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JEANNE PEIJNENBURG AND DAVID ATKINSON

BIASED COINS

A MODEL FOR HIGHER-ORDER PROBABILITIES

ABSTRACT

Is it coherent to speak of the probability of a probability, and the probability of a
probability of a probability, and so on? We show that it is, in the sense that a regress
of higher-order probabilities can lead to convergent sequences that determine all
these probabilities. By constructing an implementable model which is based on
coin-making machines, we demonstrate the consistency of our regress.
Keywords: Higher-order probability, infinite regress, consistency.

1. INTRODUCTION

If it makes sense to express the probability that a proposition is true as a specific
number, it also makes sense to doubt whether that number itself is accurate. One
can further consider the probability that the probability of the proposition is equal
to the number in question. Hence we are led ineluctably into an infinite regress,
for then we must consider the probability of the probability of the probability that
the proposition is true – and so on ad infinitum. It has indeed been argued that this
sounds the death knell of the idea of higher-order probabilities (Hume 1738/1961,
Rescher 2010). However, in this paper we shall show that the regress in question
is generally benign. Far from producing a reductio ad absurdum, as we will see,
the regress usually engenders a convergent sequence that leads to a well-defined
probability of the truth of the original proposition.

Some have seriously entertained the notion of a second-order probability (Uchii
1973, Skyrms 1980, Domotor 1981, Kyburg 1987, Gaifmann 1988). Skyrms in
particular discusses and demolishes a number of attempts aimed at showing that
the concept is inconsistent. One of those attempts has to do with Miller’s para-
dox, to which Skyrms gives short shrift, dismissing it as “simply a fallacy of
equivocation”.1 Skyrms continues by presenting a short proof in the form of a
model, which makes it clear that second-order probabilities are formally consis-
tent. The model uses relative frequencies, but Skyrms, tongue-in-cheek, argues

1 Skyrms 1980, p. 111. For the original statement of this paradox, if it deserves the
name, see Miller 1966.
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that it is implicit in the work of that champion of subjective probabilities, Bruno
de Finetti:

I would say nothing more about formal inconsistency were it not that some reputable
philosophers continue to have suspicions (if not arguments) . . . Though it may be a case
of bringing out a cannon to swat a fly, I therefore feel obliged to point out that there is
implicit in de Finetti’s work a proof of formal consistency for a theory of second order
probabilities: simply interpret [Pr] as relative frequency probability. . . . This is not the
intended interpretation, but it suffices to settle the question of consistency.2

Here Skyrms is interpreting a relation like PR[Pr(E) = x], where Pr is a first-
order probability, and PR a second-order probability, by making the former an
objective, relative-frequency chance, and the latter a subjective probability about a
proposition concerning that chance.

Skyrms’ model of a second-order probability is assuredly successful. However
he remained silent on the question whether the same goes for an infinite regress of
higher-order probabilities: does the concept of a regress of probabilities of proba-
bilities, and so on, make sense? In a recent paper we have explained how to set up
such a regress, and we also showed how to calculate the probability of the origi-
nal proposition by summing a convergent series3. What we did not do, however,
was to consider the formal question of the consistency of our equations. In the
present paper we fill this lacuna, i.e. we construct a model of an infinite regress
of probabilities of probabilities, where ‘model’ is used in the logical sense of a
structure that makes all the sentences of a theory true. Our model is based on coin-
making machines and can in principle be implemented. We show that when the
coin-making structure is inserted into the abstract equations defining a regress of
higher-order probabilities, the resulting statements are indeed all true.

We start in Section 2 by sketching the relevant results of our earlier paper.4

In Section 3 we work out a numerical example of a regress of higher-order prob-
abilities. Finally in Section 4 we offer our model, which involves coin-making
machines. We show that, in this model, all the formulas of the abstract theory
developed in Section 2 are true; thus the regress is consistent.

2 Skyrms 1980, p. 112.
3 Peijnenburg and Atkinson 2012.
4 As in that paper, we assign a particular number (rather than an interval) to the prob-

ability that a given proposition is true. This is meaningful only if the probabilities in
question are discrete. The generalization to a continuous probability distribution will
be given elsewhere – Atkinson and Peijnenburg, to appear.
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2. PROBABILITIES OF PROBABILITIES

In this section we set up a regress of higher-order probabilities in general terms.
For convenience we will talk about the probabilities as if they were subjective; but
in fact some could be objective and some subjective: it is only the abstract system
that is of importance here.

Let q0 stand for some proposition of which we doubt the truth. Perhaps we
think the probability that q0 is true is merely v0, this being some number between
0 and 1. Define q1 to be the proposition P (q0) = v0. If we were quite sure that q1
itself is true, we would effectively be asserting that the probability of q0 is simply
equal to the conditional probability of q0, given q1. Let us designate this, our first
estimate of the probability of q0, as P (1)(q0), where

P (1)(q0) = P (q0|q1) = P (q0|P (q0) = v0) = v0 . (1)

The last equality in (1), namely P (q0|P (q0) = v0) = v0, is warranted by what
Skyrms has called Miller’s principle. In words, it says that the probability of q0,
given that the probability of q0 is v0, is v0.5

However it may be that we are not at all sure that q1 is true, but only think that
its probability is v1. This thought can be expressed by the proposition P (q1) = v1,
which we will dub q2. If were sure that q2 is true, then we would be asserting that
the probability of q1 is v1. In that case, our next estimate of the probability of q0
would be P (2)(q0), which, with use of the rule of total probability, is given by

P (2)(q0) = P (q0|q1)P (q1) + P (q0|¬q1)P (¬q1)
= v0v1 + w0(1− v1) . (2)

Here we have used Miller’s principle as above, and we have abbreviated the con-
ditional probability P (q0|¬q1) by the symbol w0. Clearly this new estimate of the
value of the probability of q0 is not equal to v0; it will be somewhere between v0
and w0. The new estimate of the probability of q0 can be thought of as an update
on the previous estimate.

The update followed from the provisional assumption that q2 is true; but sup-
pose next that q2 is not known to be true, and let q3 be the proposition P (q2) = v2.
On the assumption that q3 is true, we would set P (q2) equal to v2, so we could

5 As Skyrms has it: “Those who have followed the development of modal logic will
already know that we invite no additional difficulty by universally generalising Miller’s
principle to

for any x, x = PR[E given that Pr(E) = x]”

(Skyrms 1980, p. 112). As we have noted, Skyrms uses the symbol Pr for the first-
order probability and PR for the second-order probability. Miller’s principle has the
same form as David Lewis’s Principal Principle, but Lewis would interpret Pr as an
objective chance, PR as a subjective credence (Lewis 1980).
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then write, at this level of estimation for the probability of q1,

P (q1) = P (q1|q2)P (q2) + P (q1|¬q2)P (¬q2)
= v1v2 + w1(1− v2) , (3)

where P (q1|¬q2) has been designated by the symbol w1. The next update for the
probability of q0 is P (3)(q0), which has the form

P (3)(q0) = P (q0|q1)P (q1) + P (q0|¬q1)P (¬q1)
= v0P (q1) + w0[1− P (q1)] , (4)

where for P (q1) we are to understand the expression on the right of (3), namely
v1v2 + w1(1 − v2). When this is inserted into (4), P (3)(q0) is thereby expressed
as a function of v0, w0, v1, w1, and v2.

It should be clear now how to continue the sequence of updates. The nth
step leads to P (n)(q0), which can be evaluated in an analogous way. By way of
illustration, a numerical example is worked out in the next section. The sequence
of updates P (n)(q0) converges to a limit, except in extreme cases.6

3. A NUMERICAL EXAMPLE

Consider the uniform situation in which P (q0|q1) = P (q1|q2) = P (q2|q3) =
. . . = 0.9 and P (q0|¬q1) = P (q1|¬q2) = P (q2|¬q3) = . . . = 0.5. This assump-
tion of uniformity is introduced purely to facilitate the calculation. The method of
Section 2 also works when the conditional probabilities do differ from step to step
in the regress, on condition that the constraint (5) in footnote 6 is respected.

We begin with

P (1)(q0) = P (q0|q1) = 0.9 ,

The next update is calculated from Eq.(2), where in this uniform example P (q1)
is the same as P (1)(q0), so it is equal to 0.9. Thus

P (2)(q0) = 0.9× 0.9 + 0.5× (1− 0.9)

= 0.86 .

6 Convergence is guaranteed if the difference, vn−wn, does not approach one too rapidly
as n increases. To be precise, the sequence converges so long as the difference between
vn − wn and 1 does not tend to zero faster than does 1/n. In mathematical notation

1− vn + wn = O (1/n) as n tends to ∞ , (5)

where O (1/n) means “of order 1/n”. For a proof of this convergence, see Atkinson
and Peijnenburg (2010), Appendices A and B.
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To calculate P (3)(q0) we first need P (q1) at order 2, and because of uniformity
this is the same as P (2)(q0), namely 0.86. Hence

P (3)(q0) = 0.9× 0.86 + 0.5× (1− 0.86)

= 0.844 .

For update number 4 we need P (q1) at order 3, which, again thanks to uniformity,
is the same as P (3)(q0), which we have just calculated to be 0.844, so

P (4)(q0) = 0.9× 0.844 + 0.5× (1− 0.844)

= 0.8376 .

and so on.
Here is an overview of the values of P (n)(q0) after an increasing number of

updates:

n 1 2 3 4 5 6 10 ∞
P (n)(q0) 0.9 0.86 0.844 0.8376 0.8351 0.8340 0.83334 5

6

Probability of q0 after n updates

Note that P (∞)(q0) is precisely equal to 5
6
= 0.83333..., and that P (10)(q0) is

already very close indeed to this limiting value.

4. MODEL OF HIGHER-ORDER PROBABILITIES

In this section we set up a model of the abstract system of equations in Section
2. Although we talked about the system in terms of subjective probabilities of
subjective probabilities, it is indeed abstract in its form. The only requirement is
that the probabilities satisfy Kolmogorov’s axioms. The probabilities in the model
we are about to describe are however all objective chances, which we will couch
in the language of relative frequencies. The purpose is twofold: (a) to show that
the equations governing the model are precisely those of Section 2, and (b) to
show that all the implications of the abstract equations are true in the model. This
demonstrates that the abstract system of higher-order probabilities is consistent.

Suppose there are two machines, each of which produces trick coins. Machine
V0 makes coins each of which has bias v0, by which we will mean that each has
probability v0 of falling heads when tossed; whereas machine W0 makes coins
each of which has bias w0. An experimenter tosses a coin from machine V0. We
identify the propositions q0 and q1 as follows:

q0 is the proposition “this coinwill fall heads”

q1 is the proposition “this coin comes frommachine V0” .
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The probability that q0 is true is based on the datum that the coin comes from
machine V0, in other words that proposition q1 is true. Clearly

P (q0|q1) = P
(
“this coinwill land heads”|“this coin comes frommachine V0”

)

is the same thing as P
(
q0|P (q0) = v0

)
, for if the coin has come from machine

V0, the probability of a head is v0; and conversely, if the probability is v0, the coin
must have come from machine V0. As in Section 2, we have P (q0|q1) = v0.

The experimenter is now instructed to take many coins from both machines,
and to mix them thoroughly in a large pile. Moreover, the numbers of coins that
have been added to the pile from machines V0 and W0 are not entirely left to the
whim of our experimenter, for their relative number is determined by a second
experiment, which is performed by a supervisor. This second experiment is much
like the first one, but it involves two new machines, V1, which produces trick coins
with bias v1, and W1, which produces trick coins with bias w1. The supervisor
extracts a coin from machine V1; and he instructs the experimenter to make sure
that the relative number of coins that she takes from her machine V0 is equal to
the probability that his coin falls heads when tossed. That is to say, the number of
coins that she must add to the pile from machine V0 is equal to v1 multiplied by
the total number of coins removed from machines V0 and W0.

The experimenter takes one coin at random from her pile and, understand-
ing q0 now to refer to this coin, we can deduce the probability of q0 in the new
situation. Indeed, if

q2 is the proposition “the supervisor,s coin comes frommachine V1” ,

and q2 is true, then P (q1) = v1. We conclude that, if the experimenter were to
repeat the procedure of tossing a coin from her pile many times (with replace-
ment), the resulting relative frequency of heads would be approximately equal to
P (2)(q0), as given by (2) (and the approximation would get better and better as
the number of tosses increases – more carefully: the probability that the relative
number of heads will differ by less than any assigned ε > 0 from v0 will tend to
unity as the number of tosses tends to infinity). This concludes the description of
the model of the first iteration of the regress, constrained by the condition that the
supervisor’s coin comes from machine V1, that is by the veridicality of q2.

In the next iteration, the supervisor receives instructions from an AI (artificial
intelligence) that simulates the working of yet another duo of machines, V2 and
W2, which produce simulated coins with biases v2 and w2, respectively. The su-
pervisor makes a large pile of coins from his machines V1 and W1; and he adjusts
the relative number of coins that he takes from V1 to be equal to the probability
that a simulated coin from V2 would fall heads when tossed. That is to say, the
number of coins in the instructor’s pile that have been taken from V1, divided by
the total number that have been taken from V1 and W1, is equal to v2.

If the supervisor were to repeat the procedure of tossing a coin from his pile
many times (with replacement), then the resulting relative frequency of heads
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would be approximately equal to P (q1), as given by (3) (with the usual proba-
bilistic proviso). This value of P (q1) is handed down to the experimenter, and
she runs her experiment as above, but with the updated value of P (q1). The rel-
ative frequency of heads that she would observe will be approximately equal to
P (3)(q0), as given by (4). The above constitutes a model of the second iteration of
the regress, constrained by the condition that the AI’s simulated coin comes from
the simulated machine V2, that is by the veridicality of q3, where

q3 is the proposition “this simulated coin comes from simulatedmachine V2” .

Of course this procedure must be repeated ad infinitum. A subprogram must sim-
ulate the working of yet another duo of machines, V3 and W3, which program
the production of coins with biases v3 and w3, and so on. In this way an imple-
mentable model has been produced for an arbitrary number of iterations of the
abstract system of Section 2, thereby showing that the whole regress is consistent.
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