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Research Highlights

! ! Surface modifications of Cu are initiated with single laser pulse (1030 nm, 6.7 ps)
at fluence close to modification threshold;

! ! Amplified energy absorption is observed on surface topography features;
! ! Objects like spikes with spherical endings, extracted spheres and thin membranes 

are products of surface micro-eruptions;
! ! SEM, TEM and EBSD techniques are used to investigate the surface 

modifications;
! ! Amorphous phase is not present on the surface, however, sub-surface voids and 

twins are apparent. 

Abstract

High purity, mirror polished polycrystalline Cu surface was treated with single 

picosecond laser pulses at fluence levels close to the single pulse modification threshold. 

The induced surface topography and sub-surface changes were examined with Scanning

and Transmission Electron Microscopy, respectively. The analysis showed an increased 

absorption of laser energy on the microscopic surface topography inhomogeneities, even 

at a fluence level below the modification threshold. Many features like spikes, bubbles, 
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spheres, as well as small periodic ripples at the bottom of scratches, reveal a significant 

influence of melting and eruptive relaxation of the absorbed laser energy on the final 

appearance of the surface. Further. it was found that thermal stresses result in twinning to

a depth of few tens of nanometers under the surface. Voids at this depth have been 

observed as well. The results of the observations provide new insights into the early 

stages of the picosecond laser pulse modification of metals, especially metals with a weak 

electron-phonon coupling.

Key words: ultra-short laser pulse, surface modification, incubation, electron microscopy

1. Introduction

In the last decade considerable attention has been paid to the use of ultra-short 

laser pulses for surface modification of various metals [1–3], semiconductors [3–5] and 

dielectrics [3,6,7] or volume modification in transparent dielectrics [8,9]. Due to a low

diffusion of the absorbed energy at moderate fluence the technique offers a lateral 

structuring accuracy in the micrometer range [10], with very limited thermal effects to the 

substrate [11]. The impact of these thermal effects may seem irrelevant for a single-pulse

exposure, but it has become a lively field of research for multi-pulse irradiations. That is, 

the research originates from high intensity laser light damage of optical components [12].

It has been found that the modification threshold of the materials shows power law drop 

with increasing number of pulses [13]. This so-called “incubation” involves changes of 

the material affecting absorption of laser light of the subsequent pulses way ahead of 

apparent modification of the surface. However, the phenomenon has not yet been

explained satisfactorily, although several suggestions have been made in literature, for 
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instance thermo-plastic deformation in semiconductors [14] and metals [13]. This field of 

research provides crucial knowledge to avoid damage of optical devices in industrial laser 

systems, which are exposed to a considerable number of pulses. This knowledge may

also contribute to the understanding of the formation of (sub)wavelength laser induced 

periodic surface structures (LIPSSs), where initiation and growth of the structures may be 

influenced by incubation as well [15]. 

The so-called “zero damage area” or “D2” method [16] is the commonly accepted 

method to determine the modification threshold of ultra-short laser pulse irradiation

which depends on pulse duration, number of pulses, laser light wavelength, surface 

finish, and ambient atmosphere. A proper choice of pulse energy, also including the 

fluence close to the modification threshold, allows an inspection of the first stages of the 

surface modifications due to laser irradiation, e.g. enhancement of absorption on even 

nanometer sized surface inhomogeneities. After the laser pulse impingement on these

inhomogeneities, one can observe drastic local changes of the surface roughness, due to

melting and eruptive expansion of the irradiated matter. All created structures (like 

spikes, bubbles, sub-micron spheres etc.) may promote laser light absorption of 

subsequent pulses. These structures may also significantly contribute to the so-called 

incubation effect. Copper (Cu) was chosen for these experiments, due to its weak 

electron-phonon coupling and strong electron thermal conductivity, which will show 

more evident traces of melting in comparison to transition metals, with strong electron-

phonon coupling and weak electron thermal conductivity [17]. Until now the creation of 

the surface structures can be explained only to a certain qualitative extent, because

computation modeling for process parameters used in our experiments is not available.
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Inspection of the surface topography and sub-surface modifications were carried 

out by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy

(TEM), respectively. Moreover, Energy Dispersive X-ray Spectroscopy (EDS) was

employed to obtain information on possible surface chemical interactions. Electron 

Backscattered Diffraction (EBSD) was used to study influence of the solidification on 

crystallography of the surface objects.

The principal aim of the work is to precisely characterize how an ultra-short laser 

pulse modifies surfaces. The motivation for this research is to show possible surface 

changes occurring prior to extensive ablation, as well as to fill the lack of data in 

literature, where mostly only SEM surface inspection is used. Finally, our results may

also be used for a comparison with modeling results [11,18]. 

2. Experimental setup

Polycrystalline copper samples (purity 99.995%), with average crystal grains size 

of 50 μm, were processed in single pulse experiments. As a laser source, an Ytterbium-

doped YAG (Trumpf TruMicro 5050) was used with laser pulses of 6.7 ps duration and a 

wavelength of 1030 nm. The linearly polarized laser beam was focused by a 100 mm 

telecentric f-theta lens (Ronar of Linos, Germany) at normal incidence to the samples

surface. The laser beam possesses a Gaussian energy distribution with a 1/e2 radius of 

13.4 ± 2.2 μm. The average power at the sample surface was measured by a power meter 

and controlled with combination of a rotary λ/2 wave plate and a beam splitting cube.

The range of the pulse energies used for the experiments, at 50 kHz pulse repetition rate,

was 2.6 to 92 μJ. The laser spot was scanned over the sample surface by mirrors of a 
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Galvo-scanner (IntelliScan14 of Scanlab, Germany). Prior to irradiation the Cu samples 

were polished, according to metallographic Struers Co. guide [19] with an exception of 

much lower load applied to the samples. The later limits the sub-surface damage during 

the first grinding steps and helps to achieve low surface roughness. Grain boundaries

were not observed after the final polishing steps, but some minor scratches remained on 

the surface. The root-mean-square roughness of 3 to 4 nm was measured on polished 

samples by Confocal Microscopy (CM; µSurf Nanofocus optical confocal microscope, 

408 nm laser light wavelength). A Philips XL30 SEM, equipped with field emission gun,

having a resolution of few nanometers for topography inspection of the samples. 

Additional spectroscopy and TSL OIM/EBSD detectors on the same microscope, allowed 

chemical and crystallographic analyses, respectively. Cross-sectioning of the surfaces and 

lamella extraction for TEM observations (JEOL JEM-2010F operating at 200kV) was 

done with a Focused Ion Beam system (FIB, Tescan Lyra). An Electron Beam Deposited 

Pt (EBID-Pt) layer was applied as a surface protection layer during the FIB polishing 

steps.

3. Results

In order to determine the minimum threshold fluence level at which modification 

of the surface occurs as well as to determine laser beam 1/e2 radius, the well-known D2

method was employed [16]. In this experiment the pulse energy was varied from 15 to 92 

μJ and area of the modified surface (D2=4A/π) was measured by CM after laser 

irradiation. A fit to semi-log representation of the experimental data yielded a 1/e2 beam 

radius of 13.4 ± 2.2 μm and a threshold fluence of 2.11 J/cm2 (Fig. 1). The relatively high 
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fluence values of single-pulse modification threshold are associated with the high 

reflectivity of 97.2 % of Cu at a wavelength of 1030 nm [20].

Fig. 1

SEM inspection of the irradiated surfaces (Figs. 2(a), (b)) revealed local surface 

modifications, at fluence levels even slightly lower than modification threshold obtained 

via the D2 method. As seen in Fig. 2(a), it can be caused by laser light absorption on

surface topography features such as, for instance, traces of scratches. In this case, 

however, random modifications did not create a detectable circular modified area. That is 

why it was not possible to obtain exact diameter for D2 = ln(EP) graph at lower fluence 

levels. Defect-free surfaces were not obtained. Subsequent decrease of the fluence did not 

lead to apparent modification of the surface. 

As can be observed in Fig. 2, traces of solidification of the molten matter are 

present on the surface. This specific surface area was significantly enlarged due to objects 

like thin material membranes (thickness of few tens of nanometers - partially transparent 

for electrons at 10 kV acceleration voltage), micro-spikes with spherical endings and 

individual extracted spheres lying freely on the surface. In the case of surface defects

with longer lateral dimensions (e.g. the surface scratch in Fig. 2(a), running from the 

upper left to the lower right in the left part of the picture) the common walls of the 

neighboring eruptions create a kind of bridging structures with a direction orthogonal to 

the scratch side walls.
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Fig. 2

Next, the effect of absorbed laser energy in the copper target and subsequent 

relaxation of the energy was investigated in detail by cross-sectioning and TEM 

observations of the irradiated surface (Fig. 3). To obtain a TEM cross-section specimen 

on a specific location of interest with lateral accuracy of few tens of nanometers, dual-

beam FIB system has been applied. The Fig. 3 shows that a good alignment of the SEM-

SE (SE- secondary electron image), SEM-BSE (BSE- backscattered electron image) and 

TEM pictures was obtained. It enables a comparison of size and location of the surface 

thin membranes, spikes with spherical endings, extracted spheres freely lying on the 

surface, as well as sub-surface defects induced by the laser irradiation. The thickness of 

the membrane (Fig. 3, the most left-hand side local explosion in TEM picture) is about 30 

nm and it seems to be in agreement with estimation of the value from transparency for 

electrons in SEM-SE (previous paragraph). The spikes identified from the TEM picture 

and from Fig. 2(b) show diameters from 40 to 80 nm, depending on the position of 

measurement on the partially conical objects. Spheres on top of the spikes have various 

sizes, which do not exceed 140 nm in diameter (Figs. 2, 3 and 4). Larger spheres lie on 

the sample surface (Figs. 2, 3 and 5) and show diameters larger than 200 nm. These 

spheres have apparently not been produced at the actual location of interest (about 300

μm from this location an experiment was performed at fluence significantly higher than 

the modification threshold and 100 pulses to a single location - not shown here). It 

suggests that the diameters of these spheres depend on the exposure conditions as is clear 

from a comparison between diameters of the large spheres with the small ones attached to 

spike ends. Furthermore, sub-surface modifications at a depth of few tens of nanometers
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were found. These modifications can be observed as a contrast change at Cu/EBID-Pt 

interface indicated by arrows in Fig. 3 SEM-BSE (also apparent in Fig. 6). This is a result 

of bombardment and implantation of Ga ions (used in FIB) in this layer of different 

crystal orientation and density in comparison to the unexposed bulk below.

Fig. 3

Next, microscopy inspection of the surface objects was performed in order to 

investigate the probability of the presence of amorphous material, as well as to study the 

solidification process of the objects. High-Resolution TEM (HRTEM) (Figs. 4, 6) and 

EBSD (Fig. 7) studies have shown that the structures attached to the surface show a fully 

crystalline character. No traces of amorphous material were found. The crystal 

orientation of the spikes, however, does not follow the crystal orientation of the bulk 

substrate. Contrast changes along the longest spike (Fig. 4(a)) suggest the existence of

grains with a different crystal orientation.

Fig. 4

High resolution TEM micrograph (Fig 4(b)) shows the detail of part of grain indicated by 

the white frame and arrow in Fig. 4(a). An angle of 24.4° was measured between the 

(111) planes of the spike ending and the bulk substrate below, as indicated in Fig. 4(b). 

The direction of the (111)Cu matrix is depicted. The head of the spike is bent with respect to 

the axis of body of the spike. This angle is about 60º clockwise in the picture plane, 

however the crystal (111) plane is 24.4º inclined. EBSD measurements (see the pole 
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figure in Fig. 7) showed strong and random scatter of crystal orientations in the head of 

the spikes. In this case the spikes are taller than those in Figs. 2, 3 and 4, due to 

irradiation conditions slightly over the one-pulse modification threshold fluence.

Fig. 5

The main part of the larger spheres is crystalline, as is suggested by the dotted 

lines along crystal boundaries and contrast differences in TEM micrograph of Fig. 5.

However, when compared to Fig. 3 SEM-BSE, one can observe dark areas, which are 

almost circular, within the sphere. These areas are typical for all spheres of this size and 

these areas point at contamination during the solidification process. A supplement EDS

measurement has shown a remarkable amount of oxygen within the sphere, as well as 

carbon and platinum. The amount of oxygen at the location, indicated by number 3 in 

Fig.5, is higher than the average value. This is interpreted as a tendency of Cu oxides to 

agglomerate in particular locations during solidification.

Fig. 6

Laser-induced sub-surface structures were observed in cross-section, both by

SEM (Fig. 3, SEM-BSE) and by TEM (Fig. 6) imaging including structures like isolated 

defects, defects in proximity of surface micro-eruptions and continuous sub-surface 

material twinning.

Fig. 7
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Two local defects, indicated by white arrows in Fig. 3 SEM-BSE, show diameters of 

about 40 nm. The shortest distance of these defects to the neighboring micro-eruptions is 

at least 250 nm. These defects show a small volume and are almost spherical in shape, as 

they appear and disappear (comparison SEM-BSE to TEM) during the last few very 

gentle polishing steps. It suggests that the defects are sub-surface voids. Moreover, 

detailed inspection of the TEM lamella shows cross-sectional view of two additional 

surface features: presence of material twinning, as well as cross-section of a surface 

micro-eruption (Fig. 6, highlighted in Fig. 3 TEM). The micro-eruption cross-section in

Fig. 6(a) (right hand side, brighter spot) is filled with Pt nano-grains enclosed in 

carbonaceous matrix (EBID-Pt), which implies that this location was exposed to the

surface prior to the EBID-Pt deposition. The presence of the surface material twinning is 

clear from the inset of Fig.6 (a)). Alternation of the twins occurs with a periodicity of few 

atomic planes. This part of the surface was also inspected at a lower magnification by

electron diffraction (Fig. 6(b) inset). Dark field imaging was helpful to separate two 

crystal orientations (Fig. 6(b) left and right), observable in the electron diffraction 

pattern. The separated crystal orientations reveal that the sub-surface twinning is present 

to a depth of 50 to 60 nm.

4. Discussion

Theoretical explanations of ultra-short laser pulses interaction with metal surfaces has 

been attempted since the 1970`s [21]. The laser-material interaction is usually described 

as an one-dimensional version of two coupled nonlinear differential equations, which 

track the temporal temperature evolution of the free electron gas and phonons of the 
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material and is known as the Two-Temperature Model (TTM). The maximum

temperature of the target surface depends on the laser parameters (wavelength, pulse 

duration) and the material properties (reflectivity, light penetration depth, electron and 

lattice heat capacity, electron thermal conductivity and electron-phonon coupling factor). 

Recently, the predictive power of the TTM model has been strengthened by incorporation 

of molecular dynamics MD [18]. It allows substitution of TTM equation for temperature 

of the phonons by MD in a surface layer, where the most significant processes are 

expected to occur, near or at higher temperatures than the material melting point.

Published results on various materials [11,18,22] obtained by this advanced TTM-MD

model provide insights in the phenomena involved in the relaxation of the absorbed laser

pulse energy. However, the origin of micro-eruptions on the Cu target surface found in 

our experiments can be explained only to a certain qualitative extent due to two reasons.

First, there is a lack of computational modeling in literature for our processing conditions 

(pulse duration and laser wavelength). Secondly, papers published on this topic

concentrate on ideal conditions e.g. defect-free and flat initial surfaces. The first reason 

seems to be marginal when absorbed fluence (Φa) in the material instead of nominal (Φ) 

is taken as a base for comparison of our results to the results of Schäfer et al. [18].  It 

should be noted that the equation Φa=(1-R)Φ, where R is reflection coefficient of the 

material, brings us to comparable values of Φa. When the ablation threshold fluence 0.17

J/cm2 (nominal fluence, [18]) and 2.11 J/cm2 (nominal fluence in this work) are 

multiplied by corresponding reflection coefficients in UV (1-R=0.4, [18]) and IR spectra

(1-R=0.03, [20]), it yields Φa equal to 0.068 J/cm2 and 0.063 J/cm2, respectively. Hence 

the absorption fluence levels are comparable, difference in pulse duration (0.5 ps in [18]
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and 6.7 ps in our experiments) should not markedly influence the physics of the laser 

energy relaxation, because the time interval for relaxation of the laser-induced 

thermoelastic stresses in Cu is more than 2 times larger (19 ps [18]) than the pulse 

duration. In a qualitative way, the surface imperfections can be understood as local 

absorption amplifiers, i.e. they just result in local increase of the surface temperatures.

Theoretical simulations of laser-matter interaction [11,18,22,23] suggest three 

characteristic regimes of energy relaxation with increasing laser pulse fluence. That is, 

melting, photo-mechanical spallation and phase explosion. Only spallation and phase 

explosion are processes responsible for extensive material transport and material removal

from the irradiated surface. Spallation ejects molten material from the surface due to laser 

induced tensile stresses [11]. The ablation behavior changes abruptly when the irradiated 

matter reaches temperatures close to the critical point in phase diagram which, turns it

into a mixture of liquid droplets and gas atoms. The simulation presented in [11] shows

that the difference between spallation and phase explosion thresholds is very small.

Comparison of the theoretical models with the local explosions observed in our SEM 

micrographs (Fig. 2) indicates a mixture of both phenomena. Predominance of one of 

them may strongly depend on shape and size of the surface defects (i.e. absorption 

enhancement), as well as on the nominal fluence. The absorbed laser fluence and 

intensity consequently determine molten material properties (viscosity, density and 

surface tension are temperature dependent [24]) and expansion speed of the micro-

eruptions. Taking into account typical expansion speeds of the irradiated matter in 

spallation regime to be at 50-400 m/s [11,18] and the diameter of the micro-eruptions in 

our experiments around 750 nm (Fig. 2(b)) leads to an expansion time (i.e. solidification) 
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between 1.9 and15 ns. A rough estimate of cooling rates (latent heat not taken into 

account) then gives values larger than 1011 K/s for initial temperatures exceeding the 

melting point of Cu 1358 K (calculation not shown here for the sake of concision). It has 

been shown in our TEM inspection that even these extreme fast cooling rates do not 

create amorphous phase in pure copper. It is worth mentioning that standard methods for 

preparation of metallic glasses, e.g. splat cooling [25] introduced in 1960`s, induces

amorphous phase at cooling rates as low as 106 K/s, however, the techniques succeeded

only in the case of multi-compositional alloy systems.

4.1. Spikes with spherical ends

Figs. 2, 3, 4  and 7 show that the origin of spikes is related to expansion of

irradiated matter. Energy absorbed in the surface defects (scratches, particles etc.) relaxes 

via some kind of micro-eruptions, due to spallation, phase explosion or potentially both

acting simultaneously. Animated sequences in [18] and [26] indicate the role of inertia, 

viscous and capillary forces in modification of the surface topography. At moderate 

fluences, molten material creates thin membranes as a consequence of expansion of 

neighboring voids. At fluence levels just above the ablation threshold (animation for 15 

ps pulse in [26]) a continuous liquid layer propagating from the surface is visible. The

creation of a cupola or a bubble appears, like those seen in Figs. 2(a), (b). After creation 

of a hole in the thin membranes, the vapor pressure in the bubbles tends to equalize with 

the ambient atmosphere. The induced flow of material bends the rim of the hole outwards 

as can be seen in Fig. 2(b) and [24]. Viscous and capillary forces in the thin membranes 
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cause its continuous contraction. Finally, membrane collapses into spikes as well as 

spheres extracted or detaching from the spikes.

After solidification the crystal orientation of the spikes differs from the bulk. This

has been shown by contrast difference in the long spike in Fig. 4 and the crystal (111) 

plane mismatch of the small spike head in the same picture.  Measurement of crystal 

orientation scatter in Fig. 7 has proven this. 

4.2. Extracted spheres

For extracted spheres, heat radiation will be the predominant process for energy 

dissipation, and as a result, spheres in Fig. 2 are solidified before impact on the surface.

Arguments supporting this statement are: the spherical shape, almost no contact with 

sample surface and lower estimate of their stay in the ambient atmosphere in the 

microsecond range (300 μm distance mentioned in results section, 50 m/s lower estimate 

of expansion speed, direct trajectory and neglected resistance of the ambient gas). Upper 

bound of the time required for sphere solidification could be roughly derived from 

Stefan-Boltzmann law. Emissivity of 0.15 was used to calculate cooling of Cu ball with 

diameter of 500 nm (the size shown in Fig. 5). It is estimated to dissipate the heat

between boiling and melting temperature in 2 ms with an average cooling rate of 7.5 x105

K/s. During this time the heat content, 3 times higher than heat of fusion, is released. It is

reasonable to expect complete solidification of the ball in time shorter than 3 ms. 

Oxidation in liquid state may change solidification conditions. The cooling time is four 

times shorter (0.5 ms, 1.3x106 K/s) for CuO and 6.7 times shorter for Cu2O (0.3 ms, 

1.9x106 K/s) balls with the same diameters. Heat content is approximately equal to heat 
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of fusion for CuO and 50 % of heat of fusion for Cu2O. When heat of formation 

(oxidation), which is close to heat of fusion, is taken into account the solidification time 

is not expected to exceed 3 ms. This estimated number 3 ms can be further decreased by 

the fact that starting temperature of the cooling is highly likely lower than boiling 

temperature.

The relatively longer stay of spheres in ambient air, prior to solidification, can 

explain the measured high content of oxygen in the sphere (EDX in Fig. 5). Impurities in 

the form of oxides tend to agglomerate during solidification. It can be recognized as a 

contrast difference in Fig. 3 SEM-BSE, due to interaction of Ga ions (FIB) with material 

of different density (ρ(Cu)=8.96 gcm-3, ρ(CuO)=6.32 gcm-3 or ρ(Cu2O)=6.0 gcm-3 at 

room temperature). The oxygen content cannot have another origin than oxidation of Cu 

before and during solidification, due to the following reasons. The high oxygen level is 

only found in these spheres and the untreated surface has no detectable oxygen. It is 

important to mention that the samples were laser processed right after polishing and they 

were kept under vacuum after processing. A possible source of the contamination of the 

sphere cross-section, during polishing steps (EBID-Pt protective layer), is oxygen free 

(CH3)3(CH3C5H4)Pt. The last argument explains the quite high content of Pt and C in the 

EDS measurements.

4.3. Sub-surface defects

Creation of sub-surface voids has been recently reported in [11] and their possible 

disappearance is shown in [26] for 15 ps laser pulses. The strength of tensile stress 

induced in a laser irradiated layers depends on absorbed fluence of the incident laser 
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pulse, if conditions of stress confinement are fulfilled. It means that the pulse duration is 

shorter than the time needed to reach mechanical equilibrium [18]. The conditions for the 

initiation of voids should be fulfilled for irradiation of almost all materials at sub-10 ps

pulse durations [11,18,22,23]. At fluence levels higher than modification threshold 

nucleation, expansion and subsequent coalescence of sub-surface voids occur. It leads to 

the repulsion of larger amounts of molten material from the surface (spallation), which 

leaves behind contracting membranes and spikes [26]. At fluences lower than 

modification threshold, however, magnitude of the tensile stress seems to be sufficient for 

nucleation of voids, but not for their subsequent expansion. Simulations in [26] with 15 

ps laser pulses and a fluence below the  modification threshold showed that voids can 

also disappear within a time range of a few hundred of picoseconds after the laser pulse 

impingement. Here, one can propose the possibility of voids “freezing” when the 

solidification is faster than the contraction of the voids (Fig. 3 SEM-BSE).

Sub-surface twinning in (Fig. 6(a) inset) or (Fig.6 (b)) is a result of strains

induced in the material. Dark field imaging showed the presence of the twins only at

depths of about 50 nm to 60 nm. This depth is estimated to be comparable to heat 

affected zone of the material due to heat transfer at lower fluence levels (12.2 nm of 

photon penetration depth [20] plus electron heat diffusion length 65 nm [10]). The heat 

transfer is a source of plastic strain in the material according to [13]. When the amplitude 

of the thermal stress induced by the laser pulse exceeds the plastic yield point, it 

subsequently leads to localized plastic deformation and twinning.  

Two groups of surface and sub-surface modifications are induced by the ultra-

short laser pulse. They are either created at already present surface inhomogeneities due 
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to polishing and insufficient cleaning, or they belong to thermal sub-surface 

modifications under reasonably flat surfaces. Irrespective of their origin, both occur at 

fluence levels lower than the single-pulse modification threshold and they markedly 

change optical properties of the material for subsequent laser pulses. These

imperfections, in combination with metallic absorption of light, can contribute to 

explanation of the “non-physical” zero modification threshold fluence for infinite number 

of pulses arising from Jee`s empirical equation for incubation in metals [13].

Conclusion

Surface modifications induced on mirror-polished Cu surfaces under irradiation of single 

laser pulses with 6.7 ps and 1030 nm were studied. The so-called D2 method was 

employed for obtaining the single pulse modification threshold. Attention has been 

directed to the investigation of the surface modifications created at a fluence level close 

to the threshold. Thermally induced topography and sub-surface changes were analyzed 

using electron microscopy techniques in order to improve the understanding of the origin 

of the laser-induced modifications. Conclusions of the investigation are as follows:

- The single pulse modification threshold of the material and the 1/e2 beam radius 

obtained via D2 method are 2.11 J/cm2 and 13.4 ± 2.2 μm, respectively.

- Fluence level below the single-pulse modification threshold is high enough for 

local changes to the surface. This modification is caused by enhanced laser 

absorption by surface imperfections even of nanometer sizes. 
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- Local surface micro-eruptions create: membranes with thickness under 50 nm, 

spikes with a typical length in the micron range and sub-micron diameters, 

spheres extracted from spike endings with (usually) sub-micron diameter, which 

depends on process conditions. 

- The estimated high cooling rates, induced by ultra-short laser pulses, are larger 

than 1011 K/s and they do not lead to amorphous phase creation during the 

solidification process.
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Figure captions

Fig. 1 Squared diameter D2 of the modified area for single laser pulse exposures on the polished Cu sample 

by 1030 nm, 6.7 ps laser pulses as function of EP and Φ0. The graph is a collection of results on two 

samples. The fit of the measurements gives 1/e2 beam radius (slope of the curve) of 13.4 ± 2.2 μm 

and a modification threshold of the material (intersection of the extrapolated curve with the 

horizontal axis) of 2.11 J/cm2.

Fig. 2 SEM-SE (SE- secondary electron image) micrographs of the Cu surface treated with a single 6.7 ps 

laser pulse at a wavelength of 1030 nm and a fluence slightly below 2.11 J/cm2. These pictures show 

the center of the modified area at (a) 55° and (b) 75° degree inclination from the surface normal. 

Surface modification only occurs on local surface defects (particles, scratches). (a) The dashed line 

indicates the location of cross-sectioning and TEM lamella extraction. (b) Detailed view of the 

surface shows micro-eruptions.

Fig. 3 Detailed microscopy inspection of the Cu surface irradiated by a single ultra-short laser pulse at 

fluence just below the modification threshold. The SEM-SE micrograph (top) is a close-up of that in 

Fig. 2(a). The dotted line indicates the approximate location of the FIB cross-sectioning and 

subsequent TEM lamella extraction. The SEM-BSE (center) is a cross-sectional view of the Cu 

surface covered with EBID-Pt protective layer during FIB lamella preparation. In this micrograph, 

the white arrows indicate sub-surface defects. The TEM (lower) picture shows the same cross-

section created by transmitted electrons through the lamella with a thickness of about 75 nm. 

Fig. 4 (a) High magnification TEM image of a micro-eruption on the laser machined Cu surface. Splashes 

of material form spikes with a diameter of a few tens of nanometers. Contrast changes in the largest 

spike (right spike in (a)) visible during specimen tilting in TEM, suggest a polycrystalline character 

of the object. (b) High resolution TEM micrograph shows a detail of the location indicated by the 

white frame and arrow in (a). An angle of 24.4° is measured between the (111) planes of the spike 

ending and the bulk. The dotted line decorates the interface between Cu and EBID-Pt.

Fig. 5 EDS measurements of the sphere from Fig. 3-TEM. The left TEM micrograph shows crystal 

boundaries according HRTEM inspection, which are highlighted with dotted lines. EDS

measurements were conducted in four locations and the corresponding elements content is shown in 

the graph on the right. The amount of Pt and C is attributed to contamination of the sphere cross-

section surface by EBID-Pt material re-deposited during polishing steps. The amount of oxygen is 

attributed to copper oxides created during solidification.
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Fig. 6 TEM images of sub-surface changes induced by a single ultra-short laser pulse. (a) High 

magnification detail of the location highlighted in Fig. 3-TEM. There are two sub-surface defects at 

a depth of approximately 50 nm. HRTEM inset of (a) image show details of the material twinning. 

The bright right hand side object is a sub-surface void filled with EBID-Pt deposit. The two TEM 

pictures in (b) represent Cu-EBID(Pt) interface and the sub-surface twins separated by dark field 

imaging. The inset in (b) shows an electron diffraction pattern from this area.

Fig. 7 (a) SEM-SE micrograph of the Cu surface after a single pulse exposure. The fluence of 3.55 J/cm2

was slightly higher than the single-pulse modification threshold. Insert: (001) pole figure of EBSD 

measurement showing random crystal orientation of the head of the spikes (indicated by white 

crosses, RD- rolling and TD- transversal directions).
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http://ees.elsevier.com/apsusc/download.aspx?id=1200981&guid=8f524bff-3607-4d77-ae4d-c65fd2afccc0&scheme=1
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http://ees.elsevier.com/apsusc/download.aspx?id=1200982&guid=741a72d8-07c4-4562-ad2c-f2ef9aa42b9c&scheme=1
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Fig4
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