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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN THE
DYNAMICS OF CHAOTIC MAPPINGS*

H. E. NUSSE

Abstract. We will prove that, for a chaotic mapping f belonging to a suitable class of C+ functions,
the set Ao(f) has Lebesgue measure zero, with A(f) a nonempty set consisting of points whose orbits do
not converge to an asymptotically stable periodic orbit off or to the absorbing boundary. Moreover almost

every point is asymptotically periodic with period p, for some positive integer p.
Further, we will show that the same conclusions hold for maps with nonpositive Schwarzian derivative

under some additional assumptions.

Key words, iteration of chaotic mappings, asymptotically stable periodic orbit, absorbing boundary
point, (direct) domain of attraction, asymptotically periodic point, critical point, Schwarzian derivative

AMS(MOS) subject classifications. 26A16, 26A18, 28A75, 58F13, 58F15, 58F21, 58F22

I. Introduction and statement of the results. Many established results in the study
of iteration of mappings, initiated by Lorenz [11], May [13], [14] and Li and Yorke
[10], can be found in e.g. the monographs by Collet and Eckmann [4] and Preston
[21] and in the article by Nitecki [19].

There exist a lot of numerical investigations dealing with iterations of mappings,
see e.g. Stein and Ulam [24], Metropolis, Stein and Stein [16], Hoppensteadt and
Hyman [9], Gumowski and Mira [7] and Coste [5]. The numerical results of density
functions suggest, for some examples, that almost every point in the interval approach
to an asymptotically stable periodic orbit.

In the paper "Periodic three implies chaos," Li and Yorke [10] mentioned the
question, whether (for some nice class of functions) the existence of an asymptotically
stable periodic point implies that almost every point is asymptotically periodic.

First, we shall reformulate a result obtained by Guckenheimer [6], Misiurewicz
[17] and van Strien [25], see also Collet and Eckmann [4] and Preston [21].

Let f be a chaotic C3-mapping from a compact interval [a, b] into itself. Assume
that f satisfies the following conditions: (i) f has one critical point c which is
nondegenerate,fis increasing on [a, c] andfis decreasing on [c, b], (ii) f(a) =f(b) a,
(iii) f has a negative Schwarzian derivative, i.e. f’"(x)/f’(x)-3/2[f"(x)/f’(x)]2<0
for all x [a, b]\{c}, (iv) f has an asymptotically stable periodic orbit, (v) f’(a)> 1.
Then the set of points, whose orbits do not converge to the asymptotically stable
periodic orbit, has Lebesgue measure zero.

Remark. If one omits condition (v), then the conclusion above need not be true,
e.g. if f’(a) < 1 and f(f2(c))=f2(c), f’(f2(c)) > 1 (cf. Guckenheimer [6]).

Now we will recall a result which is due to Henry [8]: Let f: ]0, 1[ - be defined
by f(x) Ax(1 -x) for some A > 4. For almost all (in the sense of Lebesgue measure)
x ]0, 1[, some iterate of x under f is not in ]0, 1[.

This paper deals with iteration of chaotic maps from a nontrivial interval into
itself which may have many critical points. It will turn out that the two results mentioned
above are special cases of the obtained results in this paper.

Our first result is the following theorem.

* Received by the editors May 29, 1984; accepted for publication (in revised form) July 26, 1986. This

research was supported in part by Netherlands Organization for the Advancement of Pure Research (Z.W.O.),
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 499

THEOREM A. Let f be a mapping, of class C l+a for some positive real number a,
from a nontrivial interval X into itself Assume that f satisfies the following conditions:

(i) The set of asymptotically stable periodic points for f is compact (if this set is
empty, then there exists at least one absorbing boundary point ofXforf).

(ii) The set ofpoints whose orbits do not converge to an asymptotically stable periodic
orbit offor to an (or the) absorbing boundary point(s) ofXforf is a nonempty compact
set, andf is an expanding map on this set.

Then we have
(1) The set ofpoints whose orbits do not converge to an asymptotically stable periodic

orbit offor to an (or the) absorbing boundary point(s) ofXforf, has Lebesgue measure
zero.

(2) There exists a positive integerp such that almost every point in X is asymptotically
periodic with (not necessarily primitive) period p, provided that f X is bounded.

Consequently, the set of aperiodic points for f, or equivalently, the set on which
the dynamical behaviour of f is chaotic, has Lebesgue measure zero.

Further we will show that the conditions in Theorem A are invariant under the
conjugation with a diffeomorphism; hence the conditions seem to be satisfactory for
theoretical purposes. On the other hand, we observe that the conditions (i) and the
second part of (ii) cannot be checked a priori; hence the conditions seem to be
unsatisfactory for practical purposes.

Now we will state our second result.
THEOREM B. Assume that f is a chaotic C-mapping from a nontrivial interval X

into itself satisfying the following conditions:
(i) f has a nonpositive Schwarzian derivative, i.e.,

f’"(x) 3 "[f"(x)"[2 <_- 0 for all x X with f’(x) O"
f’(x) 2 [.f’(x) J

(ii) The set ofpoints, whose orbits do not converge to an (or the) absorbing boundary
point(s) ofXforf is a nonempty compact set;

(iii) The orbit ofeach critical pointforfconverges to an asymptotically stable periodic
orbit off or to an (or the) absorbing boundary point(s) ofXfor f;

(iv) The fixed points off2 are isolated.
Then we have
(1) The set ofpoints whose orbits do not converge to an asymptotically stable periodic

orbit offor to an (or the) absorbing boundary point(s) ofXforf has Lebesgue measure
zero;

(2) There exists a positive integerp such that almost every point in X is asymptotically
periodic with (not necessarily primitive) period p, provided that f(X) is bounded.

COROLLARY. Assume that f:N-> is a chaotic polynomial mapping satisfying the
following conditions:

(i) The orbit ofeach critical point offconverges to an asymptotically stable periodic
orbit off or to an (or the) absorbing boundary point(s) for f;

(ii) Each critical point off is real.
Then we have

f satisfies the assumptions (i)-(iv) of Theorem B.
We note that the Schwarzian derivative can be computed for any C mapping,

and that the condition "nonpositive Schwarzian derivative" is not invariant under
conjugation with a ditteomorphism.

Finally, we note that, for any fixed mapping from a nontrivial interval into itself
with finitely many critical points, it may be difficult to check condition (iii) of Theorem
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500 H.E. NUSSE

B by using a calculator, since the periods of the asymptotically stable periodic points
may be very large.

2. Simple examples. This section is devoted to some very simple examples; we
restrict ourselves to those examples appearing in the literature.

Example 1, X=[-1, 1],f:X--> X is defined byf(x)=3.7Olx3-2.7Olx. It can be
verified that f has two asymptotically stable periodic orbits with period three.

Since f has a negative Schwarzian derivative and f’(1) =f’(-1)> 1, we have by
Theorem B (or by the corollary) that almost every point in X is asymptotically periodic
with period three.

Example 2. X=R,f:X->X is defined byf(x)=ax3+(1-a)x with a>4. Note
that f has no asymptotically stable periodic points and note that ]-,-1[ [_J ]1, [ is
the union of the direct domains of attraction of the two absorbing boundary points of
X for fi By the theorem, the set of points whose orbits are bounded has Lebesgue
measure zero.

Example 3. Let f be a chaotic map of class C from a compact interval [a, b]
into itself with the following properties (cf. Collet and Eckmann [4, p. 119]): (1) f has
one critical point c which is nondegenerate, f is strictly increasing on a, c] and strictly
decreasing on [c, b]; (2) f has a negative Schwarzian derivative; (3) the orbit of c
converges to an asymptotically stable periodic orbit of f with smallest period p, for
some positive integer p. Since the existence of an asymptotically stable fixed point in
[a, f2(c)[ has not been excluded (see Collet and Eckmann [4, p. 95]) the following
cases can occur:

(a) f has an asymptotically stable fixed point in [a, f2(c)[ andf has an asymptoti-
cally stable periodic orbit which contains the critical point in its direct domain of
attraction.

(b) f has an asymptotically stable fixed point in [a,f:Z(c)[ and the orbit of the
critical point converges to this stable fixed point. Furthermoref has 2 unstable periodic
points with period n for each positive integer n.

(c) f has no asymptotically stable fixed point in [a,f:(c)[; consequently, the
critical point is in the direct domain of attraction of the asymptotically stable periodic
orbit. (This occurs if e.g. f has at most one fixed point in [a, c].)

The map f satisfies the conditions of Theorem B and we have that almost each
point in the interval [a, b] is asymptotically periodic with period p.

3. Definitions and notation. Fix a nontrivial interval X c R. Let f: X-> X be a
differentiable (noninvertible) mapping. For any positive integer n, the nth iterate of
f, denoted byfn, is inductively defined byf" =f f"-, withfo as the identity mapping.
For any point x X the orbit of x under f is the set {f"(x); n [3 {0}}.

Assume that Y is a nonempty subset of X. Fix a positive integer n. The image of
Y under f", denoted by fn (y), is the set {f" (x); x Y}, the pre-image of Y under
fn, denoted by f-n(y) or by (f")-(Y), is the set {x X;f"(x) Y}. Y is called a
positivelyf-invariant set iff(Y) c Y; Y is called a negativelyf-invariant set iff-(Y)
Y; and Y is called a (completely)f-invariant set iff(Y) c y and f-l(y) y. We write
C1 (Y) for the closure of Y, Bd (Y) for the boundary of Y, and Int (Y) for the interior
of Y.

Let D be any subset of Y. We denote the complement of D in Y by Y\D, and
we denote the Lebesgue measure of D, when D is a Lebesgue measurable set, by
/z(D). D is a component of Y, if it is a maximally connected subset of Y. Assuming
that D is a component of Y, then D is called trivial when/z(D) 0, i.e., D consists
of one point.
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 501

A fixed point x off is called Lyapunov stable if for every open (in X) neighbour-
hood V of x, there exists a neighbourhood U of x such that fk(u)c V for each
positive integer k. A fixed point x of f is called asymptotically stable if the following
conditions hold: (i) x is a Lyapunov stable fixed point of f; (ii) there exists an open
(in X) neighbourhood U of x such that U\{x} does not contain fixed points of the
mapping f or f2. A fixed point x is called unstable if it is not asymptotically stable.

Assume that Xo X is an asymptotically stable fixed point of f. The domain of
attraction of Xo is the set of points whose orbits converge to Xo; this set is open in X.
The direct domain of attraction of Xo is the component of the domain of attraction of

Xo containing Xo. If the closure of the direct domain of attraction is contained in the
interior of X, then we have: (i) the direct domain of attraction of Xo is mapped into
itself under the map f; (ii) the boundary of the direct domain of attraction is mapped
into itself under the map f; moreover, for u in the boundary of the direct domain of
attraction of Xo we have: either u is a fixed point off, or f(u) is a fixed point off, or
u is a fixed point off2.

A point x X is called a periodic point forf with period p, for some positive integer
p, if fP(x)= x (i.e. if x is a fixed point of the mapping fP). The period is called a
primitive period, if it is the smallest one. A point x X is called an asymptotically stable
periodic point for f with period p, if x is an asymptotically stable fixed point of the
mapping fP.

A periodic point x for f with period p in the interior of X is called one-sided
asymptotically stable if there exists a positive real number e such that either
limn_. fnp (y) X for all y [x, x + e[ and [fP (y) x] > lY x[ for all y ]x e, x[, or
lim,_,f"P(y)=x for all y]x-e,x] and [fV(y)-xl>ly-x[ for all y]x,x+e[.

A point x X is called an eventually periodic point for f with (eventually) period
p, for some positive integer p, if there exists a periodic point q for f with period p and
a positive integer n such that f"(x)= q.

A point x X is an asymptotically periodic point for f if lim,_. f""(x) exists for
some m ; a point x is an aperiodic point for f if the following two conditions are
satisfied: (1) x is not an asymptotically periodic point and (2) the orbit of x is bounded.
The map f is called chaotic if there exists at least one aperiodic point for f.

A point x ( {+o} {-})\X is called an absorbing boundary point of X for
f with period p, for some p { 1, 2}, if there exists an open set U c X such thatfpk(y) x
for k oo for all y U. Assume that Xo is an absorbing boundary point of X forf with
primitive period p with p 1 or p 2. The set {y X;fP(y) Xo for k oo} is called
the domain ofattraction of Xo. The component of the domain of attraction of Xo which
has Xo as a boundary point is called the direct domain of attraction of Xo.

A point x X is called a critical point for f if f’(x)=0. For any critical point x
for f, the value f(x) is called a critical value for f. The set consisting of all critical
points for f is called the critical set of f.

We write the symbol II for disjoint union, the symbol ff] to indicate the end of a
proof, and finally

Per (f): the set of periodic points for f,
Crit (f): the set of critical points for f,
p(q): primitive period of q, with q Per (f).

4. Preliminaries.
A. We fix a nontrivial interval X c R; let f: X-X be a fixed chaotic mapping.

In this subsection we assume that f satisfies the following conditions:

(4.1) (i) f C+’(X, X) for some a >0;
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502 U.E. YUSSE

(ii) the set of asymptotically stable periodic points for f is compact;
(iii) the boundary of X has a neighbourhood, denoted by Unax, consisting

of two components of the union of the domains of attraction of the
asymptotically stable periodic points for f and the absorbing boundary
points of X for f

The set of asymptotically stable periodic points for a mapping is not necessarily
finite, even if the periods are bounded or the set of asymptotically stable periodic
points has a compact closure in X. The set consisting of the asymptotically stable
periodic points for f and the possible present absorbing boundary points is finite,
because (1) if the set of asymptotically stable periodic points is not empty then it is
finite since it is discrete and it is assumed to be compact and (2) there are at most two
absorbing boundary points. Consequently, the smallest common multiple of the primi-
tive periods of the asymptotically stable periodic points is well defined, provided that

f has at least one asymptotically stable periodic point.
We will study the set of points in X, whose orbits do not converge to an asymptoti-

cally stable periodic orbit of f, or to an (or the) absorbing boundary point(s) of X for

f In other words, we will study the complement of the union of the domains of
attraction of the asymptotically stable periodic points for f and the domain(s) of
attraction of the absorbing boundary point(s) of X for f We define:

(4.2) Let Do be the union of the direct domains of attraction of all asymptotically
stable periodic points for f and the absorbing boundary points of X for f
We write Ao for X and we write A1 for the complement of Do in X. We
define by induction Ak+l--{XEAk; fk(x) E A1} for each positive integer k.
For each kEN we define Dk {XEAk; fk(x) E Do}. Finally we set Aoo(f)

k=O Ak.
We note that A(f) includes the aperiodic points for f, and that the sets Aoo(f)

and X\Aoo(f) are completely f-invariant sets. If X is compact, and f is a chaotic
mapping then A(f) is a nonempty compact set.

Now we will investigate some properties of the defined sets A(f) and Dk for
kU{0}.

LEMMA 4.3. For any nonnegative integer k, we have

(i) Ak Ak+l [-J Dk,
k

(ii) Ao Ak+l II [_.J D;.
j=0

Proof Let k be any fixed nonnegative integer. Then

Ak+I {x E Ak; fk(x) E A1}

{x E Ao; fJ(x)EA1 for all j, O<-j<=k},

i.e., Ak+l is the set of points, which will be mapped into A1 under the map fk.
D {x E ak; fk(x) E Do}

{x E Ao; fJ(x) : Do for all j, 0-<j _-< k- l, f(x) E Do},

i.e., D is the set of points in Ag that will be mapped into Do under the map f.
(i) A+l f] Dg , trivial. Splitting the set A in the following way:

Ak {x E Ak’, fk(x) E 41} U {X E Ak; fk(x) E Do},

we get Ak Ak+l U Dk.
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 503

(ii) Ak+ ["l (U;_-o Dj)= , trivial Splitting the set Ao as follows"

Ao {x Ao; fk(x) A1} U {x Ao; fk(x) Ao\A1},

we obtain

Ao=Ak+IU DoU U {xAo; fJ(x)A for all j, O<=j<=i-l, fi(x)Do}
i=1

=Ak+lDoU U {xmi; fi(x)Do}=Ak+U
i----1 i=0

LEMMA 4.4. For any positive integer k and any nonnegative integer n, we have:
(i) fk(a,+k) a, fqf(X),
(ii) fk(D,+k) D, fq f(X).
Proof Fix any n, k as in the lemma.
(i) By definition we have An+k--{xGAn+k-, fn+k-l(x) A }. It follows that

An+k {X An; fk(x) An}. Since fk(An+k) Cf(X we obtain fk(An+k) An fq f(X).
fn+k(ii) By definition we have Dn+k {x An+k, (X) Do}. It follows that Dn+k

{xA,,;fk(x)A, and fn(fk(x))Do}. Since fk(D,+k)=f(X), we get fk(Dn+k)=
Dn nf(x), n

Note that, for each positive integer k, the set Ak+ is the pre-image of A under
fk, but the set Dk is a subset of the pre-image of Do under fk.

LEMMA 4.5. There exists a positive integer R such that AR is compact.
Proof Evidently, there exist m N such that Und(X) U k"=o Dk. Then the set A,+

is bounded. By definition, the set A,,+I is closed. Hence, AR is compact with R
m+l. [1

LEMMA 4.6. Let n be any fixed positive integer. Let S be a component of An. We
assume that the interior of S is nonempty. For any k we have

IfS (3 U Dn+j (, then S is a component of An+k.
j=0

Proof Fix any n . Assume that S is a nontrivial component of An. Recall from
Lemma 4.3 the following properties: Ao A,,/I II I"=o D and A,, A,/IID,, for
each rn U {0}. Obviously, we have An An/kl II I=o Dn+ for every k . Assume

k-Ithat k t for which hold that S 0 IIj=o Dn+j . Then S is a component of An+k,
since it is a nontrivial component of An. rq

LEMMA 4.7. Let S be a nontrivial component ofAn, for some fixed n , such that
S f-) UBax) . Assume that there exists a nonnegative integer k such that S
and S f) Ik=o Dn+- . Then S is a component of An/k and there exists a component
D of Dn+k such that D Int (S).

Proof Fix any n . Let S be a nontrivial component of An, such that S f3 UBax). Then the boundary points of S are pre-images of unstable periodic points for f In
other words, the boundary points of S are eventually periodic points for f Hence
Bd (S) 71X\A(f) (.

Let kU {0} be given such that S fql I_o Dn+j_ =C and Sf’)Dn+k f. By
Lemma 4.6 we have that S is a component of An+k. Since An+k An+k+llDn+k, we
have that S is not a component of An+k+.

We conclude that S is a component of An/k and that D c Int (S) for some
component D of Dn+k.

LEMMA 4.8. For any positive integer k we have:
(i) Bd (Dk) {x Ak; fk(x) 6 Bd (Do)},
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504 H.E. NUSSV.

(ii) Bd (Ak+,) Bd (Ak) L3 Bd (Dk),
(iii) Bd (Ak+)= L3=o Bd (Dj),
(iv) Bd (Ak) is positively f-invariant.
Proof Apply Lemmas 4.3, 4.4, 4.6 and 4.7.
Remark 4.9. (i) Assume that f has at least one asymptotically stable periodic

point. Let the integer p be the smallest common multiple of the periods of the
asymptotically stable periodic points for f. For any component S of An for n -> R with
R as in Lemma 4.5 we have that each boundary point of S is an eventually periodic
point for f with (eventual) period 2p.

(ii) If f has no asymptotically stable periodic points, then each boundary point
of such a set S as in (i) is eventually periodic with period two.

In order to be able to determine the Lebesgue measure of the complement of the
union of the domains of attraction of the asymptotically stable periodic points for f
and the absorbing boundary points of X for f, we give the following definition.

DEFINITION 4.10. The mapping f is called eventually expanding, if we can find
positive integers N and M such that ](fN)’(x)]> 1 for all x

We first formulate a lemma which says that the property "eventually expanding"
is invariant under conjugation with a ditteomorphism.

LEMMA 4.11. Let h X- be a diffeomorphism. Iff is eventually expanding, then
the mapping g: h(X)- defined by g(x)= h f h-(x) is eventually expanding.

Proof Assume that h X is any fixed diffeomorphism, and that f is eventually
expanding. Let the positive integers N and M be as in Definition 4.10. By Lemma
4.5 let k be the smallest nonnegative integer such that AM+k is compact. We put
K=min {lfv)’(x)l; X eAM+k}, c,=min {lh’(x)l; x eAM+k} and c2=min {lh-1)’(x)l;
x e h(AM/)}. Select the smallest seN such that ClKC2 > 1. For each x h(An,/k) we
now get, using the chain rule:

I(g)’(x)l I((h ofo h-1)N)’(x)l- I(h ofNo h-)’(x)l
s-1

Ih’(fN h-’(x))l" H I(fN)’(fN h-l(x))l I(h-)’(x)]
j=0

>-- cKSc2 > 1.

Hence g is eventually expanding. [3

We will give a second definition of an expanding mapping on suitable subsets of
X. This definition is similar to one commonly used for expanding diileomorphisms in
the theory of dynamical systems. Recall that a subset A of X is called positively
f-invariant if f(A) c A.

DEFINITION 4.12. Assume that A c X is a closed positively f-invariant set. f is
called an expanding map on A, if we can find a constant C > 0 and a constant K > 1
such that I(fn)’(x)l >- C. K for every positive integer n and each point x A.

In spite of the fact that the set AM in Definition 4.10 is not a positively f-invariant
set, we will show that Definitions 4.10 and 4.12 have something to do with each other
by taking A- A(f) in Definition 4.12. Before we can do this, we have to prove that
A(f) is a compact positively f-invariant set.

LEMMA 4.13. A(f) is a compact positively f-invariant set.

Proof The positive invariance follows from the definition (4.2) of A(f); the
compactness follows from Lemma 4.5. [3

Note that Ao(f) is a compact (completely) f-invariant set.
LEMMA 4.14. The following conditions are equivalent:
(i) f is an expanding map on Ao(f).
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 505

(ii) f is eventually expanding.
Proof (i)=>(ii): Assume that f is an expanding map on A(f). Select constants

C and K as in Definition 4.12. Let N be a positive integer satisfying C. KS> 1;
assume N is minimal. We write Us for an open neighbourhood of Ao(f) such that
I(f’)’(x)l > 1 for all x Us. Choose the positive integer M minimally such that
AM c Us, which exists because the Ak form, from a certain nonnegative integer, a
decreasing sequence of compact sets. We conclude that f is eventually expanding.

(ii)=>(i): Assume that f is eventually expanding. Using (4.1) (iii) and Definition
4.10, we find positive integers N and M such that AM is closed and I(f)’(x)[ > 1 for
all x AM. We write c min {[f’(x)l; x AM} and Ko min {[(f")’(x)[; x AM}. Note
that c > 0 and Ko> 1. If c > 1 it is obvious that f is an expanding map on A(f). So
we assume from now on c =< 1.

Let a positive integer n be given. We write n sN+ for some nonnegative integers
s, with 0 -< <= N 1. Recalling that Aoo(f) is a positively f-invariant set, we have for
each x A(f):

N

I(f")’(x)lg;c’e[gg]. c e[K/’]"
c

Choosing C [c/Ko]s and K KIs, we get the result that f is an expanding map
on A(f). l-I

B. Let f:X X be a chaotic mapping of class C from an interval X into itself.
In this subsection we assume that f has a nonpositive Schwarzian derivative Sf, i.e.,

f’"(x) 3 [f"(x)]Sf(x)- ],- 2 [.f’(x)J <-- 0 for all x e X\Crit (f).

From results due to Singer [22] (see also Collet and Eckmann [4]) we have:

(i) The nth iterate f" off has a nonpositive Schwarzian derivative, for each n N;
(ii) If the Schwarzian derivative of f is negative, then If’l has no positive local

minima in the interior of X (this follows from the fact that f’ and f’" must have

opposite signs at a critical point of f’). This second result also holds for maps with

nonpositive Schwarzian derivative.
LEMMA 4.15. Assume that Y X is a nontrivial closed interval such that Int (Y)f’l

Crit (f) . Then If’l assumes its minimum value at a point of the boundary of Y.

Proof. Let Y be as in the lemma. We have either f’(x)> 0 for all x e Int (Y) or

f’(x) < 0 for all x e Int (Y).
First we consider the case f’(x)>0 for all x elnt(Y). We write m=

min {f’(x): x e Y}. Suppose that f’(z)> m for each z e Bd (Y). Let [a, b] be a com-

ponent of the set {x e Y: f’(x) rn}.
Let e > 0 be such that [a e, b+ e]c Int (Y), and rn <f’(x) <f’(z) and f"(x) 0

for all x e [a- e, a[ U ]b, b+ el, z e Bd (Y). Such an e exists, because otherwise [a, b]
would not be a component of {x e Y: f’(x)= m}.

Let al be the slope of the straight line ll through the points (a e, f(a e)) and
((a+b)/2,f((a+b)/2)); let a2 be the slope of the line 12 through the points ((a+
b)/2,f((a + b)/2)) and (b+ e,f(b+ e)). We write c =min {a, a2}. Let (xl,f(x)) and
(x4,f(x4)) with a-e =< Xl < x4 =< b + e be the intersection points of l with the graph
off with l,, ll if a a and l,, 12 if a c2.

Let 8>0 be such that m+2<-c. We write 13 for the line through ((a+
b)12,f((a + b)/2)) with slope m + 8. Let (x2,f(x2)) and (x3,f(x3)) with X < X2 < X < X4
be the intersection points of 13 with the graph of f
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506 H.E. NUSSE

From the construction above we have"

f(x4) f(x) f(x3) f(x)
c, m + 6,

f(x4)-f(x3)
2> ce and

24 X X3 22 X4 23
f(x2)--f(Xl)>a"

22 X

Since m + 6 < m +2 -< a we obtain

this implies

f(x4) f(x,) f(x3) f(x2) f(x4) f(x3) f(x2) f(Xl)
X4 X1 X3 X2 X4 X X2 X

<a(m+6)-a.

(,)
(X4- Xl)(X3- X2)

>
f(x4) --f(Xl) f(x3) --f(x2)

(X4-- X3)(X2-- X1) f(x4) --f(x3) f(x2) --f(x,)"
Following Allwright [1] (see also Collet and Eckmann [4] and Preston [21]) we have,
since Sf(x) <= 0 for all x Int (Y),

(, ,)
(Y4-- Yl)(Y3-Y2) < f(Y4) --f(Yl). f(Y3) --f(Y2)
(Y4 Y3)(Y2 Y) f(Y4) -f(Y3) f(Y2) -f(Yl)

for all y, y2, Y3, Y4 C Int (Y) with Yl <Y2 <Y3 < Y4- Since (.) contradicts (**), we
conclude that f’ assumes its minimum value at Bd (Y).

Now we consider the case f’(x) < 0 for all x e Int (Y). Because Sf(x) Sg(x) for
all x e Int (Y) with g -f, we get that f’ assumes its maximum value at Bd (Y) using
the obtained result for -f’.

Conclusion: ]f’] assumes its minimum value at the boundary of Y.
The direct domain of attraction of each (one-sided) asymptotically stable periodic

orbit off with period ->3 contains at least one critical point of the map f. This property
follows from the next lemma.

LEMMA 4.16. For each (one-sided) asymptotically stable periodic point q forf with
inf {x" x Per (f)} < q < sup {x" x Per (f)} we have" the direct domain of attraction of
the orbit of q contains at least one critical point off.

Proof. Iff has a negative Schwarzian derivative, then it is the result due to Singer
[22]. In the case that Sf(x)= 0 for at least one x in X\Crit (f), combine Singer’s proof
and Lemma 4.15.

COROLLARY 4.17. Let q be an (one-sided) asymptotically stable periodic point for
f with period p(q).

(i) If the direct domain of attraction of the orbit of q contains no critical point of
f, then p(q)= 1 or p(q) =2; moreover q is one of the end-points of the set of periodic
points .for f.

(ii) Fix some positive integer N. Iff has N critical points, then f has at most N+ 2
(one-sided) asymptotically stable periodic orbits.

Proof. The proof is left to the reader.
Remark. If the orbit of each critical point of f converges to an asymptotically

stable periodic orbit of f or to the possible present absorbing boundary of X for f,
then it follows from Corollary 4.17 that f has at most two one-sided asymptotically
stable periodic points.

LEMMA 4.18. For each periodic point qforfwith period p(q) -> " and (f2p(q)),( q) 1
we have: either q is one-sided asymptotically stable or q is asymptotically stable.

Proof Let q be as in the lemma. Suppose that q is neither one-sided asymptotically
stable nor asymptotically stable. Then (f:Zp(q)), does not assume its minimum value at

the boundary of small interval around q. This contradicts Lemma 4.15.
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 507

5. Proof of Theorem A. Since the proof of the theorem is quite long, we will do
it in several steps. Let f be a chaotic map that satisfies conditions (4.1). Assuming that
f is an expanding map on A(f), we now can formulate some lemmas that lead to
the result that the Lebesgue measure of the set A(f) is zero.

First, we will show that for each nonnegative integer n, we may write Dn as a
disjoint union of finitely many intervals, that are open in X, and An as a disjoint union
of finitely many (trivial or nontrivial) intervals that are closed in X.

LEMMA 5.1. Assume that f is eventually expanding. For any nonnegative integer n,
there exist nonnegative integers N(Dn), N(An) and T(An) such that the set Dn consists

ofN Dn components and the set An consists ofthe union ofN(An) nontrivial components
and T(An) trivial components (points).

Proof. We assume that f is eventually expanding. Since f is chaotic, we have that
Int (An) for each n N and Crit (f) .

We write UBdX) for the open neighbourhood of the boundary of X as in (4.1)
(iii). Assume that m is a nonnegative integer such that UBdX) (-J i"=o Di. We fix positive
integers N and M as in Definition 4.10. It is no restriction to assume that M >_- m + 1.

Write U {D; D component of I1 Di, D f’) Crit (f) }. The set U consists
of finitely many components of the set I1 D, since Crit (f) fq X\ UadX) is compact
and Crit (f) . Let N(U) denote the number of elements of U.

Let n be any nonnegative integer. Let N(Do) denote the number of components
of the set Do. Recall that Do has finitely many components, and that f is a monotone
mapping on the components of X\ U. Using that f(Dn/)= Dn fqf(X) (see Lemma
4.4), one obtains that (N(U)+ 1) n. N(Dn) an upper bound for the number of com-
ponents of the set Dn. Consequently, the set An has finitely many components, fi

According to Lemma 5.1, we write for each nonnegative integer n"

(5.2) D. Dn;i, A. A.;,I W(A.) with W(A.)
i=1 i=1

is the set consisting of the T(An) trivial components of An.
Further, we write

(5.3) The number p for the smallest common multiple of the periods of the
asymptotically stable periodic points for f multiplied by two, provided that
f has at least one asymptotically stable periodic point, and p 2 if f has no
asymptotically stable periodic points.

In the next lemma we prove that there exists a positive integer P such that, for
each positive integer n that is sufficiently large, we have the property: "if A is a
nontrivial component of An, then A is not a component of An+p or putting this in
another way" "if A is a nontrivial component of An, then A f-)t.J _+oP D ."

LEMMA 5.4. Let f be eventually expanding, and let M be as in Definition 4.10 and
p as in (5.3). Then for each integer n >-M, and for each nontrivial component A of
there exists an integer j, 0 <-_j <= p and a component D of Dn+ such that D A.

Proof Let the mapping f and the integers M and p be as in the lemma. Let the
integer N be as in Definition 4.10. Fix any integer n >= M. Pick some nontrivial
component S of An. It is no restriction to assume that S fq Uadx)= , where
denotes the open neighbourhood of the boundary of X as in (4.1)(iii).

There exists an integer i, 0 -< -< n, and a point x Bd (Do) such that xi Bd (fi(S)).
Choose minimal with this property. Assume that u Bd (S) satisfies f(u)--xi. Let
v Bd (S) be such that v u.
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508 H.E. NUSSE

We write fi(S)=[8, x] where 8 =f(v). Recall that fP is a monotone mapping
on a neighbourhood of xi and from Remark 4.9 that fP(fP(xi))=fP(xi). For each
positive integer m, there exists a one-sided neighbourhood of x, say U,, (x), such that
fr(x)A1 for all x Um(X), for all O<=r<=m; consequently f(v)# x.

By a similar argument as above there exists an integer k, _-< k _<-n (because was
chosen minimally), and a point Yk Bd (Do) such that fk(v)=Yk. Note that x Yk.

For real numbers a,/3 we write [a,/3 a, fl] if a _-< fl and a,/3 ] [fl, a if a >_-/3.
Suppose that ff(yk,fk-(X)])fq’Do=f for all integers j, O <-j <- p then

ff(yk,fk-’(X)]) f’) lifo D for ail nonnegative integersj. In particular we now have
(i) fP’(fP(Yk)) fP(Yk);
(ii) fp(fp+k-,(X,) p+k-,.f (xi);

(iii) fP restricted to [fP(yk),fP+k-i(Xi)] is strictly monotone.
This implies f2P+k(s)(q Do ; and this cont’adicts the above result that ff+k(s)
Do for all nonnegative integers j. We conclude that there exists an integerj, 0 =<j =< p
such that ff(yk,fk-(X,)]) f3 Do

From the facts ykBd (Do), ykC:Do, fk-(xi)eBd (Do), and fk-(x)_Do we
conclude that there is a component of Do, say D, such that Dcff(yk,fk-(X)].) for
some integer j, 0--<j =< p. l-1

Assume that D and A are as in Lemma 5.4. If we could show that I(D)/tx(A)>= e
for some fixed e > 0, then from the properties (i) tz(Dm) and (ii)
lim,_ m=,/x(D,,) =0 (see proof of Lemma 5.6) the desired result follows. In the
lemma that is stated below, we show that there exists such a uniformly defined lower
bound.

LEMMA 5.5. Iff is eventually expanding, then we can find a number e > 0 such that
for each nonnegative integer n, for each nontrivial component A ofA,, and any component
D of D, satisfying D A, we have I(D)/ Ix (A) >- e.

Proof. Assume that f is eventually expanding. Let the integers N and M be as
in Definition 4.10; using (4.1)(iii) without any restriction, we may assume that the set
AM is compact. We set K--min {[(f)’(x)l; x AM}. Note that K > 1.

Let the integer n > M be fixed. By Lemmas 4.6 and 5.4 we can fix an integer l(n),
1 <- l(n) <-_ N(D.), and an integer k(n), 1 <- k(n) <- N(A.), such that D,;i(,) A,;k(,),
where N(D.) and N(A.) are as in (5.2).

Set for each integer j, M / 1 <_-j <_- n"

A_,;k(_,)=f(A;k(j)) and D_,;,(_,)=f(D;,()).

Applying the mean value theorem, we can find for each integer j, M + 1-<_j =< n, real
numbers aj 6 A;kj) and d D;t), such that

If’(a)l (Aj;k(j))= p(A_,;(_,)),

If’(d)l (D;/)= (D_,;,_,).

This leads to

(5.5.1)
tZ(DM;I(M))
tZ AM;k(M

or

(5.5.1’) I(D.;t(.))= t.I,(DM;I(M))
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 509

Let a > 0 be fixed. Assume that the mapping f’ is H61der continuous with positive
constant H and positive exponent a. We get for M + 1 _-<j _-< n

(5.5.2) 1 f’(,a) f’(4)-f’(a) < Hidi a[ <
H. [/x(A;o))]

f’() f’(d) =min {If’(x)l; x e A} min {It’(x)[; x e A}"
From the property [(f)’(x)l>-K for all xeA it follows that

(5.5.3) tx(A,;k(,))<--K 1-("-M)/N" Ix(AM).
Using (5.5.2) and (5.5.3), we obtain

(5.5.4)

f’(an)
f’(dn)

H
min {If’(x)[; x AM}

H
< [/,(AM)]a. ga(1-(n-M)/N).
-min {If’(x)l; x e

We write

H
K K,

min ilJ)l"’"x"; x e AM’’I [/z(AM)] C,

and M sN+ for some nonnegative integers s, t, 0-< =< N- 1. We assume that
/3 >-s+ 2; then using (5.5.4), we get

/3N

j=(s+l)N+l

f’(aj)
f’(di)

-1 N

j=s+l i=1

/3--1
<-Nc E

j=s+l

f’(aiv+,
f’(41 +i)

/3--1 N
-< E E d
j=s+l i=1

E KS+l-J-
Nd2

j=s/l K-1

Conclusion:

(5.5.5) The series Y 1-
f’(aj)

is bounded.
)=M+, f’(di)

Choose an integer L> M such that /--M/ <__ 1. From (5.5.4) we conclude:

(5.5.6) 1 </- for each integer m > L.
If’(dm)

Put Pm=ll-lf’(am)/f’(dm)][ for each integer m>-L. Note that 0--<pm<l for m>-_L.
For each integer m _-> L we have:

(5.5.7) 0 <-- {pm -lOg (1 pm)[ (pm)k
<Pro (pm)k<--Pm , -k__ Pm

k=2 k k=l k=l K-1

Using (5.5.5) and (5.5.7), we have X=L [p. -log (1-p)[ is a convergent series. Now
we apply (5.5.5) again and we get that the series Y.= log (1--Pro) is convergent. This
implies log I-I=L (1 --Pro) is convergent; consequently I]= (1 -Pro) > 0. We conclude:

(5.5.8) lim 1-I f’(a > 0.
mj=M+ [f’(dj

Thus from (5.5.1) and (5.5.8) we have the following:

(5.5.9) There exists a real number e > 0 such that for all integers m => M+ 1, we
have/z (D)//z (A) ->_ e for all components A c Am, D Dm with D

LEMMA 5.6. Iff is eventually expanding, then lim,_oo/x (An) 0.
Proof. We assume that f is eventually expanding. Let the integers N and M be

as in Definition 4.10 such that AM is compact. We put eo> 0 as in (5.5.9).
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510 H.E. NUSSE

Using Lemma 5.4 and (5.5.9), we get
n+p

(5.6.1) /x (A,) <= e1 E (D.,) for each integer n >- M.

By (4.3)(ii) we obtain for each positive integer n"

n--1 n+p

Ao A, II [_] Di and Ao= A,+p+l__J [_J Di.
=0 =0

Consequently
n--1 n+p

A,,I II_J Di=A,+p+ll Di
=0 =0

for each n N.

We conclude that
n+p

(5.6.2) A. An+p+ [I U D,,
i=rl

for each positive integer n.

The sequence {(A,)},__ is monotone decreasing and bounded. So lim,_.oo/x (A,)
exists; call it 3’. Then, for each fixed integer k, we have" lim,_./z(A,)=y=

n+p
lim,_oo z(A,+k). From (5.6.2) we get/x(A,) (A,+p+l)+i= x(Di) for each neN.
Hence

n+p

(5.6.3) lim Y /x(D)=0.
i=n

Now we use (5.6.1) and (5.6.3); this gives

O<- y= lim tx(A")<- lim {e’"Pl(Di)} =0"

Conclusion:

Proof of eorem A: (1) We assume that X c N is a nontrivial interval. Fix some
positive real number . Let fe CI+(X, X) satisfy the propeies (i) and (ii) of the
theorem.

For each n e N we have that the compact set A(f) is a subset of A,, with A(f)
and A, as in (4.2).

We write Xo min {x
[Xo, Yo] , then it is clear that
[Xo, Yo] , and that Xo Yo.

We consider the following cases:
(a) Bd (X)
(b) Bd (X) a(f) {Xo};
(c) Bd (X) a(f) {Yo};
(d) Bd (X) a(f) {Xo, Yo}.
Case (a): Assume that Bd (X) A(f) ; then we have A(f) c Int (X).

Applying (4.1), Lemma 4.14 and Lemma 5.6, we obtain the result.
Case (b): Assume that Bd (X) [Xo, Yo] {Xo}. We define u rain {x e [Xo, Yo];

x e Grit (f)}, u2 min {f(x); u N x N Yo}, and u3 rain {x e [Xo, Yo]; x is asymptotically
stable periodic point off} provided thatf has at least one asymptotically stable periodic
point; fuher we write Um =min {u, u, u3}. Note that u> Xo and that f(Um) U.
The set Y, defined Y {x e X; x u} is a positively f-invariant set. Moreover, we
have that the set A(f) Y is a subset of Int (Ya). As in case (a) we obtain that
(a(f) Y)=0. Since a(f)= U,of-"(A(f) Y1)U {Xo} and the fact that the
restriction off to the set X Y1 is a homeomorphism, we get (A(f))=0.
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 511

Case (c): Assume that Bd (X) f’) [Xo, Yo] {Yo}. We define vl max {x e [Xo, Yo];
x e Crit (f)}, v2 =max {f(x); Xo<-X<= vl} and v3 max {x e [Xo, Yo]; x is asymptotically
stable periodic point off} provided thatf has at least one asymptotically stable periodic
point; further we write v4 max {v, v2, v3}. Note that v4 < Yo and that f(vM) -< v4.
The set Y2, defined by Y2 {xe X; x <- va4} is a positively f-invariant set. As in case
(b) we obtain/(A(f)) O.

Case (d): Assume that Bd (X)f-)A(f)= {Xo, Yo}. We define u,, as in case (b),
and we define v as in case (c). We write Y [Um, V4]. The set Y is a positively f-
invariant set, and we obtain tz(A(f)f’) Y)= 0. Observe that the restriction off to the
set X\ Y is locally a homeomorphism. Since Ao(f)= U =o f-"(A(f)f’) Y)U {Xo, yo}
we conclude that/x (a(f)) O.

(2) Apply (1) of Theorem A and (5.3).
6. Proof of Theorem Bo In this section we fix a nontrivial interval X [. First,

we assume thatf: X X is a chaotic mapping, for which the following conditions hold:

(6.1) (i) fe C3(X, X) and Sf(x) <= 0 for all x e X\Crit (f);
(ii) Crit (f) k=O Dk;
(iii) UBdX) is an open neighbourhood of the boundary of X which consists

of two components in the union of the domains of attraction of the
asymptotically stable periodic points for f and the absorbing boundary
points of X for f.

Remark. From the assumptions (6.1) and Corollary 4.17 it follows that f has no
one-sided asymptotically stable periodic points.

The first lemma gives the result that the set consisting of the asymptotically stable
periodic points for f and the absorbing boundary points of X for f is a finite set.

LEMMA 6.2. The set consisting of the union of the asymptotically stable periodic
points forf and the absorbing boundary points ofXforf is finite.

Proof The proof is left to the reader.
COROLLARY 6.3. The number p, the smallest common multiple of the periods of the

asymptotically stable periodic points forf multiplied by two, is well defined.
Remark. (1) The number of critical points of f in Lemma 6.2 need not be finite.

Consequently, the result is a generalization of maps having finitely many critical points
with negative Schwarzian derivative (see Singer [22] or Co|let and Eckmann [4]).

(2) Conditions (6.1) (i) and (ii) are not sufficient to imply that the number of
asymptotically stable periodic points is finite.

LEMMA 6.4. There exists a nonnegative integer N(f) such that, for each k e , we
have

Ak/Nf is compact;
(ii) Crit (fk) f3 Ak/NOr)= .
Proof By assumption (6.1) we can find a nonnegative integer N(f) such that

Crit (f)U UBdX)c t-Ju)k=o Dk. Assume that N(f) is minimal. Then Al+V)is compact
and since AI+NC) and t-J ucc)k--o Dk are complementary by Lemma 4.3, it follows that
Crit(f)fqA+Nr)=. By definition we have for each ken that the set Ak/ut) is
compact. By induction one obtains Crit (fk)f-)Ak/NCC)= for each k

LEMMA 6.5. For each ken there exists N(k)e such that I(fu))’(y)l> for all
y e Bd (Ak+uf)), with N(f) as in Lemma 6.4.

Proof Fix the integer N(f) as in Lemma 6.4 and the integer p as in Corollary
6.3. Fix any positive integer k. We write K=min {l(fP)’(x)l; x eBd (Do)flPer (f)}.
From (6.1) and Lemma 4.18 it follows that K > 1.

For each point y e Bd (Ak/Nr)) we have:

D
ow

nl
oa

de
d 

12
/1

8/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



512 n.E. NUSSE

(i) fk+N(f)+p(y) is a periodic point for f with period p;
(ii) [(fP)’(f+NCr)+P)’(y) >= K > 1.
Set Sg=min{l(fk+NCr)+P)’(y)l;YeBd(Ak+NCr))}. Choose a positive integer

satisfying Ks. sk>l. Then for each y eBd(Ak+Ntf)) we have fk+N(f)+p(y)
Bd (Ak+NCr)), since Bd (Aj)c Bd (Aj+I) and Bd (A) is positively f-invariant for each
positive integer j (see Lemma 4.8). We obtain

I(f’++cr)+)’(y)[ I(fo)’(/+r)+(y)) I(/+’cr)+’)’(y)l >- K s > 1.

We have, by setting N(k)=(#+l)p+k+N(f), I(f’())’(y)l> 1 for each ye
Bd (Ak+rcf)). E!

LEMMA 6.6. There exists a number e > 0 such that for each keN, and for all

Yk e Bd (Ak+rcr)) with the property

I(f)’(y)l min {l(f)’(y)l; y e Bd (ak+Ntf))}
we have: /x(D)> e/l(f)’(y)l, with D is a component of I{D,; O<=i<-k+N(f)-l}
satisfying Yk Bd (D), and N(f) as in Lemma 6.4.

Proof. Select the integer N(f) as in Lemma 6.4, and the integer p as in Corollary
6.3. We write V for the set which consists of the union of the critical set of f
together with all its forward iterates and the set of asymptotically stable periodic
points for f. Define Vo V f’l [Xo, Yo], with Xo min {x e X; x e AI/Ncr)}, Yo
max {x X; x e A+rcf)}.

We set ,=1/2inf{[x-yl;x Vo,yBd(A+cf))}. Note that 8>0 since Vo and
Bd (A+cf)) are disjoint nonempty compact sets.

Fix any k 1. Assume that a point Yk Bd (Ak+rcr)) is chosen such that [(fk)’(yk)[
min {[(f)’(y)[; y Bd (A+rcr))}. We set D for the component of the set U {Dj; 0_-<j <_-

k + N(f) 1 } satisfying y Bd (D).
Using (6.1) (iii), and Lemma 4.16 we get that the mapping f+cr)+ restricted to

D has a critical point.
We write e g/max {l(f’r)+)’(x)l x Bd (Arco) 1,31,3 k=OSCr)- Dk}. Let U c D be

an open interval with the following properties"
(1) ykeBd(U),
(2) U f’l Crit (fk/SCr)/p)
(3) Bd (U) f’l Crit (fk/Cr)/p)
We write Zk for a point in Cl (U) at which the map I(fk/rCr)/P)’l assumes its

maximum value.
Let Vm U be an open interval which has either the property (i) V U if Zk Yk,

or (ii)
(1) Zk ad (V),
(2) V f’l Crit (fk+N(f)+p)
(3) Bd (V) f’l Crit (fk+rcr)+p) rs if Zk S Yk.
From the choice of zk we obtain I(/++")’(x)l<-l(/+"+)’(z)l for all x e V.
Let W be the component of Ak+sCy containing Yk. From Lemma 4.15 and the

choice of Yk we have I(f)’(x)l >_-I(f)’(y)l for all x W. Applying Lemma 4.15 again
we have I(f)’(x)l>-I(f)’(z)l for all x in the interval WU U\V. In particular, we

have l(f)’(y)l _-> I(f)’(z)l.
We conclude"

It(D) > I,( U) >=
a/l(f"+,’),(f(z))l I(f)’(z)l

>_ e/l(f)’(y)l.
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ASYMPTOTICALLY PERIODIC BEHAVIOUR IN CHAOS 513

LEMMA 6.7. There exists a positive integer N such that I(f)’(x)l> 1 for all x
Av+rc(f), with N(f) as in Lemma 6.4.

Proof We assume that the integers N(f), respectively p, are as in Lemma 6.4,
respectively, Corollary 6.3. Set e > 0 as in Lemma 6.6. Choose L N such that e. L>
/(Al+vo)). We write Sk =min {l(fk)’(x)l; x Bd (A+r))} for each k N.

if Sl> 1 then If,(x)l > 1 for all xBd (Al+Vo)). Using Lemma 4.15 we have
[f’(x) > 1 for all x Bd (Al+vo)) and we are done. So we assume that s _-< 1.

We set N(1)= 1. Applying Lemma 6.5, we know there exists a nondecreasing
sequence {N(i)}i of positive integers, defined as follows by induction: if sN(i)_-< 1,
let N(i+ 1)> N(i) be minimal such that [(fN(i+l))’(x)l > 1 for all x Bd (A<,)+r)),
and if sv(i) > 1 set N(i+ 1)= N(i).

Suppose that for some positive integer i, we have s()_-< 1. Let k be any integer,
1 _-< k -< 1. We assume that Yr(k) Bd (Arc(k)+rcty)) satisfies [(fV(k))’(yrC(k)) SV(k).

We set U(k)for the component of LJ{Dj;O<-j<-N(k)+N(f)-I} such that
YN(k) Bd (U(k)). Let X(k) be a boundary point of UN(k) and XS(k) YN(k).

Then
(i) UN(k) UN(k+I) since [(fN(k+I))’(XN(k))I > 1,

[(f(+))’(Y(k))]> 1 and I(f(+))’(y(k+l))l<-I by using Lemma 6.5.

(ii) I(Urc(k))>--e/S(k)>--e by using Lemma 6.6.

Observe that U(k+l)CO{Dj; N(k)+N(f)<-j<-N(k+l)+N(f)-l}; hence
UN(k+I C AI+N(f).

We obtain: S(L+I)> 1, since e. L>/(A+f)), and consequently I(fN(L+))’(x)l.>
1 for all x As(L+l)+rc(f) by applying Lemma 4.15.

COROLLARY 6.8. f is eventually expanding.
ProofofTheorem B. We assume that X c R is a nontrivial interval. Letfs ca(x, X)

satisfy the assumptions (i)-(iv) of the theorem.
(1) For each n we have that the compact set Ao(f) in X is a subset of A,

with Aoo(f) and A, as in (4.2).
We write Xo min {x X; x Aoo(f)}, Yo max {x X; x Aoo(f)}.
We consider the following cases:
(a) ad (X) A(f) ,
(b) ad (X) Ao(f) {Xo},
(c) ad (X) A(f) {Yo},
(d) Bd (X) Aoo(f) {Xo, yo}.
Case (a): Assume that Bd (X)fq A(f) , then we have Aoo(f)c Int (X). Then

there exists n such that A, Int (X), consequently f has no one-sided asymptoti-
cally stable periodic points. Applying (6.1), Corollary 6.8 and Lemmas 4.3, 4.14 and
6.2, we obtain that f satisfies conditions (i) and (ii) of Theorem A. Consequently,
I(Aoo(f)) =0.

Cases (b), (c) and (d): Similar to the proof of cases (b), (c) and (d) of the proof
of Theorem A, provided that f has no one-sided asymptotically stable periodic points.

Now assume that f has at least 1 one-sided asymptotically stable periodic point.
From (6.1) and Corollary 4.17 it follows that the domain of attraction of such a
one-sided asymptotically stable periodic point consists of at most two components.
Let Y be the complement of the domain of attraction of the one-sided asymptotically
stable periodic points. The map f maps Y into itself and the restriction off to Y has
no one-sided asymptotically stable periodic points. Since the fixed points of f2 are
isolated, we can proceed as before. Note that for each x X\ Y the point x is
asymptotically periodic with period two.
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514 H.E. NUSSE

(2) This follows from the above result/(A(f)) =0 and Corollary 6.3.
Proof of the corollary. Let f: R R be a polynomial mapping of degree N+ 1 for

some N [, such that conditions (i) and (ii) hold.
Then f has a negative Schwarzian derivative (see Collet and Eckmann [4]). We

conclude: f satisfies conditions (i)-(iv) of Theorem B.
Remark. Assume thatf is a mapping as in Theorem B. For each x A(f) we have
(i) x C1 (LI .--o Crit (f")).
(ii) For every number K > 1 there exists Nt such that

I(f’)’(x)l > K.

These paradoxical properties cause the subtle proof.

7. Some eaaeludiag eammeats. Letf C(X, X) and Ao(f) is defined as in (4.2).
Remark 7.1. (i) The condition "f is expanding on Aoo(f)’" does not imply "if

f"(x) x then I(f")’(x)l 1."
(ii) The condition "iff"(x) x then 1" does not imply "fis expanding

on A(f)."
Question 7.2. Assume that f is expanding on A(f), and that A(f) is compact

in . Is it true that the set of asymptotically stable periodic points is compact? The
question can be answered affirmatively if periods of the asymptotically stable periodic
points are bounded.

Problem 7.3. Assume that f is a chaotic C3-map from a nontrivial interval X into
itself with the following properties:

(i) f has a nonpositive Schwarzian derivative.
(ii) The set of points whose orbits do not converge to an asymptotically stable

periodic orbit, to a one-sided asymptotically stable periodic orbit or to the
possible present absorbing boundary of X, is a nonempty compact set.

(iii) The orbit of each critical point converges to an asymptotically stable periodic
orbit of f, to a one-sided asymptotically stable periodic orbit of f or to the
possible present absorbing boundary of X.

(iv) The fixed points off2 are isolated.
Is it true that the conclusions of Theorem B hold? Preston [21] mentioned a

similar question for maps with one critical point and negative Schwarzian derivative.
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