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Picosecond multiple-pulse experiments involving spatial and
frequency gratings: a unifying nonperturbational approach

Koos Duppen* and Douwe A. Wiersma

Picosecond Laser and Spectroscopy Laboratory, Department of Physical Chemistry, University of Gromngen
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The concept of a grating in real and frequency space is examined in the context of a three-pulse optical excitation cy-
cle applied to a pseudo two-level model system. The calculations are done analytically using the Liouville-operator
formalism in matrix form. It is shown that a continuous transition occurs from a grating in real space to a grating in
frequency space when the first two excitation pulses separate in time. During this transition, the role of the
population-relaxation time constant (7T) is taken over by the dephasing time constant (7)) bringing out the
irreversible nature of the loss of coherence in an excited state. The underlying space-time transformation when
moving from a grating in real space to a grating in frequency space further clarifies the loss in symmetry of the
scattering pattern induced by a probe pulse by attributing it to the law of causality. It is finally concluded that the
generalized grating concept is a powerful means of analyzing or predicting the effects of multiple-pulse multicolor

optical-coherence experiments.

INTRODUCTION

The growing awareness in the scientific community of the

tremendous potential of multiple-pulse optical-coherence

experiments! for the study of spectral and dynamic features
of absorbing species in the gas and the condensed phase is
evident from the fast-growing number of papers dealing with
such experiments. An interesting aspect of these experi-
ments is that the time ordering of the excitation pulses
determines or selects the state or transition whose dynamics
is being studied by the coherent pump-probe cycle.2 We
recently showed, e.g.,? that in three-pulse, two-color experi-
ments one moves continuously from one form of four-wave
mixing, known as coherent Stokes Raman scattering, to oth-
ers known as the three-transition echo and stimulated echo,
depending only on the delay between resonant pulses at the
different excitation frequencies. In a theoretical descrip-
tion of these and related four-wave mixing effects, it turned
out to be quite useful to introduce the concept of grating in
frequency space, especially to understand effects such as the
accumulated photon echo,? the spin-stored optical echo,’
and the different forms of two-color stimulated photon
echoes.b

Spatial gratings obviously have played a crucial role in
optical spectroscopy from their use in monochromators as
dispersing elements to transient gratings’ in time-resolved
spectroscopy. The questions arise of what the relation is
between the two different types of grating, one in real (phys-
ical) space and the other in frequency space, and what the
information content is of each type of grating. All previous
theoretical treatments of scattering from a spatial grating
have used perturbation theory to describe the effect. In
contrast, scattering from gratings in frequency space, the
photon-echo effect, has always been dealt with in a nonper-
turbative fashion.

In this paper we address the question of what the formal
relation is between the spatial and the frequency gratings
using a model level system with three levels, two being cou-
pled by the excitation field and the third acting as a bottle-
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neck in the relaxation path. This type of level scheme is
quite often encountered in practical situations. The calcu-
lations of the ohservables are done nonperturbatively by
using the Liouville-operator formalism in matrix form. We
show that a continuous transition occurs from the spatial to
the frequency grating when the first two excitation pulses
separate in time. One formally interesting point is that the
loss of symmetry in the scattering event when one moves
from the spatial to the frequency grating is due to causality.
The analysis further shows that the scattering from a spatial
and a frequency grating is conceptually identical, with time
(t) playing the role of space (r) when we move from the
spatial to the frequency grating. The overall conclusion is
that the concept of a grating in physical or frequency space is
a powerful means of analyzing multiple-pulse optical-coher-
ence experiments.

Before continuing, we wish to inform the reader that re-
lated work on echo formation in gaseous media was done by
Mossberg et al.® We further note that Fayer® recently re-
viewed the field of scattering experiments involving spatial
gratings and that Weiner et al.1° and De Silvestri et al.l!
have also considered the problem of three-pulse scattering in
condensed absorbers. Finally, we wish to remind the reader
of the fact that many of the concepts used in the field of
optical-coherence experiments are known in the field of
pulsed nuclear magnetic resonance (NMR), initiated by
Hahn.!2 Asin the latter case the sample dimension exceeds
by far the wavelength of the radiation used, the spatial
aspect of the emitted radiation is not considered. In NMR-
imaging techniques, the spatial information is recovered by
selective excitation of the nuclear spins in a spatially inho-
mogeneous magnetic field.

THEORETICAL APPROACH

Preliminaries
Optical-coherence experiments, as is well known, can be
quite successfully described semiclassically by calculating
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the induced polarization P(t) in the sample as a result of
applying a number of excitation pulses. The resulting po-
larization then acts as a source term in Maxwell’s equation to
produce an outgoing field with a well-defined spatial direc-
tion. This beam can easily be detected by taking advantage
of its spatial characteristics. Using the Markov approxima-
tion,!3 the induced polarization can be calculated as follows:

P(t) = N(u) = N Tr[p(t)u], (1)

where u,.,, is the transition dipole (i.e., electric-dipole opera-
tor) between states|n) and|m) and N is the number density
of the quantum-mechanical systems. The evolution of the
density matrix obeys the Liouville-Von Neumann equation,
which, for our purposes, can be written as

., Op ., {dp
% — (Hy, p} + [H,, p] + iR (22 , 2
ih 3 [ o ol + [Hp, p] +ih (at)mdom (2)

where H, is the Hamiltonian of the unperturbed system
H,= zEnjn)(nl (3
n

while H; describes the coupling of the system with the elec-
tromagnetic field. Within the dipole approximation, this
interaction Hamiltonian is

1
HI =7 E ‘ Z HFnm EO,i(r’ t)

i nm

X expi—ilwit — k;-r + ¢;]}|n) (m]. (4)

The random interactions are usually averaged and described
by phenomenological-damping terms!4:

9nn
(F random - ; wmanm - ; wnmpnnr (5)

nm
—nm =~ T 6
( ot )random nmfnm ( )

From the quantization of the reservoir,!% it readily follows
that the transition probabilities w obey the principle of de-
tailed balance Wy, = Wy exp(—hw,m/kT). If hwpy > kT,
there are no upward transitions in the material system and
the downward transitions correspond to spontaneous emis-
sion of photons or phonons.

The diagonal elements, in principle, relax in a combined
fashion, leading to d — 1 longitudinal relaxation times T,
when there are d energy levels. Each off-diagonal element
decays with a characteristic transverse relaxation time
I'nr =1, which often has both adiabatic and nonadiabatic con-
tributions. The former are due to random modulations of
the energy differences hw,, whereas the latter are caused by
the finite lifetimes related to the transition probabilities out
of states|n) and |m).

Summation of statistical averages for systems with differ-
ent equations of motion must be performed after Eq. (2) has
been integrated. Effects of inhomogeneous broadening can
always be taken into account by integrating the final result
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of Egs. (1) and (2) over a distribution of the resonant fre-
quencies of the system under study.

Grating Scattering

The Level Structure

The accuracy of a calculation concerning any given nonlin-
ear optical effect depends on the complexity of the level
structure and the interaction Hamiltonian being discussed.
The theory of two-level systems perturbed by a single
(quasi-)monochromatic field is now well developed.1617 In
Fig. 1, a three-level system is shown together with the relax-
ation rates among the levels. In our case, levels|1) and |3)
may be the electronic ground and the first excited state of a
molecule (Sy and S;), whereas level |2) is a vibrationally
excited state in the S; manifold. If we assume that only
states|1) and|2) are coupled through the coherent radiation
field, the description of this system is analogous to that of a
two-level system. The formation of the two-pulse photon
echo and the three-pulse stimulated photon echo has been
calculated by Hesselink!8 within such a three-level scheme.
Following his calculation, we will describe the full response
of the system to three consecutive short pulses resonant with
the|2) <|1) transition. The similarity of stimulated pho-
ton echoes and transient holographic-grating experiments®
will be stressed. The concepts of a population grating in r
space and in the frequency domain, which will be developed
in this section, form the basis of the description of the two-
color photon echo and vibrational-grating scattering experi-
ments reported in Refs. 3 and 19.

The Evolution of the Density Matrix

The time development of the system perturbed by a field at
frequency w is given by Egs. (2)-(6). We obtain for the
individual matrix elements of the level structure of Fig. 1

12)

|1> NV

Fig. 1. Level scheme of a three-level system. Wavy arrows indi-
cate decay channels. Level |1) and |2) are coupled by a radiation
field at frequency w.
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. ey - i - .
P = _21% {poy exp[—i(k 7 — ¢)] — pyg exp[+itk - r — ¢)]}
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The exponential operator can be calculated in matrix form
by a method devised by Putzer24:

+ k P + k P33 i <
"R ¥ P ellt = Z ris (P, (11)
s le . 1 -\~ =0
P12 = % (pgg = p11) expl—i(k -r — ¢)] — (F = LA>P12’ .
2 where Py = 1, P; = Ili_; (iL — A1), and Ay.. .\, are the
] eigenvalues of (L in some arbitrary order. The functions
B ie .\~ i i i i i
s - 712 (011 = py) exp+ilk -7 — )] — (TL Iy A)pzp r(t) can be determined by solving the differential equations
2

. leyg - ’ - .
poy = 712 {012 exp[+i(k - 7 — )] — pyy exp[—ilk - r — §)}}

= (R + Ry3)pgs,

P33 = kgapos — kaipas. (7

Here €5 is the Rabi frequency wus - Eo(r, t)/h, and A is the
detuning we; — w. Going from Egs. (2) to (7), a transforma-
tion was made to the rotating frame

i

p1o = pe ", po1 = pye™ (8

Then, after this transformation, all terms oscillating at the
double frequency exp(+2iwt) were neglected. This is the so-
called rotating-wave approximation (RWA). The transfor-
mation to the rotating frame is nothing but a change in
representation from the Schrodinger picture to an interac-
tion picture.?0 The RWA, however, neglects some physical
phenomena, such as a small shift of the resonance frequen-

ry=Mry,

with r1(0) = 1 and r;(0) = 0.

In calculating the response of the system to three pulses,
as shown in Fig. 2, there are two cases of interest. The
exciting field is on: e/lt = A(e;at), or the exciting field is off:
eilt = B(t). When very short excitation pulses are used, i.e.,
pulses with a coherent bandwidth larger than the (in)homo-
geneous linewidth of the transition studied, the assumptions
of resonant excitation (A = 0) and negligible decay during
excitation can be made. With the field off, A describes the
distribution of transition frequencies in the system.

Under these conditions, the temporal pulse shape is unim-
portant, and the effect of a pulse on the system can be
completely described in terms of its area 8, where

ri=ri A, (12)

p="2 f Ey(r, t)dt. (13)

If we now apply Egs. (11) and (12), we find for the two
cases?>26 that

1+ cosf —ia*sind la sinf 1—cosf O
. —jasinf 1+ cosb (1 — cosf)a? iasinb 0
Alegpt) = A@B) = £} ia*sinf (1 — cosB)(a*)? 1+ cosd —ia* sinf 0 (14)
1—cosf iasind —la sin 1+cosf O
0 0 0 0 2
and
1 0 . 0 1 — B exp(—kyt) 1 — exp(—ky )]
0 exp[(iA - F)t] 0 +(8 — 1) exp(—t/T})
2
0 0
B(t) = ]
© 0 0 exp[(—iA -~ %—)t] 0 0 (18)
0 o 0 2 exp(—t/T,) 0
0 0 0 B exp(—kg;t) — B exp(—t/T;) exp(—kyt)

cy'? and harmonic-generation effects.2! However, when the
optical frequency considerably exceeds the Rabi frequency
and the detuning, the approximation is an extremely good
one.22 Equations (7) ean be written compactly as

p =iLp, (9)

where p is a column vector with elements py1, pr, p21, P22, and
pss and L is a two-dimensional matrix called the Liouville
operator.22 The purpose of the transformation to the rotat-
ing frame and the RWA was to make L time independent. If
we neglect the time dependence of the field envelope for the
moment [see also Eq. (13)], the solution of Eq. (9) is simply

p(t) = eL'p(0). (10)

where o = exp[—i(k - r — ¢)], 8 = kog/(ka1 + oz — k31), (T))™!
= ko1 + kg3, and T contains an adiabatic part (T5)~! =
(T2*)~1 + (2T1)~L. The evolution of the system when three
pulses are applied can now be straightforwardly calculated
by multiplication of the appropriate matrices:

p(t) = B(t)A(03)B(ty3)A(05)B(t5) A(6,)p(0). (16)

When all molecules are initially in the ground state, we can
take all p,,,,(0) = 0, except for p11(0) = 1.

From Eq. (1), it follows that the coherent radiative proper-
ties of the system are determined by the off-diagonal matrix
elements py2 and ps1. Since ps; = p12*, we find for a homoge-
neously broadened ensemble that
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3PSE 3PIE 2PE 2PE
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Fig. 2. Schematic diagram showing the various photon echoes and optical FID’s produced by a sequence of three pulses. See Appendix A.

P(A, t) = 2Np; Re[oy5(A, 1)), 17

Using Eqs. (16) and (8), pi can be evaluated at all times.
The explicit expression for this matrix element when three
pulses are applied is given in Appendix A. The terms that
give rise to the various echoes and free-induction decays
(FID’s) of Fig 2 are indicated.

When there is a distribution of transition frequencies wo1,
the total polarization of the system is obtained by an integra-
tion over the inhomogeneous line

4o

P(t) =j g(A)P(A, t)dA. (18)

-

Here g(A) is the inhomogeneous line-shape function. A
Gaussian distribution is often observed, in which case we can
write the normalized function

g(p) = —A2T,%/2), (19)

where Ty is the inhomogeneous dephasing time.?” When
Ty << Ts, the width of the distribution is Aw = 2/T’4/21n 2
(FWHM).

Gratings in Frequency Space

In the remainder of this paper, we will be concerned only
with the last term of the full expression for pys listed in
Appendix A:

pa(A ) = — é sin 8, sin 0, sin 85[(8 — 2)exp(—t,3/T})

— B exp(—kqtog)]exp[~ (¢, + t)/T,]

(kg + ky—ky) o1
+(¢3 + oy —0)l} (20a)
(kg + Ry —ky) -1
?)11)- (20b)

X (exp[iA(t — tyo)]expi+ilwt —

+ exp[iA(t + tq5)]expi{+i[wt —
+ (¢3 + ¢ —

This part of the off-diagonal element gives rise to a signal
field that propagates in two different directions. As the
time t93 is changed, information is obtained on the popula-
tion-relaxation times of the system. Using Eqgs. (18) and
(19), the time dependence of the polarization at each delay
tas can be found for the two propagation directions:

(a) ky=ky+ (ky—ky):

P(t) ~ exp[—(tyy + t)/Tolexp[—(t — £,)%/2Ty%. (21)

The signal is at a maximum when ¢ = t9 ~ T9'%/Ts, with the
restriction that ¢ must be positive. This is called the stimu-
lated photon echo (3PSE). The time profile of the echo is
the Fourier transform of the line shape for the transition at
wo1; the width of its amplitude is (FWHM)

At =2Ty\21n2. (22)
The FWHM of the echo intensity is At/{/2.
(b) k, =ky+ (kb — ky):
P(t) ~ exp[—(t,5 + t)/Tylexp[—(t + t;5)%/2Ty%. (23)

This signal would have a maximum at ¢ = —t;5 — T9'%/Ty, if t
could be negative. Taking a negative value of ¢, however,
violates causality: The effect, which involves the third
pulse, is present before the third pulse itself. This is the so-
called virtual echo (3PVE). The magnitude of the signal
immediately after the third pulse is as large as that of case
(a). Whereas the polarization amplitude in case (a) in-
creases to give the stimulated echo, when there is inhomo-
geneous broadening in the system the signal field in case (b)
rapidly decreases with the inhomogeneous dephasing time
Ty. In the next section it will be shown that 3PSE and
3PVE merge when t,9 approaches zero.

The dependence of both scattered signals on the time ¢o3 is
the same and can be found from Egs. (20). For a pure two-
level system (i.e., 8 = 0) the signal amplitude is proportional
to

P(t) ~ exp(—tq/T)). (24)

For a system in which the upper state decays into a nonde-
caying level (i.e., ko1 = k3; = 0, 8 = 1), the signal amplitude is
proportional to

P(t) ~ 1 + exp(—ty5/T}). (25)

The reason that population relaxation instead of dephas-
ing determines the decay during time to3 is that the phase
information that will give rise to the scattered signals of Egs.
(20) is contained in a modulation of the population in states
|1) and |2) during that time. Two excitation pulses in suc-
cession on a particular transition generally produce a par-
tially ordered population as a function of transition frequen-
cy, when there is inhomogeneous broadening present. This
population modulation is also responsible for the Ramsay-
fringe effect,?® which is closely related to the 3PSE discussed
here. The population difference (p2s — p11) immediately
after the second pulse (£ = t15%) is

sjudIsurL], 1UaIaYyo) [eanndQ
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Fig. 3. Modulation of the population in states |1) and |2) after
application of two resonant n/2 pulses separated by 100 psec. The
horizontal axis gives the detuning from the line center. It does not
indicate the absolute energy in either the ground or the excited
state. The envelope of the modulation represents a line width of 1.5
cm~L. The phase of the modulation was chosen to be zero.

(P25 — p11) = Ylcos 0,[8 exp(—kq t1s)
— (B — 2)exp(—t,5/T,) — 2]+ cos b, cos 8,
X [(8 = 2)exp(—tyo/T))— B exp(—kg;t15)]
+ 2 sin 0, sin 8, exp(—to/T5)

X cos(Atyy — kg T+ d19)}. (26)

Here 19, 19, and ¢19 are the time, k-vector, and phase differ-
ences between the two pulses.?’ The interaction of the third
pulse with the frequency-domain population grating, de-
scribed by the last part of Eq. (26), gives the off-diagonal
element of Eqs. (20). The populations p;; and pgs are shown
in Fig. 3 as a function of detuning for the case of maximum
modulation (§; = 8, = /2 and Ty > t12). Longer pulse
separation t,3 produces more-rapid modulations of the pop-
ulation as a function of A. The phase of this grating in
frequency space is a function of the position in r space.
Population relaxation and spectral diffusion will tend to
erase the grating, so that the detected signals get weaker
when the delay t43 of the third pulse is increased.

K. Duppen and D. A. Wiersma

Spatial Gratings

As the pulse separation t15 approaches zero, the character of
the scattering process changes considerably. The grating in
frequency space disappears completely, and instead a popu-
lation grating in real space is formed. Two time-coincident
interfering light beams produce a spatial interference pat-
tern reproducing the intensity pattern of the intersecting
excitation beams. In Fig. 4 such a spatial modulation is
shown schematically.

This interference pattern will cause a spatially modulated
population distribution through which the delayed third
pulse experiences a spatially modulated transmission. The
resulting Bragg scattering is sometimes called transient ho-
lographic-grating scattering since the spatially modulated
structure in the sample (the hologram, optical absorption
grating, or amplitude grating) was induced by two interfer-
ing light beams. In Fig. 4 the wave vector of the grating is
along the y axis, and the associated wavelength is

Night
grating ~ 9 i g

A 27
The population grating is still described by Eq. (26) now
with £y = 0. Under these circumstances, the difference in
time behavior of the signals, previously called 3PSE and
3PVE, disappears. Both signal fields are coincident with
the third pulse and decay, according to Eqgs. (18)-(20), as

P(t) ~ exp(—t/Ty)exp(—t%/2T,?). (28)

The dependence of the signals on the delay time t93 is the
same as before. InFig. 5, a grating scattering experiment on
an inhomogeneously broadened transition is shown. For
illustrative purposes, a phase-matching configuration was
chosen in which the third beam is in the middle of the two
beams that induce the grating. A finite wave-vector mis-
match, equal for the two scattering directions, is the result of
this geometry.

The following picture for the scattering process now
emerges: When ¢;5 = 0, a volume population grating is set
up by the two excitation pulses. Part of the third pulse
scatters symmetrically to both sides because of the spatially
modulated transmission. As the second pulse is delayed
with respect to the first pulse, inhomogeneous dephasing

R

Fig.4. Schematic representation of the interference pattern of two
crossed monochromatic beams. A third beam can scatter from the
resulting transient hologram.
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Fig. 5. (a) Grating scattering experiment. The two scattering
directions are denoted by 3PSE and 3PVE. The observed intensity
of the two signals is equal when t;5 = 0. PMT, photomuitiplier
tube. (b) Scattering intensity as a function of the delay ¢; for an
inhomogeneously broadened transition (T > Ty’). The delay ta3is
assumed to be large (£23 >> t13). The decay on one side is determined
predominantly by T'; and on the other side by T’

will occur in the time 12 between the pulses, and hence the
spatial grating will be erased and replaced by a frequency
grating. It is thus reasonable to speak of a spatial grating
when t12 < T9 and of a frequency grating when ¢15 > Ty'. Of
course, the change is gradual and is fully described by Eq.
(26).

When t12is so large that no spatial modulation is left at all,
the third pulse will not induce a diffracted signal instanta-
neously. It will set rephasing in action, however, which
nullifies the effect of inhomogeneous broadening during ¢15.
At the time ¢t = t;3 — T9'%/T,, the spatial structure is recov-
ered, and a macroscopic polarization results. From this
point of view, the signal can be looked on as a case of delayed
transient holographic-grating scattering. Because of the
time ordering of the pulses that induce the grating, the
spatial symmetry is lost, and scattering is possible in only
one direction: the 3PSE. Scattering in the other direction
has become virtual. As the excitation pulses are scanned in
time through one another with the delay ¢.3 large, signal
intensities of the form of Fig. 5(b) result.

Both kinds of grating scattering experiment are often em-
ployed in studying the population dynamics of a particular
system by varying the time ty3. We end this section by
briefly reviewing the use that can be made of studying the
decay of the spatial and the frequency grating.

Spatial-Grating Scattering (1) Gives a signal only spa-
tially separated from the exciting beams; therefore good
optical quality samples and strong signals are mandatory.

Vol. 3, No. 4/April 1986/J. Opt. Soc. Am. B 619

(2) Can be used to study population relaxation and spatial
diffusion of excitation. (3) Can be used in cases in which
dephasing times are quite short and inhomogeneous broad-
ening is negligible.

Frequency-Grating Scattering (3PSE’s) (1) Gives a sig-
nal spatially and temporarily separated from the exciting
beams; optical gating is possible. (2) Can be used to study
population relaxation, spectral diffusion of excitation, and
phase relaxation. (3) Can be used only on systems with
finite dephasing times (T3 > ¢12) and sufficient inhomogen-
eous broadening (T’ < t12).

CONCLUSIONS

The nonperturbative treatment of three-pulse optical ex-
periments shows that spatial- and frequency-grating scat-
tering experiments are intimately related to each other
through a space-time transformation. It is shown that the
transition from a spatial to a frequency grating is continu-
ous, as the first two excitation pulses are separating in time.
In this transition, the role of the population-relaxation time
(Ty) is taken over by the optical-dephasing time (7). At
the same time, the symmetry of the scattering pattern gets
lost. These features emphasize the irreversible nature of
events that occur and the fact that physical laws are gov-
erned by causality. Finally, this analysis shows that the
grating concept is universal and that it is a powerful tool in
analyzing or predicting the effect(s) of multiple-pulse opti-
cal-coherence experiments. There is a long way to go, but
optical-coherence pulse experiments are on the road to ex-
ploring the full information content of optical spectra.

APPENDIX A: OFF-DIAGONAL MATRIX
ELEMENTp,,

Matrix element p15 pertinent to the pulse sequence of Fig. 2
applied to the level structure shown in Fig. 1:

FID, pulse 1:

proftin + bog + 1) = — é sin 6,(cos 0, + 1)(cos 8 + 1)

X expl—(t1y + tos + £)/Ty)
X exp[+iA(tyy + tyg + 1))

X exp[+l(wt - kl -r+ ¢1)],

FID, pulse 2:

- ésin 0, (cos 85 + 1){2 + (cos 8, — 1)

X [B exp(—Fkqt10)—
X exp(—t,o/T))]}

X exp[—(tys + t}/Tolexp[+iA(tey + 8)]

B-2)

X exp[+i(wt — ky - r + ¢,)],

sjudIsued], juarzoyo) [eonndQ
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FID, pulse 3:
- é sin 64(4 + (cos 6, — 1)

X {28 exp[—kq (t;5 + t53)] — cos b,

X (28 = 4)exp[—(tyy + to3)/ T, 1}

+ (cos 0, — 1)[26 exp(—kaytys)

= (28 —4)exp(—ty3/T))]

+ (cos B, — 1)(cos 8, — 1)

X {82 exp[—kg;(t1g + £g3)]

+ (82 — 2B)exp[—(ts + tos)/T})

— (8% = 2B)exp(—t 1o/ T )exp(—kstys)
— (8% = 2B)exp(—kgyt 5)exp(—tyy/T))})
X exp(—t/Ty)exp(+iAt)

X exp[-’rt(wt - kg -r+ ¢3)]7

Photon echo (2PE), pulses 1 and 2:
- ésin 6,(cos 8, ~ 1)(cos 85 + 1)
X exp|—(t;s + tog + 1)/T5)
X exp[+iA(ty; +t = t15)]
X expitifwt — (2ky — ky) - r

+ (2¢2 - ¢1)]}5

2PE, pulses 1 and 3:
- é sin 6,(cos 0, + 1)(cos 6, — 1)
X exp[—{t;y + tog + t)/Ty)
X exp[+iA(t — t1g = tg3)]
X exp{+ifwt — (2ks — ky) - 1

+ (283 — ¢1)]},
2PE, pulses 2 and 3:

- ésin 0y(cos 63 — 1){2 — (1 — cos 6,)

X [B exp(—kj;t;5)

— (B = 2)exp(—t;/T)]}

X exp[—(tyy + t)/Tolexp[+iA(t — ty5)]
X expli+ilwt — (2ky — ky) - 1

+ (24)3 - ¢2)]}7

K. Duppen and D. A. Wiersma

Image echo (3PIE) start of Carr—Purcell echo train, all
pulses:

- ésin 0,(cos 6, — 1)(cos 65 — 1)

X exp[— (g + tog + £)/T)
X exp[+HiA(t — tyg + £15)]
X expl+ilwt — (2ky — 2ky + k) -

+ (2¢3 — 2¢5 + o)1,

Stimulated echo (BPSE) and virtual echo (3PVE), all
pulses:

- é sin 8, sin 8, sin 6,[(8 — 2)

X exp(—tqq/T) — B exp(—kg tes)]
X exp[—(tyy + t)/T))

X (exp[iA(t — t15)]expi{+ilwt— (ky
—ky+ k) -r+(¢3— ¢ + ¢}
+ exp[iA(t + tyo)]expl+i[wt — (kg

- kz + kl) -r+ (¢3 — ¢yt d’})]})y
k23

b=
k21 + k23 - k31

(Tl)_l = kyy + ko,
(TZ)‘1 = (2T1)_1 + (Tz*)'l.
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