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Exciton superradiance in molecular crystal slabs

Jasper Knoester

Chemistry Department, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

We investigate the spontaneous emission rate y of dipolar excitons in molecular crystal slabs of variable thickness, L,
ranging from monolayers to bulk crystals. We find a smooth transition between superradiant excitons (y o L) at thickness
small compared to an optical wavelength (A) and radiatively stable polaritons for thick crystals (y a1/L). The maximum
cooperativity volume of the molecules in the slab is found to be of the order A’

1. Introduction

Recently there has been much interest in exci-
ton superradiance from molecular and semicon-
ductor systems with confined geometries [1-4].
Exciton superradiance (or ‘“cooperative emis-
sion”) originates from the fact that in a system
small compared to an optical wavelength roughly
all oscillator strength of the individual unit cells is
collected in one superradiant excited state. Thus,
this state has a spontaneous emission rate pro-
portional to the size of the system; all other states
have essentially no oscillator strength and are
subradiant or dark. On the other hand, it is well
known that the enhancement of the emission rate
with system size does not continue forever: in
infinite bulk crystals, the excitons are coupled to
exactly one radiation-field mode due to the per-
fect wave vector selection imposed by the transla-
tional symmetry. Thus, no continuum of photon
modes is available to cause irreversible exciton
decay. Instead, the energy oscillates back and
forth between the exciton and the radiation field,
and the situation is best described by introducing
polaritons: mixed eigenmodes of the polarization
and the radiation field [5]. In infinite crystals,
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polaritons exhibit no spontaneous emission. The
study of polariton dynamics by nonlinear optical
techniques takes an important place within con-
densed matter research [6]. Obviously, exciton
superradiance and the formation of stable polari-
tons are intimately related: both phenomena are
manifestations of excitons coupled to the radia-
tion field, but they represent opposite limits with
respect to the size of the excitonic system. In this
paper we make a connection between these two
regimes by studying the spontaneous emission
from excitons in crystal slabs of variable thick-
ness.

2. Theory and results

We consider a crystal slab of simple cubic
structure with lattice constant a that exists of a
stack of N parallel infinitely vast monolayers.
The lattice sites are occupied by two-level
molecules with electronic transition frequency (2.
The molecular transition dipoles wx all have the
same orientation, which for simplicity we take to
be parallel to the molecular planes. By varying N
from 1 to o, this model interpolates between a
single monolayer and a bulk crystal. We confine
ourselves to the study of exciton states that are
modulated in the direction perpendicular to the
slab (the z-direction) only. In the Heitler-London
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approximation [7], these states arc governed by
the Frenkel exciton Hamiltonian

H,=hQY BB, +hY J,B/B,. (N
! 14

Here, B/(B,) denotes the creation (annihilation)
operator for an excitation of the /’th plane (I =
1...., N) that has equal amplitude and phase on
all molecules in that plane. Furthermore, the
interaction J,,, is the total instantaneous dipole—
dipole interaction between an arbitrary molecule
in planc / and all molecules in planc /' (the
molecular self-interaction is excluded from J,).
The static excitons are the eigenmodes of H,,
and have as annihilation operator

B, = ZUkIB/~ (2)
{

where Uy, is the unitary transformation that diag-
onalizes J,;» and the labcl k& takes N discrete
values. For dipolar interactions, it is impossible to
determine U, analytically in the case of general
N, but for the moment it suffices to keep U, in
its general form.

The radiation field is quantized in an infinite
box that is not limited by the finite thickness of
the slab. Thus, perfect wave vector selection of
the exciton—photon coupling occurs only in the x-
and y-direction, and each of the exciton states
considered here is coupled to the one-dimen-
sional continuum of photons with wave vectors
(0, 0, g). The excitons will decay radiatively by
emission into this continuum. We calculated the
spontaneous emission rate y,(N) of the exciton
k according to the Fermi golden rule, using the
minimal coupling (p-4) form for the exciton—
photon interaction. The result reads:

7N = [0k, ) + oGk, ~a,)1].
()

with f2=8mw0u’/ha’, a measure of the density
of oscillator strength in the slab, and o, =w, /c,
the frequency of the initial exciton divided by the
vacuum velocity of light. O(k, g) gives the over-
lap between the wave functions of the exciton &
and the photon with wave vector (0, 0, g):

O(k, q) =3 U, expligla]. (4)
7

The two contributions in ¢q. (3) arise from the
two photons with opposite wave vectors, (0, 0, +
w,). that can conserve energy in the emission
process.

We will now apply the general resuit eq. (3) to
specific approximations for the form of the dipo-
lar excitons in the slab. From the extensive litera-
ture on lattice dipole sums, it is known that the
interaction J, drops off very fast with increasing
distance between the planes / and /', even though
the dipole interaction between individual
molecules has an infinite range. In fact, for our
specific configuration, J,,., = —0.036/, and
Ji ;. > is another three orders of magnitude smaller
[8]. Therefore, in a simplest approximation we
neglect the interactions between different planes
and only keep J,=/,. It is then natural to use
the unitary transformation U, = exp(—ikla)
JVN, with k=2mwm/Na (m=0,....N— 1),
which gives wave-like Frenkel excitons with wave
number k. The same transformation applies if we
impose periodic boundary conditions in the z-di-
rection. w, = {2 +J, is now independent of k£ {no
spatial dispersion). The overlap function O(k, g)
is easily determined and we eventually find

af? | sin?(Né ")  sin*(No™)
YA(N)=8N 2 B + .2 + ’
c| sin“(¢7) sin“(¢ ")

(3)

with ¢ *=(k £ @,)a /2. For the case N =1, eq.
(5) gives the decay rate of the monolayer exciton,
v, =af?/4c, which roughly equals the single-
molecule emission rate (Einstein A-coefficient)
multiplied by the number of molecules within an
area A, with A = 2mc/w,, the exciton transition
wavelength [9]. Thus, for realistic densities, the
monolayer exciton is superradiant. Further analy-
sis of eq. (5) reveals that as long as the slab
thickness L = Na is small compared to A, the
k = 0 exciton is superradiant with decay rate Nv,
and all other excitons are relatively dark with
emission rates that are orders of magnitude
smaller (see fig. 1 for a typical example). In the
limiting case where A /L is taken infinity, y,(N)
= Nvy,6, 4. The superradiant nature of the k=0
state breaks down when L gets in the order of
A/2, as can be scen from fig. 2. The maximum
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Fig. 1. Radiative decay rate of excitons as a function of wave

number in a crystal slab of N = 20 monolayers with A /a = 10°

(L =0.021), according to eq. (5). The decay rates in the

second half of the Brillouin zone are obtained by reflection
with respect to k = 7w /a.

decay rate is reached at L =0.37A and equals
0.23(A /a)y,. The maximum cooperativity volume
of the molecules in the slab is thus of the order
A% For L > A /2, the emission rate shows oscilla-
tory behavior, with an envelope that drops off as
1/L, so that for £ =0 we indeed find a smooth
crossover from exciton superradiance in thin slabs
to radiative stability in the infinite crystal.

It is interesting to note that for k = w, /c, eq.
(5) predicts an emission rate in thick slabs that is
always proportional to L. This implies that super-
radiance persists up to infinite systems, which
contradicts the polariton concept. The reason for
this paradox is that the perturbation theory that
underlies the Fermi golden rule breaks down at
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Fig. 2. Radiative decay rate of the k = 0 exciton as a function
of slab thickness (L = Na) according to eq. (5). Note that
A / a typically equals 10°.

the exciton—photon resonance k = w,/c. A bet-
ter theory for this wavenumber region consists in
performing perturbation theory with respect to
the bulk polaritons; it then appears that at all
wave vectors the spontaneous emission rate be-
haves as 1/L for L > A [10].

We now briefly turn to the case where the
interactions between adjacent planes, J,,, =/,
are taken into account. The total Hamiltonian is
then diagonalized by U, =[2/(N + D]'/?
sin( pla), with p=wn/(N+ 1a (n=1,...,N),
and the exciton frequency is given by w, =12 +J,
+ 2J, cos(pa), which does show spatial disper-
sion. From eq. (3) we find for the decay rate of
the exciton p:

af? [sin(N‘I")

(N = SN T e | sin(v)

L SIN(N¥H) ]2 ©

sin(¥")

with ¥ *=(p+tw,a/2. If L <A, this reduces
to 2y, cotg’(pa/2) /(N + 1) for the odd-n states
and to zero for n even. From this it follows that
in thin slabs the exciton with wave number p =
w/(N+ 1Da (n=1) is superradiant with decay
rate varying between Ny, (N =1, 2) and 0.81 Ny,
(1 <« N<)/a), and is analogous to the k=0
state above. Again, the superradiant nature of
the n =1 state breaks down at L = A /2, and for
L > A the decay rate drops off as 1/L if p is
kept constant (as 1/L* if n is kept constant). The
crossover region at L = A /2 is harder to study in
this case, however, as for n = 1 the exciton—pho-
ton resonance p=w,/c is hit exactly at this
thickness.

In summary, we have studied the crossover
from exciton superradiance in thin crystal slabs to
radiative stability in thick slabs. The present the-
ory is based on the Fermi golden rule for static
(instantaneous) excitons coupled to the radiation
continuum. In the exciton—photon resonance re-
gion, which becomes relevant for L > A, the radi-
ation field must be treated more explicitly, be-
cause there the effect of retardation on the dis-
persion relation of the crystal’s electronic eigen-
modes is too strong to treat perturbatively. This
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effect can be incorporated by first diagonalizing
the subsystem of excitons and photons at a single
wave number, resulting in the fully retarded po-
laritons, and then perturbatively calculating the
decay rate of these polaritons in the finite crystal
slab caused by the coupling to the continuum of
photon modes at other wave numbers [10]. We
finally note that the difference between the two
exciton models discussed in this paper is analo-
gous to the difference between the cyclic and
linear models for one-dimensional aggregates [1].
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