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 Abstract

 We investigated whether daily 02 consumption (Vo2) could be predicted from
 heart rate (f,) in five exercising barnacle geese (Branta leucopsis) and com-
 pared the accuracy of this method with that of the doubly labeled water (DLW)

 method. The regressions of Vo2 on f,, based on incremental speed tests, differed
 among individual birds. The 02 pulse (i. e., i~'o2/f,) progressively increased with
 exercise level from 0.22 mL 02 heartbeat-' during resting to an estimated 0.47
 mL 02 heartbeat- during flight. Daily Vo, was generally underestimated
 (-3.9.%) by (individual) resting O, pulses but overestimated (+8. 4%) by linear
 regressions of Vo, on f,. However, it was wellpredicted (+ 0.8%) by the 02 pulses
 appropriate for each exercise level When using relationships derived from the

 group of birds, the estimations were generally improved (-3.3% for resting 2O,
 pulse, -0. 03% for appropriate 02 pulse) but poorer (+13.6%) for the group linear
 regression. Some of these predictions were better than the estimation of daily CO2

 production (Vco2) by the two-compartment model of the DL Wmethod (average
 algebraic error of+0.9%). We conclude that fH can be used to estimate daily en-
 ergy expenditure in birds accuratelyprovided that (1) its application is limited
 to the range of exercise levels in which f, has been calibrated against Vo2 and

 (2a) ~Vo02-fH relationships are determined for each individual bird or (2b) the fH
 measurements of severalfree-ranging birds are averaged. Heart rate can also be
 used to indicate within-day variation in energy expenditure.

 * Present address: Institute for Forestry and Nature Research, P.O. Box 9201, NL-6800 HB Arnhem, The Nether-

 lands. All correspondence should be sent to B.A.N. at this address.

 t Present address: Institute for Veterinarian Research, P.O. Box 81, NL-8090 AB Wezep, The Netherlands.

 Physiological Zoology 65(6):1188-1216. 1992. c 1992 by The University of Chicago.

 All rights reserved. 0031-935X/92/6506-91114$02.00
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 Introduction

 The doubly labeled water (DLW) method and the time-energy budget
 (TEB) method are being widely employed as largely noninvasive techniques
 to measure energy expenditure in free-living animals. The DLW method
 yields an average value of the CO2 production (Vco2) over one or more
 days (Lifson, Gordon, and McClintock 1955). It has been validated against
 more traditional methods (e.g., respirometry, food balance method), and

 DLW estimates were generally accurate (i.e., average absolute error less
 than 10%) (Nagy 1989; Roberts 1989; Tatner and Bryant 1989). It should
 be noted, however, that most validation studies have involved animals in

 resting conditions, whereas the energy expenditure of free-ranging birds

 is generally more than twice the resting level (see, e.g., Bryant and
 Tatner 1991).

 The TEB method is very laborious, because the animal's behavior has to

 be continuously observed. Short-term changes in energy expenditure can

 be estimated, but TEB estimates appear to be accurate only when both
 metabolic costs of different behaviors and thermoregulatory requirements

 have been measured (Weathers et al. 1984; Nagy 1989).
 In laboratory experiments with birds it has been noted that heart rate

 (fH) increases either linearly (Bamford and Maloiy 1980; Woakes and Butler

 1983; Hdppop 1987) or hyperbolically (Grubb 1982; Grubb, Jorgensen,

 and Conner 1983) with 02 consumption (Vo2). The regressions were re-
 ported to explain 32%-94% of the total variation. According to the Fick
 principle, Vo2 is related to cardiac output as

 Vor 02 = fH X SV X ( C-C, ) o2 (1)

 where SV is cardiac stroke volume and ( Ca-C)o2 is the difference between

 arterial and mixed venous 02 contents. In the birds studied, SV plays a
 minor role in increasing cardiac output (Bech and Nomoto 1982; Grubb
 1982; Grubb et al. 1983). Thus, the variation unexplained by the regressions

 of fH on Vo2 is probably mainly due to changes in (Ca-Ck)o2.
 It is clear that fH can potentially be used as an indicator of metabolism in

 free-living animals. Owen (1969) and Gessaman (1980) tested whetherfH
 could be used to estimate daily energy expenditure in teals (Anas discors)

 and kestrels (Falco sparverius). They concluded that energy expenditure
 was fairly well predicted in some individuals, but not in others. Indeed,

 different relationships between Vo, andfH have been found not only among individuals, but also in the same individuals during different experimental
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 conditions (Woakes and Butler 1983) or seasons (Gessaman 1980) or after

 physical training (Butler and Turner 1988).

 A recorder has been developed in whichfH is stored (Woakes 1992). An

 animal can be equipped with this device and recaptured after a few days or
 weeks, and the f can be retrieved from the solid-state memory. This makes

 it important to test in more detail to what extent f can be used to estimate

 energy expenditure in the field. In this study we initially determined the
 relationship between f and Vo2 in resting, walking, and swimming barnacle

 geese. We then continuously monitored fH, Vo2, and Vco2 Of the same
 geese for 2 d. The geese were exercising to simulate the daily energy ex-

 penditure of free-living birds and were losing body mass (M). Simulta-
 neously, Vco2 was estimated by the DLW method. We investigated the rel-

 ative accuracies of estimating daily Vo2 from fH and daily Vco2 from the
 DLW measurements.

 Material and Methods

 Birds

 Five barnacle geese (Branta leucopsis) were trained for 3-4 mo prior to
 the experiments to build up physical condition and to get fully accustomed

 to the experimental surroundings. Training consisted of swimming or walk-

 ing at previously determined medium speeds for 2-4 h twice a week. At
 the start of the experiments the geese varied in M from 1.65 to 2.01 kg
 (table 1).

 Apparatus

 At night the geese rested in a dark respirometer box (dimensions 0.55 m
 X 0.35 m x 0.35 m high) with a single mixing fan and a small window
 on top.

 The birds swam on a flume (Armfield Technical Education) with a test

 section of 1.2 m X 0.5 m X 0.5 m deep. The flume was fitted with a turbulence

 grid. Water speed could be varied between 0 and 1 m s-1 by a variable-
 speed motor (Prestibloc G200M, Moteurs Leroy-Somer) and was measured

 to an accuracy of 0.02 m s-' by a Braystoke current flow meter (BFM002,
 Valeport Developments). Gas exchange was measured in an open-circuit
 Plexiglas respirometer box (dimensions 0.65 m X 0.4 m X 0.28 m high)
 containing two mixing fans. Flexible polyethylene sheets placed on the
 front and rear lower edges provided an airtight seal against the moving
 water, while the side edges projected 5 cm below the water surface.
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 Heart Rate, D2180, and Energy Expenditure in Geese 1191

 TABLE 1

 Initial body mass (M), length ofsternum (Ls), condition index (M/L3),
 isotope dilution spaces of 180 and 2H at zero time (Noo and Noo), and
 dilution space fraction (F 0 and FD) in five barnacle geese

 Condition

 M Ls Index No0 NDo0
 Bird (kg) (cm) (kg dm-3) (mol) Fo (mol) FD

 V ........ 1.74 13.1 .775 52.9 .55a 56.6 .59a
 L ........ . 1.65 13.6 .654 54.9 .60" 58.2 .64a
 P........ .1.77 14.1 .631 64.0 .65 65.3 .67

 Y........ .2.01 13.4 .837 58.0 .52a 62.4 .56a
 D ........ .1.74 13.7 .676 54.6 .57 58.6 .61

 Mean ... 1.78 13.6 .715 56.9 .58 60.2 .61

 SE .... .06 .17 .039 2.0 .02 1.6 .02

 a Estimated from the condition index (see text).

 The geese walked on a level treadmill (Powerjog EV2, Sports Engineer-

 ing). The belt speed could be varied between 0 and 5 m s-1. The respi-
 rometer box (see above) was placed on top of a wooden frame (0.65 m
 x 0.3 m X 0.15 m high) mounted over the treadmill. Because of the extra

 volume of the frame, four fans were used to ensure rapid mixture of air.

 The four lower edges of the frame were made airtight by brush-type draft
 excluders that were in close contact with the smooth belt.

 Respirometry

 Air was drawn through the respirometer at 10-15 L min-1 when the birds
 were resting and at 15-20 L min-' when they were active, these flows being
 selected in order to keep the concentration of CO2 in the box below 0.5%.

 Flow rate was measured by variable-area flowmeters (1100 series, Fisher
 Controls). The sample air flow (1 L min-' ) was dried by a column of silica

 gel, and CO2 was absorbed in front of the 02 analyzer by a column of soda
 lime. Samples of air flowed separately through an S-3A stabilized zirconia

 cell 02 analyzer (Ametek/Thermox Instruments) and a SS100 infrared CO2

 analyzer (Analytical Development Co.). According to the specifications of

 the manufacturers, the accuracy of the instruments was within +0.02% 02
 and -t0.03% CO2, respectively. Inlet air (10 min) and outlet air (20 min)
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 were sampled alternately by automatically switching a rotary valve with a

 microcomputer (BBC-B, Acorn). Oxygen and CO2 concentrations were
 sampled every second at the built-in analog-to-digital (A/D) converter of

 the microcomputer, averaged over 1 min, and stored on disk. To allow
 flushing of the sampling lines, the first 5 min of sampling inlet or outlet air

 were excluded from the analysis. Carbon dioxide was absorbed from the
 outlet air by a column of soda lime in front of the main air circuit flowmeter

 (but beyond the branching to the gas analyzers).

 Oxygen consumption was calculated according to formula (IA4) of De-
 pocas and Hart (1957) after the appropriate modification of inlet air flow

 (VI) to CO2-free inlet air flow (VI') following the procedure of Hill (1972):

 Vo2 = VI' F'Io2 - (VIT - V02) F'EO2 (2a)

 VI'= VE'+ Vo2, (2b)

 and

 where F'Io2 and F'E02 are the 02 concentrations of CO2-free samples of
 inlet and outlet air, respectively, and VE' is the measured CO2-free outlet
 airflow. Substitution gives

 02 E' F'Io2 - F'EO2 (2) Vo12 = E' (2c

 Carbon dioxide production was calculated as

 VCO2 = VE FECO2 - VI FIco2, (3a)

 VE = iVE'/(1 - FECO2), (3b)

 VI = vI'/(1 - FICO2), (3c)

 VI' = VE' + V02, (3d)

 and

 where VE is the outlet air flow, and FIco2 and FECO2 are the CO2 concen-

 trations of samples of inlet and outlet air, respectively. Substitution gives

 VE' FECO2 _ (ViE'+ Vo2) VCo2 = -FICO2 O2 (1 - FECO2) (1 - FIco2)

 Gas flows were corrected to STPD (represented by V).
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 Relative humidity of inlet and outlet air was measured with a humidity

 meter (Humicap 14). Evaporative water loss (VH2O) was crudely estimated
 as the difference between VE' and Vi' minus Vo2 (see Appendix). Evaporative

 water loss may have been overestimated because of the evaporation of water
 from the feces.

 The gas analyzers and the A/D converter of the microcomputer were

 calibrated by flowing two gas mixtures of known N2, 02, and CO2 compo-
 sition through the sample air circuit. The respirometer was tested for leaks

 and adequate mixing by infusing N2 gas at a known rate. Overall accuracy

 of the system was assessed by infusing a known N2, 02, and CO2 gas mixture

 at a known rate (0.67 L min-' ) into the box with gas mixing pumps (M301a-
 F and SA27/3-F, Wisthoff oHG), thus simulating the presence of a bird.
 The Vco2 and Vo2 were measured with algebraic errors of -0.3% and -0.6%

 and absolute errors of 2.4% and 41.2% of the actual values, respectively.
 However, when the system was tested with the respirometer positioned on

 the flume, Vco2 measurements were inaccurate because of the CO2 absorp-
 tion by the water. Thus, CO2 production of birds on the flume was not
 determined.

 Heart Rate Telemetry

 A pulse-interval-modulated (PIM) radiotransmitter was implanted into the
 abdominal cavity of a bird, at least 2 wk prior to an experiment. Anesthesia
 was induced with 2% halothane in a 3:1 air:02 mixture and maintained
 with 1%-1.5% halothane supplemented by local anesthesia (2% wt/vol
 Xylocaine with adrenaline, 1:80,000). The signal from the transmitter was
 passed from a receiver (Sharp) to a PIM decoder, which extracted the ECG.
 The decoded signal was passed to an instantaneous heart rate meter, the
 output of which was recorded on a thermal pen recorder (Lectromed). The

 traces were digitized by a GTCO digitizing pad (Digipad 5) taking a sample
 of fH every minute.

 Relationships between Vo2 and f,

 The relationships between Vo2 and fH were first determined. Resting gas
 exchange and fH were measured by placing each bird overnight in the dark

 box (with the window sealed) after a 24-h fast. Ambient temperature (170-
 200C) was held within their thermoneutral zone (Calder and King 1974).
 These conditions were appropriate for measuring basal metabolic rate
 (BMR) as defined by Kleiber (1961 ). Minimum half-hourly values of Vco2,
 Vo2, and f, were taken.
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 Gas exchange andfH were also measured during incremental speed tests

 both while the birds were swimming on the flume and while they were

 walking on the treadmill. Each test lasted 4 h; after 1 h at zero speed (preex-

 ercise) the speed was progressively increased in half-hourly intervals by

 about 0.1 m s-'. The rVo2, Vrco2 (on the treadmill only), and fH were mea-
 sured during a period of steady state of at least 5 min. Limb frequency was

 determined by clocking 100 steps or strokes of the left leg.

 In a regression analysis, iVo2 was taken as the dependent and fH as the
 independent variable, because the equations were to be used to predict
 Vo2 from fH.

 Doubly Labeled Water Technique

 A dose of about 0.30 mL H2180 (90.02%) kg-1 and 0.15 mL 2HHO (99.8%)
 kg-1 was subcutaneously injected as a mixture. The syringe was weighed
 before and after the injection to determine the injection dose, but in three

 of the five experiments a drop appeared when the needle was pulled out,

 and the injection dose could not be precisely determined. The time until

 the isotopes were in complete equilibration with the body water was de-

 termined in two separate trials in which blood samples were taken every

 hour after injection. The abundances of both isotopes decreased after 4 h,
 and this was taken as the equilibration time. Blood samples (ca. 10 pL)
 were taken by puncturing the wing or tibial veins. The glass microcapillaries
 were flame sealed and stored at 5oC.

 Samples were processed in duplicate. For each glass microcapillary, water
 was extracted from the blood samples by vacuum distillation. The water
 was stored with a known volume of CO2 at 250C. After equilibration for 24

 h the water and CO, were separated cryogenically in a vacuum. Hydrogen

 was extracted from the water fraction by uranium reduction at 8000C. The

 isotope ratios (R's) in COz and H2 were measured by isotope ratio mass
 spectrometry. If duplicates differed by more than 5%, another sample was

 processed.

 The isotope ratio measurements of 2H/'H and sO /160 were reported as
 deviations from Vienna-standard mean ocean water (V-SMOW) in parts per

 thousand (delta per mil). These were converted back to R's (Wong and
 Klein 1986), and from these to atom percent excess (APE) values (Schoeller
 et al. 1986b).

 The disappearance rates (k) of 180 and 2H (ko and kD, respectively) were
 calculated by the two-sample method (see Speakman and Racey 1986):
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 In(APEi) - In(APEf) k = (4)
 tf-- ti

 where t is the time in days after the injection and the subscripts i and f

 denote initial and final samples, respectively. For both isotopes, the theo-

 retical APE value at injection (APEo) was calculated by extrapolation to zero
 time (to):

 APE0 = exp[k ( ti - to) + In(APEi)]. (5)

 The R at zero time (R0) was derived by summation with the background R
 (Rbg):

 R0 = Rbg + [(APE0/100) / (1 - APE0/100)]. (6)

 From this and the injection doses of heavy isotopes, 2H or 180 ("hdose"),
 and light isotopes, 1H or 160 ("ldose"), the dilution space at zero time

 (N0) was calculated (for both deuterium [ND] and 80[No]):

 hdose -ldose R0 hdose - Idose R0
 No = Rbg + (7)

 R0 - Rbg Ro - Rbg

 (to express ND in moles H20 instead of moles H the above equation is
 divided by two).
 In the three experiments in which some of the injection dose was lost,

 we had to estimate the dilution spaces. For this purpose we successfully
 injected five more geese and found negative relationships between the deu-

 terium and 180 dilution space fractions (FD and Fo) (i.e., the dilution space
 per unit of M) and a condition index, defined as M (kg) divided by the
 cube of the sternum length (Ls in decimeters):

 F0 = 0.894 - 0.448 M L3 (8)

 FD = 0.918 - 0.430 ML-3. (9)

 and

 These linear regression equations (r2 = 0.79 and 0.80, respectively, both
 P < 0.05) were used to estimate the initial dilution spaces of the three
 experimental birds. We assumed a proportional change in dilution spaces
 with M in the course of the experiments (Roberts et al. 1986).
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 Carbon dioxide and total water efflux rates (rco2 and rH20) were deter-
 mined for the eight possible combinations of initial, final, and background

 duplicate blood samples. Efflux rates were calculated with the assumption
 that there is an exponential change of dilution spaces with rate kN according
 to the hypothesis of Lifson and McClintock (1966):

 ~ = In(NflNf)/(tf - ti). (10)

 Water effiux was calculated as

 NDi kN (kD- kN) (tf-
 rH20 = (1 - (11) ( 1 - NDNf i f D f )

 where d, f2, and f, are the in vivo physical fractionation factors (Wong et
 al. 1988), and p is the proportion of water loss subjected to fractionation.

 Carbon dioxide efltux rate was calculated according to a one-compartment
 model, as

 Nc = kN (ko - kD) (tf- ti) f2 -f1~ rco2 = p TH20, (12)
 2 f (1 - Noi/XNo) 2 f3

 and according to a two-compartment model, as

 kN (tf- ti) Noko NDikD f2-fl rcp2 PTH20.
 rco 2 = 2f3 (1 - Noi/NOf) (1 - NDi/NDf) 2f3

 (13)

 We checked whether p was close to 0.5-the value assumed by Lifson and

 McClintock (1966) -by comparing p with the quotient of VH20 (measured

 by respirometry converted to moles per day) and rH20o. (In the calculation
 of the latter, p is needed, and therefore some circularity is involved here,
 but this effect is small).

 Experiments

 The experiments lasted three consecutive days. The levels of Vo2, Vco2,
 and VH20 were measured for at least 21 h d-1 by respirometry. Heart rate
 was recorded continuously on the last 2 d. Blood samples were taken at the

 start and the end of the experiment, yielding averages of rH20 and rco2 for
 the 3-d experiment.
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 At 1400 hours on day 0, the bird was weighed, blood samples were

 taken in order to measure Rbg, and the isotope mixture was injected. The
 bird was placed in a dark box, and the respirometry system was calibrated.

 At 1900 hours on day 0, the bird was weighed again, and initial blood
 samples were taken. The bird was subsequently placed in the resting
 respirometer box, and gas exchange measurements were started. For the
 next 3 h food, water, and light were supplied. Thereafter, food and water

 were removed and the bird was kept in darkness during the night. At
 0900 hours on day 1, fresh food and water were offered and the respi-
 rometer system was recalibrated over 2 h, during which period gas ex-
 change was not determined. Gas exchange measurements during the fol-

 lowing 30 min were used to estimate gas exchange during calibration.
 Subsequently, the bird was mounted in the Plexiglas respirometer box,
 which was placed over the treadmill. The bird walked in half-hourly in-

 tervals at 0.44-0.88 m s 0for up to 6.5 h d-'. The same procedure was
 repeated for another 2 d, during which heart rate was continuously re-
 corded. Values of Vo2 and fH were averaged over 30-min periods. At
 1900 hours on day 3, the bird was weighed, and final blood samples
 were taken.

 Statistics

 The 02 consumption predicted from fH (Vo2) was calculated from three

 different relationships between V0o2 andfH: (1) the 02 pulse (i.e., the V0o2
 per heartbeat) during resting (ROP), (2) the linear regression of Vo2 on
 f (LR) from the incremental speed tests (including resting), and (3) a
 combination in which the 02 pulse appropriate for a given time of day and
 activity is used (AOP): the resting 02 pulse (s) during the night, the preex-
 ercise 02 pulse (s) while the birds were inactive during the day, and the
 linear regressions from the incremental speed tests (excluding resting)
 when the birds were active during the day. For each bird, its individual Vo2-

 fH relationship and the average Vo2-fH relationship of the group of birds
 were used to predict Vo2.

 Algebraic errors were calculated as (Vo2 - Vo02) /Vo2 X 100% and (rco2

 - Vco,) /Vco2 X 100%. Absolute values of these are called absolute errors. All results are given as mean + SE. Unless stated otherwise, n = 5. Dif-
 ferences between mean values were tested with paired t-tests. Correla-
 tions are described with the Pearson product-moment correlation coef-
 ficient r, and in regression analyses the coefficient of determination r2

 is given. Differences in slopes and intercepts were tested with Student's

 tstatistics. Variation in errors was analyzed by ANOVA using a regression
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 approach. Two-tailed probability values Pof less than 0.05 were regarded
 as significant.

 Results

 Heart Rate and Vo2 during Resting and Incremental Speed Tests

 The respiratory exchange ratios (RE) of the fasting birds were rather low

 (0.67 + 0.02). However, this is close to the predicted respiratory quotient

 (RQ) of 0.71 for fat metabolism (Schmidt-Nielsen 1983). Resting Vo2 was

 9.28 + 0.44 mL 02 min-1 kg-1. This is similar to the 9.27 mL 02 min-' kg-1

 predicted by equation (5) of Aschoff and Pohl (1970) assuming fat metab-
 olism with an energy equivalent of 19.7 J mL 02 1 (Schmidt-Nielsen 1983).

 The RE was 0.77 + 0.03 during the preexercise period and 0.76 + 0.02 while

 the birds were walking. During walking, Vo2 and fH increased linearly with
 speed (fig. 1), as is the case in most species previously studied (Taylor,

 Heglund, and Maloiy 1982). During swimming, Vo2 and fH increased ex-
 ponentially with speed (fig. 2), as has been reported for other species
 (Prange and Schmidt-Nielsen 1970; Woakes and Butler 1983; Videler and
 Nolet 1990). However, fH differed much more between individuals than
 either Vco2 or Vo2. Maximum Vo2 during the incremental speed tests was

 4.9 + 0.1 times resting Vo2, while maximum fH was only 3.8 + 0.4 times

 resting fH (table 2). Limb frequency (fL in hertz) increased linearly with
 both walking speed (m s-'), as f = 3.34 speed + 1.09 (r2 = 0.70, n = 27,
 P< 0.0001), and swimming speed, asfL = 4.46 speed + 0.24 (r2 = 0.70, n
 = 28, P< 0.0001).

 The 02 pulse during resting was 0.22 + 0.01 mL 02 heartbeat-1
 (table 2). The O2 pulse during the preexercise period was 0.20
 + 0.02 mL 02 heartbeat-1 and was not significantly different from the
 resting 02 pulse. During maximum sustainable exercise the 02 pulse
 was 0.29 + 0.02 mL 02 heartbeat-1 both while walking and while swim-
 ming, which is significantly higher than that during resting (P< 0.05)
 or preexercise (P< 0.05).

 In most cases, the linear regression lines of Vo2 OffH of the data from the

 flume and treadmill separately were similar within birds (except in bird V,

 in which the regressions differed in intercept, and in bird D, in which the

 regressions differed in both slope and intercept). It was therefore decided
 to combine the data from the flume and treadmill tests for each individual.

 The resulting relationships between Vo2 andfH were essentially linear (fig.
 3, top). The linear regressions of Vo2 explained 88%-95% of the total vari-
 ation. The slope (b) of the regression lines was larger than the ROP in four
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 Fig. 1. Increase ofVo2 (top) and fH (bottom) with walking speed on a

 treadmill in five barnacle geese. Filled circle, goose V; open triangle,
 goose L; filled triangle, goose P; open square, goose Y, filled square;
 goose D.
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 Fig. 2. Increase of Vo2 (top) and fH (bottom) with swimming speed in a

 flume in five barnacle geese. Symbols are as in fig. I.

 birds (V, L, P, and Y), and the intercept (a) was significantly less than zero
 in three birds (L, P, and Y) (table 3). This indicates that fH did not rise

 directly in proportion to increases in Vo2 during activity. Resting Vo2 values
 were within the 95% confidence interval (CI) of the regression lines, but

 seven of the 10 preexercise Vo2 values lay below it. Thus, although the 02
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 TABLE 2  Oxygen consumption, fH and 2O, pulse (Vo2/f,) offive barnacle geese in four conditions: fasting during the night  ("resting"), prior to the incremental speed test ('preexercise"), and at the maximum sustainable swimming  and walking speeds (Vco, during resting is also given)

 Resting Preexercise Swimming Walking

 02 02 02 02

 Vco2 V02 fH Pulse rVo2 fH Pulse Vo2 fH Pulse Vo2 fH Pulse  (mL (mL (beats (mL 02 (mL (beats (mL 02 (mL (beats (mL 02 (mL (beats (mL 02

 Bird min-1) min-') min-1) beat-1) min-1)' min-') beat-1) min-') min-') beat-r) min-1) min-') beat-r)  V 12.0 15.7 73 .22 26.0 112 .23 62.1 184 .34 79.0 214 .37  L 10.7 16.9 72 .23 24.9 139 .18 79.6 249 .32 61.6 199 .31  P 12.5 19.0 104 .18 58.0 230 .25 65.3 257 .25 89.9 335 .27  Y 10.9 16.7 79 .21 28.8 177 .16 76.2 302 .25 86.5 354 .24  D 10.3 16.0 66 .24 28.2 151 .19 52.5 179 .29 75.6 321 .24
 Mean 11.3 16.9 79 .22 33.2 162 .20 67.1 234 .29 78.5 285 .29  SE .4 .6 7 .01 6.2 20 .02 4.9 23 .02 4.9 32 .03
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 Fig. 3. Linear regressions of Vo, on fH during resting conditions and in-
 cremental speed tests in barnacle goose Y (top) and in five barnacle
 geese (bottom).

 pulses during preexercise did not differ significantly from the 02 pulses

 during resting, they were lower than would be expected from the regressions

 of Vo2 on fH.

 Each bird had a characteristic relationship between VTo2 and fH (fig. 3,
 bottom) . A pairwise comparison of the linear regressions showed that either

 slope or intercept differed in eight of the 10 pairwise comparisons. Nev-
 ertheless, when all birds were pooled, the linear regression explained 79%

 of the variation in V0o2, but, in contrast to most of the individual linear
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 TABLE 3

 Intercept (a) and slope (b) of linear regressions of Vo2 (mL min-1) on fH
 (beats min- ) in five barnacle geese during incremental speed tests

 swimming on a flume and walking on a treadmill (the linear regression

 of Vo2 on fH using the pooled data ofall five birds is given under
 "group")

 Bird n a 95% CI b 95% CI r2

 V ......... 13 -7.1 -20 to +5 .36 .28-.44 .89

 L ......... 13 -15.8 -31 to -1 .39 .29-.48 .88

 P ......... 15 -15.5 -30 to -1 .29 .23-.35 .89

 Y ......... . 15 -12.9 -22 to-3 .29 .25-.33 .95

 D ........ 15 +3.2 -4 to +10 .22 .19-.26 .93

 Group ... 71 +2.2 -4 to +8 .24 .21-.27 .79

 regressions, its slope was not different from the resting 02 pulse and its
 intercept did not differ from zero (table 3).

 Daily Vo2 and Change in M

 Daily Vo2 ranged from 1.6 to 2.1 times resting Vo2, with a mean of 1.9 + 0.1.
 The geese lost 10.7% + 0.5% of M. Body mass decreased curvilinearly but

 not strictly exponentially with time: the specific daily change in M (i.e., the

 change in Mper unit of M) sharply decreased with time (fig. 4). However,
 average M calculated under the assumption of an exponential change over-
 estimated actual average M by only 1.7%. The specific daily change in M
 was correlated with the exercise level expressed as the quotient of daily
 Vo2 and resting Vo2 (r = 0.99, P < 0.002); in other words, the geese lost
 relatively more mass when exercise was more strenuous.

 Doubly Labeled Water Estimates of Carbon Dioxide Production

 The Rbg'S ( n = 10) were 0.01559 -+ 0.00016 atom percent for 2H and 0.20123
 + 0.00083 atom percent for 180. During the experiment, the APE values in
 the blood samples dropped on average from 0.02328 to 0.01626 (2H), and
 from 0.04696 to 0.02603 (180).

 The quotient of VH20 and rH20 was not significantly different from 0.5
 (table 4). Because of the inaccuracies involved in estimating p, we used p
 = 0.5.
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 Fig. 4. Change in M (top) and mass-specific daily change in M during

 the experiments in five barnacle geese. Symbols are as in fig. 1.

 The average ko was 0.217 d-1, and the average kD was 0.137 d-' (ratio

 ko/kD = 1.58), giving isotope half-lives of 3.66 + 0.25 and 6.33 + 0.71 d,
 respectively. The average half-life of 180 was significantly greater than pre-

 dicted by allometric equations of Nagy (1983, eq. [2] from table 2: 2.42 d)

 and Tatner and Bryant (1989, eq. [10] modified for a 40% lower ko in win-
 tering birds: 2.23 d). These allometric equations are derived from mea-
 surements in small bird species (e.g., 12-410 g in Tatner and Bryant [1989]),
 and they might have little predictive power for larger birds. The duration
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 TABLE 4

 Water loss measured by respirometry ( Vi2o) and labeled water (rH2o)
 in five barnacle geese

 VH20 rH20
 Bird (mol d') (mol d-1) pa

 V ....... 3.09 5.08 .61

 L ........ 3.29 10.06 .33
 P ........ 4.19 7.40 .57
 Y ....... 4.37 11.11 .39
 D ........ 3.89 8.65 .45
 Mean ... 3.77 8.46 .47

 SE ..... .25 1.05 .05

 a Estimated as the quotient of VH2O and rn2o.

 of the experiments (3 d) was one half-life of 18O and 0.5 times the half-life
 of 2H, which is the minimum duration to obtain reliable results from the

 DLW measurements (see, e.g., Nagy 1983).
 The DLW estimate of the one-compartment model overestimated the res-

 pirometric measurement of Vco2 by an average of 13.8% (table 5). Use of

 the two-compartment model reduced the average algebraic error to only
 +0.9% (fig. 5).

 Predicting Vo, from f,1

 When daily Vo2 was predicted from the ROPs, Vo2 was underestimated in
 most cases but the range of errors was small (table 6). The LRs, however,

 overestimated Vo2. When AOPs were used, daily Vo2 was predicted within
 an algebraic error of 1%. The absolute error and the error ranges were smaller

 when individual instead of group relationships were used. Daily V0o2 and
 Vo2 were positively correlated, which indicates that relative differences be-

 tween individuals were generally correctly predicted (fig. 6).
 In order to determine whether daily Vo2 of some birds was overestimated

 whereas that of others was underestimated, we predicted Vo2 for each ex-
 perimental day separately (i.e., n = 10, five birds X 2 d). Indeed, differences

 in individuals alone explained as much as 81% (when individual AOP was
 used) or even 95% (when group AOP was used) of the total variation in
 errors (ANOVA).

 Within days, half-hourly averages of Vo2 and fH were highly correlated in
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 TABLE 5

 Comparison of daily CO, production measured by respirometry (Vcoz)

 and the DL Wmethod (rcoz) in five exercising barnacle geese

 rco2

 (mol d-)

 One- Two-

 Vco2 Compartment Compartment
 Bird (mol d-') Model Model

 V ................... 1.19 1.32 .09 1.18 .09

 L ................ 1.52 1.33 + .02 1.11 + .02

 P .................. 1.75 2.04 + .03 1.98 + .05
 Y ................... 1.73 2.22 + .06 1.91 + .07
 D ................... 1.52 1.89 .03 1.64 + .03

 Algebraic error (%) .. +13.8 +.9
 Absolute error (%) .. 18.9 11.8

 Error range (%) ..... -13 to +28 -27 to +13

 r ......... . . ..81 .80

 all five birds (table 7). However, Vo2 predicted from AOPs correlated sig-

 nificantly better than fH with Vro2 in some cases (table 7).

 Discussion

 Daily Vo2 and Change in M

 The measured average daily Vo2 of about 2 X BMR is similar to the energy

 expenditure of free-living birds during their nonreproductive phase of the

 year. During breeding, and especially the nestling-rearing phase, the field

 energy expenditure is usually higher, between 3 and 4 X BMR (and in some

 cases as high as 7 X BMR) (Bryant and Tatner 1991).
 The geese lost Mwhile exercising. Le Maho et al. (1981) found that, in

 geese in which Mdecreased from 6.25 to 5.65 kg, total body water decreased
 only from 3.9 to 3.8 L, but their birds were totally fasted and were drinking

 ad lib. Because our geese had limited access to both food and water, it is
 assumed that the proportion of total body water remained constant. As noted

 by Le Maho et al. (1981) the mass-specific change in M decreased with
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 Fig. 5. Daily CO, production measured by respirometry (Vco2) vs. C02
 production calculated from simultaneous DL W measurements (rco2) in

 five exercising barnacle geese. Values ofrco, were calculated according
 to a two-compartment model. Symbols are as in fig. 1.

 time, but the assumption of an exponential change in M (i.e., pool size)
 did not seriously affect the DLW estimate.

 Doubly Labeled Water: One- versus Two-Compartment Models

 Most DLW validation studies produced good agreement of average values
 but considerable ranges of individual errors (Nagy 1989; Roberts 1989; Tat-
 ner and Bryant 1989). In our exercising and mass-losing geese, the average
 accuracy of the two-compartment model was within 1%, but the range of
 individual errors was also large. The one-compartment model overesti-
 mated Vco2.

 The two-compartment model was developed when it was recognized that

 the ND is generally larger than the No (Lifson and McClintock 1966). The

 No is nearly equal to the total body water pool, whereas 2H is rapidly in-
 corporated into a nonaqueous pool (mainly fat) after injection of the iso-
 topes (Lifson et al. 1955) . Roberts et al. concluded that if loss of hydrogen

 from the nonaqueous pool via nonaqueous routes is small, the one-com-

 partment model will underestimate rH20 and, in consequence, overestimate
 rco2 (Roberts, Coward, and Lucas 1987). In the present study, the geese
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 TABLE 6
 Comparison of daily 02 consumption measured by respirometry (Vo2) andpredicted from fH (Vo2)  in five exercising barnacle geese

 Vo2
 (mol d-)  Individual Relationships Group Relationships

 Viro2

 Bird (mol d-1) ROP LR AOP ROP LR AOP  V 1.63 1.42 1.92 1.56 1.43 1.72 1.46  L 2.23 2.16 2.56 2.29 1.99 2.34 2.07  P 2.11 2.05 2.27 2.32 2.42 2.82 2.50  Y 2.25 2.38 2.39 2.40 2.44 2.83 2.52  D 2.11 1.98 2.02 1.89 1.76 2.36 1.84  Algebraic error (%) -3.9 +8.4 +.8 -3.3 +13.6 -.03  Absolute error (%) 6.2 10.2 6.9 12.5 14.1 12.2  Error range (%) -13 to +6 -4 to +18 -10 to +10 -17 to +15 -1 to +34 -13 to +19  r .97*** .79 .90* .77 .77 .79
 Note. VTo2 was calculated with three different methods: resting oxygen pulse (ROP), linear regression (LR), and a combination of appropriate oxygen pulse  (AOP), using individual and group relationships (see text).  * P< 0.05.  ***P< 0.001.
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 Fig. 6 Daily Vo2 measured by respirometry vs. daily Vo2 predicted from

 fH in five exercising barnacle geese. Both individual (left) and group
 (right) Vo2-f,1 relationships were used to predict Vo2, from AOPs (see
 text). Symbols are as in fig. 1.

 were catabolizing fat, and most of the 2H--incorporated in the fat in the
 first hours after injection-was, therefore, probably lost via the body water

 pool, which makes the two-compartment model more appropriate. Changes
 in background 2H levels due to fat catabolism are not considered here,

 TABLE 7

 Correlation between half-hourly-measured Vo2 and fH, and between
 half-hourly-measured Vo2 and predicted Vo2 02 consumption
 in five exercising barnacle geese during 2 d

 Vo2

 Bird n f0 Individual Group
 V ... 85 .83 .95*** .90*
 L . . . 85 .84 .90 .92*
 P . . . 81 .78 .74 .89*
 Y ... 86 .92 .95 .96*
 D . . . 87 .94 .92 .96

 Note. Vo2 was predicted from fH from individual and group relationships (AOP; see text). All
 product-moment correlation coefficients are significantly different from zero (P< 0.001). As-
 terisks indicate significance levels of differences between Vo2-fH and iVo2-Vo2 correlation
 coefficients.

 * One-tailed t < 0.05.
 *** One-tailed P< 0.001.
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 although the DLW method is moderately sensitive to these changes
 (Schoeller, Leitch, and Brown 1986a; Haggarty and McGaw 1988).

 Heart Rate as a Predictor of Vo2

 Our method of predicting daily Vo2 from fH (the "heart rate method") gave
 good results (errors less than 10%) under certain conditions.

 The use of ROPs (i.e., Vo2/fH) to predict Vo2 from fH implicitly assumes

 that fH increases in direct proportion to increases in Vo2 (i.e., when rep-
 resented graphically, the relationship goes through the origin). However,

 in three of the five birds used in the present study, the linear regressions

 obtained from the incremental speed tests had a's significantly less than

 zero. The nonproportionality may result from the fact that, in exercising

 birds, increased 02 delivery is achieved by increases in both fH and (Ca
 - C) 02 (Butler, West, and Jones 1977; Bech and Nomoto 1982; Grubb
 1982; Grubb et al. 1983). The result is that, when the ROPs are used, mea-

 suredfH underestimates Vo2 whenever it is above the resting level (fig. 7).
 Conversely, the use of LRs from the incremental speed tests will tend to

 overestimate average daily Vo2 if arousal, with little or no increased activity

 (i.e., additional fH; Blix, Stramme, and Ursin 1974), occurs during pre- and

 post exercise (fig. 7). Because the 02 pulse changed with time of day and
 activity, application of the AOPs produced the best prediction of daily Vo2
 in terms of algebraic error. The absolute error was, however, as large as that
 of ROP (table 6).

 In two barnacle geese, Butler and Woakes (1980) measured a mean flight

 fH of 512 beats min-'. If fH is taken to be proportional to M-0.28 (Grubb

 1983), a flightfH of 497 beats min-' is predicted for a goose of 1.78 kg (the

 mean Mof the experimental birds). From the mean linear regression equa-

 tion (table 3), this gives a Vo2 of 122 mL min-1. However, from the allo-
 metric equations of Masman and Klaassen (1987; non-wind-tunnel studies)

 and Butler (1991; wind-tunnel studies), Vo2's during flight of a 1.78-kg
 bird would be 261 and 226 mL min-1, respectively. The flight 02 pulses
 would be 0.53 and 0.45, respectively, in agreement with the 0.47 mL 02

 heartbeat-1 predicted by the interspecific equation of Berger and Hart
 (1974). This implies that, during flight, Vo2 increases by a greater proportion

 than fH, compared with the situation during swimming and walking. Thus,

 the daily energy expenditure of birds that spend a large part of their day

 flying can be estimated from fH only when the Vo2-fH relationship during

 flight is also determined (fig. 7).
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 Fig. 7. Graphic representation of the relationship between lo2 and fH us-
 ing ROPs (R) and using the LRfrom incremental speed tests with inter-

 cepts less than zero (R to M). If the former are used to predict daily Vo2

 from measured fH during exercise, Vo2 is underestimated. If the latter is
 used to predict daily V'o2 that includes periods of arousal with little or no

 activity (P, for 'preexercise"), Vo2 will be overestimated. The 2O, pulse
 during maximum sustainable walking or swimming speed (M) is

 smaller than the 02 Opulse during flight (F). Daily Vo, of birds that spend

 part of their day flying will be underestimated by measured fH if the

 Voa-fH relationship duringflight is not known, and ROPs or the LR are used instead.

 It is a common phenomenon that the Vo2-fH relationships differ among
 individuals (Owen 1969; Gessaman 1980). Indeed, we showed that, if fH

 is used to estimate daily energy expenditure of individual birds, the Voi2-
 fH relationship should be determined for each bird involved. Daily Vo2 of

 each individual was poorly estimated by group Vo2-fH relationships, but

 group Vo2-fH relationships gave reasonable estimates of average daily Vo2.
 Therefore, if group Vo2-fH relationships are used, the measurements of
 several birds should be averaged. Because in our study the group Vo2-fH
 relationships were derived from the same birds that were used in the ex-

 periments, it is possible that individual errors could be even larger when

 these group Vo2-fH relationships are applied to predict daily Vo2 of other
 barnacle geese. However, Bevan, Keijer, and Butler (1991) showed that in

 tufted ducks (Aythya fuligula) a Vo2-fH relationship determined in one

 group could be used to predict--from fH--average Vo2 in another group.
 This is the case even if the conditions under which the data were deter-
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 mined-for example, environmental temperature-are different (Bevan and
 Butler 1992).

 Half-hourly fH and Vo2 proved to be good indicators of half-hourly Vo2,

 and, therefore, fH can be used to indicate within-day variation in energy
 expenditure (i.e., to determine time budgets) of free-living birds. Thus,
 measuring fH is valuable even when no relationships between fH and Vo2
 are determined, especially if it is measured in conjunction with the DLW
 method, which yields an average value of the energy expenditure. Nagy
 (1989) also advocates the simultaneous use of several methods in field

 bioenergetics studies.
 We conclude that, if the birds spend little time per day (less than a few

 percent) flying (e.g., during incubation and moult), the heart rate method
 (using AOPs) will yield reliable estimates of daily Vo2 of individual barnacle

 geese (if individual Vo2-fH relationships are used) or of a group of barnacle

 geese (if the measurements of several birds are averaged). Its accuracy
 compares favorably with that of the DLW method and the TEB method. Of
 course, determination of the AOPs is laborious, especially when each bird

 has to be calibrated, and use of ROPs is often more practical. However, as
 discussed above, use of ROP has its limitations and will generally under-

 estimate daily Vo2. Even without determination of Vo2-fH relationships, fH
 can be used to indicate within-day variation in energy expenditure in free-

 living birds.
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 Appendix
 Calculation of Evaporative Water Loss

 Symbols used are

 V Gas flows at room temperature and barometric pressure
 V Gas flows corrected to STPD (except VH20, which is corrected to STP)
 VE' CO2 -Free outlet air flow

 V02 02 Consumption
 VI' CO2-Free inlet air flow
 VH2O Evaporative water loss
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 TR Room temperature
 To Standard temperature
 PB Barometric pressure
 Pv Vapor pressure in saturated conditions
 Po Standard pressure
 RHE Relative humidity of outlet air
 RH, Relative humidity of inlet air

 F'E02 02 Concentration of outlet air
 F'Io2 02 Concentration of inlet air

 In air entering and leaving a respirometer box encompassing a bird that is con-
 suming 02 and producing water vapor the following relationship holds (CO2 being
 absorbed):

 VI'- V02 = VE' - VH20,

 S TR Po Vo2L = Vo2

 V o2To- (PB - Pv RHE)

 T'= V' Po
 To (P - Pv RHI )

 E' = VE To (PB - Pv RHE)
 TR Po

 = F'Io2 - F'EO2 Vo2 = VE'1
 1 - F'Io2

 VrI' = iTE' + Vo2 .

 where VE' is measured,

 and

 with

 and

 Substitution and rearranging gives

 VH2 = VE'2( F'io -FEO2 ) PB - PvRHE 1 - F'Io2 PB- Pv RH1

 To P,
 VH20 = VH20 To TR Po

 and
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