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Abstract. The regulation of Cl-metabolism in Xantho- 
bacter strain 25 a was studied during growth of the organ- 
ism on acetate, formate and methanol in chemostat cul- 
tures. No activity of methanol dehydrogenase (MDH), 
formate dehydrogenase (FDS) or ribulose-l,5-bisphos- 
phate carboxylase/oxygenase (RuBisC/O) could be de- 
tected in cells grown on acetate alone over a range of 
dilution rates tested. Addition of methanol or formate to 
the feed resulted in the immediate induction of MDH and 
FDH and complete utilization (D = 0.10 h-1) of acetate 
and the Cl-substrates. The activities of these enzymes 
rapidly dropped at the higher growth rates, which 
suggests that their synthesis is further controlled via re- 
pression by "heterotrophic" substrates such as acetate. 
Synthesis of RuBisC/O already occurred at low methanol 
concentrations in the feed, resulting in additive growth 
yields on acetate/methanol mixtures. The energy gener- 
ated in the oxidation of formate initially allowed an in- 
creased assimilation of acetate (and a decreased dissimi- 
lation), resulting in enhanced growth yields on the mix- 
ture. RuBisC/O activity could only be detected at the 
higher formate/acetate ratios in the feed. The data suggest 
that synthesis of RuBisC/O and CO2 fixation via the 
Calvin cycle in Xanthobacter strain 25 a is controlled via 
a (de)repression mechanism, as is the case in other 
facultatively autotrophic bacteria. Autotrophic CO2 fix- 
ation only occurs under conditions with a diminished 
supply of "heterotrophic" carbon sources and a suf- 
ficiently high availability of suitable energy sources. The 
latter point is further supported by the clearly more pro- 
nounced derepressing effect exerted by methanol com- 
pared to formate. 

Offprint requests to: L. Dijkhuizen 

Abbreviations: FDH, formate dehydrogenase; FBPase, fructose- 
1,6-bisphosphatase; ICDH, isocitrate dehydrogenase; MDH, meth- 
anol dehydrogenase; PQQ, pyrrolo quinoline quinone; PRK, phos- 
phoribulokinase; RuBisC/O, ribulose-l,5-bisphosphate carboxyl- 
ase/oxygenase; RUMP, ribulose monophosphate; TCA, tricarbox- 
ylic acid cycle 
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All Xanthobacter strains (Wiegel et al. 1978; Wiegel and 
Schlegel 1984) studied are versatile bacteria, able to grow 
autotrophically on H2/02/C02,  formate and methanol, 
and heterotrophically on many (multiple-carbon) organic 
substrates. Three Xanthobacter species have been de- 
scribed thus far, namely X. autotrophicus, J(. flavus, and 
X. agilis (Jenni and Aragno 1987; Jenni et al. 1987). Re- 
cently we reported the isolation and characterization of 
Xanthobacter strain 25 a (Meijer et al. 1990 a). This isolate 
most likely represents a fourth species of the genus 
Xanthobacter, combining characteristic properties of 
X. autotrophicus and X. JTavus (pleomorphism, slime pro- 
duction, growth on nutrient broth, autotrophic growth at 
37 ~ C), X. fIavus (biotin requirement), as well as X. agilis 
(motility). 

Studies on the enzymology of methanol utilization in 
various Xanthobacter strains (Weaver and Lidstrom 
1985; Janssen et al. 1987; Meijer et al. 1990a) have shown 
that this substrate is oxidized to formaldehyde via a PQQ- 
dependent methanol dehydrogenase (MDH). Oxidation 
of formate to CO2 involves an NAD-dependent formate 
dehydrogenase (FDH). Synthesis of cell material is ini- 
tiated by assimilation of COz via the Calvin cycle. Three 
enzymes are specifically involved in the operation of this 
cycle (Tabita 1988), namely ribulose-l,5-bisphosphate 
carboxylase/oxygenase (RuBisC/O), phosphoribulo- 
kinase (PRK) and fructose-l,6-bisphosphatase (FBPase). 
Synthesis of these enzymes in Xanthobacterflavus H4-14 
and Xanthobacter strain 25a is under strict control 
(Meijer et al. 1990 a -  c). The physiological and molecular 
mechanisms controlling their synthesis, however, still re- 
main to be identified. Xanthobacter strains are well-suited 
for genetic studies (Wilke 1980; Lehmicke and Lidstrom 
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1985; Weaver and Lidstrom 1987) and a genetic analysis 
of  the autotrophic  system. No evidence has been obtained 
thus far for the presence of  dual gene clusters for the 
Calvin cycle enzymes in Xanthobacter flavus H4-14 
(Meijer et al. 1990b, c), as reported for Rhodobacter 
sphaeroides (Gibson and Tabita 1988) and Alcaligenes 
eutrophus (Husemann et al. 1988). 

The aim of  the present work was to study the regu- 
lation of C~-metabolism in Xanthobacter strain 25a at 
the physiological level. Further  work, focussing on the 
cloning and characterization of  genes encoding Calvin 
cycle enzymes, will be published elsewhere (Meijer et al. 
1990 b, c). 

Materials and methods 

Microorganism and cultivation 

Xanthobacter strain 25 a, its maintenance, the mineral salts media 
used for batch and continuous cultures, the procedures followed for 
cultivation on single and mixed substrates in continuous cultures, 
harvesting of cells and measurements of growth have been described 
previously (Dijkhuizen and Harder 1979; Meijer et al. 1990 a). Filter- 
sterilized methanol and heat-sterilized acetate were added at concen- 
trations indicated in the individual experiments. The various mea- 
surements were performed after the cultures had reached a steady 
state, which was assumed to be the case after at least 5 volume 
displacements. 

Preparation of cell-free extracts and enzyme assays 

The methods used for preparation of cell-free extracts of Xantho- 
bacter strain 25a have been described previously (Meijer et al. 
1990 a). Enzyme measurements were made on a Hitachi model 100- 
60 spectrophotometer at 30~ In all assays the observed rate was 
linear for at least 3 rain and proportional to the amount of extract 
added. The reaction volumes were I ml. The following enzymes were 
assayed according to published methods; Methanol dehydrogenase 
(MDH; EC 1.1.9.98), Meijer et al. (1990a); Isocitrate dehydrogen- 
ase (ICDH; EC 1.1.1.42), Levering and Dijkhuizen (1985); RuBisC/ 
O (EC 4.1.1.39) and NAD-dependent formate dehydrogenase 
(FDH; EC 1.2.1.2), Dijkhuizen et al. (1978), 

Analytical methods 

Methanol and acetate were determined gaschromatographically as 
described by Heijthuijsen and Hansen (1989) and Laanbroek et al. 
(1982), respectively. Dry weight values were determined with a total 
carbon analyzer (Beckman model 915A), connected to an infrared 
analyzer (Beckman model 865). Protein was determined by the 
method of Lowry. 

Results and discussion 

Growth on methanol in ehemostat culture 

Growth  of  Xanthobacter strain 25 a in methanol-limited 
continuous cultures resulted in complete utilization of  
the substrate at the various dilution rates tested. The 
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Fig. 1. Effect of increasing dilution rates (D = 0.02-- 0.10 h- 1) of a 
methanol-limited (SR = 100 mM) continuous culture of Xantho- 
baeter strain 25 a on a number of steady state culture parameters. 
II, Dry weight values; A, MDH; A, FDH; O, RuBisC/O. Enzyme 
activities are expressed in nmol - min-1, mg 1 of protein 

relationship between the levels o f  C~-enzymes, and the 
dry weight produced, with dilution rate is shown in Fig. 1. 
The molar  growth yield on methanol  was 8.5 g �9 mo l -1 ,  
which is considerably lower than the values reported for 
growth of other gram-negative bacteria on methanol,  
employing either the ribulose monophospha te  (RUMP) 
cycle (15 .7 -19 .5  g .  mol-1) ,  the serine pathway ( 9 . 8 -  
14.6 g - too l -  1) (Goldberg et al. 1976), or the Calvin cycle 
(11.0 g - mo l -1 )  (Paracoccus denitrificans; van Verseveld 
and Stouthamer 1978). The specific activities of  the dis- 
similatory enzymes M D H  and F D H ,  and of  the Calvin 
cycle enzyme RuBisC/O, increased with increasing di- 
lution rate (Fig. 1). This response is different f rom that 
observed with certain R u M P  cycle (Roitsch and Stolp 
1985; Greenwood and Jones 1986) or serine pathway 
(Roitsch and Stolp 1986) methylotrophs,  namely a strong 
increase of  M D H  activity at the lower dilution rates. The 
latter organisms, however, synthesize M D H  constitu- 
tively (although further induction of  the enzyme may 
occur upon addition of  methanol  to the medium), while in 
autotrophic bacteria (Pa. denitrificans and Xanthobacter 
strains) M D H  is induced by methanol  (or products de- 
rived) and repressed to various degrees by "hetero- 
trophic" substrates (Weaver and Lidstrom 1985; de Vries 
et al. 1988; this paper). 

Growth on acetate and on mixtures of acetate and formate 
in chemostat culture 

No activity of  the Ca-enzymes could be detected du r ing  
growth of Xanthobacter strain 25 a on acetate alone (mo- 
lar growth yield 21 g �9 mol -1  at D = 0.10 h-1) ,  whereas 
the TCA cycle enzyme I C D H  was present at a very high 
specific activity (2.5 gmol �9 min -1  . m g -  1 protein). Ac- 
tivities of  the glyoxylate cycle enzymes could not  be de- 
tected in cells grown on acetate in batch cultures (Meijer 
et al. 1990a), or chemostat  cultures (this study). 
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Fig. 3. Effect of stepwise addition of increasing concentrations of 
methanol (0-100 mM) to the feed of an acetate-limited (SR = 
30 mM) continuous culture (D = 0.10 h-2) of Xanthobacter strain 
25 a on a number of steady state culture parameters. B, Dry weight 
values; A, MDH ( x 0.4); A, FDH; O, RuBisC/O ( x 2); O, ICDH 
(• 0.1). Enzyme activities are expressed in nmol- rain-1 . mg-1 of 
protein 

formate concentration (mM) 

Fig. 2A, B. Effect of stepwise addition of increasing concentrations 
of formate (0-100 raM) to the feed of an acetate-limited (SR = 
30 raM) continuous culture (D = 0.10 h-1) of Xanthobacter strain 
25a on a number of steady state culture parameters. A II, Exper- 
imental dry weight values; [~, sum of the dry weight values obtained 
during growth on formate and acetate separately. B A, MDH; 
A, FDH; O, RuBisC/O; O, ICDH (x 0.1). Enzyme activities are 
expressed in nmol - min-1, mg- 1 of protein 

strong decrease in specific activity of ICDH. At formate 
concentrations above 45 mM the increase in dry weight 
per mmole of formate added dropped, reflecting an in- 
creasing contribution of the energetically expensive auto- 
trophic CO2 fixation to the biosynthesis of cell material. 

Addition of  formate ( 0 - 1 0 0  mM) to the feed of  an 
acetate-limited continuous culture ( D - - 0 . 1 0 h  -1) re- 
sulted in simultaneous and complete utilization of  the two 
substrates (Fig. 2). F D H  activity appeared immediately, 
whereas ICDH activity initially decreased rapidly, re- 
flecting a decreased energy generation via the TCA cycle. 
M D H  activities remained very low ( < 20 nmol �9 min-  a. 
rag-1 protein), indicating that synthesis of M D H  and 
F D H  in Xanthobacter strain 25a is not controlled co- 
ordinately. Activity of  RuBisC/O was detected only at 
formate concentrations of  45 mM and above. Once these 
activities appeared, they increased with increasing for- 
mate concentrations (Fig. 2 B). Thus, at formate concen- 
trations below 45 mM, where RuBisC/O remained re- 
pressed, formate only served as an additional energy 
source. This resulted in a 60% increase of  the cultural 
dry weight, to a 20% higher level than expected on the 
basis of  the molar growth yields on the separate substrates 
(Fig. 2 A; the molar  growth yield on formate alone under 
the same experimental conditions is 4.5 g �9 mol 1). Since 
acetate was the only available carbon source, acetate 
carbon must have been redistributed over the dis- 
similatory and assimilatory pathways, i.e. more acetate 
was assimilated and less was dissimilated under these 
conditions. This redistribution of  acetate carbon as the 
formate concentration was increased is reflected in the 

Growth on mixtures of  acetate and methanol 
in chemostat culture 

Addition of  methanol ( 0 - 1 0 0  mM) to the feed of an 
acetate-limited continuous culture resulted in simul- 
taneous and complete utilization of  the two substrates. 
M D H  and F D H  activities appeared immediately (Fig. 3), 
reflecting the inducible nature of  these enzymes. A very 
low activity of RuBisC/O was observed with 1 0 m M  of 
methanol in the feed. Only when supplying methanol at 
concentrations of 20 mM, or above, the activity of this 
enzyme became clearly apparent  and gradually increased. 
Increasing concentrations of  methanol in the feed re- 
sulted in an almost linear increase in the dry weight prod- 
uced, reaching values approximately equal to those ex- 
pected on the basis of the molar growth yields on the 
single substrates, i. e. growth yields were additive. Carbon 
assimilation from acetate and methanol (COz) apparently 
proceeds independently from each other during growth 
in chemostat cultures. 

The data (Figs. 2 and 3) thus indicate that the re- 
sponse observed in acetate-limited continuous cultures 
depends on the energy contents of  the second substrate. 
The additional energy generated by oxidation of  
methanol,  compared to formate oxidation, resulted in 
derepression of RuBisC/O synthesis at relatively low con- 
centrations of  methanol in the feed. 
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Xanthobacter strain 25 a are regulated in a different man- 
ner. Synthesis of  M D H  and F D H  is controlled via induc- 
tion by methanol  and formate,  respectively, and via re- 
pression by "heterotrophic" substrates such as acetate. 
RuBisC/O synthesis appears to be regulated via a 
(de)repression mechanism and only occurs under con- 
ditions with, (a) a diminished supply of  alternative carbon 
sources, and (b) a sufficiently high availability of  suitable 
energy sources. This conclusion is supported by the 
stronger repression of RuBisC/O synthesis observed in 
(carbon-excess) batch cultures (Meijer et al. 1990a) com- 
pared to (carbon-limited) continuous cultures, and the 
clearly more pronounced derepressing effect exerted by 
methanol  (compared to formate) addition under the latter 
growth conditions (this study). As proposed previously 
for other facultatively autotrophic bacteria (Dijkhuizen 
and Harder  1984), control of  the synthesis of  this key 
enzyme of  the Calvin cycle in Xanthobaeter strain 25 a 
thus appears to be comparable  to that  observed for other 
biosynthetic pathways, namely feedback repression by 
endproduct(s) of  the pathway. In order to unravel the 
molecular details of  this control system the genes in- 
volved will have to be cloned and regulatory proteins 
identified. 

dilut ion r a t e  (h" )  

Fig. 4A, B. Effect of increasing dilution rates (D = 0.02--0.15 h 1) 
of an acetate- (SR = 30 raM) and methanol- (SR = 50 raM) limited 
continuous culture of Xanthobacter strain 25 a on a number of steady 
state culture parameters. A B, Dry weight values, A, O residual 
methanol and acetate concentrations, respectively. B A, MDH; 
A, FDH; O, RuBisC/O; e ,  ICDH (x 0.1). Enzyme activities are 
expressed in nmol. min-1, mg- 1 of protein 

Growth on a constant mixture o f  acetate and methanol 
in chemostat culture at varying dilution rates 

Growth  of  Xanthobacter strain 25 a on a constant  mixture 
of  acetate (SR = 30 mM)  and methanol  (SR = 100 raM) 
in chemostat  cultures (Fig. 4A) resulted in complete 
utilization of  both  substrates upto  a dilution rate of  
0.10 h-1 .  At  higher D values residual methanol  rapidly 
accumulated, indicating a switch-off of  methanol  metab-  
olism at a dilution rate below the #max on methanol  alone 
(0.15 h-1) .  Acetate accumulat ion occurred at a D value 
of0.15 h -  1, again clearly below the #max on acetate alone 
(0.29 h -  1), resulting in wash-out  of  the culture. The re- 
lationship between enzyme activity and dilution rate is 
shown in Fig. 4 B. Very high activity levels of  M D H  were 
observed under these conditions. RuBisC/O, M D H  and 
F D H  activities decreased dramatically above D = 
0.10 h -1, rapidly dropping to (almost) zero levels.The 
switch-off of  methanol  utilization with increasing di- 
lution rates thus appears  to be caused by repressive effects 
exerted by the "heterotrophic"  substrate acetate on these 
e l -enzymes  (Fig. 4A). Toxic effects o f  the accumulated 
methanol  probably  inhibits growth on acetate, resulting 
in wash-out  of  the culture at a D value clearly below the 
maximal  growth rate on acetate. 

The results of  this study show that  the enzymes in- 
volved in methanol  oxidation and CO2 fixation in 
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