

University of Groningen

Early-transition-metal ketenimine complexes

Fandos, R; Lanfranchi, M; Otero, A; Pellinghelli, MA; Ruiz, MJ; Teuben, JH

Published in: Organometallics

DOI: 10.1021/om970568p

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 1997

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Fandos, R., Lanfranchi, M., Otero, A., Pellinghelli, M. A., Ruiz, M. J., & Teuben, J. H. (1997). Early-transition-metal ketenimine complexes: Synthesis, reactivity, and structure of ketenimine-containing titanocene and zirconocene complexes. Organometallics, 16(24), 5283-5288. DOI: 10.1021/om970568p

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Table SI. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters (\mathring{A}^2x10^4) (one third trace of the diagonalized matrix), with e.s.d.'s in parentheses for the complex **3**.

Atom	X/a	Y/b	Z/c	Ueq
Ti	0.0(0)	3168.6(6)	2500.0(0)	450(4)
C1	662(4)	3259(3)	1289(3)	729 (20)
C2	1391(3)	3309(4)	1973(4)	740(20)
C3	1439(4)	2442(6)	2380(3)	869(23)
C4	796(5)	1854(4)	1968(5)	917(26)
C5	281(4)	2328(5)	1308(4)	877 (23)
C6	495(7)	4028(5)	616(4)	1413(39)
C7	2114(5)	4098(5)	2119(6)	1349(37)
C8	2201(6)	2145(8)	3086(5)	1794(50)
C9	775(8)	750(5)	2046(9)	2340(82)
C10	-451(6)	1910(7)	628(6)	1718(47)
N1	467(5)	4449(5)	3005(5)	415(26)
C11	1203(7)	4918(8)	3536(6)	426(30)
C12	1535(10)	5838(9)	3420(9)	591(41)
C13	2253(17)	6135(18)	3939(25)	559(55)
C14	2700(13)	5709(11)	4658(13)	620(50)
C15	2384(19)	4796(12)	4786(16)	634(49)
C16	1660(22)	4373(14)	4218(15)	517(46)
C17	3479(8)	6140(9)	5265(7)	902(46)
C18	-218(7)	4681(6)	2391(9)	411(46)
C19	-677(5)	5476(5)	2047(4)	447(25)
C20	-1471(8)	5441(10)	1381(7)	475(37)
C21	-2029(15)	6285(20)	1054(24)	532(49)
C22	-2771(14)	6141(11)	424(11)	680(46)
C23	-3021(11)	5298(12)	72(9)	835(55)
C24	-2501(20)	4497(13)	333(16)	736(62)
C25	-1735(24)	4578(14)	954(16)	613(62)
C26	-397(5)	6464(5)	2343(5)	476(25)
C27	-57(8)	7126(8)	1814(7)	614(38)
C28	244(10)	8053(9)	2115(11)	740(46)
C29	228(10)	8323(8)	2872(10)	801(46)
C30	-133(11)	7718(9)	3380(10)	867(55)
C31	-426(8)	6767(7)	3124(6)	592(35)

Table SII. Atomic coordinates $(x10^4)$ and isotropic displacement parameters (\mathring{A}^2x10^4) with e.s.d.'s in parentheses for the hydrogen atoms of the complex **3**.

Atom	X/a	Y/b	Z/c	U
H6A	-34(7)	3856(5)	211(4)	2120(0)
H6B	1016(7)	4067(5)	365(4)	2120(0)
H6C	396(7)	4643(5)	850(4)	2120(0)
H7A	1919(5)	4630(5)	1755(6)	2024(0)
H7B	2679(5)	3846(5)	2019(6)	2024(0)
H7C	2200(5)	4318(5)	2675(6)	2024(0)
H8A	2571(6)	2699(8)	3277(5)	2691(0)
H8B	2571(6)	1659(8)	2903(5)	2691(0)
H8C	1943(6)	1891(8)	3523(5)	2691(0)
H9A	244(8)	500(5)	1684(9)	3511(0)
н9в	756(8)	578(5)	2599(9)	3511(0)
H9C	1313(8)	480(5)	1904(9)	3511(0)
H10A	-693(6)	2413(7)	250(6)	2577(0)
H10B	-933(6)	1640(7)	859(6)	2577(0)
H10C	-189(6)	1413(7)	347(6)	2577(0)
H12	1253(10)	6226(9)	2987(9)	1048(103)
H13	2501(17)	6716(18)	3806(25)	1048(103)
H15	2652(19)	4454(12)	5253(16)	1048(103)
H16	1484(22)	3739(14)	4291(15)	1048(103)
H17A	3611(8)	6774(9)	5086(7)	1048(103)
H17B	4008(8)	5737(9)	5306(7)	1048(103)
H17C	3315(8)	6184(9)	5790(7)	1048(103)
H21	-1883(15)	6900(20)	1266(24)	1048(103)
H22	-3124(14)	6678(11)	231(11)	1048(103)
Н23	-3538(11)	5250(12)	-343(9)	1048(103)
H24	-2663(20)	3899(13)	92(16)	1048(103)
H25	-1376(24)	4031(14)	1097(16)	1048(103)
H27	-35(8)	6948(8)	1282(7)	1048(103)
H28	458(10)	8484(9)	1771(11)	1048(103)
H29	462(10)	8922(8)	3062(10)	1048(103)
H30	-186(11)	7933(9)	3896(10)	1048(103)
H31	-636(8)	6351(7)	3483(6)	1048(103)

Table SIII. Anisotropic displacement parameters Uij $(x10^4 \text{ Å}^2)$ for the nonhydrogen atoms of the complex **3**. The anisotropic thermal parameters are in the form:

$$\exp\left(-2\pi^{2}\left(U_{11}h^{2}a^{*2}+\ldots+2U_{12}hka^{*}b^{*}\right)\right)$$

Atom	U11	U22	U33	U23	U13	U12
Ti	534(7)	338(5)	513(7)	0(0)	187(5)	0(0)
C1	1096(40)	643 (28)	554 (28)	108(23)	414(28)	187(28)
C2	710(31)	785(32)	879 (35)	-320(28)	521(28)	-181(26)
C3	792(37)	1198(43)	730(35)	206(35)	417 (30)	421 (36)
C4	1158(46)	481(25)	1407(52)	167 (34)	954 (42)	174(31)
C5	746(34)	1004(39)	963(42)	-605(36)	366 (31)	-163(32)
C6	2110(85)	1419(58)	942(46)	620 (44)	856(53)	712(59)
C7	1223(52)	1398(55)	1725(74)	-780(55)	1000(53)	-613(46)
C8	1260(59)	3144(123)	1037(54)	442(71)	371(48)	1343 (74)
C9	3533(148)	505(34)	4014(171)	263 (59)	3190(146)	373 (56)
C10	1135(57)	2268(95)	1778(78)	-1360(74)	362 (56)	-457(60)
N1	445(44)	296(35)	523(46)	79(31)	144 (37)	23(29)
C11	491(53)	409(47)	408(47)	76(43)	159(40)	89(43)
C12	591(60)	405(55)	792(86)	159(54)	175(57)	-98 (56)
C13	628(106)	421(84)	729(76)	10(83)	375 (92)	28(69)
C14	463(72)	600(83)	805(92)	-249(92)	147(60)	-101(81)
C15	730(90)	690(82)	504(69)	10(87)	179(59)	-10(99)
C16	589(68)	384(72)	582(88)	229(57)	128(65)	-23(67)
C17	765(71)	1114(86)	816(74)	-68(69)	138(60)	-361(66)
C18	488(87)	332(34)	414(90)	-62(46)	96(78)	-124(33)
C19	578(46)	410(35)	384(39)	69(32)	172(35)	-32(35)
C20	561(62)	444(64)	416(59)	133(56)	91(47)	-9(67)
C21	542(99)	441(68)	659(68)	150(60)	230(96)	-60(68)
C22	672(76)	770(81)	549(73)	209(84)	13(59)	172(88)
C23	704(94)	923(90)	811(91)	10(74)	-4(68)	-153(79)
C24	783(109)	700(85)	612(109)	-22(81)	-120(84)	-127(86)
C25	830(102)	366(73)	625(122)	-98(69)	103(93)	30(81)
C26	587(45)	351(31)	498(44)	55(33)	131(39)	28(31)
C27	781(77)	477(54)	563(51)	63(48)	92(56)	-8(54)
C28	763(84)	357(60)	1033(76)	134(66)	29(94)	-52(56)
C29	921(95)	358(54)	1042(69)	-7(56)	9(84)	-130(52)
C30	1265(111)	451(64)	927(85)	-284(64)	318(90)	-14(71)
C31	797(73)	481(50)	518(44)	-77(44)	179(53)	26(49)

Table SIV. Bond distances (Å) and angles (deg) with e.s.d.'s in parentheses for ${\bf 3.}$

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.431(6) 2.429(6) 2.422(7) 2.439(7) 2.416(7) 2.024(7) 2.119(9) 2.124(7) 1.412(7) 1.412(7) 1.531(9) 1.521(9) 1.374(9) 1.520(10) 1.520(10) 1.522(10) 1.533(8) 1.522(10) 1.334(13) 1.393(16)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.420(25) $1.303(31)$ $1.382(40)$ $1.379(25)$ $1.503(21)$ $1.413(35)$ $1.360(12)$ $1.454(13)$ $1.485(10)$ $1.474(29)$ $1.404(25)$ $1.381(33)$ $1.324(23)$ $1.373(27)$ $1.385(38)$ $1.436(15)$ $1.379(14)$ $1.417(17)$ $1.323(25)$ $1.378(22)$ $1.425(17)$
$\begin{array}{cccccc} {\rm CE1} & -{\rm Ti} & -{\rm CE1'} \\ {\rm C18} & -{\rm Ti} & -{\rm CE1} \\ {\rm N1} & -{\rm Ti} & -{\rm CE1} \\ {\rm N1} & -{\rm Ti} & -{\rm CE1} \\ {\rm N1} & -{\rm Ti} & -{\rm C18} \\ {\rm C5} & -{\rm Ti} & -{\rm C18} \\ {\rm C5} & -{\rm Ti} & -{\rm C18} \\ {\rm C5} & -{\rm Ti} & -{\rm C18} \\ {\rm C4} & -{\rm Ti} & -{\rm C18} \\ {\rm C4} & -{\rm Ti} & -{\rm C18} \\ {\rm C4} & -{\rm Ti} & -{\rm C18} \\ {\rm C3} & -{\rm Ti} & -{\rm C18} \\ {\rm C3} & -{\rm Ti} & -{\rm C18} \\ {\rm C3} & -{\rm Ti} & -{\rm C18} \\ {\rm C2} & -{\rm Ti} & -{\rm C18} \\ {\rm C2} & -{\rm Ti} & -{\rm C18} \\ {\rm C2} & -{\rm Ti} & -{\rm C18} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C2} & -{\rm Ti} & -{\rm C4} \\ {\rm C1} & -{\rm Ti} & -{\rm C3} \\ {\rm C1} & -{\rm Ti} & -{\rm C4} \\ {\rm C1} & -{\rm Ti} & -{\rm C5} \\ {\rm Ti} & -{\rm C1} & -{\rm C5} \\ {\rm Ti} & -{\rm C1} & -{\rm C5} \\ {\rm Ti} & -{\rm C1} & -{\rm C5} \\ {\rm Ti} & -{\rm C1} & -{\rm C5} \\ {\rm Ti} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C6} \\ {\rm C2} & -{\rm C1} & -{\rm C2} \\ {\rm Ti} & -{\rm C2} & -{\rm C7} \\ {\rm Ti} & -{\rm C2} & -{\rm C7} \\ {\rm Ti} & -{\rm C2} & -{\rm C7} \\ {\rm Ti} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm C2} & -{\rm C7} \\ {\rm C1} & -{\rm $	139.6(2) 106.5(3) 113.4(3) 105.9(3) 109.3(3) 37.5(3) 117.0(3) 131.4(3) 141.5(3) 130.6(2) 32.9(2) 121.8(3) 99.2(3) 54.9(2) 32.0(2) 91.0(3) 80.3(3) 55.5(2) 53.7(2) 32.9(2) 87.7(4) 97.9(3) 33.8(2) 54.7(2) 55.4(2) 33.8(2) 127.8(4) 72.5(3) 73.0(3) 130.1(5) 122.9(5) 106.0(5) 73.2(3) 124.9(5) 108.1(5) 129.3(4) 73.3(4) 125.7(6)		

C11 C12 C13 C13 C15 C14 C11 Ti C18 C20 C19 C21 C20 C21 C22 C23 C20 C19 C27	-c14 -c14 -c15 -c16 -c18 -c18 -c19 -c19 -c19 -c20 -c20 -c20 -c20 -c22 -c22 -c22 -c23 -c24 -c25 -c26 -c26 -c26	$\begin{array}{c} -C10\\ -C10\\ -C18\\ -C11\\ -C18\\ -C16\\ -C12\\ -C16\\ -C13\\ -C14\\ -C17\\ -C15\\ -C17\\ -C16\\ -C15\\ -N1\\ -C19\\ -C20\\ -C26\\ -C25\\ -C21\\ -C25\\ -C22\\ -C23\\ -C24\\ -C25\\ -C24\\ -C25\\ -C24\\ -C27\\ -C31\end{array}$	73.8(4) 125.0(6) 108.4(6) 126.0(5) 74.8(4) 125.6(7) 73.3(4) 125.9(6) 110.5(7) 133.7(4) 72.6(4) 121.7(6) 106.8(5) 74.5(4) 73.7(3) 128.1(7) 124.2(6) 125.3(5) 75.1(5) 144.8(6) 138.2(9) 116.3(13) 125.7(10) 118.0(12) 117.7(15) 129.1(28) 126.0(21) 113.8(18) 120.2(15) 121.0(18) 119.8(22) 67.4(5) 139.7(10) 152.8(7) 121.3(7) 124.1(9) 114.7(8) 121.2(14) 124.7(14) 114.0(16) 118.7(16) 120.1(22) 123.6(20) 122.3(7) 19.5(8) 118.2(8)
C20	-C25	-C24	123.6(20)
C19	-C26	-C31	122.3(7)
C19	-C26	-C27	119.5(8)

CE1 is the centroid of the Cp* ring ' = -x, y, 1/2-z

Experimental Data for the X-ray Diffraction Study of Compound Ti(η^{5} -C₅Me₅)₂(η^{2} (C,N)-TolN=C=CPh₂)

formula	C ₄₁ H ₄₇ NTi
fw	601.70
crystal system	monoclinic
space group	C2/c
diffractometer	Philips PW 1100
radiation	(Mo-Ka), λ = 0.71073 Å
monochromator	graphite
temp, K	293
<i>a,</i> Å	14.969(5)
b, Å	13.830(5)
<i>c</i> , Å	16.703(5)
β, deg	101.78(2)
<i>v</i> , Å ³	3385(2)
Ζ	4
reflns for lattice number	32
parameters $\mid \theta$ range, deg	8-18
D_{calcd} , g cm ⁻³	1.181
F(000)	1288
cryst dimens, mm	0.15 x 0.23 x 0.35
μ (Mo-K α), cm ⁻¹	2.81
scan speed, deg min $^{-1}$	3-9.6
scan width, deg	1.20 + 0.34 tan θ
scan mode	θ/2θ
2θ range, deg	6-54
std refln	one monitored every 100
decay	none
reflns measd, range h,k,l	-19≤ <i>h</i> ≤18, -17≤ <i>k</i> ≤17, 0≤ <i>l</i> ≤21
unique total data	3694
unique total data with $[F_o^2 \ge -\sigma(F_o^2)]$	3586
unique obsd data $[F_0 \ge 4\sigma(F_0)]$	1824
structure solution	direct methods: SIR92
structure refinement	SHELXL-93 (full-matrix
	least-squares on F^2

function minimized	$\Sigma w [F_o^2 - F_c^2]^2$
no. of params	296
no. of params restraints	80
max shift/esd dev	-0.240
mean shift/esd dev	0.018
max/min resid. electron dens., e/Å ³	0.59/-0.62
goodness of fit ^a	0.952
R1 ^b	0.0791
wR2 ^C	0.1998
weighting scheme, a, b ^d	0.1604, 0.0000

^a GOOF = $[\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)]^{\frac{1}{2}}$ ^b R1 = $\Sigma||F_o| - |F_c||/\Sigma|F_o|$. ^c wR2 = $[\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{\frac{1}{2}}$ ^d w = $1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, where $P = [\max(F_o^2, 0) + 2F_c^2]/3$