document up to date and con-
sistent will be time-consuming while the rewards of capturing the knowledge are not directly
visible. It is also not very easy to use since the coupling with the software architecture is loose,
making it hard to use the knowledge in the document and to keep it up to date when the system is
evolving.

The proposed solution for this problem is a tool based approach. The rationale is created and

stored together with the design artifacts making it easier to use. The use of tools can also offer
additional benefits such as showing the relationship between decisions, showing the impact of
certain changes or checking if no constraints imposed by certain design decisions are broken.

We have looked in this paper at two different tools, Archium and Sysiphus. At the moment

Archium is the only tool that has the capability to be used in a real software development project.
Sysiphus is just a proof of concept tool that is far from finished. Archium offers a good way to
store design decisions together with the software architecture giving the advantages of the tem-
plate based approach without the disadvantages. The tool is however only suitable for software
development in Java and it is still in a beta status.

SC@RUG 2006 proceedings

89

Approach Advantage Disadvantage
Template • Easy to implement

• Time-consuming to create
• Loose coupling between design deci-

sions and architectural artifacts
Archium • Easier to integrate in workflow,

less time-consuming to use
• Software artifacts linked with

design decisions

• Java only
• Beta status

Sysiphus • Powerful functions available to
review, change and use architec-
tural knowledge

• Experimental status, more a proof of
concept

Design Patterns • Cheap • Does not cover decisions about e.g. a very
specific reason, tactical company reasons
or interface policy.

Table 1: Approaches to capture design decisions

Conclusion
Although at the moment there is not yet a definite solution on how to capture design decisions,

we expect that in the next years the situation will change. There is consensus that capturing de-
sign decisions is important, so it should only be a matter of time before better tools will become
available and capturing design decisions will become a standard practice.

References

Articles:

[1] Philippe Kruchten, Patricia Lago, Hans van Vliet, Timo Wolf
Building up and Exploiting Architectural Knowledge, 2005

[2] Jan S. Van der Ven, Anton G. J. Jansen, Jos A. G. Nijhuis, Jan Bosch
Design Decisions: The Bridge between Rationale and Architecture

[3] Jeff Tyree and Art Akerman
Architecture Decisions: Demystifying Architecture, 2005

[4] Jan Bosch
Software Architecture: The Next Step

[5] Anton Jansen, Jan Bosch
 Software Architecture as a Set of Architectural Design Decisions

Internet:

[6] http://www.archium.net
[7] http://sysiphus.in.tum.de
[8] http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns

Capturing The Missing Link: Design Decisions – George Craens, Hielko van der Hoorn

90

Determining the impact of design decisions

Frans Kremer, Herman van Rink

University of Groningen

Abstract. Recent research in software architecture has resulted in an
increasing e�ort into explicitly capturing architectural design decisions in
the software architecture using a variety of means. Although these design
decisions are captured, the relations between them are as of yet unde�ned,
or de�ned on a very basic level. The result is that it is unclear how a
change in one design decision a�ects other design decisions. We propose
a means to classify, identify and measure the impact of a change in one
design decision, to other design decisions. This is done by providing an
ontological view of design decisions where relations are made and graded
based on key characteristics, such as component relations (if any), quality
attributes and architectural constraints. We present a means how these
relations can be de�ned in AREL.

keywords: design decisions, impact measurement

1 Introduction

The software architecture plays a crucial role in the development of software
systems. However, the software architecture is only the end-result of an endur-
ing process. Indeed, the architecting process is often an iterative process, and
continues for the life-span of the product. During the life-span of a software sys-
tem, changes are made to it to meet new or changing requirements. The cost of
changes depends greatly on the maintainability of the software system. Often,
cost of change is a key factor why software systems are replaced. This is because
as software systems age, they become harder to maintain. One of the causes
for this is design erosion. Design erosion is in essence the di�erence between
the software architecture and its implementation. Often, design erosion occurs
where incremental changes are made to an existing software systems. In these
cases, the maintainers of the system violate constraints or neglect to update
the software architecture documents. Thus, mismatches start occurring between
implementation and architecture. There are several causes why design erosion
occurs. One of the major reasons for this is because the architectural knowledge
is lost (an e�ect known as knowledge evaporation). As mentioned above, the
software architecture only resembles the end-product, not the process. The soft-
ware architecture only captures the results of the decisions that are made during
architecture design. The aspects that result in these decisions however are often

91

not captured. Such aspects range from rationale to context and dependencies on
other decisions. In e�ect, what is missing are the design decisions.

Recent research e�orts by Kruchten, Van der Ven and Tyree has changed this
[3,1,2]. Several researches have tried to capture design decisions as an explicit
part of the software architecture. a design decision is a description of a choice of a
solution-set that (partially) realize one or more requirements. Each solution con-
sists of a set of architectural modi�cations, rationale, design constraints, design
rules and additional requirements. Kruchten's research into design decisions is in
an exploratory phase; he identi�es several categories of design decisions and pro-
poses a tool in which these decisions can be captured. Tyree has a more concrete
de�nition; he proposes a method to explicitly de�ne the design decision descrip-
tion in the architecture document. Jansen & Van der Ven go a step further by
explicitly de�ning the design decisions as part of the implementation, therefore
linking the software architecture and the implementation directly. However, this
model is insu�cient to de�ne executive decisions, such as the use of a speci�c
technology. the section hereafter discusses their research more broadly.

It is a great asset to be able to de�ne design decisions; with it, the scope of
a decision can be tracked throughout the architecture. However, these models
don't provide a manner to predict how a change or an addition of a design
decision impacts the architecture; it isn't possible to de�ne a link, other than
a hierarchy, to de�ne which design decision has a dependency on an aspect of
another design decision. Tang provides an excellent technique called AREL to
link design decisions together using Bayesian belief networks [4]. He believes, that
by de�ning and grading cause-e�ect relations between architectural elements
(anything from a view to requirements) and design decisions, the impact of
a change can be measured throughout the architecture. The grading is done
based on experience of the architect. His research lacks however distinction in
characteristics of a design decision to which a cause-e�ect relation can be based.

In this paper we propose a modi�ed version of Tang's technique that enables
the de�nition of impact-relations on a per-characteristic level. We also propose
a means to weigh these relations automatically, so to remove the dependency of
an expert's opinion for the weighing of relations. The remainder of this paper
is organized as follows; the following section discusses the problems architects
currently face with changing architectures. Next, section 3 discusses the research
e�orts made to elevate this problem. After that, section 4 proposes an addendum
to this research designed to improve the accuracy of impact prediction. Finally,
we conclude this paper in section 5.

2 Problem statement

In most development projects much of the tacit knowledge is lost after the
project is completed or even during the project. Although there are methods
of documenting these knowledge fragments, most of them are time consuming

Determining the impact of design decisions – Frans Kremer, Herman van Rink

92

and tiresome. When the action of updating the software architecture documents
is omitted once, the software system erodes due to inconsistencies. Due to this,
architecture documents of aged systems are often inadequate for the maintain-
ers. Moreover, current architecting techniques are unable to capture the intricate
relations between design decisions made during the architecting process.

When a design decision is reevaluated after some time it is important to make an
accurate impact prediction. And if the data is already inconsistent, the chance
of making an accurate impact prediction is relatively low. Thus it becomes clear
that current ways of change management are inadequate, since they require
intimate knowledge of the architecture. As stated above, this knowledge is lost
after iterations of architecture design.

There has been some development in the �eld of software engineering to elevate
this problem. One of these solutions is the explicit de�nition of design decisions.
The next section discusses this in detail.

3 Current research

This section discusses the research e�orts of Kruchten, Tyree and Jansen & Van
der Ven. These researchers all try to capture design decisions more explicitly in
the architecture [3,1,2]. To better understand the results and problems remaining
with these research e�orts, we discuss their research e�ort below.

Small derivations aside, the research e�orts of Tyree and Jansen & Van der Ven
share their de�nition of design decisions. Jansen uses the following de�nition for
design decisions [5]:

A description of the set of architectural additions, subtractions and mod-
i�cations to the software architecture, the rationale, and the design rules,
design constraints and additional requirements that (partially) realize one
or more requirements on a given architecture.

A design decision has a set of properties, Tyree captures these in the architec-
ture document using a table [2]. In this table, important information about the
decision is captured, such as assumptions made, alternatives considered, con-
straints, rationale, implications and related design decisions and requirements.
The main di�erence between Tyree's research and Jansen's e�orts are in the fact
that Tyree captures decisions in the architecture document whilst Jansen tries
to capture the design decisions in the implementation itself. The latter results
that system-wide decisions (e.g. platform used) cannot be adequately de�ned.

Kruchten's e�orts are more exploratory; Kruchten tries to identify di�erent char-
acteristics in design decisions and identi�es three major types. These types of
design decisions are:

SC@RUG 2006 proceedings

93

executive design decisions Executive design decisions are made on a man-
agement level and are mostly communicated through emails and other nat-
ural language documents. Executive design decisions are design decisions
which pertain on a global scale of the software architecture; they constrain
the architecture in a global manner. This makes it hard to automatically cre-
ate relations with other design decisions. Also the architect receiving these
communications has to cope with the often quickly changing perceptions of
the management team. Within a development project the management can
come up with many new (potential) requirements which have to be evaluated
for technical implications and cost of realization. Capturing these executive
design decisions with its rationale in the technical documentation can be
considered a challenge.

existence/constraint design decisions This type of design decisions can be
found on most levels. They can be derived from executive design decisions
and other requirements. Often as a natural consequence. Therefore they are
important as links between property and executive design decisions.

property design decisions Property design decisions are the smallest frag-
ments of a design decision. They specify small properties from larger Archi-
tectural Elements. While being fairly localized for the most part. A property
that requires a speci�c protocol version to be supported, would for instance
put a constraint on all the communication partners of that component.

While design decision capture knowledge of the software architecture, the rela-
tions between them are not yet exploited. Changes in the architecture require
that (related) design decisions need to be reevaluated. Since changes always oc-
cur during the life-time of a software system, reevaluation of design decisions is
imminent. However, as much e�ort there has been into design decisions itself,
little has gone into how design decisions relate to one another. The result is that
there is still little knowledge of how changes in one design decision a�ect the
other, and moreover how this can be measured up-front (thus, it is still di�cult
to determine how a change impacts the architecture and where problems may
arise). The research e�orts discussed above do try to capture these relations.
Below is discussed what results have been made.

3.1 Relations between design decisions

Because relations between design decisions are so important to be able to make
an accurate impact prediction of a change in the architecture, Tang, Tyree and
Kruchten all try structure these data. Kruchten gives the most detail in his
breakdown of structural elements. He gives a detailed view on the di�erent onto-
logical perspectives one can have on an architectural design decision. He also dif-
ferences with Tyree and Jansen by identifying states of a decision (idea, decided,
rejected, etc...). These characteristics come into play because of dependencies to
other design decisions with varying states.

Determining the impact of design decisions – Frans Kremer, Herman van Rink

94

An area that both Kruchten and Van der Ven touch is that of design decision
relations. Van der Ven talks mostly about alternatives and constraints, while
Kruchten goes into more detail. He mentions relations like forbids, enables, con-
�icts with, overrides and comprises of. Other relations are alternatives to and
the very general form, is related to.

These relation types still fail however to be able to determine which design deci-
sion has an impact on another design decision. Basically, there is only one method
of determining impact. This is to manually analyze each relation of a design de-
cision. Also the number of incoming and outgoing relations can say something
about the relevance of a decision. If many decisions reference a certain design
decision, then chances are that a change in that area has larger implications.This
is a very crude and tiresome method of formally analyzing change. Tyree has a
di�erent approach to this. He mostly uses static tables and color coding to rep-
resent his data. While this would work for a limited number of design decisions.
Finding out what the impact is of a new decision will be increasingly di�cult
as the number of decisions grows. In which case the number of possible impact
relations shows an exponential growth. Keeping track of a large architecture in
this fashion will be nearly impossible.

Tang is one researcher who has taken a step further in relations between design
decisions [4].He proposes the AREL model, which is a tool which can calculate
the likeliness and the impact of change of a design decision in correspondence
to the other design decisions. AREL uses a Bayesian belief network technique to
achieve this. Tang distinguishes two types in his model; architectural elements
(AEs) and architectural rationales (ARs). AEs are requirements, designs or im-
plementation artefacts. ARs are the reasons of why a design decision is made.
An AR consists of the assumptions, constraints and tradeo�s of a design deci-
sion. ARs correspond to Jansen & van der Ven and Tyree's de�nition of design
decisions. Therefore, we will refer in the remainder of this paper to ARs as de-
sign decisions. Tang then discusses how cause/e�ect relations are made between
design decisions and architectural elements and, using a Bayesian belief network
the impact of a change of one design decision a�ect all other design decisions.
Although this method works well, it is still based on the gut-feeling of the ar-
chitect (he/she still has to do the grading). Moreover, AREL doesn't make use
of the di�erent types of design decisions and their characteristics. In the next
section, we propose a re�nement of AREL, which incorporates these features.

4 Re�nement of AREL

In this section we propose a re�nement of AREL's approach of measuring impact.
We provide three additions to AREL:

� Global versus local decisions
� Relation types

SC@RUG 2006 proceedings

95

� Self-re�nement of the network

These three addendum's are discussed below.

4.1 Global versus local decisions

The in�uence (or impact) of a design decision can be categorized as being global
or local. This categorization is based on a design decision a�ecting the entire
architecture, thus a�ecting all other design decisions, or only a small part of the
implementation, i.e. only a few design decisions. To compare this with Kruchten's
categorization of design decisions, executive design decisions always have a global
impact (e.g. the decision to use a speci�c programming language).

Typically, global decisions have a huge structural impact on the implementation
and thus on all other decisions, local and global alike. However, local decisions
often have a low impact on global decisions because they only a�ect a part of
the architecture (the only exception to this is when a requirement, followed by
a local design decision is in con�ict with a global design decision; e.g. a local
decision that is impossible to realize given global constraints). The reason we
categorize decisions as being local or global is because global design decisions
always need to be reevaluated after a change in the architecture and it is useless
to connect a global decision in the AREL network (since it would be connected to
almost every other node in the network). To summarize, in our view, the AREL
network should only consist of local decisions, and global decisions should be
reevaluated every time the architecture changes. In the next section we discuss
the di�erent types of design decisions and how it a�ects AREL.

4.2 Relation types

Tyree, Kruchten and Jansen & Van der Ven all identify properties, such as
related artefacts, of design decisions. Each property of a design decision can be
related or may a�ect other design decisions. In AREL these relations between
design decisions are de�ned in a generic way; a single type of relations. Instead
of AREL's generic way of de�ning relations, we identify relations between design
decisions based on their properties. The following lists consists of all properties
which may result in a direct or indirect relation to another design decision:

requirements As de�ned by Jansen & Van der Ven, design decisions are used to
(partially) realize one or more requirements. Naturally, there exists a strong
relation between the requirements and the design decision.

realization The implementation of a design decision involves a segment of the
implementation; a set of components. Each component (partially) realizes at
least one or more design decision.

Determining the impact of design decisions – Frans Kremer, Herman van Rink

96

constraints Constraints can be divided into two groups; global and local con-
straints. As mentioned earlier, we de�ne global as �involving the entire ar-
chitecture�. Hence a global constraint (such as �must use J2EE�) will auto-
matically imply a global design decision. A local constraint is a constraint
which is only applied on part of the architecture, such as �module A must
respond in 20 millisec.�).

implications Implications are decisions that have no direct relation to the cur-
rent design decision through the architecture, but are resulting from the cur-
rent decision. For example the decision to develop for Windows-only leads
to the decision to use speci�c (platform-dependant) libraries.

By de�ning relations according to their type, the network is more segregated,
which results in a better understanding of the in�uences of design decisions.
Obviously, by only de�ning (and grading) that some relation exists, it is still
di�cult to determine how such a relation in�uences other relations.

4.3 Self-re�ning networks

In the previous two sections we stressed how the e�ectiveness of the AREL
network can be improved. In this section we discuss another huge factor that
determines the behavior of the AREL network; the grading system. In Tang's
research, the relations in the AREL network are graded based on the experience
of the software architect. This method relies on the tacit knowledge of the ar-
chitect. Due to the volatile nature of this type of knowledge (the architect may
leave the company or some other form of knowledge evaporation may arise), it
might be better to use an additional method for grading relations.

We believe that grading should be determined by the design process rather than
tacit knowledge. To enable this, feedback into the AREL network is required; the
architects should not only use the AREL network to try to determine impact, but
also feed the AREL network how changes propagate throughout the architecture.
By doing so, the AREL network can determine what the �real-life� impact factors
are and thus re�ne its impact calculations. Of course, when �rst setting up
AREL, it is still extremely valuable to grade the relations by hand, thus providing
a basis for AREL. However, the intention for self-re�nement is to enable AREL
to cope with a changing environment in the architecting process. Thus, once
chief architects leave the project team, AREL is still able to cope with changing
behavior of the architecture design.

5 Conclusion

In this paper we discussed what the current state of research involving design
decisions is, and how this knowledge can be combined with the AREL network

SC@RUG 2006 proceedings

97

to be able to determine the impact of design decision changes. We also provided
a few modi�cations of the AREL network, which enhance its use in practical
environments. To test our claims made in this paper, the modi�ed version of
AREL has to be tested in a practical environment. This is however beyond the
scope of this paper to do so.

References

1. Building up and exploiting architectural knowledge P. Kruchten, H. van Vliet, T.
Wolf

2. Architecture disisions: Demystifying architectures J. Tyree, A. Akkerman
3. Design desisions: The bridge between rationale and architecture J. van der Ven,

A.G.J. Jansen, J.A.G. Nijhuis, J. Bosch
4. Predicting change impact in architecture design with bayesian belief networks A.

Tang, Y. Jin, J. Han, A. Nicholson
5. Software Architecture as a Set of Architectural Design Decisions A. G. J. Jansen,

J. Bosch. WICSA 2005

Determining the impact of design decisions – Frans Kremer, Herman van Rink

98

Three methods for modelling variability in
software products families

Mohammad Babai and Henk van der Veen

University of Groningen,Blauwborgje 3 9747 AC Groningen
{m.babai,h.h.van.der.veen}@student.rug.nl

Abstract. Variability is one of the increasingly important attributes of
the modern software development. Variability makes it possible that the
software artefacts can be reused and configured to different contexts thus
easing development. But managing variabilties brings its own difficulties
and there is no consensus on how this must be done.
In this paper we describe three methods for modelling variability: Koal-
ish, VSL and COVAMOF. We will give a brief description of each method
in order to evaluate them based on their approach and strengths and
weaknesses. These properties will be presented and a comparison will be
given based on their respective effectiveness in processing different types
of requirements (e.g. functional or non-functional).
Key words: Variability, product families, variability management, vari-
ability in software systems, Variation specification.

1 Introduction

During the past few years the software industry has made a shift toward devel-
oping software with an increased amount of variability. Consequently variability
is rapidly becoming an important factor in software development. Modern soft-
ware products are frequently developed and delivered in multiple combinations
and variants. As a simple example, we may consider development tools that are
delivered in light, professional, enterprise versions or alternatively the operating
systems that are delivered in home, professional, data center edition with sup-
port for different number of clients and CPU’s. They all have the same basic
set of features but they differ in the number of extra available functional com-
ponents. Furthermore, most of the products can be run on different software
or hardware platforms. additionally, most products can be configured during
installation, startup and run-time.

A software product family or product family for short can be described as
a range of related products that share or reuse software functionality as much
as possible. The architecture of a product family has to be flexible enough to
make it possible to handle attributes such as functionality, performance and
adaptability across all the members of the family. It may also have support for
the future products that are planed to be part of the family (yet to be developed
products). The differences between the products in a product family are mainly
based on the variability concept. This may be defined as the ability to adapt

99

a software system to a specific application context. These adaptations may be
realized by adding, removing or altering parts of a software system to customize
it for a specific customer or platform. For example the configuration settings
may be altered at compile time, after deployment or even at runtime.

Variability is one of the concepts that is studied in the field of product fam-
ilies. One of the common approaches found there is to identify features that are
shared between all the members of the family or the properties that are specific
for one or a few of the members. If features can be altered (included, excluded,
changed) then they represent a variation point in the system for which different
variants can be made available. This approach is used as a basic for designing
and implementing the shared and specific features of the products.

There are a lot of different methods and techniques to implement variability.
For example, Conditional compilation allows us to select different variants during
compilation. We may specify that a piece of code should be build in the system
or not and the build parameters that affect the behavior of the components can
be specified as well. Configuration selection works on the software configuration
and gives us the possibility to include or exclude a particular component. For
example we may choose to use GUI system A instead of GUI system B for the
same software system. Run-time parameter binding makes it possible to select
the variables in the almost the latest stage. For example by choosing to run the
program in server of client mode or (de)activating a particular feature of the
program.

There are two main reasons to realize variability in software products. First,
variability has been recognized as a key to systematic and successful reuse. In
software product lines or families, variability is a way to handle the inevitable
differences among the systems in the family, while they use the common proper-
ties. In this case the re-usability can be increased by applying variability to the
system.
Second, by providing more variability in a software system the flexibility and
maintainability of those systems may be improved [1]. The features can be added,
removed or changed even at runtime, without releasing a new product.

Increasing variability in software systems leads to the situation where manag-
ing the variability becomes a very complex task and sometimes one of the main
concerns during the software development process. The variability management
appears to be a non-trivial task. The first fact which causes difficulties in the con-
sistent management of variability’s is that they often can not be localized. Other
complication which may arise as a result of variability is the interdependency
among the solution parts. For example, variability’s may exclude or require each
other, resulting in further interdependencies.

The remainder of this paper is structured as follows:
In section 2 we will give a brief description of three different approaches to handle
and manage variability in systems and in section 3 we will close the paper with
a discussion. In the latter section we will compare the described methods based
on their qualities and effectiveness.

Three methods for modelling variability in software products families – Mohammad Babai, Henk van der Veen

100

2 Methods to realize variability

In this section we give a brief description of three methods to handle variability
in software systems. First Koalish, then VSL and finally COVAMOF.

2.1 Koalish: A Koala Based approach

Koalish is based on the variability management of hardware. It concentrates on
a subclass of product families, namely configurable software product families.
The main idea is to divide the system in different components with a clear
interfaces and formal constraints. The components are defined in a declarative
manner, which makes it easy to read. Components have a required and a provides
interface. They can also contain other components, of which the possible types
and cardinality of those components can be specified as well as some simple
constraints.

The main goal is that a customer can simply enter his requirements through
series of choices in a user friendly program and a valid configuration for his
desired comes out. After every step a partial stable model (The model with
some of the variation points bounded) can be calculated to remove choices that
are bound by the previous choices. There is little to no need for glue code between
the components.

Both the component specification and the customer requirements are trans-
lated to Weight Constraint Rule Language (WCRL), a logic language. In this
representation the partial stable model is found and eventually the stable model
(all variation points bounded). The stable model is translated to a specification
that can be read and checked by an engineer or to an input for a realization tool
that can compile the code automatically.

We can see two important advantages of this system. The fully automated
and guided derivation of family members enables the creation of hundreds of
different family members, all customized for a specific customer in very little
time. From the perspective of the designer you have a clear and readable syntax
to which everybody must uphold, with easily proven soundness.

But Koalish is only usable for simple systems with simple dependencies (re-
quires, include, exclude). Dependencies on non-functional requirements can not
be modelled, since Koalish only supports formal specifications. Also, since inter-
faces need to fit exactly, it is very hard to change them later on and impossible
to cope with incomplete knowledge. There’s no expert in the middle who can
think of a different way to bind components (with a little bit of programming).
This affects the evolution of the system.

2.2 Variability Specification Language (VSL)

VSL provides a meta-model for variability management in software product fam-
ilies. It is an attempt to specify a more systematic approach to manage variability
which can be used as a base for building a variability management system.

SC@RUG 2006 proceedings

101

A product family in VSL is at the core the same as with Koalish: A collection
of Assets which make family members by configuration. But in Koalish the
Asset is always a component and in VSL it can be a partial solution in any
form, like a design document or a component. An asset can contain variation
points. The various variabilities can have different binding times like compile
time, configuration time or run-time. The configuration process is much more
complex and it will usually be only partially possible to automate.

There are two types of variation points: Dynamic and static. Dynamic vari-
ation points can be bounded after the software is released. The configuration of
the static variation points defines a specific family member and the binding is
done during the design and implementation of the member. This configuration
is called a profile.

In this model two main levels are recognized while creating a family member,
the specification level and the realization level.
The specification level contains mainly meta-data and the realization level the
software. So for example the realization level speaks of variation points in the
software, which contains the different options for creating the system and mecha-
nisms to do that as well as simple dependencies between variation points (require,
exclude). The specification level speaks of variability, which contains rationales
for certain choices, complex dependencies and binding times. Variations points
are linked to the variabilities. The profile also lives in the specification level and
binds the static variation points through resolution rules.

This model has some very nice features. For example a clear and understand-
able structure. There is some structured meta-data, which allows for complex
dependencies as well as partial automatic processing. Binding of the variation
points can postponed to a later phase.

There are still some points of improvement. For example, VSL doesn’t sup-
port the modelling of non-functional requirements.

2.3 Modeling complex dependencies using COVAMOF

COVAMOF is based on the idea that it is not always possible to describe the
difference between all choices of all variation points in a formal, computable way.
This because of the nature of the problem or the time it takes to do it. It tries to
combine all the different types of knowledge into one system: Formalized (can be
interpreted by computers), documented (informal descriptions or models) and
tacit (exists only in the minds of some experts) knowledge.

COVAMOF also knows variation points and most things that are in VSL, but
there is not such a strict distinction between the realization and the specification
level. What it does have is the possibility for different levels of abstraction (like
feature model, architecture and component implementation). We’ll concentrate
on the features that we think really makes it better than VSL and other system.

The most distinctive property of the COVAMOF system is the Dependency.
A Dependency is a relationship between a set of variation points and specifies a
System Property (SP) who’s value is based on the choices in these points. This
is a different definition than in VSL.

Three methods for modelling variability in software products families – Mohammad Babai, Henk van der Veen

102

Each Dependency is an object containing:

– A system property with its constraints (e.g. based on functional or non-
functional requirements).

– A set of associations with variation points that influence the SP.
– A (partial) function with the formal knowledge of how the SP is influenced

by the associations
– A set of references to files with the documented knowledge and/or the contact

information of the experts with tacit knowledge
– A set of reference data containing the value of the SP for a specific binding

of variation points.

Each Association with a variation point can contain either a logical function
(which will be part of the Dependency-function), a description of how it will
influence the SP or simply the fact that it will influence SP. The references to
knowledge and test-data help the designer to find the information needed for a
smart choice or an educated guess.

The main benefits of COVAMOF are:

Incremental externalization. Knowledge can gradually be documented or
formalized when the maturity of the product grows or the need arises. Al-
lowing for a quick start.

Linking knowledge. With one location for all knowledge concerning a vari-
ation point or dependency product engineers have less trouble finding all
relevant information.

Reduced expert dependency. Experts can concentrate on the points where
they are really needed. Leaving formalized or well documented choices for
cheaper personnel.

Reduced complexity through abstraction. Specifying complex relations on
groups of variation points on a more abstract level makes a more insightful
system than a network of simple dependencies.

Less iterations. By explicitly dealing with complex dependencies, experts can
spot a safe margin or a risk for certain dependencies earlier in the process,
thus saving iterations.

Recorded reference data This can be used to estimate the value of a depen-
dency in the future.

3 Discussion

The three methods are all clearly build from a certain view/goal. Koalish is
build as a component system with the goal to easily create hundreds of different
systems with different functionalities, good for reuse and differentiating between
different packages (economy, gold, platinum ..). As long as dependencies can be
formally specified, the system can easily be divided in components, and low-cost
customization for the masses is desired, this system is perfect.

VSL and COVAMOF are alike. VSL is fairly theoretical and tries to create a
general model that can be further specified by someone trying to build a variable

SC@RUG 2006 proceedings

103

system. It misses some concepts of COVAMOF like COVAMOF’s dependency.
This would give it a better link to the requirements. Whether the levels of VSL
or the layers of COVAMOF are better we cannot judge. The clear distinction
between meta-data and program-data could make it preferable for some.

Both COVAMOF and VSL give you an abstraction from the hundreds of
small variability points. Koalish knows a hierarchy between components and the
components they are comprised of, which for the sort of systems it meant for is
good enough.

COVAMOF works very good with extremely complex systems with little for-
malization, but will also work on a completely formal system. It won’t be as
fast as Koalish, but it can be completely automised. With all the benefits of the
possibility to incrementally formalize the system, the links to knowledge, depen-
dencies on non-functional requirements and available tool support, COVAMOF
is for most the best choice of the three.

References

1. Towards a General Model of Variability in Product Families. Martin Becker. Sys-
tem Software Group, University of Kaiserslautern. Kaiserslautern, Germany.

2. Modeling Complex Dependencies with COVAMOF Marco Sinnema, Sybren Deel-
stra, Jos Nijhuis University of Groningen The Netherlands. Jan Bosch Nokia Re-
search Center NOKIA GROUP, Finland.

3. A Koala-Based Approach for Modelling and Deploying configurable Software Prod-
uct Families. Timo Asikainen, Timo Soininen and Tomi Männistö.
Helsinki university of Technology, Software business and Engineering Institute.
Finland.

4. Baum, L.; Becker, M.; Geyer, L.; Molter, G.: Mapping Requirements to Reusable
Components using Design Spaces, Proc. of IEEE Int?l Conference on Requirements
Engineering (ICRE 2000), Chicago, USA, 2000

5. Becker, M.: Generic Components: a symbiosis of paradigms, 2nd International Sym-
posium on Generative and Component-Based Software Engineering (GCSE’00),
2000

6. Svahnberg, M.; Van Gurp, J.; Bosch, J.: A Taxonomy of Variability Realization
Techniques, Technical paper, ISSN: 1103-1581, Blekinge Institute of Technology,
Sweden, 2002

7. Jazayeri, M.; Ran. A; Van der Linden, F.: Software Architecture For Product
Families: Putting Research into Practice, Addison-Wesley, May 2000

8. Van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of Variability in Software
Product Lines, Proceedings of WICSA 2001, August 2001

9. Bandinelli, S.: Product Family Engineering with XML, Proc. of Dagstuhl Seminar
No. 01161 Product Family Development, Wadern, Germany, 2001

10. Svahnberg, M.; Van Gurp, J.; Bosch, J.: A Taxonomy of Variability Realization
Techniques, Technical paper, ISSN: 1103-den, 2002.

Three methods for modelling variability in software products families – Mohammad Babai, Henk van der Veen

104

Evolution of Architectural
Patterns

From the original concept to the architect’s
toolbox

Reinder Kamphorst

Rijksuniversiteit Groningen, The Netherlands, r.j.kamphorst@student.rug.nl

Abstract. A pattern is a re-usable concept that has been applied in
several working systems. It is not a litteral description of the used struc-
ture, rather an abstraction from it that can be used in other systems. A
pattern thus provides the architect with a recipe to compose a certain
architecture or part of an architecture.
A pattern language is a collection of patterns, with clearly stated in-
terdependencies. With a generative pattern language, a whole family of
architectures can be generated.
The first to propose the idea of pattern languages is not a software
architect, but a bricks ‘n’ walls architect: Christopher Alexander. He
published a number of books on patterns and pattern languages in the
late 1970s. In 1987, Ward Cunningham and Kent Beck were the first to
bring in practice the archtiectural ideas of Alexander to make a pattern
language for software. The authors known as the Gang of Four (GoF)
published their book Design Patterns [GoF94] in 1994. A very recent
milestone is the publication of POSA books.
There have been three stages in the evolution of architectural patterns
for software. This paper identifies them by comparing three papers on
this subject, and drawing parallels with the aforementioned milestones
in the evolution of (architectural) patterns.

1 Introduction

Software architecture descriptions are the means through which software design-
ers and software implementers communicate about the architecture; nevertheless
this piece of information (the software architecture) is often a source of confu-
sion and miscommunication. There are several reasons for this; one of them is
that software architecture documents mostly describe how the software should
be built, and little why it should be built that way.

Most problems in software design are not unique to the system they must
be solved for; they have probably been tackled by dozens of software designers
before. So designing everything from scratch can be seen as double work. And
When one finds a solution to a particular design problem, in what way can one
know that it solves the problem adequately?

A solution to these problem is the concept of patterns.

105

1.1 What is an architectural pattern?

A pattern is a re-usable concept that has been applied in several working systems.
It is not a litteral description of the used structure, rather an abstraction from
it that can be used in other systems. A pattern thus provides the architect with
a recipe to compose a certain architecture or part of an architecture.

A pattern language is a collection of patterns, with clearly stated interdepen-
dencies. With a generative pattern language, a whole family of architectures can
be generated.

One can subdivide patterns into architectural and design patterns. This paper
focuses on the former; these are patterns that apply to complete systems. They
are mostly non-OO. Another class of patterns is that of the design patterns;
these are applied on a lower level and are often formulated in an object-oriented
way.

Architectural patterns need to be classified and described in a standard way
in order to be effectively usable in software architectures. If architects speak
the same ‘pattern language’ (i.e. if one of them calls a pattern by it’s name,
others know exactly which pattern he/she means), many misunderstandings can
be avoided, resulting less energy spent on design and better maintainability.

2 History

The history of architectural patterns is quite short, as the subject is quite
young. There are three milestones in the evolution of architectural patterns.
The first is the publication of several books by Christopher Alexander ([Alexan-
der77,Alexander79]). The second is constituted by the first use of patterns in
Smalltalk by Kent Beck and Ward Cunningham, and the publication of the book
Design Patterns by four authors also known as the Gang of Four ([Gof94]). The
third is the publication of the POSA books.

2.1 Christopher Alexander

Christopher Alexander is an architect (not a software architect, but a bricks ’n
walls architect) who is considered to be the father of patterns.

Alexander proposes the idea of patterns. Each pattern expresses a relation
between a context, a ‘system of forces’ that is inherent to the context, and the
‘solution to the problem’: the architectural concept that works in the particular
context. The ‘system of forces’ can be seen as a set of requirements formulated
as forces that define a goal for the design of an architecture. A quote from his
book [Alexancer77]: Each pattern is a rule which describes what you have to do
to generate the entity which it defines.

An important feature of a pattern language is it’s generativity. Generativity
of a pattern language means that the collection of patterns generates a whole
family of architectures; without describing a single one of them explicitly.

Alexander describes architectural patterns (be it non-software patterns) in
the following way:

Evolution of Architectural Patterns From the original concept to the architects toolbox – Reinder Kamphorst

106

– The name of the pattern
– A picture, which shows an example of the pattern.
– An introductory paragraph, which sets the context for the pattern
– A headline in bold type that gives the essence of the problem in one or two

sentences
– The body, the longest section: background, motivation, variations
– The solution, in bold type: how to solve the problem
– A diagram, that shows the solution as a labeled picture
– A paragraph that ties the pattern to related patterns

This form is known as Alexandrian form and is still used as a way to describe
patterns. It is quite informal: the description of a pattern is in the form of a story
being told, with explanatory pictures and ‘delimiting diamonds’. This is because
one of Christopher Alexander’s motives was to give ‘ordinary people’ (i.e., non-
architects) a tool to communicate with architects; to achieve this, the tool had
to be in ordinary people’s language.

2.2 Object-oriented patterns; Gang of Four

In 1987, Ward Cunningham and Kent Beck bring Alexander’s ideas in practice
in the field of software design. They design a small 5-pattern object-oriented
pattern language to make things easier for novice Smalltalk programmers. They
present their work on the OOPSLA’87 conference.

In 1994, four authors also known as the Gang of Four1 describe 23 object-
oriented software patterns in their book Design Patterns [GoF94]. They do this
in a way that is far more detailed than Alexandrian form, and somewhat more
formal.

The GoF come up with a classification of patterns based on two criteria. The
first criterion is what purpose the pattern serves; patterns can have either cre-
ational, structural or behavioral purpose. The second criterion is scope: whether
the pattern primarily applies to classes or objects.

The GoF employ a far more elaborate way of describing patterns than Alexan-
drian form (13 as opposed to 5 elements of description per pattern). As opposed
to [Alexander77] and [Alexander79], [GoF94] was written for software designers
rather than for ‘normal people’. However, as can be seen later in this paper,
in high-level architecture descriptions it is often preferrable to use Alexandrian
form instead of one of the more complicated forms.

The patterns described in Design Patterns, and the patterns invented by Cun-
ningham and Kent are technically speaking not architectural; they are object-
oriented and are best used in lower-level design. However, one of the articles
in the next section (see section ??) is about deriving an architecture from the
patterns from Design Patterns.

1 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

SC@RUG 2006 proceedings

107

2.3 Pattern-Oriented Software Architecture

There are two books bearing this title (with different subtitle though); the first
one was published in 1996 ([POSA1]) and the second was published in 2000
(POSA2). [POSA1] looks at how patterns occur on three different levels; in
software architecture, in everyday design, and in idioms (which describe how a
particular design pattern is implemented). [POSA2] does the same for patterns
associated with concurrency and networking.

These books show one fundamental change with respect to the previous mile-
stone: patterns now aren’t necessarily necessarily object-oriented. Furthermore,
they make a clear distinction between architecture-level patterns and design-level
patterns.

3 Three articles

To come to a statement of how architectural patterns have evolved since their
first occurrence, this paper looks into three articles with more detail. These
papers all approach the subject of architectural patterns from a different side,
and thus give an overview of how architectural patterns evolve.

3.1 [Beck94]: Patterns generate architectures

Kent Beck describes how an architecture can be derived with the help of archi-
tectural patterns:

Describing an architecture with patterns is like the process of cell division
and specialization that drives growth in biological organisms. The design
starts as a fuzzy cloud representing the system to be realized. As patterns
are applied to the cloud, parts of it come into focus. When no more
patterns are applicable, the design is finished.

To demonstrate this method, he derives a drawing program (‘Hot Draw’) by
applying subsequently the patterns Model-View-Controller, Composite, Objects
for States, Editor, Observer, Collect Damage, Update at User Speed and Wrapper.
All of these (except Editor) are from ‘the Design Pattern Catalog’ , which is a
reference to [GoF94].

Beck doesn’t use the format used in [GoF94]; instead, he uses the Alexandrian
form to describe the patterns.

This article marks the first stage in the evolution of architectural patterns:
architectures can be derived from patterns that are described in object-oriented
terms. The parallel to be drawn is that with [GoF94] and Kent Beck’s own work
on patterns for Smalltalk.

Evolution of Architectural Patterns From the original concept to the architects toolbox – Reinder Kamphorst

108

3.2 [Shaw96]: Classification of architectural patterns

In this article, Mary Shaw and Paul Clements propose a classification standard
for patterns. To demonstrate their method, they classify styles described by
others. Their goals are to (quote):

– Establish a uniform descriptive standard for architectural styles - make the
vocabulary used to describe styles more precise and shareable among soft-
ware architects.

– Provide a systematic organization to support retrieval of information about
styles

– Discriminate among different styles - bring out significant differences that
affect the suitability of a style for various tasks; show which styles are re-
finements of others.

– Set the stage for organizing advice on selecting a style for a given problem

Instead of only pointing out that a pattern has creational, structural or behav-
ioral purpose, they come up with a far more complicated method based on five
feature categories. By doing so, the authors hope to contribute to architectural
styles becoming the lingua franca of architecture design.

As opposed to the previous article, the patterns described aren’t necessarily
object-oriented, for example, Dataflow network. The patterns are also referred to
as architectural styles, which gives an indication that these patterns are clearly
something else than lower-level design patterns. The parallel to be drawn is one
with the publication of the [POSA1,2] books, which marks the second stage in
the evolution of architectural patterns.

3.3 [Buschmann01]: A Pattern Language for Distributed Object
Computing

In the introduction to his article, Buschmann says:

A general critique of Gang-of-Four and POSA style pattern descriptions
is their length and depth of details. In particular it is critiqued that
these descriptions do not highlight the pattern itself, but its implemen-
tation: its general idea as well as its connection and integration with
other patterns likely gets hidden.

Subsequently, Buschmann describes a number of patterns that were described
in the book Pattern-Oriented Softwrae Architecture - Patterns for Concurrent
and Networked Objects [POSA2] in Alexandrian form. He adds the notion that
‘the language is not intended to replace these patterns’ existing descriptions, but
to complement them with an additional perspective’. Apparently, Alexandrian
form is a better way to describe patterns in a high-level fashion, while low-level
(detailed) design patterns are best described by using POSA or GoF form.

With this article, Buschmann puts the accent on where it was in the begin-
ning: as Alexander did, he formulates patterns in a very readable way, and also
focuses on the generativity of the pattern language as a whole. This is the third
stage in the evolution of architectural design.

SC@RUG 2006 proceedings

109

4 Conclusion

Architectural patterns have evolved from a bricks ’n walls architect’s idea to a
tool that can be used by software engineers to design architectures with; however,
with a small detour they have stayed remarkably the same.

The transfer from architecture to software architecture yielded object-oriented
patterns. Object-oriented patterns weren’t sufficient; other ways of describing
patterns were also needed. The generativity (that was also part of Alexander’s
definition) became important. Alexander’s way of describing patterns was also
re-adopted to give a good overview of pattern languages.

References

[Alexander77] C. Alexander, S. Ishikawa, M. Silverstein: A Pattern Language,
Oxford University Press, 1977

[Alexander79] C. Alexander: The Timeless Way of Building, Oxford University
Press, 1979

[Beck94] K. Beck, R. Johnson: Patterns Generate Architectures, submission for
ECOOP’94, 1994

[Buschmann01] F. Buschmann: A Pattern Language for Distributed Object Com-
puting, 2001

[GoF94] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns - Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994

[Lea94] D. Lea, Christopher Alexander: An Introduction for Object-Oriented
Designers, ACM Software Engineering Notes, January 1994

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
Pattern-Oriented Software Architecture - A System of Patterns, John Wiley
and Sons, 1996

[POSA2] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented
Software Architecture - Patterns for Concurrent and Networked Objects,
John Wiley and Sons, 2000

[Shaw96] M. Shaw, P. Clements: Toward Boxology: Preliminary Classification
of Architectural Styles, SIGSOFT 96 Workshop, 1996

Evolution of Architectural Patterns From the original concept to the architects toolbox – Reinder Kamphorst

110

On the evolution of architectural patterns
from the original concept to the architects toolkit

Sjouke W. Boersma

Department of Computer Science
University of Groningen
s.w.boersma@student.rug.nl

Rick van Buuren

Department of Computer Science
University of Groningen
r.d.buuren@student.rug.nl

Abstract. Throughout the years the size of software products has grown. A
development which started with small individual programs has evolved to large
and complex cooperating programs. This development increased the need for a
structured way to design the software architecture. After the introduction of
design patterns in software architecture, patterns gained a lot of popularity
within a relatively short period of time. Nowadays, patterns are widely used
within the software architecture and development on many levels. In this paper
we will analyze how the usage of patterns has evolved from single patterns to
combined patterns and pattern languages.

1 Introduction

Throughout the years software products have grown in size and complexity, as have
the computers on which the software is running. From relatively simple and rigid
software products, it has evolved to flexible and complex products with many
possibilities. Because of this growth a good structured architecture has become much
more important than it was in the early days when there were just simple software
products.

With the introduction of Object Oriented programming, a new paradigm was
introduced. This paradigm brought a new way of handling software architecture. The
question is how this paradigm could be used as effectively as possible.
Design patterns are describing the general idea of how to organize different objects to
solve several common problems.

1.1 Christopher Alexander

A new architecture can be created in several ways. Christopher Alexander was the
first who described a concept of using patterns to derive an architecture for buildings.
By starting at the top and systematically working his way down to the finer-grained
problems he completes his architectures.

111

1.2 Gang of Four

In software architecture there are several problems which often occur. In almost every
situation the details are different, but the core of the problem is the same. Therefore
the essence of the solution for these problems can be the same. It was the Gang of
Four that saw a lot of resemblances with Alexander’s problems and the problems in
software. The intention of the Gang of Four was to record the experience in designing
software architecture, and they tried to capture their architectural experience in
patterns. These patterns are described in the book [4].
These pattern descriptions have a uniform layout, which makes the comparison
between patterns easier. This layout has the following parts:

• the pattern name
• the problem description
• the solution
• and the consequences

Each of these parts has a clearly defined function which can not be omitted. By
naming the patterns it makes it easier to communicate about patterns in such a way
that it becomes part of the vocabulary of software architects and stakeholders. The
problem description tells an architect when a certain pattern can be applied and can be
a feasible solution to a problem. In the solution the idea behind the pattern is
described in an abstract way, complemented with some simple examples. In the end
the consequences of the usage of the particular pattern, the results and tradeoffs, are
pointed out. Each pattern is described individually without any relations to other
patterns.

It was the book [4] that inspired a lot of software architects to start using patterns. The
problems described in the book look generally familiar and also the solutions are
recognizable. This book made patterns known over a wide public. In the years after
the books publication, people have elaborated patterns and found more ways to use
them. Nowadays patterns are used on a wide scale and serve different purposes within
software architecture.

2 Review of pattern usage

There are different methods where patterns are being used (architectural patterns,
architectural styles, and architectural views for example). In this paper we will review
four papers which are related to patterns and their usage – two papers are written in
the time when patterns where just introduced in software architecture [2][5], and two
other papers are more recent [1][3]. We will look at how patterns are being used and
which relations they have. We will also look how pattern usage has changed trough
time.

On the evolution of architectural patterns from the original concept to the architects toolkit – Sjouke W. Boersma, Rick
van Buuren

112

2.1 Patterns Generate Architectures

The article ‘Patterns Generate Architectures” [4] describes how the “HotDraw”
architecture is derived. The HotDraw architecture is an architecture used in a
graphical drawing program. Many patterns used in the HotDraw architecture are
described in [4]. The goal of the article is not to explain how the HotDraw
architecture works, but how the architecture is derived. By not only knowing how
HotDraw works, but also understanding how it is derived, the authors claim that it
gives a deeper understanding which an expert should have.
Each pattern which is used in HotDraw is shortly explained in the article. Each
description has four sections:

• The Preconditions, describes which conditions should be met before the described

pattern can be applied.
• The Problem, a short description of the problem which is addressed with this

pattern.
• The constraints, this section describes the constraints of the usage of this pattern.

The usage of a pattern often implies that other design decisions are excluded by
this pattern, or that the usage of a pattern has certain consequences.

• The Solution, a short description of the solution, sometimes with a diagram in this
article.

Each section of the description is pointed at the current situation in the HotDraw
example in such a way that it becomes clear which problem is faced, what the
problems and constraints are and how this problem is solved. Below the summation is
shortly described how the framework is affected by the usage of the described pattern.
At the end of the description of all the used patterns, all the faced problems which
were encountered by the creation of the drawing tool were solved.

For each problem which is encountered in the creation of the architecture an pattern is
applied to solve the problem. By continuing this process until all problems are solved
the architecture is derived. During this process the focus lies on how to select the
appropriate pattern. Also the motivation for the choice is shortly described in a couple
of sentences.

2.2 Classification of Architectural Styles

An architectural style can also be called an architectural pattern. There are only
differences between their descriptions. Therefore we will use the term architectural
patterns trough this article.
An architectural pattern is focussed on how a system or subsystem is composed and
how the different parts are connected to each other. Design patterns are focussed on
the architecture of Object Oriented software. Architectural patterns are describing
concepts about the global organisation of a software architecture. These patterns are
not limited to the Object Oriented paradigm but have a more global view.

SC@RUG 2006 proceedings

113

In the article [5] several architectural patterns are organized and classified into several
categories. By organizing and classifying several architectural patterns it gives a
uniform descriptive standard. This helps in the communication about architectural
patterns. Also by classifying and organizing all the architectural patterns this makes it
easier to identify the differences between the different styles and gives a good
overview on all the possibilities. This makes it easier to select a style based on the
design problem which is faced.
The architectural patterns are classified into five major categories. Within these
categories finer-grained classifications are made to point out the differences.

• Constituent parts: components and connectors

In this section the type of components and the way they interact with each other are
mentioned. Connectors and components are the primary building blocks of
architectures.

• Control issues
This section describes how components work together and how control is passed
trough. This classification has three subsections: Topology, synchronicity and
binding time.

• Data issues
This section describes how data is organized in the system and how it is moving
around. The subsections in this part are: Topology, Continuity, Mode and Binding
time.

• Control/data interaction
This section describes the Shape and the Directionality of the control flow.

• Type of reasoning
This section describes the type of reasoning which is the basis for the architectural
style.

This classification gives a good insight in the different architectural patterns and what
the characteristics of the architectural patterns are.

2.3 A Pattern Language

In [3] Buschmann describes a pattern language. This pattern language is derived from
patterns from the book ‘Pattern-Oriented Software Architecture – Patterns for
Concurrent and Network Objects’. Buschmann tries to rewrite these patterns and adds
his own perspective. He uses this approach to give a better description on the pattern
itself. He mentions that it’s not his intention to replace the existing patterns, but just to
give a better picture of the pattern language this way.

The 17 patterns Buschmann describes in his paper are classified into four areas.
Namely service access and configuration, event handling, synchronization and
concurrency. Buschmann uses a two-step process to connect all the patterns and
create a pattern language. Firstly, he identifies the relationships between the patterns.
He looks at the pattern descriptions to clarify which of the relations should be
preserved and which ones should be omitted. Secondly, he defines the order of the

On the evolution of architectural patterns from the original concept to the architects toolkit – Sjouke W. Boersma, Rick
van Buuren

114

patterns. He does this by looking at which patterns are entry points, which patterns
follow and which patterns are leafs. Then he looks which patterns are architectural
patterns and defines these as the entry points of the pattern language.
Buschmann summarizes his pattern language in the diagram shown in figure 2.1.

Figure 2.1 Diagram with Buschman's pattern language (acquired from [3]).

All of the patterns in the diagram are found as components and are connected to each
other with so-called connectors. In this diagram we can find five patterns which are in
Alexandrian form: Thread-Safe Interface, Double-Checked Locking, Strategized
Locking, Scoped Locking and the Wrapper Facade. These patterns can be found in the
diagram above at the bottom right. The exact descriptions of these patterns can be
found in [3].

2.4 Architectural Patterns Revisited

In the article [1] several architectural patterns are grouped and classified in views.
Each view looks at certain aspects of an architecture. Each architectural view raises
important questions, which are pointing at the main differences between the described

SC@RUG 2006 proceedings

115

architectural patterns. After the questions the architectural patterns are shortly
described, in which the description is focused at the distinctive aspects of the patterns.
The architectural views are giving the architects a way to talk about a certain aspect of
the architecture. The combination of the architectural views and the architectural
patterns are creating a language to talk about certain aspects of software architecture
which are very hard to communicate without them.

3 The usage of patterns through time

The real start of pattern usage in software architecture was introduced with the book
[4] which changed the way of thinking about software architecture. The vision was to
build an architecture with the help of patterns. The article [2] describes how an
architecture is generated and how the patterns are being applied. This is done by
looking at the problem statements and applying patterns so the architecture meets the
requirements. By continuing to apply patterns the architecture is generated.
In the article [5] several architectural patterns are classified in such a way that the
software architect can more easily find the pattern to use in the specific situation
which is faced.
In 2001, Buschmann described a pattern language in which several patterns are
combined [3]. The language focuses on Patterns for Concurrent and Networked
Objects and the combinations which are made between the different patterns. There is
added value in this pattern language in the way patterns are combined, which cannot
be found in the individual patterns. Figure 2.1 shows how the different patterns are
connected to each other. In this pattern language, design patterns are used together
with architectural patterns.
In [1] architectural views are described. Each view groups several architectural
patterns and is clearly showing the differences between the individual patterns. This
language covers many aspects of software architecture.

Trough time more things have been described in patterns. In 1994 the Gang of Four
introduced design patterns. These design patterns were capturing the architectural
knowledge of Object Oriented design. In a similar way architectural patterns are
capturing architectural knowledge on software architecture. On this basis Buschmann
describes a pattern language which shows how design patterns and architectural
patterns can be combined together and what the important relationships are between
them. In the description of the created combinations more architectural knowledge is
captured.
In the article [1] another view on pattern languages is described. The foundation of
the language lies in architectural views which are the starting point of the language.
Each view covers a certain aspect of the software architecture, described in several
architectural patterns. This is another approach as used in [3] where the architectural
patterns are linked with design patterns. The difference between the approach in [3]
and [1] is that [3] only covers one aspect of software architecture and [1] is more a
general description of several architectural aspects and gives a much broader view on
the subject.

On the evolution of architectural patterns from the original concept to the architects toolkit – Sjouke W. Boersma, Rick
van Buuren

116

4 Conclusion

Since the introduction of patterns, they have become of great influence in the software
industry. Patterns have created a lingua franca in software architecture and have
become a common way to document architectural knowledge.
Trough time patterns have been used on different levels within the field of software
architecture. With the growth of the software and the software architecture also the
levels on which patterns are used have increased.
There is still much discussion about how patterns can be used and which methods and
techniques are better. Patterns are not the answer to all questions. Patterns can help
give structure to thoughts and transfer knowledge. But the fact that patterns are used
doesn’t imply that the architecture will always meet its requirements. There is a good
chance that the future will show even more methods where patterns can be used. But
patterns themselves have become one of the main tools of the software architects to
perform their jobs.

5 References

[1] Paris Avgeriou, Uwe Zdun: Architectural Patterns Revisited – A Pattern Language, the
European Pattern Languages of Programming (EuroPLOP) 6th–10th July 2005, Irsee

[2] Kent Beck, Ralph Johnson: Patterns Generate Architectures, 1994.
[3] Frank Buschmann, Kevlin Henry: A pattern Language for Distributed Object Computing,

2001.
[4] E. Gamma, R. Hel, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994.
[5] Mary Shaw, Paul Clements, Toward Boxology: Preliminary Classification of Architectural

Styles in Proceedings of the Second International Software Architecture Workshop, pp. 50-
54, 1996.

SC@RUG 2006 proceedings

117

Alias-Free Digital Synthesis using Band-Limited Impulse Trains

Ilja Plutschouw and Piter Pasma

Department of Computational Science

Rijksuniversiteit Groningen

Blauwborgje 3

9747 AC Groningen

i plutschouw@yahoo.com, ritz rvl@yahoo.com

Abstract

The sawtooth, square and triangle waveforms are the basic waveforms produced by classic
analog synthesizers. When trying to synthesize these in a digital medium, they are subject
to aliasing. This paper describes a method to digitally synthesize these waveforms without
aliasing, using band-limited impulse trains.

Keywords: BLIT, band limited impulse train, aliasing, synthesis, sawtooth, squarewave,
trianglewave, signal processing

1 Introduction

Analog synthesizers have a typical smooth, warm
”old-school” sound. They were most popular in
the 1960s and 70s [Kraftwerk 74], but because they
were hard to program and expensive, they were
replaced by cheaper and more userfriendly digital
synthesizers. While the analog synthesizers used
electronic circuits to generate the waveforms, the
digital ones used wavetables with sampled sounds.
The digital synthesizers where better at emulating
real world instruments. However, when electronic
house music became more and more popular, there
came a revival of the sound of the classic analog
synthesizers. Because these instruments were only
produced in limited amounts, and thus became rare
very quickly, people started to look for other meth-
ods to create these sounds. Wavetable techniques
were not very suitable for this, because they lack
the versatility of the electronic circuits. Software
synthesizers appeared to be a better solution, be-
cause they can actually simulate the electronic cir-
cuitry of the analog synthesizer.

Sounds from an analog synthesizer usually con-
sist of one or more basic waveforms, which are rich
in harmonics, played at the frequency at which the

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 1: Basic waveforms: a sawtooth, square and
triangle wave.

note that is playing, with a (resonance) filter and
a volume envelope applied over it to give a more
specific timbre to the instrument.

Emulating a filter or applying a volume enve-
lope over a digital waveform is usually not much of
a problem, creating the basic waveforms, however,

118

is. The basic, or classic waveforms that are most
often used are the sawtooth, square and triangle
waveforms (see figure 1).

When emulating these sounds on a digital de-
vice, we run into problems because they contain
an unlimited amount of frequencies or harmonics,
which can be seen as the discontinuities in the wave-
form or in their slope. Since digital sounds are
inevitably sampled at a finite sampling frequency,
the analog signal must be band-limited to less than
the Nyquist frequency (defined as Fs/2, half of the
sampling frequency) before sampling to obtain the
corresponding digital (discrete-time) signal. With-
out proper band-limiting these signals will contain
aliasing due to having to round off the discontinu-
ities to the nearest sampling point (an example of
this can be seen in figure 5, which will be further
discussed in section 2).

1.1 Definitions

DC The DC is the average value of a signal. In
most cases one wants the DC to be 0, so that
the waveform is centered around the origin. In
the frequency spectrum the DC is represented
as the 0th ”harmonic” at 0Hz.

Harmonics A frequency is harmonic if it is an in-
teger multiple of the fundamental frequency.
The fundamental is the first harmonic. Ac-
cording to Fourier Theory, all periodic func-
tions are made up of a summation of harmonic
sine-functions.

Impulse The impulse, or Dirac-delta function is
defined as: δ(x) = ∞ if x = 0 and δ(x) = 0
otherwise.

∫
∞

−∞
δ(x)dx is defined as 1. The

Fourier transform shows that the frequency
spectrum of the impulse contains all frequen-
cies.

Impulse train The continuous impulse train is an
infinite succession of equally spaced impulses.
It is defined as

CIT (x) =

∞∑
l=−∞

δ(x + lT)

where T = 1/f is the period, or distance be-
tween the impulses. The frequency spectrum
of the impulse train contains all harmonics in
equal power.

Nyquist frequency To be able to reconstruct the
original continuous waveform, the sampling
rate must be at least twice as high as the high-
est frequency component in the signal. This
frequency is called the Nyquist frequency.

Sampling The process of converting a continuous
time signal to a discrete time signal. A sample
is one of the discrete values attained in this
process, the frequency at which the samples
are taken from the continuous signal is called
the sampling frequency, or fs [Wikipedia].

Sinc The sinc function (figure 2) is also known as
the interpolation function or filtering function,
and is defined by sinc(x) = sin(πx)/πx. The
frequency spectrum of the sinc function con-
tains all frequencies up to π. It can therefore
be interpreted as a band-limited impulse.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

0

1

Figure 2: The sinc function.

2 Digital aliasing

A sampled digital sound has limitations on the
number of frequencies that it can represent. This
limitation is determined by the sampling rate of
the signal. Nyquist states that the maximum fre-
quency possible in a digital (discrete) sound is half
of the sampling frequency. Frequencies higher than
this cannot be reconstructed correctly, and result in
aliasing. These are audible distortions of the sound.
In digital recording hardware this problem is ad-
dressed by adding a lowpass filter which cuts the

SC@RUG 2006 proceedings

119

frequencies above Nyquist before doing the sam-
pling.

When constructing digital waveforms, the same
problem occurs. As long as band-limited signals
are used (for example a sine wave which consists of
only its fundamental frequency) there is no prob-
lem. More complex waveforms like the popular
sawtooth, square and triangle waveforms have an
infinite number of harmonics (the harmonics of a
sawtooth can be seen as the vertical lines in fig-
ure 3). This can result in heavy aliasing and care
should be taken to get rid of the harmonics above
the Nyquist frequency.

2.1 Examples of aliasing

0 0.25 0.5
freq (normalized to Fs)

Figure 3: perfect or analog sawtooth frequency
spectrum.

The harmonics of a sawtooth drop off in power
with 1/N , where N is the number of the harmonic
(see figure 3). We get into trouble when the fre-
quencies of the harmonics go above the Nyquist
frequency. Because these higher frequencies can’t
be represented in the sampled signal, they will
”bounce” back into the below-Nyquist range (fig-
ure 4), where they don’t belong and therefore will
be perceived as noise or distortions.

Because the harmonics of sawtooth-waves with
high base-frequencies can go above the Nyquist fre-
quency after only a small number of harmonics,
the power of these harmonics hasn’t dropped very

0 0.25 0.5
freq (normalized to Fs)

Figure 4: digital sawtooth frequency spectrum,
clearly displaying the aliasing artifacts.

much yet. Therefore aliasing is much worse in high-
frequency sawtooths than in low ones. As every
effect in the frequency domain has a dual effect in
the sample domain, we can observe this aliasing as
the ”wobbling” in the amplitude of sampled high-
frequency sawtooths, as seen in figure 5.

The same kind of aliasing occurs with square and
triangle waveforms, with the exceptions that the
squarewave consists of only odd harmonics and the
trianglewave has a quicker drop-off in harmonics
(1/N2).

2.2 Previous solutions to aliasing

Many solutions have been tried to overcome the
aliasing problem, some were more succesful than
others. We will discuss a few of them.

• Additive synthesis works by adding up a num-
ber of sines, one for every harmonic. Therefore
it is trivially band limited simply by not gen-
erating harmonics higher than Fs/2.

• Wavetable synthesis [Mathews 1969] is im-
plemented by putting one period of the de-
sired waveform into a wavetable, sampled at
a very high sampling rate. To get the wave-
form with the frequency F , we skip through
the wavetable with steps of Nf0/Fs, with N
the wavetable length, f0 the base frequency

Alias-Free Digital Synthesis using Band-Limited Impulse Trains – Ilja Plutschouw, Piter Pasma

120

−1

0

1

−1

0

1

Figure 5: Two classic sawtooth waveforms. Above a
low frequency and below a high frequency.

and Fs the sampling frequency. Because the
wavetable ”addresses” have a fractional part,
we need to interpolate in some way. If the
step is larger then one, we need to take care
that there are not too much harmonics in the
wavetable to produce aliasing. The wavetable
is usually precalculated using additive synthe-
sis.

• In [Moorer 1975] Discrete Summation Formu-
lae are proposed for generating periodic signals
that consist of exponential ramps of harmon-
ics. With this formula one can generate a wide
class of band limited waveforms. It is not pos-
sible to generate the exact classic waveforms
as discussed in this paper using these formu-
lae, although it is possible to get a reasonable
sounding approximation.

3 Creating Classic Waveforms using
Impulse Trains

We can integrate the impulse train in various ways
to create classic waveforms. Because integration is
a linear operation it can be considered as a filter,
so no extra frequencies will be added. Therefore,
if we find a way to create a band limited impulse
train, which we will do in the next section, we can
also create band limited classic waveforms.

3.1 The Sawtooth

Of the three basic waveforms, the sawtooth is cre-
ated in the most straightforward way, by integra-
tion of an impulse train:

SawCTS(t) =

∫ t

0

CIT (τ)− C1dτ

Where CIT (τ) is a continuous-time impulse train

with period τ , and C1 =
∫ T

0
CIT (τ)dτ is the DC

component (average offset value) of the impulse
train. When converted to discrete time, a discrete
function ”BLIT” is used to generate the discrete,
band limited impulse-train:

SawDTS(n) =

n∑
k=0

BLIT (k)− C2

C2 is the average value of BLIT, it should be sub-
tracted to keep the integration from ramping off to
infinity. This function can be implemented by a
”running” or ”cumulative” sum.

3.2 The Rectangle

The rectangle wave is a generalized version of the
square wave that can have different duty cycles (a
duty cycle is the percentage of the period where
the signal is positive). The square wave the special
case where the duty cycle is 50%. The continuous
version can be computed as:

RectCTS(t) =

∫ t

0

CIT (τ)− CIT (τ − t0)dτ

t0 controls the duty cycle in range [0,Period], with
t0 = Period/2 generating the classic square. Be-
cause the rectangle function takes the difference be-
tween two pulse trains, the DC component is zero.
Note that this formula can also be interpreted as
the difference between two sawtooths, one delayed
(phase-shfited) by an amount of t0.

When transformed to discrete time we get:

RectDTS(n) =

n∑
k=0

BLIT (k)−BLIT (k − k0)

Where k0 controls the duty cycle.

SC@RUG 2006 proceedings

121

3.3 The Triangle

The triangle is generated by integrating the rect-
angle function:

TriCTS(t) =

∫ t

0

RectCTS(τ)− C3dτ

Where C3 is the DC component of the rectangle
wave: C3 =

∫ t

0
RectCTS .

The discrete version is:

TriDTS(n) =

n∑
k=0

RectDTS(k)− C4

where C4 is the DC offset. These DCs should
in theory be zero, but in practice they are de-
pendent on the initial condition of the integra-
tion, and the duty cycle of the rectangle wave:
C4 = k0/Period + C5, where C5 is the initial con-
dition of the integration.

A way to resolve the problem of nonzero DCs
is to use a leaky integrator. The triangle function
produces a triangle with inappropriate amplitude.
We want this to be the same as the amplitude of the
rectangle wave. Therefore the signal must be scaled
by a function that is dependent on the frequency
and duty cycle of the rectangle wave:

TriDTS(n) =

n∑
k=0

g(f, d)(RectDTS(k)− C4)

g(f, d) =
2f

d(1− d)

4 BLIT synthesis

We will now describe different methods to synthe-
size band limited impulse trains.

4.1 The sincM function

We can obtain a band limited signal by applying
an anti-aliasing filter before sampling. The per-
fect anti-aliasing filter, hs, removes all frequencies
above fNyquist. It has a continuous-time impulse
response that is a sinc function with a zero-crossing
interval of one sample (see figure 2).

hs(t)
.
= sinc(Fst)

.
=

sin(πFst)

πFst

−0.1

0

0.1

impulse train

−1

0

1

sawtooth

−1

0

1

squarewave (or rectangle 50% duty cycle)

−1

0

1

triangle wave (50% duty cycle)

Figure 6: Four classic waveforms, limited to only a
few (37) harmonics to emphasize the effect of

bandlimiting on the waveform.

The ideal unit-amplitude impulse train with period
T1 is given by

x(t) = CIT (t) =
∞∑

l=−∞

δ(t + lT1)

Applying the anti-aliasing filter hs to this signal
gives

xBL(t) = (x ∗ hs)(t) =

∞∑
l=−∞

hs(t + lT1)

=

∞∑
l=−∞

sinc(t/Ts + lP)

where Ts = 1/Fs, the duration of one sample and
P = T1/Ts, the period of the impulse train in sam-
ples. Since xBL is now band limited, it can be safely
sampled without aliasing:

BLIT (n)
.
= xBL(nTs) =

∞∑
l=−∞

sinc(n + lP)

This can be interpreted as a time-repeated sinc
function, a sinc-train. It can be shown that this
sinc-train becomes

BLIT (n) =
M

P
SincM (

M

P
n)

Alias-Free Digital Synthesis using Band-Limited Impulse Trains – Ilja Plutschouw, Piter Pasma

122

with P the period in samples, M the number of
harmonics and:

SincM (x)
.
=

sin(πx)

Msin(πx/M)

This is a closed-form expression for the sampled
band limited impulse train, and can be used for
synthesis. Care has to be taken of course for the
limit where the SincM becomes 0/0, in this case
the limit goes to 1. M is always odd because an
impulse train has one ”harmonic” at DC (the 0th

harmonic or the average offset of the signal), and
an even number of non-zero harmonics, provided
no harmonic is allowed at exactly half the sampling
rate.

We can define the maximum number of harmon-
ics M in terms of the period P as

M = 2bP/2c+ 1

in other words, M is the largest odd integer smaller
than P in samples.

4.2 Sum of windowed sincs (BLIT-SWS)

This method is loosely based on the wavetable
method mentioned earlier. It is basically a band
limited periodic wavetable synthesis of an impulse
train. Bandlimited interpolation is used to convert
the sampling rate of a discrete-time unit sample
impulse train with an integer period to the desired
pitch. This conversion causes each impulse to be
replaced by a windowed sinc function, again be-
cause of the anti-aliasing filter hs and the simple
properties of the impulse train.

The idea is to use, instead of a periodic
wavetable, an overlapping of (precalculated) win-
dowed sinc-functions, one sinc-pulse for every im-
pulse in the train. Because these windowed sinc-
functions are usually sampled at a varying (non-
integer) phase, it is helpful to have an oversampling
factor in these precalculated windowed sinc-tables.
Because the windowing causes a finite fall-off in the
sinc-function, some aliasing is inevitable. We can
however, control this by our choice of window.

We can optimize this method by comparing
the number of overlapping windowed sinc-functions
with the number of harmonics of the BLIT. At high
frequencies the number of overlaps becomes large,
while the number of harmonics becomes small.

Then it is a good idea to switch to simple addi-
tive synthesis instead of summing windowed sincs.
The tradeoff here occurs depending on the compu-
tational cost of summing sines versus overlapping
sincs from wavetables. Also the amount of accu-
racy comes into play because it affects the choice
of window length and therefore the number of over-
lapping sincs at a given frequency.

4.3 Efficiency and implementation details

The sincM method computes a band limited classic
waveform in constant time (per sample), however
the drawback is that the computational cost is de-
termined by two sines and a divide instruction per
sample. Also care must be taken for the possible
division by zero, which we need to test for. Depend-
ing on the hardware of the implementation, these
drawbacks may or may not be a big problem.

The BLIT-SWS method can be very fast when
memory-lookups are cheap and the calculations of
a sincM are too expensive. If the algorithm is op-
timized by switching to additive synthesis for high
frequencies, these can also be implemented quite
cheap. If an inverse FFT is used for the additive
synthesis, this brings along new problems like the
FFT windowsize. So, for a high number of harmon-
ics, the complexity is linear in the frequency, and
when switching to additive synthesis it becomes lin-
ear in the number of harmonics, which is equal to
about half of the period, so inversely linear in the
frequency. When inverse FFT is used, the ”addi-
tive” synthesis can even become even logarithmic
in the number of harmonics.

5 Open problems

The sincM method can be greatly optimized by
using differential sine-oscillators instead of actual
sine-functions. These differential oscillators use
their previous values to determine the value of the
sine at the next sampling point. Care has to be
taken with the stability of these oscillators, a triv-
ial Euler-approximation would not do, for exam-
ple. Some preliminary experiments with reasonably
stable oscillators (computational cost: two multi-
plications and two additions per sine per sample)
have been quite successful, however it remains to be
seen what happens to the stability of these differ-
ential oscillators when, for example, the frequency

SC@RUG 2006 proceedings

123

is slided.

6 Conclusion

The sound of the old analog synthesizers is hard to
emulate. Many implementations are careless about
band limiting the basic waves, because of real-time
issues, and use heavy filtering to hide the effects
of it. Using the method described in this paper, it
is possible to get much clearer sounds, with little
overhead. This makes it highly attractive for use
in real-time analog synthesizer emulation.

7 References

[Brandt 2001] E. Brandt. ”Hard Sync Without
Aliasing”

[Mathews 1969] Mathews, M.V. 1969. ”The
Technology of Computer Music.” Cambridge, MA:
MIT Press

[Moorer 1975] Moorer, J.A. 1975. ”The Synthe-
sis of Complex Audio Spectra by Means of Dis-
crete Summation Formulae.” J. Audio Eng. Soc.,
24(Dec.):717-727 (Also available as CCRMA Re-
port No. STAN-M-5).

[Stilson 1996] T. Stilson and J. Smith 1996.
”Alias-Free Digital Syntheses of Clasic Analog
Waveforms”. In ”Proc. International Computer
Music Conference”. International Computer Music
Association.

[Kraftwerk 1974] ”Autobahn”, Philips records.
[Wikipedia] http://en.wikipedia.org/wiki/Digital signal processing

Alias-Free Digital Synthesis using Band-Limited Impulse Trains – Ilja Plutschouw, Piter Pasma

124

A Comparison of Haskell and OCaml

Mark IJbema and Hilverd Reker

Abstract. This paper presents a brief overview of the differences and similarities between
the programming languages Haskell (version 98) and OCaml (version 3.08). We provide the
reader with a comparison according to a number of theoretical criteria. First we compare
the major characteristics of both languages: their type system, evaluation strategy, and
module system. Then we examine the available constructs for imperative and object-oriented
programming, and discuss some less significant distinctions. Throughout this article, we
present source code examples to illustrate various language features, and to help explain the
criteria themselves.
Comparing (these) two languages — on more than just a syntactical level — helps one better
understand their fundamental properties, and those of programming languages in general.
Even though Haskell and OCaml are both functional programming languages and have a
lot in common, there are still a number of important differences worth looking at.

1 Introduction

The Haskell programming language, named af-
ter the logician Haskell Curry, was created by
a committee formed in 1987. The latest semi-
official language standard is Haskell 98 [1],
which this paper refers to. Haskell is purely func-
tional, which essentially means that it has no
assignment statements and emphasizes the def-
inition of functions. A distinguishing feature of
Haskell is its use of monads (cf. §5.2) to simulate
imperative constructs.

OCaml (“Objective Caml”), created in 1996,
is a general-purpose programming language de-
scended from the ML family. It is impurely func-
tional, adding support for imperative program-
ming using references and assignment state-
ments. OCaml uses automatic garbage collec-
tion, as does Haskell (and most other modern
languages).

This paper will study the main differences and
similarities between Haskell and OCaml (release
3.08 [2]). We will not talk about practical is-
sues such as available compilers and libraries,
foreign function interfaces, documentation, and
so on, but limit our discussion to a language-
theoretical level.

2 Typing

Like most programming languages, both Has-
kell and OCaml are typed. Typed languages may

have either strong or weak typing. In a strongly
typed language, conversion between types re-
quires the use of explicit conversion functions; in
a weakly typed language, there may also be well-
defined exceptions or an explicit type-violation
mechanism such as coercing). Type checking
may occur either at compile-time (static typing)
or at run-time (dynamic typing). Both OCaml
and Haskell are strongly and statically typed.
Consider the following fragment of Haskell code:

add_one :: Integer -> Integer
add_one n = n + 1

We explicitly tell the compiler that add one is
a function from integers to integers, and then
define the function itself. By contrast, here is
a similar program in JavaScript, a weakly, dy-
namically typed language:

function add_one(arg) {
return arg + 1;

}

a = add_one(0); alert(a);
a = add_one("0"); alert(a);

When run, this program produces two alerts:
the first contains the text “1” while the second
one shows “01”. Apparently, when its argument
is a number, add one returns the successor of
that number, but when given a string, it returns
that string with “1” appended. JavaScript con-
verts these types dynamically at run-time. We

125

also see that the two subsequent assignments to
a are perfectly legal, even though we first assign
a number and then a string: JavaScript’s weak
typing allows this.

2.1 Pattern Matching and Algebraic
Datatypes

As one would expect, both Haskell and OCaml
are equipped with common built-in datatypes
such as integers, characters, strings, and so on.
There is also support for lists, arrays, tuples,
and records. Much more interesting is their sup-
port for algebraic datatypes, illustrated by the
following (Haskell) example:

data Tree = Leaf Char | Node Tree Tree

The above algebraic datatype declaration intro-
duces a new type constructor Tree with two con-
stituent data constructors: Leaf and Node. We
now have a user-defined type for binary trees
whose elements are either leaves containing a
character, or internal nodes recursively contain-
ing two subtrees.

Suppose we are given a value of type Tree and
we need a way to “decompose” it so we can ac-
cess its parts. This is done by pattern matching;
for instance, we could create a function yield
that accepts a Tree and returns the left-to-right
concatenation of its leaves:

yield :: Tree -> [Char]
yield (Leaf c) = [c]
yield (Node left right) =
(yield left) ++ (yield right)

Incidentally, this example illustrates a few
things about Haskell’s syntax: the type [Char]
means “a list of characters”, and the value [c]
denotes the list consisting of just element c. The
binary operator ++ concatenates two lists.

To actually create a value of type Tree, we
need to (recursively) apply either one of the data
constructors we just defined. To illustrate,

print (yield t)
where t = (Node (Node (Leaf ’a’)

(Leaf ’b’))
(Leaf ’c’))

results in the value "abc" being printed. With
only minor syntactic modifications, one can do
exactly the same in OCaml.

Algebraic datatypes are also known as sum
of products types. A product type is just the

Cartesian product of some other types (e.g. int
* bool), while a sum type corresponds to the
set-theoretic idea of disjoint union. OCaml adds
a special kind of sum type called a polymorphic
variant type, which is explained in §5.2.

As a side note, a small advantage of Haskell
over OCaml worth mentioning is its support for
list comprehensions, which are best illustrated
by an example. List comprehensions allow us
to write, say, [(x, y) | x <- xs, y <- ys],
forming the Cartesian product of the lists xs
and ys.

So far we have explicitly typed our
functions, such as in the first example:
add_one :: Integer -> Integer. That is
not strictly necessary, even though many
programmers still do so for clarity: Haskell’s
and OCaml’s type systems can automatically
infer the correct types for us. They employ a
version of the so-called Hindley-Milner type
inference algorithm, which essentially infers the
most general type suitable for a given function.

2.2 Functions

Since Haskell and OCaml are functional lan-
guages, functions are first class, which means
we can use them just like other values; we can
pass them as arguments to other functions, re-
turn them from other functions, and so on. For
example, Haskell’s standard library contains a
function map which applies a function to each
element in a list. For instance,

map add_one [1, 2, 3]

yields [2, 3, 4]. We also see that function ap-
plication is denoted by simply juxtaposing the
function and its arguments (as it is in OCaml),
so one writes things like push item list in-
stead of push(item, list). Both languages al-
low currying and partial application, demon-
strated in the following Haskell code fragment:

mult a b = a * b
map (mult 2) [1, 2, 3]
-- this results in [2, 4, 6]

Currying means we write add a b instead of
add (a, b) in our function definition. We par-
tially apply add to only its first argument, re-
sulting in a “new” function that is equivalent to
mult b = 2 * b.

In the preceding example we separately de-
fined a function mult to be used by map, which

A Comparison of Haskell and OCaml – Mark IJbema, Hilverd Reker

126

is not really necessary: OCaml and Haskell
allow “anonymous” functions to be denoted
via lambda abstractions. This means we could
have written map (\x -> x * 2) [1, 2, 3]
instead.

2.3 Polymorphism

Haskell and OCaml incorporate polymorphic
types, which basically describe families of types.
For example, while [Char] means “a list of char-
acters”, [a] denotes the type family “list of el-
ements of type a”, for every type a. Here the
letter a is called a type variable, and this kind of
polymorphism is known as parametric polymor-
phism. We can use it to improve upon our Tree
datatype and the corresponding yield function:

data Tree a =
Leaf a

| Node (Tree a) (Tree a)

yield :: Tree -> [a]
yield (Leaf c) = [c]
yield (Node left right) =
yield left ++ yield right

This polymorphic version of Tree is more gen-
eral: leaves can hold any value, not just charac-
ters. Also, the yield function has been turned
into a polymorphic one.

This brings us to an important difference be-
tween the two languages. There is another kind
of polymorphism which Haskell supports, but
OCaml does not: ad hoc polymorphism, better
known as overloading. Overloading allows the
same function to perform different operations
on different types, such as a + operator that
can add integers as well as real numbers. Haskell
uses type classes as a structured way to control
overloading. To illustrate, we can define a type
class containing an equality operator:

class Eq a where
(==) :: a -> a -> Bool

Here we have stated that a type a is an in-
stance of the type class Eq if there is an (over-
loaded) operation ==, of the appropriate type,
defined on it. We may then specify the actual
behavior of == on a particular type. Assuming
functions integerEq and floatEq are available,
which compare two integers resp. floats, we can
write:

instance Eq Integer where
x == y = x ‘integerEq‘ y

instance Eq Float where
x == y = x ‘floatEq‘ y

Having done this, we can now write expressions
like 3 == 4 as well as 3.0 == 4.0.

3 Evaluation Strategy

Haskell and OCaml differ fundamentally in their
evaluation strategy, which is the set of rules
defining how expressions are evaluated. Empha-
sis is typically placed on functions or operators:
an evaluation strategy defines when and in what
order the arguments to a function are evaluated,
when they are substituted into the function, and
what form that substitution takes. There are
two kinds of (deterministic) evaluation strate-
gies: strict and nonstrict evaluation.

3.1 Strict evaluation

In strict evaluation, the arguments to a func-
tion are always evaluated completely before the
function is applied. Aside from a few techni-
cal details, this can also be called eager eval-
uation. The typical strict evaluation strategy is
applicative-order evaluation, which we demon-
strate by an example. Suppose we have a func-
tion square which returns the square of its argu-
ment, and we want to calculate the square of the
square of three. An applicative-order evaluation
of the expression square (square 3) proceeds
as follows:

square (square 3)
square (3 * 3)
square 9
9 * 9
81

Applicative-order evaluation, which OCaml im-
plements, evaluates the arguments before apply-
ing the function, as shown above.

Within strict evaluation, we can handle the
argument expressions in different ways, the most
well-known of which are call by value and call
by reference. Call by value evaluates the argu-
ment expressions and assigns a local copy of the
result to the corresponding parameter. This is
what OCaml does (as a side note: it evaluates
arguments right-to-left). OCaml also supports

SC@RUG 2006 proceedings

127

call by reference, which means one can pass a
reference value as an argument to a function.
For this purpose the language offers a ref data
constructor (cf. §5.1).

3.2 Nonstrict evaluation

Nonstrict or lazy evaluation implies that argu-
ments to a function are not evaluated unless
they are actually used in the evaluation of the
function body. As an illustration of nonstrict
evaluation, we evaluate square (square 3) us-
ing normal-order evaluation, which is the “op-
posite” of applicative-order evaluation:

square (square 3)
(square 3) * (square 3)
(3 * 3) * (3 * 3)
9 * 9
81

Although this type of evaluation is arguably
more intuitive, it is only possible in a language
which has no side effects, i.e. which is purely
functional. (We will not go into details about
this.) In the above example, we see that the
function arguments are substituted directly into
the function body, a process which is known as
call by name evaluation. Call by name is rarely
used in practice, since if an argument is used sev-
eral times, it is re-evaluated each time. We see
it happening in the example: the square of three
is calculated twice, whereas we only needed to
calculate it once under applicative-order evalu-
ation. For this reason, Haskell employs call by
need, a memoized version of call by name: if
a function argument is evaluated, the result is
stored for subsequent uses.

3.3 Strict functions

A strict function is a function which always eval-
uates all of its arguments. If we let ⊥ denote the
“value” of an expression that either produces
an error or loops infinitely, then a function f
is strict if f ⊥ = ⊥; otherwise it is nonstrict.
A strict programming language is one in which
only strict functions may be defined by the user.
Therefore, OCaml is a strict programming lan-
guage, whereas Haskell is nonstrict because of
its laziness. (As an example of the latter, define
first a b = a. Then first 1 1/0 evaluates
to 1 under normal-order evaluation, while un-
der applicative-order evaluation, we are forced
to “evaluate” 1/0, resulting in ⊥.)

4 Module System

A module usually packages together related def-
initions (such as the definitions of a datatype
and associated operations over that type) and
places them in a separate namespace. Haskell
and OCaml both have a module system, but
OCaml’s is more sophisticated. We will use
OCaml’s terminology and refer to the body
(i.e. implementation) of a module as a struc-
ture. A module can specify which of its parts
(declared names) should be exported — that is,
made available to other modules. This allows
the construction of abstract datatypes (ADTs).
A datatype is made abstract by witholding its
actual representation as a concrete type, a con-
cept familiar from the OOP world. Modules can
recursively define and import other modules,
and in OCaml, they can be defined locally to
an expression. However, they cannot be consid-
ered “first class” in either language.

In contrast to Haskell, OCaml supports func-
tors (also known as parameterized modules),
which are “functions” from structures to struc-
tures. In essence, functors implement paramet-
ric polymorphism for modules, which we clarify
by the following example. OCaml’s standard li-
brary contains the Set module, which can be
used to store a collection of values as a set;
one can then perform the usual operations such
as insertion, union, intersection, etcetera. To
make these operations efficient, a set is inter-
nally stored as a balanced binary tree. However,
this means we cannot store values of just any
type: we need at least an ordering function for
the elements of the type.

To realize this, Set is provided as a func-
tor which accepts a so-called OrderedType and
produces a specialized kind of Set module for
this ordered type. A module is considered an
OrderedType when it (at least) defines a certain
element type and a comparison function for this
type. So, assuming the function str compare
compares strings, this is how we could create
a StringSet module in OCaml:

module StringSet =
Set.Make(struct

type t = string
let compare = str_compare

end)

This code fragment uses the let keyword, which
we have not discussed yet: let name = expr is

A Comparison of Haskell and OCaml – Mark IJbema, Hilverd Reker

128

a (global) declaration, defining the binding be-
tween the name name and the value of the ex-
pression expr, which will be known to all subse-
quent expressions.

5 Imperative Programming

OCaml’s facilities for imperative programming
can be divided into three groups:

(1) input/output operations,
(2) control structures, and
(3) modifiable data structures.

There is not much to say about the first two of
these, apart from exceptions (a kind of control
structure), which we will treat in §5.2. OCaml
offers so-called input and output channels for
reading and writing, and control structures (if-
-then-else, while, etcetera) similar to those
found in most imperative languages.

As mentioned, Haskell does not have any real
imperative constructs; it uses monads instead,
which are discussed in §5.2. First we will look
at OCaml’s modifiable data structures.

5.1 Modifiable Data Structures

OCaml offers a number of mutable data struc-
tures: vectors, character strings, records with
mutable fields, and references. For example, we
could define a record type for points in the
plane, and a function for moving a point by mod-
ifying its components:

type point =
{ mutable xc : float ;
mutable yc : float } ;;

let move_to p dx dy =
p.xc <- p.xc +. dx ;
p.yc <- p.yc +. dy

To create a sequence of statements, we separate
them by a single semicolon (a double semicolon
is used for “top-level” statements). The <- op-
erator allows us to access or modify a particular
element. Also, note that we use +. instead of +:
this is a consequence of OCaml’s lack of ad hoc
polymorphism. There is a function + for adding
integers, while +. adds floats.

As was briefly touched on earlier, OCaml pro-
vides a polymorphic type ref which can be seen
as the type of a pointer to any value. Here is an
example of its usage:

let x = ref 3 ;;
x := 4 ;;
print_string (string_of_int !x) ;;

We construct a reference to a value using
the function ref. The referenced value can be
reached using !, the (prefix) dereference oper-
ator. The function modifying the content of a
reference is the infix function :=. Actually, ref-
erences are not primitive in OCaml. They could
be defined as follows:

type ’a my_ref =
{ mutable content : ’a } ;;

let my_ref x = { content = x } ;;
let deref r = r.content ;;
let assign r x =
r.content <- x ;
x

(A minor syntactic difference between Haskell
and OCaml is that OCaml prefixes type vari-
ables by an apostrophe.) Now we can rewrite
our example:

let x = my_ref 3 ;;
assign x 4 ;;
print_string (string_of_int (deref x))

Although useful, the introduction of mutable
fields leads to complications in OCaml’s type
system. Suppose we were to declare let x =
ref [] ;;. Then the variable x would have type
’a list ref, which is OCaml’s way of writ-
ing “a reference to a list of values of type a”.
But now we can modify x in a way which would
be inconsistent with the strong static typing of
OCaml:

x := 1 :: !x ;;
x := true :: !x ;;

(The :: operator prepends an item to a list.)
Thus the same variable x would have type int
list at one moment and bool list at the next
(compare our JavaScript example at the very be-
ginning of this paper). To remedy this, OCaml
adds a new category of type variables: weak type
variables. After declaring let x = ref [] ;;,
x gets the type ’_a list ref. The type vari-
able ’_a is not a type parameter, but an un-
known type awaiting instantiation; the first use
of x after its declaration fixes the value that ’_a
will take in all types that depend on it, perma-
nently.

SC@RUG 2006 proceedings

129

5.2 Monads and Exceptions

In Haskell, monads are used (among other
things) to implement the kind of imperative con-
structs discussed above. A monad is a rather
abstract concept, and we will not go into de-
tail about it. Besides playing a central role in
the I/O system, monads can be used to cre-
ate imperative-style computational structures
which remain safely isolated from the main body
of the functional program. This provides a way
to incorporate side effects and state into a purely
functional language like Haskell.

Since exceptions are “impure”, in Haskell they
are incorporated using monads. OCaml does
have a separate exception mechanism, which we
describe in this section.

All exceptions belong to a predefined type
exn. Users can define their own exceptions by
adding new constructors to this type. Here are
two examples:

exception MyException ;;
exception Depth of int ;;

We can then construct exception values using,
for instance, MyException or Depth(4). Excep-
tions are ordinary values, but they must be
monomorphic; a polymorphic exception such as

exception Wrong of ’a ;;

would namely permit the definition of functions
with an arbitrary return type.

Actually, the exn datatype is (necessarily)
special in that it is an extensible sum type, which
basically means that the set of values of the
type can be extended by declaring new data
constructors. This feature of OCaml’s type sys-
tem, called polymorphic variants, is not present
in Haskell.

The following code fragment briefly illustrates
how exceptions can be used in practice:

let result =
try
string_of_int (1/0)

with
Division_by_zero -> "NaN"

in
print_string result ;;

The try . . . with . . . construct allows us
to do pattern matching over any exceptions
that might have been raised. In this case,
we are checking only for OCaml’s predefined
Division by zero exception.

6 Object-Oriented Programming

Unlike Haskell, a significant part of OCaml is
dedicated specifically to providing support for
the OOP paradigm. Much of this support is sim-
ilar to that offered by languages such as C++
and Java, and we review it only briefly.

One can define classes and objects, and use
(multiple) inheritance. We should mention that
as in most OO languages, OCaml’s subclasses
give rise to subtypes, which in turn gives rise to
subtyping polymorphism (also known as inclu-
sion polymorphism). Basically, this means that
a function could work on an object of a certain
type T , but also on objects belonging to sub-
types of T .

Methods can be public, private, and virtual,
and one can define initializers. So-called friend
methods can also be defined. Finally, one of
OCaml’s more interesting OOP features is its
support for parameterized classes.

Does Haskell 98, with both its parametric and
ad-hoc polymorphism, need any extensions to
support conventional object-oriented program-
ming (with encapsulation, mutable state, inher-
itance, and so on)? This question is a difficult
one, and we will not attempt to answer it in this
paper (cf. [3]).

7 Conclusion and Extensions

In this paper, we have only looked at “sta-
ble”, standardized versions of both Haskell and
OCaml. All kinds of extensions and variants of
Haskell are currently being developed, which
may eventually find their way into a new ver-
sion of the language; the same goes for OCaml.
We saw that in a number of areas, Haskell and
OCaml hold (small) advantages over each other,
by which some of these extensions are inspired.
Specifically, Haskell could be equipped with a
more powerful module system, such as proposed
by Shields and Jones [4]. OCaml, in turn, might
benefit from the addition of ad-hoc polymor-
phism: Furuse’s G’Caml [5] extends the OCaml
compiler to accomplish this.

Two other Haskell extensions are worth men-
tioning. Generic Haskell [6] is a superset of
Haskell 98 designed specifically for generic pro-
gramming. This is a subject in itself; suf-
fice it to say that even though Haskell’s type
classes already support a generic kind of pro-
gramming to some extent, they do not sup-

A Comparison of Haskell and OCaml – Mark IJbema, Hilverd Reker

130

port generic programming. Then there is Tem-
plate Haskell [7], offering support for type-safe
compile-time meta-programming [8]. A similar
effort for OCaml is being carried out in the form
of MetaOCaml [9].

References

1. Peyton-Jones, S.L., Hughes, J., eds.: Haskell
98: A Non-strict, Purely Functional Language.
http://www.haskell.org/onlinereport/ (1999)

2. Leroy, X., Doligez, D., Garrigue, J., Rémy,
D., Vouillon, J.: The Objective Caml system,
release 3.08.
http://caml.inria.fr/pub/docs/manual-ocaml-
308/ (2004)

3. Kiselyov, O., Lämmel, R.: Haskell’s overlooked
object system.
http://homepages.cwi.nl/∼ralf/OOHaskell/
(2005)

4. Shields, M.B., Peyton Jones, S.: First-class
modules for Haskell. In: Ninth International
Conference on Foundations of Object-Oriented
Languages (FOOL 9), Portland, Oregon. (2002)
28–40

5. Furuse, J.: Generic polymorphism in ML. In:
Journées Francophones des Langages Applicat-
ifs (JFLA 2001), Pontarlier, France. (2001) 75–
96

6. Hinze, R., Jeuring, J.: Generic Haskell: Prac-
tice and theory. In: Summer School on Generic
Programming. (2002)

7. Lynagh, I.: Template Haskell: A report from the
field. http://web.comlab.ox.ac.uk/oucl/work/
ian.lynagh/papers/Template Haskell-
A Report From The Field.ps (2003)

8. Taha, W.: Multi-stage programming: Its the-
ory and applications. Technical Report CSE-
99-TH-002 (1999)

9. Czarnecki, K., O’Donnell, J., Striegnitz, J.,
Taha, W.: DSL implementation in MetaOCaml,
Template Haskell, and C++ (2004)

10. P. Hudak, J. Peterson, J. Fasel: A gentle intro-
duction to Haskell 98.
http://www.haskell.org/tutorial/ (1999)

11. Bird, R.: Introduction to Functional Program-
ming using Haskell. 2nd edn. Series in Com-
puter Science. Prentice Hall (1998)

12. Rémy, D.: Using, Understanding, and Unravel-
ing the OCaml Language. In Barthe, G., ed.:
Applied Semantics. Advanced Lectures. LNCS
2395. Springer Verlag (2002) 413–537

13. Chailloux, E., P. Manoury, B. Pagano: Devel-
oping applications with Objective Caml.
http://caml.inria.fr/pub/docs/oreilly-
book/html/index.html (2000)

14. Leucker, M., Noll, T., Stevens, P., Weber, M.:
Functional programming languages for verifica-
tion tools: Experiences with ML and Haskell
(2001)

SC@RUG 2006 proceedings

131

Software Architecture Document Management System

Anton Rademaker1 and Marten Veldthuis2

1 University of Groningen
anton@antonrademaker.com,

WWW home page: http://www.antonrademaker.com
2 University of Groningen, marten@veldthuis.com,

WWW home page: http://www.standardbehaviour.com/

Abstract. Today there are many tools involved in the creation of a software architecture
document. These tools all maintain different files formats and do not communicate which
each other about the semantics of the data itself. Because of this, a lot of information is lost
into the document, like design decisions. Later in the software project this causes problems,
for example in the area of change management. In this paper, we give an introduction about
what a Software Architecture Document Management System (SADMS) is in our opinion
and how it helps improving the software engineering process and prevents the erosion of
architectural knowledge. A SADMS will include all tools involved in the process of writing
a software architecture document. Further, we will investigate possible features for SADMS
and their benefits to the software engineering process.

1 Introduction

One of the de-facto standards for software engineering is the Rational Unified Process. In the
Rational Unified Process (RUP) the software engineering process is split into three phases: the
inception, the elaboration and the construction phase. Most of the work on the architecture is
done in the inception and elaboration phases. To handle the problem we will focus on these two
phases.

In the inception phase several important things are done in regards to the architecture: stakeholders
are selected, an initial use case model is build, risks are assessed and a list of requirements is created.
During the elaboration phase, some tasks like the use case model are finished and others like a list
of non-functional requirements and a first version of the architecture is build.

Having a SADMS with a central information repository would not suffer from these kinds of prob-
lems. Such a system would be purposed in the iterative creation and maintenance of software archi-
tecture documents, aiding the users of the system in team collaboration and maintaining coherence
throughout the documents and over the course of the project.

The system would be able to do so by allowing users to build and update the document in a versioned
web-like structure, while being able to export the document to different standardized views. For
example there would be views for architects, managers and for testers. Having multiple views
on the architecture makes the data more accessible by only displaying the relevant information
for one software engineering discipline. By using one data store for the architecture, it becomes
easier to verify the architecture in an automated way. Automated checking of requirements, design
decisions and other parts of the architecture becomes possible and reduces the chance of errors in

132

the architecture. Additionally, it helps make relevant processes less complicated: writing tests for
example is much easier when all data necessary for testing can displayed together in a specialized
view.

To constrain the part of the problem we will be focusing upon, we will not go into detail for each
artifact and relation. We will only provide a list of example objects and relations which in no way
we claim to be exhaustive or complete. We’ll try to keep the list focussed upon what we believe to
be the most important ones though.

In this paper we start with analyzing the elements of the architecture. Using this knowledge we
subtract a number of important requirements. At the end of the paper we will state the benefits
for the architecture team and the whole software engineering process of our approach.

1.1 Problems

Software Architecture can suffer from what we’ll call erosion of architectural knowledge. That
means, during the software architecture process, knowledge is lost. Other problems while working
on the software architecture of a system is that precious time is lost on things like maintaining
coherence.

We will be proposing a solution to these problems, and we’ll present these by outlining different
aspects of the solution; the general idea (section 3) and the major requirements (section 4). Ofcourse,
we’ll also be talking about why we think our proposal would solve the problem, and what benefits
it would have for the architects. This we’ll do in section 5.

2 Background and related work

In the software engineering process it’s normal to use different tools like the Rational tools [Cor]) to
create a software architecture document ([CBB+02] and [OPF]). Software architecture documents
are often a combination of text and UML diagrams (the “4+1” view model [Kru95]). But using
different tools and different file formats gives trouble when changes have to be made to the docu-
ment: changing it at one place is not enough. This has led to new tools like Architecture Rationale
and Element Linkage ([TJHN]). Also a lot of architectural knowledge is lost during the process
[TA].

Using different views at the same data (see [Cle05] and [OPF]) it’s possible to serve the user the
information he needs.

3 Analysis

Software architecture documents are often very large documents and grow by the year, because the
complexity of software increases every year. To support these large documents with SADMS we
need a scalable data model and a good graphical representation. The data model consists of two
main parts: entities and their relations which can be divided over the 4+1 view model: logical view,

SC@RUG 2006 proceedings

133

Requirements

Design
Decisions

Stakeholders

HW/Deployment

Software

Tests

Risks

Key Drivers

Use cases

Entity

relationship
(a -> influences b)

Fig. 1: Different entities in the SADMS and their relations

process view, development view, physical view and scenarios. Both parts have properties like name,
management information and possible implementation constraints. In our view, the entities are for
example the software’s classes, tests, requirements, design decisions and source code. An important
property in product families would be variability. Additionally the architectural background has to
be retained: rationale, analysis results, and assumptions.

The power of SADMS can only be used if the display of all relations and entities is very powerful.
This means we have to think about how everything is displayed: how are entities displayed and
how do we present the relations? If the schema becomes too large, a person who is new to the
architecture will have problems to understand it. So we have to provide a way to present the reader
a view at his own knowledge level of the architecture.

On order to be able to support any current or future entities, we try to keep the amount of different
entity types to a bare minimum, and allow the user to customize the model to his/her needs. On
the basic level, all entities can be represented as a stream of characters. Classification of different
types of streams could be done using a taxonomy; i.e. classification based on completely user-chosen
tags.

We can split the entities in a number of groups, as shown in figure 1. In this figure, groups are
shown in rectangles, and relations using arrows. We will focus upon some of the more interesting
relations.

Requirements and Key Drivers By mapping requirements to key drivers, we are able to see
clearly how well each key driver is covered in terms of requirements. In the verification phase,
having maintained these mappings allows stakeholders to verify them.

Requirements and Software Obviously, the requirements have a huge impact on the software
design. Being able to track dependencies back and forth between requirements and software will
make sure change management becomes a much more enjoyable task.

Software Architecture Document Management System – Anton Rademaker, Marten Veldthuis

134

Design Decisions and Requirements All design decisions should respect the requirements. When
the latter are slated for change, conflicts may occur and assumptions made previously may no
longer hold or will need to be revised.

Tests and Use Cases Use cases have a strong correlation to functional tests. After all, functional
tests verify the workings of the system by checking the output for a given simulated user input.
Use cases serve a similar purpose, but on another level. By linking these it’s easy to see if the
functional test is still in correspondence with the use case.

Descriptions of the entities are about the responsibilities and provided interfaces. The relations
between the groups and within groups can divided in (also visualized in figure 2):

Depends on Many links exist between requirements, design decisions, tests and actual pieces of
implementation. By defining these relations, change management becomes much easier.

Data flow Data flows from different objects within the logical view

Control flow A better understanding of control flow helps programmers track down the source of
a bug.

Patterns By saving the related objects of the pattern, validation is easier and the architecture is
better understandable.

Required interfaces Normally you can check these relation only at compile time in an auto-
mated fashion. An SADMS would enable the architecture team to perform this validation while
constructing the document.

Objects Offered interfaces

Required interfaces

Part of pattern

Inheritance
(maybe just as a

pattern)

together with

inherits a

RequirementsTests Activity Protocol

Keydrivers

relation

Property

Process Aspect

Fig. 2: Possible relations between entities

SC@RUG 2006 proceedings

135

From the analysis we can now subtract a number of requirements that would be placed on a
SADMS.

4 Important requirements

We identified a couple of the most important requirements which we’ll divide them in general,
display related and management related requirements. First of all, there are some generic require-
ments.

Rationale For example each entity and relation should have the possibility to add a rationale.

Tests and source code Source code should be linked to objects in the architecture, which can
be done by adding a property to entities.

Language plug-ins To support source code linking it is important that SADMS supports a large
number of programming languages (e.g. using a plug-in system).

The graphical interface and display of the document itself has requirements too:

View support The graphical interface must support different views at the data model and must
contain the tools to edit and view the data model in a easy and understandable way. Typical
views would be project manager view, developer view, tester and integrator view, maintainer
view, designer of other systems view, product line application builder view, customer view, end-
user view, analyst view, infrastructure support person. More information about these views can
be found in [CBB+02].

UML Because architectures can be quite large with many entities and relations it’s very important
that the used figures in the document are easy to understand and conform to a standard (e.g.
the UML standard notation).

Also there are a some management related requirements. These are important to have in order to
improve the process in areas not directly related to the architecture itself.

Version control By saving what is changed and also by who the history of the document is easily
tracked. It helps architects in case an error was introduced in the document to track down when
it was introduced and what is maybe depending on it.

Time tracking Storing the amount of time every object and entity has cost a architect improves
the project management process.

5 Process benefits

Now we have the relations between the several entities we can focus on the benefits of a SADMS, and
a set of requirements we feel necessary for a successful SADMS. The benefits range from software
architecting to software engineering.

Architectural knowledge and validation For the software architects the benefits are mostly
related to architectural knowledge (stopping the erosion of architectural knowledge) and easier
validation.

Software Architecture Document Management System – Anton Rademaker, Marten Veldthuis

136

Rationale SADMS makes it easy to add rationale to each entity in the architecture and view it
later.

Stating (design) decisions Architects are encouraged to add information about their decisions,
so later in the project this information is not lost but can be found at the point where the
decision was made and why.

Patterns Architectural patterns could be spotted more easily, and could be stated explicitly and
later added to a global library.

Validating By saving standard information and benefits about patterns in SADMS helps in vali-
dating the architecture (automatically).

Change impact All relations are stated explicitly so it is easier to see what the impact at the
architecture would be in case a change to an entity is made.

Project status and testing The management of the whole process becomes easier because the
status of every artifact can checked in detail using for example the tests linked to the source
code.

Requirements validating The source code links enables SADMS to verify automatically the
status of requirements and thus the status of product developed.

Getting into the project The time that is needed to get into the project is reduced by using the
multiple views and layers and reading the rationales. Using these tools it is easier to understand
how things work and are done. In case a project is taking too long it is faster reliable to add
extra workers to the team because they don’t have to spend much time understanding the
architecture.

Version management Using the version tracker it is easier to see who was responsible for some-
thing and if in case that a mistake was made the document can be reverted back. This also
helps to prevent the lost information due to updates in de architecture.

Training Using the statistics that the system can generate, it is easier to see who needs which
training, for example by determining the error rate of the architects.

6 Future work

A lot of work still remains to be done before we will see a working SADMS. This paper only
describes which relations there are and which benefits derives from stating them explicitly. The
next big thing would be to compile a complete list of requirements. For example, this list should
contains a definition of which views are appreciated. Also work has to be done about how entities
and relations are displayed.

After all the preparations are done the actual data model and visual libraries can be created. With
these two components the main SADMS editor can be build. After that all kinds of analytic tools
and plugins can be added to SADMS.

SC@RUG 2006 proceedings

137

7 Summary

We can clearly see the benefits of having a single system in which all architectural knowledge is
maintained. Immediately after putting such a tool to use, benefits would be most clearly visible in
the communication of changes in the architecture. Because all relations are explicitly mapped, it’s
easy to assess the impact of any change and large time-savings could be achieved in that area.

In the medium term, we’ll see that people join and leave projects and will be able to do so easier
than before, since no knowledge is kept private.

Long term benefits would come from a different angle, the versioned nature of the system would
enable heuristics and statistical analysis. It would become easier to see patterns emerging, and it
might be possible to integrate a pattern repository into the system (perhaps even finally bringing
an end to the scattered distribution of knowledge about patterns).

References

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith Stafford. Documenting Software Architectures: Views and Beyond. Number
ISBN 0201703726. Addison Wesley Professional, September 2002.

[Cle05] Paul Clements. Comparing the sei’s views and beyond approach for documenting software ar-
chitectures with ansi-ieee 1471-2000. July 2005.

[Cor] Rational Software Corporation. Rational unified process - best practices for software development
teams.

[Kru95] Philippe Kruchten. Architectural blueprints - the 4+1 view model of software architecture.
November 1995.

[OPF] Open process framework (opf) repository organization (opfro).
[TA] Jeff Tyree and Art Akerman. Architecture decisions: Demystifying architecture.
[TJHN] Antony Tang, Yan Jin, Jun Han, and Ann Nicholson. Predicting change impact in architecture

design with bayesian belief networks.

Software Architecture Document Management System – Anton Rademaker, Marten Veldthuis

138

