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Physics Letters B 292 (1992) 307-314 
North-Holland PHYSICS LETTERS B 

Realisations of W 3 symmetry 

E. Bergshoeff, H.J. Boonstra and M. de Roo 
Institute for Theoretical Physics, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands 

Received 31 July 1992 

We perform a systematic investigation of free-scalar realisations of the Zamolodchikov W3 algebra in which the operator prod- 
uct of two spin-three generators contains a non-zero operator of spin four which has vanishing norm. This generalises earlier work 
where such an operator was required to be absent. By allowing this spin-four null operator we obtain several realisations of the 
W3 algebra both in terms of two scalars as well as in terms of an arbitrary number n of free scalars. Our analysis is complete for 
the case of two-scalar realisations. 

1. Introduction 

In recent years, there has been a lot o f  activity in the study of  extended conformal symmetries, better known 
under the name "W-symmetries".  These symmetries constitute extensions o f  the Virasoro algebra which are 
generically denoted by "W-algebras". W-symmetries can be used to clarify the structure o f  conformal field the- 
ory. They also occur as a "natural"  symmetry in a variety o f  physical models. Another approach is to use W- 
symmetries for the construction o f  higher-spin extensions o f  two-dimensional gravity ("W-gravi ty")  or new 
string models ("W-str ings") .  

In view of  the above-mentioned applications, it is important  to have a good understanding of  all possible 
realisations o f  W-symmetries. The simplest example o f  a W-algebra is the W3-algebra ofref.  [ 1 ] which contains, 
in addit ion to the spin-two Virasoro generator T, a spin-three generator W. Using the language of  operator 
product  expansions (OPEs) ,  the algebra is given by 

c 2T(w)  OT(w) 
T ( z ) T ( w ) =  2 ( z _ w )  4 + (z_w)~----------- ~ + - -z -w + regular par t ,  

T ( z ) W ( w ) -  3W(w)  OW(w) 
( z - w )  - - - - ~  + - - z - w  + regular pa r t ,  

c 2T(w)  OT(w) 3 02T(w) 1 03T(w) 
W ( z ) W ( w ) -  3(z_w)------------- ~ + (z_w)--~ 4 + (z_w)------ ~ + 10 1 0 ( z - w )  2 + 15 z - w  

16 ( 2 A ( w )  OA(w)~ 
+ ~ \(--~_ ~-2 + z -  w / + regular par t .  ( 1 ) 

with A = (TT)  -~o02T. The round brackets in (TT)  indicate a natural normal ordering in terms of  the Laurent 
modes o f  the generators (see, e.g., ref. [2] ). The first equation in (1) gives the Virasoro algebra, while the 
second equation expresses the fact that Wis a primary field o f  spin three. The last equation tells us that the OPE 
of  two spin-three generators gives rise to the conformal family o f  the unit operator. The particular coefficients 
arising in this equation can all be fixed by the requirement o f  conformal invariance. Note that in ( 1 ) we have 
used a particular normalisation o f  the W-generator, i.e. ( W W )  = ]c, in agreement with the common convention. 

In order to construct W-algebras and to obtain realisations o f  them one can follow different strategies. One 
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approach is to develop a specific construction procedure, like e.g. the Miura transformation of ref. [ 3 ] or the 
coset construction of ref. [ 4 ]. Another approach is to start from an Ansatz for the OPEs of a given set of abstract 
generators and to require closure of the algebra (see, e.g., ref. [ 5 ] ). Alternatively, one could start from an Ansatz 
for the generators of the W-algebra in terms of scalar fields and then impose closure. This has been the approach 
of refs. [ 6-8 ], where a systematic search for free field realisations of the W3 algebra was undertaken. In partic- 
ular, starting from certain Ansiitze for the generators [ 7,8 ], the following n-scalar realisation was found [ 8 ]: 

T= ½ (AoAo) + w/2 aoA'o + T~, , 

W = - l ( A o A o A o ) - v / 2  ao(AoA'o) -2~aoAo2 ,, +2(Ao Tu) +~v/2 aoT u , '  (2) 

where Ao is the derivative of a free scalar field, i.e. Ao-= 0•o. The other n -  1 scalars are represented by T u which 
commutes with Ao and satisfies a Virasoro algebra with central charge given by cu= Ic+ ½. The parameter ao is 
the background charge and is related to the central charge parameter c via c= 2 ( 1 - 16a~). The resulting realis- 
ation coincides for n = 2 with the Fateev-Zamolodchikov (FZ) two-scalar realisation [ 6 ]. It can be viewed as a 
natural generalisation of the FZ realisation to an arbitrary number n of  scalar fields. Note that in the definition 
of the nonlinear term (TT) in the W3 algebra we use a normal ordering in terms of the Laurent modes of  the 
generators. A normal ordering of this term with respect to the modes of the free scalar fields was considered in 
ref. [91. 

The aim of this letter is to generalise the analysis of refs. [ 6-8 ] by allowing spin-four null operators in the 
operator product of two spin-three generators. To be more precise, instead of the third equation in ( 1 ) we 
require that the following OPE holds: 

V(w) ½OV(w) 
W ( z ) W ( w ) =  asin ( 1 ) +  (z_w)----- 5 ~- z - w  ' (3) 

where V is a spin-four null operator, i.e. (VV)  =0. Of course, strictly speaking, the algebra corresponding to 
(3) is not the same as the W3 algebra given in ( 1 ). However, since V is a null operator, it can only generate 
other null fields in its OPE. The full set of null operators constitutes an ideal of the algebra. It is therefore 
consistent to set all these null operators equal to zero and one thus obtains a representation of the W3 algebra. 

Realisations of W-symmetries modulo null fields have been considered before in the literature. For instance, 
they occur in the coset construction ofref. [4 ] and also, in a supersymmetric context, in ref. [ 10 ]. More recently, 
in refs. [ 11,12 ], such realisations were obtained, for specific values of the central charge, from a certain nonlin- 
ear Woo algebra [ 12 ] based upon the coset SL (2, ~ ) / U  ( 1 ). This algebra is related to the parafermion current 
algebra of ref. [ 13 ]. From a somewhat different point of view, extensions of the W3 algebra with null generators 
have occurred recently in a study of certain singular contractions of W-algebras [ 14 ]. 

In our analysis of the W3 algebra, we have restricted ourselves in the following two ways. First of all, we only 
consider spin-four null operators. In principle, one could also allow for spin-two null operators in the OPE of 
two spin-three generators. However, since in most formulations of W-algebras every spin occurs only once, it is 
less natural to allow for spin-two operators in addition to the Virasoro generator. Secondly, we only consider 
free field realisations. We will not consider the inclusion of vertex operators in the Ansatz as was done in ref. 
[151. 

2. Ansitze 

Our starting point is the following free field Ansatz for the spin-two and spin-three generators of the W3- 
algebra [ 7,8 ]: 

T= ½go (A iAJ) + ~ aiA i, , (4) 
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W =  Idok(A~A~A k) +2 w/2 eo(A~A j' ) + 2 fA  ~" , (5) 

where A~-O¢ t and the 0 r ( i = 0  .... , n -  1 ) represent a set of n free scalar fields and go, a~, dak, e a a n d f  are yet 
undetermined coefficients. The Ai satisfy the OPE 

gO 
A i ( z ) A J ( w ) =  (Z__W)2 "~- regular part ,  (6) 

where gO is the inverse ofgij. Our conventions are slightly different from those of ref. [8 ]. Note that with the 
above Ansatz the spin-two generator T(z)  already satisfies the Virasoro algebra with central c = n - 24a~a ~. 

Following ref. [ 8 ], we split the n-component index i into "0" and an ( n - 1 )-component index p and take the 
coefficients dok to be 

dooo =s, dou~=-sgu~,  (7) 

where the parameter s is fixed by the choice of normalisation of the W generator. The expression for the d- 
coefficients is a solution to 

d(ij "dkl),~ = S 2g(ijgkl) . ( 8 ) 

The latter equation guarantees the closure of the classical version w3 of the W3 algebra [7 ]. In the analysis of 
ref. [ 8 ], equations for the unknown coefficients in (4) and ( 5 ) were found by demanding that the generators 
satisfy the W3 algebra given in ( 1 ), i.e. without spin-four null operators. It was subsequently shown that these 
equations were solved by the n-scalar realisation given in (2). 

We now consider the same Ansatz (4,5), but instead require that the generators satisfy the W3 algebra modulo 
a spin-four null operator as indicated in (3). This allows us to take the following less restrictive Ansatz for the 
coefficients dijk: 

dooo=S, dou~=tgu~, (9) 

with s and t free parameters (although one of them may be fixed by choosing a normalisation for W). 
The following three equations have to be satisfied in order that W is primary with respect to T: 

d~i -24eaaS+ 12f = 0 ,  (10) 

2euj ) --dijkak =O , ( 11 ) 

3 f -2aJes i=O.  (12) 

For more details, see ref. [ 8 ]. On the fourth order pole of the OPE of W with itself a primary spin-two operator 
shows up besides a multiple of the energy-momentum tensor. We require that this operator vanishes because 
we want T to  be only spin-two operator in the algebra. This leads to the following equation: 

3 
d~ kldjk l "~ 12dakf k -  24e~ kejk = ~cc Naga . ( 13 ) 

In (13) N3 is the norm of the operator IV, which we prefer not to fix for the moment: 

N 3 =- ( W W )  = l 3 ( d a k d O k - - 7 2 e a e i ~ + 7 2 0 f f ' ) .  (14) 

In ref. [ 8 ] two more equations were used, which guaranteed the vanishing of a primary spin-four operator Vin 
the OPE of W(z) W(w). Instead, we will allow such a spin-four operator, but only if it is null. This requirement 
leads to one more, rather complicated, equation which we gave given in appendix A. We will refer to this equa- 
tion as the spin-four equation. 

We conclude that the full set of equations that has to be satisfied by the Ansatz (4), (5) and (9) is given by 
eqs. (10 ) - (13 )  and the spin-four equation which can be found in appendix A. The general analysis of these 
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equations is rather complicated. Among the solutions one should of  course find, as a special case, those of  ref. 
[8] which are characterized by taking s =  - t  in (9) and V-=0, i.e. no spin-four null operator. We will now 
discuss the new solutions we obtained. 

3. Solutions 

Our strategy is to first solve eqs. ( 10 ) -  ( 13 ) and afterwards impose the the spin-four equation. It is convenient 
to distinguish between the two cases corresponding to a o # 0  and ao=0.  From now on we will take t =  1 as a 
choice o f  normalisation. Note that in general this differs from the standard normalisation < WW> = ]c. For 
a o # 0  (case I)  we find 

CaseI:  eoo=½Sao, euo=0, eou=au, e~u~)=½aogu~, e tu , l=0 ,  fo=½sa 2, fu=aoa~,. (15) 

Besides the Romans solution, corresponding to s -  1, these equations have the following other solutions a well: 

s - 2  - 3 s 2 + 4 s +  3 + n ( s - 3 )  
CaseI:  a2=2(s-3----~ '  auaU= 2 4 ( s - 3 )  ' (16) 

c = 3 s - - 7 ,  (17) 

where the parameter s is still undetermined. We now substitute these solutions into the spin-four equation. It 
turns out that this equation is satisfied only for the values s = 7, 5 3, - 1, ~ and ~ .  For s = 7 and s =  ~, correspond- 
ing to c = 0  and c =  ½, respectively, W turns out to be a null field as well, and we will not consider these cases 
further. For s =  - 1 we get the Romans  solution for c =  - 10. The two new solutions we find are given by s = ]  
(c = - 2 ) and s = ~ (c = -~ ). In appendix B the explicit form of  these realisations is given for n = 2. 

We note that the c =  ] realisation has an imaginary background charge ao. In order to obtain real coefficients 
in the realisation it is necessary to perform the redefinitions Ao--,iAo and W-, iW. The result is a "noncompac t"  
realisation where the quadratic Ao part in T has a minus sign. 

A general feature of  the case I solutions is that the W3 generators take on the form 

T= ½ (AoAo) + x/~ aoA'o + T u , (18) 

W= ½ s ( AoAoAo ) + x/~ sao ( AoA 'o ) + ] sa 2 A 'd + 2 ( Ao T u) + x/~ ao T'~ , (19) 

where T u is the energy-momentum tensor corresponding to the n -  1 fields A u with central charge 

c u = - s ( 1 - 8 a 2 )  . (20) 

The total central charge is 

C=Co +c u = 1 - 2 4 a  2 - s (  1 - 8a 2) . (21) 

So there is one scalar that appears explicitly in ( 18 ), (19) ,  and the rest enters only via their energy-momentum 
tensor T u. This situation also occurs in the Romans  solution (2).  We note that for both the Romans  solution 
(2)  at c =  - 2  as well as the case I c =  - 2  solution given in (18),  (19) ,  T u is null and theAo part becomes the 
one scalar realisation of  W3 [ 10]. 

We next consider solutions ofeqs.  ( 1 0 ) - ( 1 3 )  for a o = 0  (case II) .  From eqs. ( 1 0 ) - ( 1 3 )  we deduce that 

CaselI :  eoo=0, eou+euo=au, eouaU=¼auaU+~2(s+n-1),  e~u~)=0, etu~la~=O, etu~je~=O, 

f o = ½ a u a U - 4 ~ ( s + n - l ) ,  f u = 0 .  (22) 

Furthermore, the background charges and the central charge are given by 

CaseII :  a u a U = ~ ( n - 3 s + 7 ) ,  c = 3 s - 7 .  (23) 
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We also obtain expressions for the contractions eoue °u and etu,,je tu,q. Since they are rather involved we will not 
give them here. We still have to impose the spin-four equation. We were able to simplify this equation only for 
n = 2 and have not analysed it for general values o f  n. For n = 2 the spin-four equation becomes, rewritten in 
terms of  c using (23) 

16c(2 + c) (7 + c )  ( 1 0 + c ) 2 (  - ½ + c )  ( - 4 +  5c) 
< VV> = 2 7 ( - 2 + c ) : ( 2 2 + 5 c )  = 0 .  (24) 

From the series o f  roots o f  (24) the values c = 0 ,  - 7 ,  ½ make W a  null field as well, and for c =  - 10 ( s =  - 1 ) 
we get a FZ realisation. The new solutions occur again for c =  - 2  and c =  4. The case II  c =  - 2  and c =  4 realisa- 
tions also appear in ref. [ 12 ] as specific truncations o f  a non-linear Woo algebra. They can also be derived from 
the second realisation mentioned in a footnote o f  the paper by Fateev and Zamolodchikov [ 6 ]. The explicit 
form of  the solutions can be found in appendix B. 

Unlike the ease I realisations the case II realisations are not of  the form ( 18 ), ( 19 ), i.e. there exists no SO (2) 
redefinition o f  the fields such that (18),  (19) is obtained. It is therefore not clear whether these solutions can 
be generalised to n >I 2 scalars. 

4. Generalisations 

We now discuss generalisations o f  the case I and case II realisations. First, consider the c =  - 2  one-scalar 
realisation o f  ref. [ 10 ]: 

To = ½ (AoAo) + ½A'o, (25) 

Wo = - ] (Ao To) - ~T~.  (26) 

We now add an extra ene rgy-momentum tensor, denoted by T, to the above system that commutes  with Ao and 
which is null. We then make the following Ansatz for W: 

T = T o + T ,  (27) 

W= Wo +d, (AoT)  +dzT '  . (28) 

Since T commutes  with To the total central charge is given by c =  - 2 .  The requirement that W is primary with 
respect to T can be shown to imply dl = 4d2. Next, in order to get rid o f  a primary spin-two field in the OPE 
W(z)  W(w) ,  which occurs in addit ion to T, the following quadratic equation has to be satisfied: 

20d~ - 4d2 - 3 = 0 ,  (29) 

with roots ½ and - 3 .  I f  we represent T in terms of  n -  1 scalar fields (n t> 2) then we obtain for d2 = 1 the 
Romans  realisation at c = - 2 and for dE = -- 3 the case I c = -- 2 realisation (cf. ( 19 ) ). Note that if, in the above 
example, we do not modify Wo (i.e. dl = d2 = 0 in (28 ) ) ,  the algebra also closes modulo null operators. However, 
in this case also a spin-two null operator is present in W(z )  W(w) .  

We now perform the same procedure starting from the Romans  realisation (2)  for arbitrary c. Again we add 
a null ene rgy-momentum tensor T to the generators in such a way that they remain primary. We thus obtain 

T = T o + T u + T ,  

W = W o + 2 ( a o T u ) + x / 2 a o T ' u + d [ ( A o T ) +  ½ x/~ a o T ' ]  , 

To = ½ ( AoAo ) + x/~ aoA'o , 

Wo --- - ] [2(Ao To) + x / ~  aoT'o] . 

(30) 

(31) 

(32) 

(33) 
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The central charges are given by (takes s =  - 1 in(20) and (21) ) 

Co = 1 - 24a 2 = ] c -  ½, 

c~ = 1 - 8a 2 = l c +  ½. 

(34) 

(35) 

The requirement that the additional spin-two primary field that occurs in WW vanishes, now leads to the equation 

-2+½d2+aZ(-3d2-2d+ 10) = 0 ,  (36) 

with roots 

d=2,  d = - 2 1 - 5 a 2  
l _ 3 a  2 . (37) 

For the d =  2 solution, ~ can be absorbed into T u and we obtain the Romans realisation. The second solution for 
d does not fit within the Ansatz (9),  which is why we did not find this solution before. For c = - 2, a 2 = ~, Tu is 
null and can be consistently put to zero, and we find that for this value of c the second solution reduces to the 
case I c=  - 2  realisation. 

In principle, one could generalise the case II realisation from n = 2 to arbitrary n by the same procedure. One 
adds a null field T to To and adds dl (AoT) + d2 (A1T) + d3 T' to Wo. Making W primary fixes one parameter, and 
the spin-two absence implies a quadratic equation in the two remaining parameters. We have not attempted to 
investigate systematically the solutions to this equation. 

5. Comments 

We have performed a systematic investigation of free-field realisations of  the W 3 algebra where we allow in 
the OPE of two spin-three generators a spin-four null field. Our starting point was a free field Ansatz for the 
generators. Closure of  the algebra then led to a set of  equations for the coefficients occurring in the Ansatz. We 
analyzed these equations and gave several solutions to them. Besides the Romans solution (see (2) ), we found 
further two-scalar solutions (case I I )  as well as n-scalar solutions (case I and the second solution of eqs. ( 30 ) -  
(33). 

Since we used a specific Ansatz, our analysis is not exhaustive. Only in the case of two-scalar realisations were 
we able to verify that our analysis is complete. Besides the FZ realisation we found four more realisations whose 
explicit form can be found in appendix B. Two of these solutions also occur in the work of refs. [ 6,11,12 ]. It 
would be interesting to see whether the other two solutions could be understood from other construction pro- 
cedures as well. 

Finally, one could consider the classical limit of our results. In the case of the Romans realisation one obtains 
in this limit a realisation of a classical version w3 of the W3 algebra. This is consistent with the fact that the 
Ansatz of refs, [ 7,8 ] satisfies the identity (8) which guarantees the closure of the classical w3 algebra [ 7 ]. Our 
Ansatz does not satisfy (8) and therefore, to obtain closure in the classical limit, one should include the whole 
ideal of  null operators generated by the spin-four operator V. For the case II solutions, this leads to the classical 
limit of  the nonlinear Woo algebra of ref. [ 12 ]. It would be interesting to see which classical algebras the case I 
realisations lead to. 
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Appendix A. The Spin-four equation 

To determine the spin-four equation mentioned in section 2, we must first calculate the expression for the 
spin-four operator V. This expression can be found from eq. (3.12) in ref. [ 8 ] by subtracting the descendents 
of  the energy-momentum tensor. Next, it is a straightforward exercise to calculate the norm of Vand require it 
to be zero. We thus find the following spin-four equation: 

( VV> = 24sijktSijkl + 30Si i k l S j J k l -  280Si iktsj Jk mata,,, - 6 0  x/~ S~ igtTktma m+ 24 X/~ Si iklT, nktam 

560 ikl m n + 3 - x / ~  Si ( T,,,t+ 2Tt,,,)aka a - 12TOkTok - 16TOkTikj +60Tok TO lakat--48Tijk Tt °akat 

3 L 3 2 8 q r '  'T" 104"7" " T ' j i ~ k ~ l  56OtTij,nTktn~+4TimjTkl,,~+4TimjTkmt)aiaJakat T l k i j a  l i J a k a l  + - - ~ "  l kij.~ l t¢ ¢¢ - -  T ',. 

= 0 ,  

where S and T are given by 

24N3 
Sokl=dw "dkt)m C(22+5C) g(ogkl), 

24N3 giiak ) 
T°~ =4 v/2 ( - 2d° ~etkq + 2e(~ t~)kt-- C(22+ 5C) 

Appendix B. Two-scalar realisations 

For the case of two scalars (n = 2 ) we find all possible realisations of W3 that close modulo a non-zero spin- 
four null field. We find four different realisations. Firstly, the case I c=  - 2  realisation is given by 

1 p T= ½ (AoAo) + ½ (A,A, ) + ½A'o + ~w/~ A , , 

W= ~ (AoAoAo) + ~ (AoA'o) + ~A'~ + (AoAt A, ) + ~ ~ (AoA'~ ) + ½ (At A '~ ) + ~ ~ A'{ . 

Secondly, the case I c=  4 realisation in a real basis is given by 

t 2 ¢ T=-½(AoAo)+½(AIA1)+½ x//6 Ao + 3x/fi--0A t , 

W= ~ ( AoAoAo ) - ~ x/~ ( AoA'o ) + ~oA 'd - ( AoA1 At ) - 4 x / ~  ( AoA '~ ) + ½ x/~ (At A'I ) + ½ x / ~  A '(. 

The above realisations are obtained from (18), (19) by substituting the appropriate values for the parameters 
and by realising T u in terms of At, the derivative of  the scalar field Or. 

Next, the case II c=  - 2  realisation is given by 

T= ½ (AoAo) + ½ (AtA1) + ~ x//3 A't , 

W= 9 (AoAoAo) + (AoA,At) + ½ x/~ (AoA i ) + ~w/3 (A'OA1) + f lAg.  

Finally, the case II c = 4 realisation is given by 

T= ½ (AoAo) + ½ (A,At) + ~x//-~ Ai , 

W= t3 (AoAoAo) + (AoAIAt ) + ½ x / ~  (AoA't ) - ~ ~ (A'oAt ) - ~A'd Tg 
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F o r  the  n = 2, c =  - 2 rea l i sa t ions  ( W W )  = - ~ .  T h e  c =  4 rea l i sa t ions  h a v e  

(WW) =-~352 (case I I ) .  

15 October 1992 

(WW) 52 (case  I )  and  ----~3 
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