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ABSTRACT: In the Leibler description of copolymer systems containing only two kinds of monomers,
the state of the system is described by one order parameter, ψ(r), representing the deviation of the local
composition from the space-averaged value. The Landau free energy is expanded up to fourth order in
powers of ψ(r) and subsequently minimized with respect to the symmetry, the amplitude, and the period
of the microstructure. However, if the system contains some kind of polydispersity, so that the copolymers
are no longer all identical, the description in terms of only one order parameter is an oversimplification.
Recently, Erukhimovich and Dobrynin refined the theory by introducing separate order parameters for
each type of molecule (Erukhimovich, I.; Dobrynin, A. V.Macromol. Symp. 1994, 81, 253). Their procedure
eventually leads to a Leibler-like free energy, with various additional terms. One of these terms, called
the nonlocal term, is of great importance for the system under consideration, since it is responsible for
microphase separation instead of the macrophase separation predicted by previous theories. In our article,
the results of the application of this theory to a random copolymer, containing two types of monomers A
and B, are presented. The resulting microstructure will be given for various values of the ø-parameter
and the A-monomer fraction.

1. Introduction

Recently, there has been much interest in phase
transitions in systems with a quenched disorder. In
particular, the behavior of random and polydisperse
copolymer melts consisting of random1 or correlated2-6

sequences of A and B monomers has been investigated.
It was shown, in the mean field approximation, that
below a critical temperature Tc such systems undergo
a phase transition to a microstructure. Until recently
it was assumed that in the limit of infinitely many
blocks per chain the free energy is degenerate with
respect to the symmetry of the microstructure, leading
to the prediction of a so-called disordered microphase
(see, e.g., ref 5). However, as first demonstrated in ref
6 and confirmed by our calculation, this assumption is
not right, and a microstructure with a definite sym-
metry is predicted. It was also shown in ref 6 that there
exists a critical fraction f separating first- and third-
order transitions from the homogeneous state. Further
investigations, using a modified Brazovskii (Hartree)
approximation developed for copolymer systems in refs
7-10, showed that fluctuation corrections might be very
important. In particular, for the degenerated case of
an uncorrelated random copolymer melt, large fluctua-
tions might result in destruction of the ordered phase,9
which is related to a special degeneracy of such a
system. In the general case of copolymer melts consist-
ing of more or less correlated sequences of monomers,
the existence of ordered phases is not excluded. There-
fore, both theoretical and experimental studies of pos-
sible phase diagrams for copolymer melts with a con-
siderable structural disorder seem to be of great
importance. In this paper we present for a realistic
model of a correlated copolymer melt a mean field phase
diagram, the effect of fluctuations being postponed to a
future publication. This phase diagram gives the
thermodynamically stable state of the system as a
function of composition and temperature. In this paper

nothing will be said about the problems concerning the
kinetics of the transition. The interested reader is
referred to refs 11 and 12.

2. Model

We consider a melt of linear random copolymers with
two kinds of monomer, denoted by A and B. The
polymer is polydisperse in chain length as well as in
chemical composition. The monomer sequence distribu-
tion can be described in the following way. Assign to
each monomer of type R ) A or B a weight ZR and to
each bond between a monomer of type R and â a weight
kRâ, then the “weight” of a specific molecule type is
defined as the product of the weights of all monomers
and all bonds present in the molecule. The number of
molecules of a given type is now taken to be proportional
to this weight. In this way all possible sequences of A
and B have a non-zero probability.
This distribution is characterized by five parameters:

However, not all parameters are necessary. First, it is
quite obvious that the following set of parameters
describes the same distribution for all positive values
of c:

Hence, without loss of generality ZB can be set equal to
1. In the remainder of this article, we will also set ZA
equal to unity. However, allowing for other values of
ZA does not lead to additional complications, and all
formulas and results can easily be adapted.
If the values of the parameters are known, the

properties of interest like the average chain length, the
average A-monomer fraction, etc. can be calculated byX Abstract published in Advance ACS Abstracts,March 15, 1996.

ZA, ZB, kAA, kAB, kBB (1)

cZA, cZB, c-1 kAA, c-1 kAB, c-1 kBB (2)
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partial differentiation of the generating function F,
which is defined by

where the following notation has been adopted:

The system will be studied in the limit where the
average number of monomers per block is large (high
correlation along the chain). This can be accomplished
by taking

where n is large and eAA, eAB, and eBB are positive
constants with the restriction

which is required to keep the sum of the weights of all
molecule types finite. Since a common factor can be
absorbed in n, only the ratio between eAA, eAB, and eBB
is of interest, so eAB can be set equal to unity. When n
increases (for fixed values of the parameters eAA and
eBB), the average number of monomers per block in-
creases as well, while the average number of blocks per
molecule remains constant. Also, the fraction f of A
monomers is independent of n. From now on, the model
will be studied for large values of n; i.e. contributions
to the free energy which are of order n-2 will be
neglected (the main contribution to the free energy is
proportional to n-1). Moreover, we will restrict our-
selves to the case where the average number of blocks
per molecule, 〈Nb〉, is infinite. The implication of the
last assumption for the parameters eAA and eBB follows
from the expression for 〈Nb〉:

which demonstrates that the limit 〈Nb〉 f ∞ corresponds
to the limit

By now, only one independent parameter is left, which
will be denoted by e:

The value of the parameter n will have no influence on

the final results, since it appears only as a prefactor for
the free energy, if the condition n . 1 is fulfilled.
With the use of the generating function F defined in

eq 3 it is possible to express various properties of
interest in terms of e and n; for example the average
A-monomer fraction f, the average length of an A-block
〈NA〉, the average length of a B-block 〈NB〉, and the
conditional probabilities pRâ that a monomer of type R
is followed by a monomer of type â are given by

In the case of a monodisperse diblock, the relevant
parameter describing the segregation is not the Flory-
Huggins parameter ø itself, but rather the rescaled
parameter ø̃ ) Nø, where N is the sum of the lengths of
an A-block and a B-block.13 In our model, this rescaled
ø-parameter has the form (see also eq 9)

In the phase diagram presented further on, this param-
eter is put along the vertical axis.
In ref 5, Fredrickson and co-workers introduced an

alternative model for correlated random copolymers.
This model was also considered in ref 6. Their starting
point is a melt of random copolymers consisting of
segments A and B. Each segment is assumed to consist
of M monomers (much like prepolymers). The system
is monodisperse in chain length, and the number of
segments per molecule is denoted by Q. The sequence
distribution of the segments is described in terms of two
parameters f and λ. The latter is defined by

where pAA and pBB are the conditional probabilities that
during the reaction A reacts with A and B reacts with
B. Since our model is by definition polydisperse, it
differs in an essential way from the model of Fredrick-
son et al. However, settingM ) 1 and taking the limits
Q f ∞ followed by λ v 1, both models give the same
phase diagram under the correspondence

hence

The equivalence of both models in the indicated limit
is due to the fact that then the average chain length is

F ) ∑
s

Fs ) ∑
R,â

ZR(1 - kZ)Râ
-1 (3)

s a molecule type, i.e. a finite,
ordered sequence of A’s and B’s

Fs the “weight” of molecule type s,
which is proportional to the number

of these molecules per unit volume

kZ the matrix with components (kZ)Râ ) kRâZâ

R, â monomer types (A or B)

kAA ) 1 -
eAA
n
; kAB )

eAB
n
; kBB ) 1 -

eBB
n

(4)

eAB
2 < eAAeBB (5)

〈Nb〉 - 1 ) gAB
∂ ln F
∂gAB

)

2eAB(eAA + eAB)(eAB + eBB)

(eAA + 2eAB + eBB)(eAAeBB - eAB
2)

(6)

eAAeBB V eAB
2 (7)

eAA ) e; eAB ) 1; eBB ) 1/e (8)

f )
ZA
∂F
∂ZA

ZA
∂F
∂ZA

+ ZB
∂F
∂ZB

) 1
1 + e2

pAA ) 1 - e
n
; pAB ) e

n
; pBB ) 1 - 1

ne
;

pBA ) 1
ne

(9)

〈NA〉 ) n
e
; 〈NB〉 ) ne

ø̃ ) (〈NA〉 + 〈NB〉)ø ) nø e
1 + e2

(10)

λ ) pAA + pBB - 1 (11)

pAA ) 1 - e
n
; pBB ) 1 - 1

en
(12)

λ ) 1 - e
n

- 1
en

(13)
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much larger than the average block length, whereas
both models have the same block length distribution.
If the chain lengths are much larger than the block
lengths, the distribution of the total chain length has
no influence on the phase diagram. The above equa-
tions will be used further on to demonstrate the equality
of the spinodal expressions of both models.

3. Method

We have studied our model in the weak segregation
limit advanced first by Leibler13 in his classic paper
dealing with microphase separation in molten (mono-
disperse) diblock copolymers. The procedure developed
by Erukhimovich and Dobrynin14 to extend the theory
to polydisperse copolymers has been used. We will start
by giving a short summary of these theories.
Leibler Theory. In Leibler’s theory,13 the state of

a polymer system is described by the order parameter
ψ(x), which is defined as the deviation of the A-monomer
density FA(x) from its space-averaged value 〈FA〉:

The Landau free energy is developed in a power series
up to fourth order in ψ

In the vicinity of the critical point, in which the third-
order term in (15) vanishes due to the symmetry of the
system, it suffices to keep only the terms up to fourth
order, and this is just the region of validity of the weak
segregation (weak crystallization) approach. The coef-
ficients Γ(n) in this expansion are related to the intramo-
lecular correlation functions, which can easily be de-
termined due to the fact that macromolecules obey
Gaussian statistics in the homogeneous (and almost
homogeneous) melt.15,16 The interaction is taken into
account in the usual way by including the Flory-
Huggins ø-parameter in the second-order term. This
second-order term plays an important role in determin-
ing the period of the microstructure. If its Fourier
transform attains its minimum at some positive q value,
then Leibler’s theory predicts microphase separation,
and the periodicity is inversely proportional to this q
value. This period is assumed to be constant in the
weak segregation regime (allowing for its actual depen-
dence on temperature goes beyond the accuracy of the
weak segregation theory). The next step consists of
calculating the free energy of various microstructures
and choosing the one that gives the minimum. To this
end, the order parameter is written as a sum of plane
waves. All these waves have the same period, which is
given by the position of the minimum of the second-
order vertex function. The directions of these waves are
such that they form the first coordination sphere of the
reciprocal of the symmetry lattice under consideration.
The free energy must be minimized with respect to both
the amplitudes and the phases of these waves. Sym-
metry arguments show, that all amplitudes are equal
when the free energy reaches its minimum. So, after
proper minimization with respect to the phases,13 the

expression for the free energy has been reduced to a
fourth-order polynomial in the amplitude, which can
easily be minimized. This procedure can be extended
in several ways.
Higher Harmonics. In the original weak crystal-

lization theory approach, the order parameter is written
as a sum of plane waves, whose momenta are given by
the vectors belonging only to the first coordination
sphere of the studied reciprocal lattice. It is assumed
thereby that contributions of plane waves associated
with other vectors in the reciprocal lattice can be
neglected. However, it is just these contributions which
result in a transition from the weak to the strong
segregation regime. The first attempts to allow for
these so-called higher harmonics were presented in
papers by Olvera de la Cruz et al.17 and Cates and
Marques.18 The main problem here is related to the
question of howmany higher harmonics should be taken
into account. It was shown in ref 14 that within the
accuracy of the weak crystallization theory the only
higher harmonics to be taken into account are those
which can be written as the sum of two vectors belong-
ing to the first coordination sphere.
Detailed Densities (Multiple Order Parameters).

Although the system under consideration contains many
different molecule types, in the extension of the Leibler
approach to polydisperse AB-copolymer systems first
presented by Burger, Ruland, and Semenov19 its state
is still described by only one order parameter. This is
an oversimplification; relevant thermodynamic degrees
of freedom contributing essentially to the free energy
may be missed this way. To account for this, Erukhi-
movich and Dobrinyn14 introduced two order param-
eters for eachmolecule type involved, one describing the
A-monomer concentration, the other describing the
B-monomer concentration. These order parameters are
called detailed densities. The free energy must be
minimized with respect to all these order parameters.
In the case of the long polydisperse (random) copolymer
one should, therefore, introduce infinitely many order
parameters. Minimization of the free energy seems an
enormous task; it is, however, simplified by the following
observation. At the spinodal, the system becomes
critical with respect to one particular linear combination
of order parameters. This linear combination is called
the strongly fluctuating field ẼR

s . It can be found by
inspection of the second-order vertex function. In the
disordered state (below the spinodal with respect to the
ø-parameter), all eigenvalues of this matrix are positive,
for all q values. At the spinodal, for a particular q value
q ) q0 one of these eigenvalues becomes zero. The
corresponding eigenvector is the strongly fluctuating
field ẼR

s given by (see ref 14)

Dominant fluctuations of the detailed densities ψR
s (qb)

will have the form

for some vector pb having length q0. (n.b. gRâ
s is the

second-order correlation function of a molecule of type

ψ(x) ) FA(x) - 〈FA〉 (14)

F ) ∑
n)2

4 1

n!
∑
q1...qn

Γ(n) (q1,...,qn) ψ(q1) ... ψ(qn) (15)

ẼR
s ) ∑

â

gRâ
s (q0) zâ

0(q0)

zâ
0(q) ) 〈gs(q)〉âA

-1 - 〈gs(q)〉âB
-1 (16)

ψR
s (qb) ) δ(qb - pb)ẼR

s (17)
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s). All other eigenvectors belonging to the same q value,
are called weakly fluctuating fields. Because of the
higher harmonics, some values of q bigger than q0 are
also relevant. The corresponding eigenvectors also
belong to the weakly fluctuating fields. Let ψ denote
the amplitude of the strongly fluctuating field, and æ
the amplitude of some weakly fluctuating field. The
procedure is to expand the free energy to fourth order
in ψ and to such an order in æ and their products with
ψ that the resulting contribution would be no more than
fourth order in ψ (after expressing æ in terms of ψ by
minimization with respect to æ). Then the only relevant
coupling term proves to be ∫ψ2æ dV (it is instructive to
compare it with a similar procedure used in the paper
by Fredrickson and Leibler20), which results immedi-
ately in explicit expressions for the weakly fluctuating
fields in terms of ψ. Inserting these expressions leads
to a free energy functional depending only on one order
parameter ψ, and from that point the minimization can
be performed along the same lines as in Leibler’s theory.
The second- and the third-order vertex functions of the
free energy thus obtained coincide with those of the free
energy functional presented in ref 19. The fourth-order
vertex function, however, has some additional terms.
The complete free energy reads (see ref 14):

FBRS is the contribution already derived in ref 19. The
term Fnl is the so-called nonlocal term, which was first
derived by Shakhnovich and Gutin1 (for the particular
case of randomly distributed monomers) and by Panyuk-
ov and Kuchanov in the most general form.2,4 For the
case of random multiblock copolymers it was also
presented by Fredrickson, Milner, and Leibler.5 It is
this term which prevents macrophase separation in the
random copolymer, by assigning a high free energy to
microstructures with a long wavelength. In the mul-
tiple order parameter theory14 its appearance is due to
the fact, that the free energy is expanded in powers of
the amplitude of the strongly fluctuating field rather
than in powers of the amplitude of the conventional
order parameter.
The term Fhh accounts for the higher harmonics and

is a consequence of the minimization with respect to the
weakly fluctuating fields associated with q values bigger
than q0.
The contribution ∆F, obtained only in ref 14, allows

for those degrees of freedom which are related to the
adjusting of different macromolecules to the same
lattice. This term is a consequence of the minimization
with respect to the weakly fluctuating fields associated
with q0. For the sake of simplicity the consequences of
the terms arising from the weakly fluctuating fields will
not be considered here.
A few words must be said about the way of averaging.

In the systems under consideration three different time
scales are present:
1. the time for an individual polymer coil to go

through all possible conformations
2. the experimental time scale on which the average

concentration profile is measured
3. the time scale on which chemical bonds are broken

and re-formed
Normally, it is assumed that the time scale increases

from 1 to 3. In these cases, instead of the usual (so-

called annealed) averaging of the partition function, one
must first take the logarithm, and only then average
over the different molecule species. This is called a
quenched average. It can be performed with the replica
trick, but in polymer systems this can often be circum-
vented.5 It is instructive to note that the expression for
the nonlocal term was first derived in refs 1, 2, and 4
using the replica trick, but that the same result was
obtained by Erukhimovich and Dobrynin14 straightfor-
wardly averaging the conventional partition function
(annealed average) with due regard for the aforemen-
tioned “hidden” thermodynamic degrees of freedom
(detailed densities). One can expect generally that an
annealed average using detailed densities should give
the same results as a quenched average. (These two
procedures can give different results only if a sort of
replica symmetry breaking occurs.) In the calculations
performed in this article, the partition function has been
averaged without taking the logarithm, but with due
regard for the detailed densities. So, it corresponds to
the usual situation where the time scale increases from
1 to 3.

4. Results and Discussion

Application of the theory described in section 3 to the
model described in section 2 leads to an expression for
the free energy of the form

In this formula, A is proportional to the amplitude of
the microstructure and the vertex functions τ, R and â
depend on the microstructure, the average A-monomer
fraction f, the dominant wave vector q0, and the interac-
tion parameter ø (only τ depends on ø). Expressions for
these vertex functions are presented in the Appendix.
They have been written in terms of the parameters e,
y, and ø̃ instead of, respectively, f, q0, and ø. The
relations between these parameters are (see also eqs 9
and 10)

From eq A2 for the second-order vertex function it is
clear that it attains its minimum for y ) 0 (q0 ) 0). The
spinodal is found by setting this minimum equal to zero.
The result is

This expression needs to be compared with the spinodal
found by Fredrickson and co-workers5 (see also section
2), which is

For M ) 1, (21) and (22) are equivalent (use (13) and
(20)).
Effective Vertices. The free energy (19) should be

minimized with respect to q0 and to A. Suppose we
minimize first with respect to q0. This will give q0 as a

F )
τ(f,q0,ø)A

2 + R(f,q0)A
3 + â(f,q0)A

4

n
(19)

f ) 1
1 + e2

; ø̃ ) nø e
1 + e2

; y ) 1
6
na2q0

2 (20)

ø̃c ) 1
4f2(1 - f)2

(21)

Møc ) 1 - λ
2f(1 - f)(1 + λ)

(22)

F ) FBRS + Fhh + Fnl + ∆F (18)
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function of A. Inserting this into the equation for F,
and taking into account only contributions up to fourth
order in A, will lead to (see also ref 6)

That part of the original fourth-order vertex â(f,q0)
which is proportional to 1/q02 (originating from the
nonlocal term) will give a positive contribution to R′(f).
Therefore although in the original series (19) the third-
order coefficient R(f,q0) is never positive, this is not true
any more for the renormalized vertex R′(f). As pointed
out in ref 6, this results in the existence of a critical
fraction fc < 0.5 with the following property:

Because of this, the transition from the disordered state
to the ordered state (for f * 0.5 this will be the body-
centered cubic (bcc) phase) will be continuous (third
order) for values of f satisfying fc < f < 1 - fc and
discontinuous (first order) for values of f outside this
interval.
The effective vertices can be calculated in the follow-

ing way. First the free energy has to be differentiated
with respect to y. (The expression for the free energy
can be found in the Appendix: eqs A1-A3 and A12-
A16.) For the bcc phase this leads to the minimization
condition

The upper (plus) sign is valid for e < 1 S f > 0.5, while
the lower (minus) sign is valid for e > 1 S f < 0.5. We
look for a solution of the form

Equation 25 can only be satisfied if a0 ) 0. In order to
get the free energy up to fourth order in A, it is sufficient
to determine only the coefficients a1 and a2. The result
is

The final expression for the free energy of the bcc phase
in terms of e and A will be

Similar procedures can be followed for the cylindrical
and lamellar phases. The result reads

From eq 28 the critical fraction fc can be obtained by
solving the equation R′(f) ) 0. The result is (using eq
20)

which coincides with the value given in ref 6. In the
region fc < f < 1 - fc the effective third-order vertex R′
is positive. As a result, the binodal will coincide with
the spinodal and close to the spinodal in the phase-
separated area the quantities A, y, and -τ are propor-
tional to each other. Hence

and the phase transition is third order. The propor-
tionality between q02 and -τ for random copolymers was
first noticed by Panyukov and Kuchanov.4 In Figure 1
the value of y ) 1/6na2q02 has been plotted versus the
rescaled ø-parameter ø̃ for the symmetric case f ) 0.5.
If (ø̃ - ø̃c) is small, then y increases linearly, but for
large values of this parameter it approaches the limit y
f x2. This can qualitatively be understood in the
following way. Near the spinodal, the segregation is so
small that only the large blocks contribute to the phase

Figure 1. Value of y ) 1/6na2q02 as a function of ø̃ for f ) 0.5.

y*cyl )
(1 + e2)2

e2 x2
A (

(1 - e2)(1 + e2)3

2e4 x6
A2 (29)

y*lam )
(1 + e2)2

e2 x2
A (30)

nFcyl ) (-
2eø̃

1 + e2
+
(1 + e2)3

2e3 )A2 +

(1 + e2)4(ex6 ( (e2 - 1))

2e5 x3
A3 +

(1 + e2)5(93 ( 8x6e(e2 - 1) - 102e2 + 93e4)

96e7
A4 (31)

nFlam ) (-
2eø̃

1 + e2
+
(1 + e2)3

2e3 )A2 +
(1 + e2)4

e4x2
A3 +

(1 + e2)5(21 - 22e2 + 21e4)

32e7
A4 (32)

fc ) 1
2

-
x21
14

= 0.173 (33)

F ∝ τ3 (34)

nF ) τ′(f,ø)A2 + R′(f)A3 + â′(f)A4 (23)

R′(f) > 0 for fc < f < 1 - fc

R′(f) < 0 for 0 < f < fc or 1 - fc < f < 1 (24)

∂nFbcc

∂y
)
(1 + e2)2

2e2
A2 (

(e2 - 1) (1 + e2)3

e4 x6
A3 +

(1 + e2)4(...)

4e6y2 (1 + e2 + 2ey)2
A4 ) 0 (25)

y ) ∑anA
n (26)

y*bcc )
(1 + e2)2

e2x2
A (

(1 - e2)(1 + e2)3

2e4x3
A2 (27)

nFbcc ) (- 2eø′
1 + e2

+
(1 + e2)3

2e3 )A2 +

(1 + e2)4(ex3 ( (e2 - 1))

e5x6
A3 +

(1 + e2)5(261 ( 32e(e2 - 1)x3 - 294e2 + 261e4)

192e7
A4

(28)
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separation, and consequently, the wave vector is small.
Going away from the spinodal, the segregation increases
and smaller blocks join in the separation. If the
segregation is high, all blocks contribute, and the
resulting wave vector y ) x2 is determined by the
average block length. For A-monomer fractions differ-
ent from 0.5, the graph looks similar, the only difference
being that at the phase transitions to other structures,
small jumps to somewhat higher y values occur (Figure
2).
To construct the phase diagram the free energies of

the lamellar, cylindrical, bcc, face-centered cubic (fcc),
and the quasi crystal morphology have been compared.
(The quasi crystal phase is a quasi periodic structure
with a 5-fold symmetry. The vectors in the first
coordination sphere of the reciprocal lattice form the
edges of an isocahedron.) Although the fcc and the quasi
crystal morphology do not appear in the phase diagram,
for completeness we have given the expressions for their
vertex functions in the Appendix.
The phase diagram is shown in Figure 3. Although

for extreme values of f (i.e. f < .173 or f > .827) the
binodal and the spinodal do not coincide, the difference
is so small that it cannot be displayed in the scale of
Figure 3. For f ) 0.1 and f ) 0.9 this difference is less
than 1% of the spinodal value, and it increases up to
almost 6% for f f 0 or 1.
In Figure 4 the lower curve represents the value of y

directly after the transition, while the upper curve
represents its value for large segregation. From this
figure it can be deduced that for extreme asymmetric

random copolymers (say for f > 0.95) the wavelength of
the microstructure directly after the transition is around
3 times bigger than the wavelength in the highly
segregated region.
In the phase diagram displayed in Figure 3, the line

separating the lamellar region from the cylindrical
region, as well as the line separating the cylindrical
region from the bcc region has a discontinuous deriva-
tive at f ) 0.5. To see why this happens, we have (after
minimization with respect to the amplitude A), ex-
panded the free energy of the various phases near f )
0.5 in powers of the parameters

The equality of the free energies of two different phases
is expected to occur for values of h which scale linearly
with ε. The leading term in the expansion is of third
order. Since all morphologies have the same free energy
up to this order, one should make the expansion till
fourth order. The result is (for e < 1 S f > 0.5):

From these expressions, the slope of the line separating
two phases can be found by equating the corresponding
free energies:

The reason for these discontinuities lies in the third-
order vertex function. It has to be negative for all f
values and contains a factor |1 - e|. (The vertical lines
denote an absolute value.)

5. Concluding Remarks
The analysis in this paper can be extended in several

ways. E.g., the influence of the weakly fluctuating

Figure 2. Value of y ) 1/6na2q02 as a function of ø̃ for f ) 0.65.

Figure 3. Phase diagram of the random copolymer: (dashed
line) third-order transition; (solid line) first-order transition;
(1) disordered phase; (2) bcc phase; (3) hexagonal phase; (4)
lamellar phase.

Figure 4. Lower curve: value of y directly after the transition.
Upper curve: value of y in the highly segregated region.
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fields, quantified by Fhh and ∆F (eq 18), can be inves-
tigated. To get an idea about the influence these terms
might have on the phase diagram, and to what extent
the present analysis is valid, we have calculated the
effect of the higher harmonics and found that they do
not change the phase diagram quantitatively in the
region 0.48 < f < 0.52 and not qualitatively in the region
0.42 < f < 0.58. Beyond f ) 0.58, the higher harmonics
favor the fcc phase rather than the hexagonal phase,
and the region of the bcc phase broadens. However, to
account for the weakly fluctuating fields, the term ∆F
has to be taken into account as well, and this will be
addressed in a forthcoming publication. Another im-
provement would be to consider the possibility of two-
phase regions, where two or more ordered states coexist.
Also the calculation of the fluctuation effects is of
interest, since in the case of a random copolymer
without correlations between the monomers, they have
been shown to be responsible for the complete elimina-
tion of the microstructure predicted by the mean field
theory.9
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fc separating first- and third-order transitions from the
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6. Appendix

In this Appendix, the coefficients of the Landau
expansion for the various possible microstructures are
presented. As a function of the amplitude A, the free
energy can be written as

The coefficients τ, R, and â depend on the parameters e
and y and on the type of microstructure considered. The
second-order coefficient τ, which also depends on the
rescaled ø-parameter ø̃, is the same for all structures
and given by

The third-order vertex functions for the various micro-
structures differ only by a multiplication factor (see, e.g.,
ref 14)

The upper sign is valid for e > 1; the lower sign is valid
for e < 1. Finally, the fourth-order contribution to the

free energy has the form14

where the summation is restricted to vectors qb1 + qb2 +
qb3 + qb4 ) 0 belonging to the first coordination sphere of
the reciprocal lattice. The function Γ(4) is symmetric in
its arguments and depends only on the mutual orienta-
tion of the four vectors qb1, qb2, qb3, and qb4. Since all these
vectors have the same length q0, this mutual orientation
is completely determined by the parameters h1, h2, and
h3 defined by

These three parameters are not independent; they
satisfy the relation

The fourth-order vertex defined in eq A5 depends only
on the values of h1, h2, and h3 and can therefore be
written as

This function Γ(4)(h1,h2,h3) is completely symmetric in
its arguments. In our model, it is given by

of all three numbers h1, h2, and h3 are different from
zero;

if h * 0 and h * 4; and finally,

These expressions give rise to the following fourth-order

nF ) τA2 + RA3 + âA4 (A1)

τ )
(1 + e2)2(1 + e2 + ey)

2e3
-

2eø̃

1 + e2
(A2)

Rlamellar ) 0 Rfcc ) 0

Rhexagonal ) -
2γ0

3x3
Rquasi crystal ) -

4γ0

3x15
(A3)

Rbcc ) -
4γ0

3x6

γ0 ) (
3(1 - e2)(1 + e2)3(1 + e2 + ey)

4e5
(A4)

1

4!
∑

qb1qb2qb3qb4

Γ(4) (qb1, qb2, qb3, qb4)A
4 (A5)

(qb1 + qb2)
2 ) h1q0

2

(qb1 + qb4)
2 ) h2q0

2 (A6)

(qb1 + qb3)
2 ) h3q0

2

h1 + h2 + h3 ) 4 (A7)

Γ(4) (qb1,qb2,qb3,qb4) ) Γ(4)(h1,h2,h3) (A8)

Γ(4)(h1,h2,h3) ) (1 + e2)4 (15 - 3e2 - 3e4 + 15e6 +

16ey - 16e3y + 16e3y + 16e5y)/(8e7) (A9)

Γ(4)(h,4-h,0) ) (1 + e2)4(2e + 6e3 + 6e5 + 2e7 +
9y + 12e2y + 6e4y + 12e6y + 9e8y + 24ey2 +
24e7y2 + 16e2y3 - 16e4y3 + 16e6y3)/(4e7y(1 +

e2 + 2ey)) (A10)

Γ(4)(4,0,0) ) (1 + e2)4(8e + 24e3 + 24e5 + 8e7 + 21y +
36e2y + 30e4y + 36e6y + 21e8y + 50ey2 + 6e3y2 +

6e5y2 + 50e7y2 + 32e2y3 - 32e4y3 + 32e6y3)/(8e7y(1 +
e2 + 2ey)) (A11)
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coefficients:

âlamellar ) (1 + e2)4(8e + 24e3 + 24e5 + 8e7 +

21y + 36e2y + 30e4y + 36e6y + 21e8y + 50ey2 +
6e3y2 + 6e5y2 + 50e7y2 + 32e2y3 - 32e4y3 +

32e6y3)/32e7y(1 + e2 + 2ey) (A12)

âhexagonal ) (1 + e2)4(24e + 72e3 + 72e5 + 24e7 +

93y + 132e2y + 78e4y + 132e6y + 93e8y + 242ey2 +
6e3y2 + 6e5y2 + 242e7y2 + 160e2y3 - 160e4y3 +

160e6y3)/(96e7y(1 + e2 + 2ey)) (A13)

âbcc ) (1 + e2)4(16e + 48e3 + 48e5 + 16e7 + 87y +

108e2y + 42e4y + 108e6y + 87e8y + 238ey2 -
6e3y2 - 6e5y2 + 238e7y2 + 160e2y3 - 160e4y3 +

160e6y3)/(64e7y(1 + e2 + 2ey)) (A14)

âfcc ) (1 + e2)4(32e + 96e3 + 96e5 + 32e7 + 99y +

156e2y + 114e4y + 156e6y + 99e8y + 246ey2 +
18e3y2 + 18e5y2 + 246e7y2 + 160e2y3 - 160e4y3 +

160e6y3)/(128e7y(1 + e2 + 2ey)) (A15)

âquasicrystal ) (1 + e2)4(120e + 360e3 + 360e5 +

120e7 + 645y + 804e2y + 318e4y + 804e6y +
645e8y + 1762ey2 + 42e3y2 - 42e5y2 + 1762e7y2 +
1184e2y3 - 1184e4y3 + 1184e6y3)/(480e7y(1 + e2 +

2ey)) (A16)
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