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The algebraic approach to molecular rotation-vibration spectra introduced in a previous article is extended 
from di- to tri- and polyatomic molecules. The spectrum generating algebra appropriate to triatomic 
molecules U(4) ® U(4) is explicitly constructed. Its dynamical symmetries and their relation to rigid, nonrigid, 
linear, and nonlinear structures are discussed. Applications to the spectra of HCN, CO2, and Hj are 
considered. In particular, it is shown that the algebraic description can account for the Fermi resonances 
occurring in CO2, Some remarks are made on the spectrum generating algebras appropriate to polyatomic 
molecules. 

I. INTRODUCTION 

In a previous article1 (in the following referred to as 
I), two of us have suggested an algebraic approach to 
molecular rotation-vibration spectra and considered 
the particular case of diatomic molecules. In that 
article, it was suggested that the algebraic approach 
may lead to considerable Simplifications over the usual 
approaches (Dunham expansion and potential approach) 
in the treatment of two problems. 

(i) The description of tri- and polyatomic molecules. 

(ii) The calculation of transition probabilities in 
laser excitation2 and atom-molecule and molecule­
molecule collisions. 3 

In this article we consider the first problem and 
construct explicitly the spectrum generating algebra 
(SGA) U(4) ® U(4), appropriate to triatomic molecules. 
Although this algebra may be capable of describing both 
rigid and nonrigid4 (van der Waals5

) molecules, we shall 
concentrate our attention to linear and nonlinear mole­
cules with a rigid character. Furthermore, we shall 
consider only energy spectra and defer a discussion of 
transition probabilities to a subsequent investigation. 

In addition to presenting the formalism appropriate 
to triatomic molecules, our main purpose is to show 
that the algebraic approach is capable of providing, with 
little effort, a fair quantitative description of the ob­
served spectra. We thus consider in detail applications 

a) Present address. 
b) Permanent address. 

of the algebraic approach to the description of the spec­
tra of HCN, CO2 , and Ita. In particular, we show that 
this approach can account even for fine details of the 
observed spectra, such as the Fermi resonances in CO2 , 

The spectrum generating algebra U(4)® U(4) can be 
further generalized to more complex molecules. In the 
last section of this article we describe how this can be 
achieved. A preliminary, brief, version of some of 
the work presented here has already appeared. 6 Some 
details have also been discussed by one of us separate­
ly.7 

II. VIBRON MODEL FOR TRIATOMIC MOLECULES 

Spectra of diatomic molecules were generated in I by 
introducing a set of boson creation b~ and annihilation 
b,. operators a = 1, •.• ,4. These operators satisfy Bose 
commutation relations [Eq. (2.1) of I] and provide a 
basis 

(2.1) 

in which the Hamiltonian H can be diagonalized. The 
construction of the basis B is simplified by the use of 
group theory, since the N boson states [Eq. (2.1)] span 
the totally symmetric irreducible representation [N] 
of the group U(4), equivalent to a Young tableau with N 
squares in a row. This group is generated by the 42 =16 
operators 

(2.2) 

In order to construct states with good angular mo­
momentum, the four boson operators b~ were divided 
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2516 van Roosmalen et al.: Molecular rotation-vibration spectra. II 

into a scalar, called a' and a vector, called 1T~(J.l.=+1, 
0, -1), such that the corresponding one boson states 
had angular momentum J and parity P, 

a' I 0) : JP = 0' , 

1T~ I 0) : JP = 1- • 
(2.3) 

The 11' and a bosons were called vibrons. Spectra of 
diatomic molecules were obtained by diagonalizing the 
model Hamiltonian H, constructed using the generators 
(2.2), within an irreducible representation [N] of U(4). 
This representation was thus assumed to span the Hil­
bert space of the bound (and quasibound) rotational-vi­
brational states (finite in number) of the molecule in a 
given electronic configuration. 

A. Boson operators and group structure for triatomic 
molecules 

In order to construct the spectrum generating algebra 
appropriate to triatomic molecules we proceed as in 1. 
A triatomic molecule has six internal degrees of free­
dom, that can be taken as the two vectors r1 and rz, 
specifying the interatomic distances (Fig. 1). Thus, 
here one has twice as many degrees of freedom as in 
diatomic molecules, where the internal degrees of 
freedom are characterized by only one vector r. In 
analogy with I, we suggest that the spectrum generating 
algebra appropriate to triatomic molecules is formed 
by the direct product of two U(4) groups, that we denote 
by U U )(4) ® U(2)(4). This is because addition of degrees 
of freedom, described by a group G, can be achieved by 
taking the direct product G ®G. Correspondingly, we 
introduce two types of boson operators bj"" bl ",; i = 1,2; 
a = 1,2,3,4. Operators with different index i commute 

[b1a , b1a'] =0, [b1", , bza '] =0, 

[bz""bi",,] =0, [b;",b~"J=O, (2.4) 

while operators with the same index satisfy Bose com­
mutation relations 

[b l ", , bj",,] =6"",., [bl", bi"'] =0, 

[bj" , b~".] = 0, i = 1, 2 . (2,5) 

Basis states are now of the form 

B' :b1", ,..bl",.b18" .b1B'10) , (2.6) 

and span the product representation [Nt1®[Nz] of 
U(1)(4) ® U(2)(4), where N1 and Nz are the number of 

bosons (vibrons) of type 1 and 2, respectively. The 
group UU)(4) ®U(2)(4) is generated by the 2 x 4z 

:= 32 opera-
tors 

G 1a", =b!a bla" Gz88·=b18b28" (2.7) 

All operators are expanded in terms of the generators 
(2.7). For example, the Hamiltonian H may be written 
as 

(2.8) 

with 

(0) (b) 
z z 

I 

-/@" I --0-
~---

__ {if/ y - y 
! 

x x ¢ 
I 

r,B,,,, r"'2. 1#'12.81.92,93 

FIG. 1. Schematic representation of the geometric structure 
of a triatomic molecule. 

(2.9) 

Since H conserves, by construction, both N1 and Nz, 
it can be diagonalized within the basis (2.6). 

As in I, it is convenient to assign to the boson opera­
tors b1a, b~", definite transformation properties under 
rotations and inversions. We thus introduce a and rr 
vibrons of type 1 and 2, with 

a1, a1: JP =0+ , 
(2.10) 

11'1.., rrL , J.l. = - 1, 0 + 1 : J P = 1- . 

The commutation relations of the vibron operators 
(2.10) follow from Eqs. (2.4) and (2.5) above. In I, 
it was suggested that the vectorlike nature JP := 1- of 
the rr vibrons was related to the dipole character of 
the degrees of freedom of a diatomic molecule. Simi­
larly here, the vectorlike nature of the two types of rr 
vibrons rr1 and rrz can be viewed as corresponding to the 
dipole character of the normal coordinates of a tri­
atomic molecule. 

B. Calculation of spectra 

In calculating the spectrum of a given triatomic 
molecule, one begins by specifying the Hamiltonian H. 
Since this Hamiltonian must be rotation and reflection 
invariant, it is convenient to introduce boson annihila­
tion operators that transform appropriately under ro­
tations 

(2.11) 

This notation is slightly different than in I and it has 
been introduced here in order to make phases in the 
computer program described below Simpler to deal 
with, The tensor product of two operators f, ... and 
t" ... ' will still be denoted as in I, 

(2.12) 

but, occasionally, we will also introduce curly brackets 
to denote the same angular momentum coupling. 

Retaining only up to quadratic terms in the generators 
and using the conservation of vibron numbers 

Ni =a~al + L rri.,rri'" i =1,2, 
" 

(2,13) 
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i. e., 

[H,Nd=[H,Nz]=0 , (2.14) 

we can write the most general Hamiltonian (2.9) as 

HI =1110 + e'1~)[ 1T~ X iTl ]0(0) + e'1~){[ 1T~ X 1T~] (0) x [iTl x iTI] (O~}~) +e:l){[ 1T~ x 1T~] (2) x[ iTl x iTI] (2)]}~) 

+ e'1~){[ 1T~ X 1T~] (0) x [al x al]«)) +[a~ x a~] (0) x[iTl x iTI] (O)}~); i = 1,2, (2.15) 

and 

vlZ =/?,ll ([ 1T1 x 1T!] (0) x [al x az] (0) +[ a1 x a~] «l) x [iTl x iTz] (O)}~) +fza ,ll{[ 1T1 x aI] a) x [iTz x al] Ul 

+ [1T~ X at] a) x [iTl x az] (1)}~) +f~l,ll{[ 1T1 x 1Tn (0) x [iTl x iTz] (O)}~) +f4a,ll{h1 x 1T~] (1) 

X [iTl x iTz] (1)}~) +/5a ,l ){[ 1TI x 1T~] (2) x[ iil X iTz](2)}~) • 

The Hamiltonian (2.15)-(2.16) is written in normal 
ordered form, i. e., all creation operators to the left 
of all annihilation operators. 

An alternative way of rewriting the Hamiltonian H is 
by introducing operators with definite tensor properties 
under rotations 

(2.17) 

Here nia, nlr are number operators for a and 1T vibrons, 
JI~) is the angular momentum operator, DI~) and R~l~ 
are the two dipole operators, and QI~ is the quadrupole 
operator of system i. The Hamiltonian (2.15)-(2.16) 
can now be written as 

and 

Hi =1I{0 + e'1~a) nlr +e':~)nf. + e~~(2).ft) • .ft) 

+e;~(2) lit . D~); i = 1,2, 

vlZ =[(<1,1) D~1) .D~1) +/;U,1)Rill .R~1) 

(2.18) 

+[s,a,1)nt. • nz' +/ ;a,ll.ft) .Jl) +/;U,1) Q'f • (/'z2) 
(2.19) 

The dots in Eqs. (2.18) and (2.19) denote scalar prod­
ucts 

T • T = ')"' (_)1' T <I> T (/) 
I J ~ II' J,-I' 

(2.20) 

The relation between the coefficients in Eqs. (2.15), 
(2.16), and Eqs. (2.18) and (2.19) is 

hOI =NI e;;(2) +h~~ , 

e;~) = -Y3 e~lU) _v'3e~~2) - 2v'3 e'.2 G1) - 2v'3(Ni _1)e:;(2) , 

e'~P = e~fZ) - 2e:~(2) _ 2e::Z) , 

e'g) = l5e~lllD +l5e::Z) _ 215e~~(Z) , 
(2.21) 

e:~ = - v'3e:;tz) , 

and 

/ta,l) =_v'3/fU,1) _v'3/za,l) , 

/t,l) =_v'3/~U,1) +v'3/'~I,I) , 

.,(1,1) _I' u, 1) 2+'U' 1) + 5 /'(1,1) 
Js - s -:14 3 5 , 

Al ,1) =v'3/;u,1) -13 /~(1,ll _ ~/~U,1) , 

151,1) =15/;a,l) +!5/~(1,1) +~ /~a,ll . 
6 

(2.16) 

(2.22) 

The calculation of the rotation-vibration spectrum of 
a given molecule is done by diagonalizing the Hamiltonian 
H =Hl +Hz + V1Z in an appropriate basis. However, be­
fore describing details of this diagonalization, we pre­
fer to discuss dynamical symmetries of the Hamiltonian 
H. The study of these dynamical symmetries facilitates 
the solution of the corresponding eigenvalue problem. 

We also note at this point that stopping the expansion 
of the Hamiltonian H at terms which are bilinear in the 
generators GotB as in Eqs. (2.15) and (2.16) does not 
imply that higher order terms cannot be incorporated 
(indeed they can) or that they are necessarily small or 
of limited physical Significance. For example, without 
higher order terms, it is not possible to account for 
the Darling-Dennison coupling that will be mentioned in 
Sec. V C. The truncation to bilinear terms is done here 
only for convenience and simplicity. 

III. DYNAMICAL SYMMETRIES 

As discussed in I, one of the major advantages of the 
algebraic approach is that it allows one to construct, 
in some special cases, analytic expressions for all 
observable quantities. These special cases correspond 
to dynamical symmetries of the Hamiltonian H. We 
now proceed to construct the dynamical symmetries ap­
propriate to triatomic molecules by considering all 
possible subgroup chains of the dynamical group 
uU> (4) f.W(2) (4). 

A. Subgroup chains of U(4) ® U(4) 

The group structure of U(1) (4) ® U (2) (4) is obviously 
much richer than that of U(4). In its study, we begin 
by noting that each U(l)(4) group has two possible sub­
group chains, given by Eq. (3.2) of 1. The generators 
of the corresponding group can be written as 

{G I}o(I)(4) = {D I'!! ,J:!?} , 

(3.1) 

J. Chern. Phys., Vol. 79, No.6, 15 September 1983 



2518 van Roosmalen et al.: Molecular rotation-vibration spectra. II 

Both groups, 0(1)(4) and cfi)(3), contain the rotation 
groups OW (3) as subgroups. These have generators 

{C'}o(j)(3)={J~} , (3.2) 

and are, in turn, contained in U(I)(4), with generators 

(3.3) 

We shall, in the following discussion, omit the groups 
0

(1
)(2), corresponding to rotations around an axis, since 

these do not play any role, unless the molecule is 
placed in an external field. 

Since the generators of type 1 commute with those of 
type 2, the commutation relations appropriate to each 
group are conserved if one adds corresponding opera­
tors with different labell, 2. For example, the opera­
tors 

(3.4) 

satisfy the same commutation relations as the operators 
~J, i '" 1,2. The operators (3.4) generate a subgroup 
of OU) (3)®0(2)(3) that we denote by 0(3), i. e., 

0(1)(3)®0~(3):)0(3), (3.5) 

with 

{C}O(3) ={JfJ +Jfn . (3.6) 

Note that no other linear combination of .I;.~ and .fz1~ 
leads to commutation relations that are appropriate to 
0(3), and that Eq. (3.4) represents the usual rule of 
adding angular momenta. Similarly, one can intro­
duce U(4), U(3), and 0(4) groups, with generators 

{C}U(~ ={n1a +~a, nh +na.,J:!) +.fa1J, 
n~~ +rfl~,Ri~ +R\l~, Ql~ +Q~~} , (3.7) 

{C }U(3) ={nh +~., J1~ + .fz1~, Q~J + Q~J} , 
{C}Q(4) ={n~) +rfl),jf +~}. 

Possible chains of subgroups of cf1)(4) ® cf2>(4) are then 

uU)(4) ® 0<2)(4) :Jcf1)(3) ®~(3POU)(3) ®0(2)(3PO(3) , Ia 

:)uU)(3) ®0(2)(4) :)OU)(3) ®0(2)(3) :)0(3) , Ib 

:)0(1)(4) ®0"(4) :)0(1)(3)®0(2)(3) :)0(3), Ic 

:)lJ*1)(3) ® 0<2)(3) :) U(3) :)0(3) , II a 

:)U(4) :) U(3) :)0(3) , lib 

:)OUl (4) ® O~ (4) :J 0 (4):>0 (3) , III a 

::::>U(4):>0(4)::::>0(3) • IIIb 
(3.8) 

When one considers coupled systems a further com­
plication arises due to an existing automorphism among 
the generators of cfll(4) that conserves the commuta­
tion relations. Consider, in fact, the following trans­
formation: 

ai - a, , 
(3.9) 

- t 
1Ti/> - - 1T1/> 

a,-a~ . 
This transformation does not affect the commutation 

relations (2.4) and (2.5). As a result, the automorphism 

v4,(R\~)-R~l, ..A,(n,.)=-nir, 

..A. (nia) = - nia, ..A I(Q~~) = - Q~~ , 

..A,(n~~)=n~J, ..Ai(~~)=.f,~. 

(3.10) 

leaves invariant the commutation relations between 
generators. By adding now generators of type 1 and 
transformed generators of type 2, we obtain two new 
subgroups, that we denote by U* (4) and U* (3), with 
generators 

{C} -{ '(t) +J(j)Q(2) Q(2)} v*(3) = nh -~., "11' 2", 11' - a" , 

(3.11) 

n U) nU) R(1) RU) rLa) rI2)} 
II' + a", 1" - au, I¥lu - I¥zu • 

Note that, because of the properties (3.10), no additional 
groups 0* (4) and 0* (3) are obtained. 

USing the groups U*(4) and U* (3) one can obtain three 
more subgroup chains 

uU)(4) ® if2> (4):J Uo.)(3) ® ij<2)(3)::::> U* (3) :J0(3) , IVa 

::::>U* (4):JU* (3)::::>0(3) , IVb 

:JU* (4) ::::>0(4)::::>0 (3) • III c 
(3.12) 

In this equation we have denoted v4 a0<2) (4) and v4 zif2)(3) 
by [7<2)(3). Since, however, ..Aa is an automorphism of 
the corresponding algebras, there is no effect on the 
generator content, i. e., the algebras are the same. 
The effect appears only in the state labeling problem 
as it will be discussed below. 

The chains in Eqs. (3.8) and (3.12) exhaust all pos­
sibilities (up to isomorphisms). In I, the chain associ­
ated with the 0(4) group was related to rigid diatomic 
molecules, while that associated with the U(3) group 
was related to nonrigid molecules, using the rigidity 
parameter y introduced by Berry.4 When considering 
triatomic molecules the situation is more complex, 
since one can have, in principle, both bonds rigid, one 
bond rigid and one nonrigid and both nonrigid. Further­
more, the molecule can be linear or nonlinear. We 
We have divided the group chains in Eqs. (3.8) and 
(3.12) into four classes I, II, III, and IV. Class III ap­
pears to describe molecules with both bonds rigid and 
it will be discussed in detail in this article. Class II 
and IV appear to describe three -body systems in which 
all bonds are nonrigid. Class I may be used to describe 
mixed situations. 

B. Labeling of states 

The first problem one encounters is using the group 
chains (3.8) and (3.12) in the labeling of states. In 
this subsection, we discuss the labeling of states for 
some of the group chains. We begin with chain I a. 
This chain is of importance if one wants to perform a 
complete diagonalization of the most general Hamilto­
nian H (2.18) and (2.19). Furthermore, it is closely 
related to the chain introduced by Kellman, Amar, and 
Berry8 in their group theoretical treatment of nonrigid 
triatomic molecules. 

J. Chern. Phys., Vol. 79, No.6, 15 September 1983 
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The labeling of states in chains I a, is done along the 
same lines of I. States are labeled by 

U(1)(4) ® U la)(4)=> rrU(3) ® U<2>(3P 0(1)(3) ® 0<2> (3 P 0[3):> 0t2) 

Itt I 1 1 
I(N1], [Na], nh , na., J1, J2 , J, M). 

(3.13) 

The ranges of the quantum numbers nb, na., J h J2 con­
tained in each representation [N1], [Na] of U<U(4) ® U~ (4) 
are the same as in 1. The quantum number J takes on 
the integer values 

(3.14) 

and - J S M S J as usual. In this and in the follow ing 
sections we shall use the same symbol for an operator 
and its eigenvalue, unless explicitly stated. The basis 
states (3.13) are simply related to the states of I by 

I [Nd,[N2]' n1 .. na.,JhJa, J,M) 

= L (JtM j J2M 2IJM) I [Ntl, nb, J t , M j ) I [N2], n2., J2, M2), 

111'112 (3.15) 

where (J1 M 1 J 2 M21 J M) is a Clebsch-Gordan coeffic ient. 
An explicit expression for the states IN, n.,J, M) in 
terms of vibron operators can be obtained9 

I [N],n"J,M) = j(n,+J +1)11 (:,1T_J)II(N -n,)1 

x «Jt f-"'(7Tt • 7Tt )1/2",-1) Y J 14 (7Tt) 10) , 
(3.16) 

where YJ)' is the vector spherical harmonics. Matrix 
elements of all generators of U(4) can easily be calcu­
lated in the basis (3.16) and are given in Table 1. Using 
angular momentum recoupling techniques, matrix ele­
ments of the most general Hamiltonian (2.18)-(2.19) 
can be calculated and the corresponding matrix 
diagonalized in the space of fixed J. 10 However, for 
realistic values of the vibron numbers N1 and N2 , the 
dimension of the matrices to diagonalize is very large 
(Table II). A complete diagonalization of the Hamiltonian 
H in the full space is thus of limited value and other, 
more appropriate, techniques must be used as discussed 
below. 

TABLE I. 0(3) Reduced matrix elements of the generators of 
U(4) in the U(4);:,U(3) basis. 

([N1. n,. JII n,lI W1. n,. J) =n, [21 + 111/2 

([N1. n,. J II JUI II W1. n,. J) = [J(J + 1)(2.1 +1)11/2 

([N1. n. -1. J _lIID CIl Il [N1. n •• J) = [J(n, +J + 1) IN -n. +1)11/2 

([N1. n,-I. J+II1D<1l11 [N1. n •• J) =[(J+l) (n.-J) IN _n,+1)11/2 

([N1. n, -1. J -111 R UI II [N1. n,. J) = - [J(n, +J + 1) IN -n, +1)11/2 

([N1. n, -1. J +II1R UI II [N1. n,. J) = [(J +1) (n. -Jl IN -n, + 1)11/2 

(21 _ [J(J+l) (2.1+1)J I/2 
([N1. n,.JIIQ II [N1.n,.J)--(2n,+31 6(2.1-1)(2.1+3) 

(W1 J+2I1Qc211l[N1 J)= [(J+2) (J+l) (n,+J+31 (n,-Jl] 1/2 . n,. . n,. (2.1 +3) 

TABLE II. Number of states of a given angular momentum and 
parity JP that occur in the representation [N1® IN] of UC

l) (4) 
®U(2 )(4). 

N"'( O· I· r T 2-

6 44 28 68 84 44 

10 146 110 250 330 190 

30 2736 2480 5200 7440 4720 

50 11726 II 050 22750 33150 21450 

100 88451 85850 174250 257550 169150 

We now come to a discussion of the three group 
chains III a, III b, and III c that contain the group 0 (4) as 
a subgroup. These chains appear to be appropriate for 
a treatment of rigid molecules. 

The group chain III a is characterized by the quantum 
numbers 

UCt(4) ® Uj(4)::>O<U(4) ® °i)(4) ::> °t) ::> °t) ::>°l(2) 

I [N1] , [Na] , (Wh 0) , (W2.0) , (71,72), f, M) 
(3.17) 

The values taken on by the quantum numbers W1 and W2 
are the same as in I, 

Wt =N1I Nt - 2, ... ,lor 0 for Nt =odd or even; (3.18) 

W2 =Nz, N2 - 2, ..• ,lor 0 for N2 =odd or even . 

In general, representations of 0(4) are characterized 
by two quantum numbers. For totally symmetric rep­
resentations, the second quantum number is always 
zero. This quantum number was omitted in I but it is 
explicitly written in Eq. (3.17). The values of the 
quantum numbers (711 72 ) characterizing the representa­
tions of the combined 0(4) group contained in the product 
0(1)(4) ® OGll(4) are given byll 

71 =W1+ Wz-J.L-1),72=J.L-I); (3.19) 
J.L =0, 1, •.. , min(w1I wz), I) =0,1, .•• , J.L • 

The values of the quantum numbers;/' characterizing 
the representations of 0(3) contained in one representa­
tion (711 72) of 0(4) are given by 

JP=Cf, 1-, ... , (~or 7i), when 72 =0 and (71 =even or odd), 

JP =~, (72 + 1)* , •• 0, ~, when 72 *0 . (3.20) 

Finally, the values of M contained in each J are given 
by the usual rule -JsMsJ. This chain was briefly 
discussed in Ref. 6. 

A second group chain containing 0(4) as a subgroup 
is III b. States here are characterized by the quantum 
numbers 

:) U(4) :) 0(4):) 0
1
(3) ::>0(2) 

1 1 1 
[Nt +Nz -n,n] ,(711 7z), ;/', M). 

(3.21) 

The values of n can be obtained by using the usual rules 
for the product of Young tabieaux1Z 
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00 ... 000 
00 ••• 0 ®OO ••• 0 = L 

This gives 

n 00 c.;::, 
n 

n = 0, 1, .•. , min(NhNz) • 

(3.22) 

(3.23) 

I 

The further reduction from U(4) to 0(4) is rather com­
plex and it will not be discussed here. Some examples 
of this reduction are given in Ref. 13. The reduction 
from 0(4) to 0(3) is given by Eq. (3.20) above, and that 
from 0(3) to 0(2) is given by the usual rule -JsMSJ. 

The third and last chain containing 0(4) as a subgroup 
is III c. States in this chain are characterized by the 
quantum numbers 

Ui(4) ® Ur(4) ,~ U*1(4) ~ 0{4) ~ 0{3PO{2) 

I[Nl ) , (Nz.,Nz,Nz],[Nl+Nz-n*,Nz,Nz,n*),(ThTz), Jl', M>. (3.24) 

Since ir<2l(4) is related to U (2)(4) by the transformation 
(3.9), vibron operators of type 2 transform according 
to the conjugate fundamental representation [1, 1, 1] 
instead of [1] of ir~)(4). States of vibron type 2 are thus 
labeled by [Nz, Nz, Nz] in Eq. (3.24). This property gives 
rise to branching rules for the product U/J) (4) ® irl2l(4) 
~U* (4) that are very different from those in Eq. (3.21). 
The values of n* can be obtained by using again the rules 
for multiplying Young tableaux 

oo ... o® 

Nz N1-n* 
~~ 

DO ..• 0 00 •.. 000 

00 ... 0 00 ... 0 
OO ... O=L 
~~ n*oo ... o 

Nz 00 
'-v-' 

n* 

These rules give 

n* =0,1, ... , min(N1,Nz) . 

(3.25) 

(3.26) 

The reduction from U* (4) to 0(4), from 0(4) to 0(3) and 
from 0(3) to 0(2) is then the same as above. 

C. Energy eigenvalues for linear molecules 

The three chains III a, III b, and III c allow one to 
construct analytic solutions to the eigenvalue problem 
for H appropriate to rigid molecules. This occurs 
whenever H can be written in terms only of invariant 
operators (Casimir operators) of one chain. We begin 
by conSidering chain III a. In this case, the Hamiltonian 
H can be written, up to two-body terms, as 

H W =F +Al ez.(014) +Az. ez.(Oz4)+B e z(04) +C ez.(03) . 
(3.27) 

In terms of the dipole Dh Dz. and angular momentum 
J 1, Jz., operators of Eq. (2.17), the explicit form of H (al 

is 

Jla) = F + (A1 +B)D1• D1 + (A1 +B +C)J1 • J 1 + (Az. +B)Dz • Dz 

+ (Az. +B +C)Jz ·Jz +2BD1 • Dz + 2(B + C)J l .Jz. ,(3.28) 

where we have used the expressions (3.7) of I for the 
Casimir invariants of 0(4) and 0(3): 

(3.29) 

The Hamiltonian H (al can be diagonaUzed in the basis 
III a. Its eigenvalues are simply given by 

E(a) (N1, Nz., Wl> WZ, T1, Tz, JP, M) =F +A1W1 (WI + 2) 

(3.30) 

In obtaining Eq. (3.30) we have made use of the explicit 
form of the eigenvalues of the Casimir operators in the 
appropriate basis. 11 In order to see the structure of 
the spectrum corresponding to Eq. (3.30), it is con­
venient to introduce the quantum numbers Vb v;z, V3, 

related to WI' Wz, T1, and Tz by 

W1 =Nl -2V1 , 

Wz =Nz - 2V3 , 

T1 =Nl +Nz -2V1-V2 - 2v, 

TZ =l2 • 

(3.31) 

The eigenvalue formula (3.30) can then be rewritten as 

E(Nh Nz" VI' v~&, V3, JP, M) =F' -[ 4B(N, +Nz + 4) +4A1 (Nl + 2)](Vl + 1/2)+ 4(.41 + B)(Vl + 1/2)Z - 2B(N1 +Nz +4) 

x (vz + 1) +B(vz + 1)2 +B l~ -( 4B(N1 +Nz +4) + 4Az {Nz + 2)J(vs + 1/2) +4(112 +B)(V3 + 1/2)2 +8B(Vl + 1/2) 

X (v s +1/2) +4B(V3 + 1/2)(vz + 1)+4B(vl +1/2)(vz +1) +CJ(J +1) • (3.32) 

where F' depends on F, N 1, Nz,Al,Az, B. Equation (3.32) describes the spectrum of a rigid linear triatomic mole­
cule. In order to see that, we first note that, due to the branching rules (3.20), the angular momentum content of 
each vibrational band in Eq. (3.32) is precisely the same as that of a rigid linear triatomic molecule in which 
Tz = lz is the projection of the angular momentum along an intrinsic axis, 14 Fig. 2. We also note that Eq. (3.32) is 
the same as the Dunham expansion of the energy levels of a rigid linear triatomic molecule14 

E(vt. vi ,V3, J) =Eo + G'Z(V1 + 1/2) + G'z(Vz + 1) + G'3(V 3 + 1/2) + Xll (V1 + 1/2)2 + Xzz(Va + l)Z +g2z1~ 

+ X'33(V 3 +1/2)2 +X1Z(Vl + 1/Z)(vz +l)+xdvl +1/2)(v3 + 1/2) + X2~(V& +l)(vs +1/2}+'" (3.33) 
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II (K= I) 

p p 

+--

+-- ---

--- +--

+-- ---
l:!,.(K=2) 

The quantum numbers Vb Va and Vs describe normal vi­
brations (see for instance Fig. 3). An example of the 
corresponding spectrum is shown in Fig. 4. It is in­
teresting to identify the representations of the various 
groups in the chain (3.17) in the spectrum of Fig. 4. 
All states in the figure belong to the same representa­
tion [6] ®[4] of U(1)(4) ®U(2)(4). All bending modes on 
top of a fixed stretching quantum number belong to a 
representation of 0<1>(4) ® 0(2)(4). Finally, each vibra­
tional state is the band he ad of a representation of the 
combined 0(4) group. This representation contains all 
the rotational excitations. 

Because of the relations (3.31), one can see that the 
vibron numbers Nl and Na are related to the maximum 
number of bound vibrational states for the normal modes 
Vl and vS' These numbers can thus, in principle, be 
determined by studying the vibrational spectra near the 
dissociation limits. It is interesting to note that, since 
each U(4)~0(4) chain can be associated with a three­
dimensional Morse oscillator, as discussed in I, the 
group chain lIla can be associated with the problem of 

y X Y 
+ 

VI Lg • 0 0 0--. 

+ 
V3 Lu +-0 0 • • 0 

IIu I I 1 
V2 

FIG. 3. Schematic representation of the normal vibrations of 
a linear XY2 molecule. 

p p 

+--

+-- ---
FIG. 2. Rotational levels in various 
species of vibrational levels of rigid 
linear triatomic molecules. 

--- +--
r(K=3) 

two coupled three -dimensional Morse oscillators. 
From the identification (3.31) for the chain IlIa it is 
also clear that the vibron types 1 and 2 should be inter­
preted in this case as normal modes in the molecule. 

Although Eq. (3.32) describes, to a good approxima­
tion, the energy levels of a rigid linear triatomic mole­
cule, it has several limitations. For example, since 
the coefficient B of the l~ term is related to that of the 
(va + 1) and (va + 1)a terms, which must be negative, 
only negative values of this coefficient are obtained. 
Furthermore, the coefficient C of the J(J + 1) term is 
independent of VlJ v~a, V3' All these limitations can be 
removed in the algebraic approach, either by retaining 
the dynamic symmetry III a and introducing higher order 
terms in the Casimir invariants, or by breaking the 
symmetry. An example of the latter approach will be 
discussed in Sec. IV. 

We next discuss the chain III b. In this case, we must 
consider the Hamiltonian 

H Ib) =F+Alel(U4)+Aaea(U4)+Bea(04)+Cea(03). (3.34) 

Since e 1 (U4) has eigenvalues given by Nl +Nz, which is 
constant within a given representation of U<1>(4) ® U(2)(4), 
we can absorb it in F. Furthermore, it is convenient 
to use, instead of ea(U4), the operator;m, called the 
Majorana operator, related to ez(U4) by 

(3.35) 

This operator has a simple expression in terms of 
creation and annihilation operators 

;m =[1TlxO'~ -O'iX1T~](1) '[1Tlxaa -alx1TzlU) 

+ 2[ 1TI x 1T~] (1) .[ 1Tl x ?Tzl (]) (3.36) 

The Hamiltonian 

H Ib) =F' +A3R+Bez(04)+Ce a(03) (3.37) 

J. Chem. Phys., Vol. 79, No.6, 15 September 1983 



2522 van Roosmalen et al.: Molecular rotation-vibration spectra. II 

150 -

-1:-0&00 
----L-3000 n 

--0110 
100 - ~0600-1:-0002~IOOI 

_n_IIIO 

or- _1:_oc'lo 

FIG. 4. Schematic representation of a spectrum with O(1)(4)®O(21(4) symmetry lIla. The energy levels are calculated using 
Eq. (3.32) with N 1 = 6, N 2 = 4, A2 = O. 25 B , A2 = B, and B negative. The spectr urn is plotted in dimensionless units Ell B I. The 
vibrational quantum numbers VI, V~2, v3 are shown next to the levels and the species L, n, ... above them. Only the energies of 
the lowest species 2: and n are plotted. The higher species A, 4>, r, contained in each vibrational level are indicated in paren­
thesis, but their energy, which is slightly different from that of the 2: and n species, is not plotted. 

is diagonal in the basis III b, with eigenvalues 

Efb)(Nl , Nz, n, Tb Tz, JP ,M) 

=F' +A[(Nl +Nz)n -n(n -1)] 

+ B[T, (Tt + 2) + lJ~] +CJ(J + 1), (3.38) 
where we have used the expectation value of the opera­
tor:m, obtained using the expectation value of ez(U4) 
given in Ref. 13, 

(:m:)=(Nl +Nz)n-n(n-1). (3.39) 

Again, it is convenient to introduce the quantum num-
b '2 ers Vl, Vz , Vs related to n, Tl , Tz by 

n=vZ+v3, 

Tl =Nl +Nz -2Vl-2vS - v~ , 

Tz =12 • 

(3.40) 

Equation (3.37) can then be recast in the form of a Dun­
ham expansion 

E(Nh NZ,Vl,V;z,V3,JP,M) =F"-4B(Nl +Nz +4)(Vl +1/2} +4B(Vl +1/2)Z + (A -2B}(Nl + Nz +4)(vz + 1) - (A-B}(vz +1)2 

+Bl~ + (A -4B)(Nl +Nz +4)(v3 +1/2) - (A -4B)(V3 +1/2)2 +4B(Vl +1/2)(vz +1) - (2A -4B)(V3 +1/2)(vz +1) 

(3.41) 

The corresponding spectrum is shown in Fig. 5. The main difference between this spectrum and that corresponding 
to the chain III a is that Eq. (3. 21) does not provide us with as many quantum numbers as Eq. (3.17) (missing 
label). As a result, it is not possible to adjust in Eq. (3.41) independently the energies of the three vibrational 
modes. Other differences are that Eq. (3. 41) depends only on the total vibron number Nl + Nz (although this is not 
true for the branching rules) and that H!b) is invariant under interchange of vibrons of type 1 and 2. Hence the 
states (3.21) can also be characterized by the eigenvalues of a discrete operator P la that interchanges vibrons of 
type 1 and 2. These are given by PC-f. Because of the points discussed above, the chain I1Ib is not appropriate 
for a description of the most general rigid linear triatomic molecule, although it may describe some special cases. 

The third and last chain containing the group 0(4) is IIIc. Here again, we must consider the Hamiltonian 

(3.42) 

For the same reasons as in the discussion following Eq. (3.34) we prefer to introduce the Majorana operator :JIT*. 
This operator is related to :m: by 

ml:*= (1/2)e2 (Ol4) + (1/2)ez(OZ4) - (1/2)ez(04) -3ft, (3.43) 

and, within the states of the chain III c has eigenvaluesls 
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150 f-

_n_OIII 

_n_IIIO 

U(4) 

01- -I-ooDo 

FIG. 5. Schematic representation of a spectrum with U(4) symmetry mb. The energy levels are calculated using Eq. (3.41) with 
Nt =6, N2 =4, A = -1. 5 B, and B negative. The notation is the same as in Fig. 4. 

The Hamiltonian 

H(c) =F' +A*~* +Be2(04) +C e2(03) 

is then diagonal in the basis III c with eigenvalues 

E(c)(Nh N2, n*, 1'1, 1'2, JP , M) =F' + A*[ - N1 N2 + n*(N1 + N2) - n*(n* - 3)] + B[ 1'1(1'1 + 2) + T~] + CJ(J + 1) . 

Introducing the quantum numbers 

n* =v3 , 

Eq. (3.46) can be rewritten as a Dunham expansion 

~BI 

_r_oool 
-"-01'0 

U·(4) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

FIG. 6. Schematic representation of a spectrum with U*(4) symmetry mc. The energy levels are calculated using Eq. (3.48) with 
N t =6, N 2 =4, A*=B, andB negative. The notation is the same as in Fig. 4. 
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E(N j , Nz, VI> v;2, Va, J P
, M) =F" - 4B(N1 + N2 + 4)(vt + 1/2) + 4B(VI + 1/2)2 - 2B(N1 + Nz + 4)(vz + 1) + B(V2 + 1)2 

+ B1~ + (A* - 4B)(Nt + N2 + 4)(va + 1/2) - (A * - 4B)(V3 + 1/2)2 + 4B(vt + 1/2)(v2 + 1) 

+ 4B(V2 + 1)(1.3 + 1/2) + 8B(VI + 1/2)(va + 1/2) + CJ(J + 1) . (3.48) 

The corresponding spectrum is shown in Fig. 6. As in 
the case of the chain IIIb, because of a missing label, 
it is not possible to independently adjust here the three 
vibrational frequencies_ Thus, this chain is not suited 
to describe the most general situation. In addition, the 
Hamiltonian H(c) is invariant under interchange of vi­
bron types 1 and 2. 

D. Energy eigenvalues for nonlinear molecules 

The most important difference between a linear and 
a nonlinear molecule is in its rotational spectrum. 
While for each vibrational state vI> v~2, V3 only values 
of the projection K of the angular momentum along the 
figure axis occur with 

K = 12 = v2, V2 - 2, ... ,0 or 1 , (3.49) 

(see Fig. 2), in the nonlinear case all values of K = 0, 
1, ... appear, in each vibrational state vI, v2, va' 
Hence, each vibrational excitation contains all the rota­
tional states of Fig. 2. 

Starting with the Hamiltonian (2.18) and (2.19), it 
does not appear to be possible to construct spectra with 
the appropriate rotational degeneracies. However, a 
simple extension of this Hamiltonian allows one to con­
struct spectra that display the degenercies appropriate 
to bent molecules. The Hamiltonian (2.18) and (2.19) 
was constructed by expanding it into products of boson 
operators with the constraint that H be a scalar. This 
excluded terms of the type J l' Dj, since these terms 
are pseudoscalars. However, one could consider adding 
to the Hamiltonian terms of the type I J 1 • Djl. The ab­
solute value sign changes these terms from pseudo­
scalar to scalar. We thus consider a class of more 
general Hamiltonians of the form 

H;=H/ +g:P!J:u , D:1)!; i=I,2, 

v1z = V12 + gl <1,1) !JP) • D~1) + D~1) • J~1) ! (3.50) 

+g2(I,1)!Jj1). R~1)+RP)' ~1)! . 
The study of dynamic symmetries presented in the 

previous subsection can now be repeated with these addi­
tional terms. We begin by considering the chain IlIa. 
The most general Hamiltonian with this dynamic sym­
metry can now be written 

H,(a) =F +A j e2(OI4) +A2 e 2(024) 

+Be 2(04)+B'e2(04)+Ce 2(03). (3.51) 

In Eq. (3.51) a new Casimir invariant has appeared: 

ez(04) = ID. J! . (3.52) 

Its eigenvalues are given by 

(e2(04»=(TI +1)T2 . (3.53) 

This operator is simply related to the second Casimir 
invariant of 0(4): 

(3.54) 

by the absolute sign. e 2(04) could not have been used 
directly, since it is a pseudoscalar, and thus has both 
positive and negative eigenvalues within one representa­
tion of 0(4): 

(e2(04»=±(Tj +1)T2' (3.55) 

Note that e2(04) is not an analytic function of the genera­
tors. The absolute value is defined as the absolute 
value of the diagonal elements in the basis of eigen­
states. Examples of dynamiC symmetries defined by 
nonanalytic functions of the invariants are known, e. g., 
in atomic physics. 15 

The energy eigenvalues corresponding to Eq. (3.51) 
are given by 

Et<a)(Nj, N2, wj, W2, Tj, T2' JP , M) 

=F +A j w j(w 1 + 2) +A2 W2(W2 + 2) 

+B[Tj(Tj+2)+T~]+B'(Tt+l)T2+CJ(J+l). (3.56) 

In the special case B' =2B, this reduces to 

Eda)(Nj, N2, wj, w2, Tl, T2, J P , M) =F + Aj Wl(Wj + 2) 

+A2w2(W 2 + 2) +B(TI +T2)(71 + 72 +2) + CJ(J + 1) . 
(3.57) 

It is convenient to introduce the quantum numbers vj, 
V2, V3, K through 

wl=NI -2vj, 

w2=N2- 2v3' 

7j =N1 +N2 -2vt -2V2 -2V3 -K , 
(3.58) 

T2=K. 

This introduction is suggested by the correlation dia­
gramt6 relating energy levels in linear and bent mole­
cules (Fig. 7). Here one sees that 

K-12 • 
(3.59) 

Introducing Eq. (3.58) in Eq. (3.57) leads to the Dunham 
expansion for a rigid triatomic molecule 

E(Nt , N2, vI> V2, V3' K, J P , M) =F' - [4B(Nt + N2 + 4) + 4At(Nt + 2) ](Vt + 1/2) + 4(At + B)(Vt + 1/2)2 

- 4B(N j + N2 + 4)(V2 + 1/2) + 4B(V2 + 1/2)2 - [4B(Nt + N2 + 4) + 4A2(N2 + 2)](V3 + 1/2) 

+ 4(A2 + B)(va + 1/2)2 + 8B(vt + 1/2)(V2 + 1/2) 

+ BB(vt + 1/2)(V3 + 1/2) + 8B(V2 + 1/2)(vs + 1/2) + CJ(J + 1) . (3.60) 
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Since Eq. (3.60) does not depend on K, it actually describes spherical tops. Relaxing the condition B' = 2B and 
adding higher order terms introduces K dependence. This allows one to treat symmetric tops and asymmetric tops. 
The spectrum corresponding to Eq. (3.60) is shown in Fig. 8. 

We consider next the chain III b. Since, in this case, the 0(4) representations (N - 1"2,1"2), 1"2 = 0,1, ... are not 
contained in a single representation of U(4) it is not possible to obtain an energy spectrum with degeneracies appro­
priate to bent molecules. 

Finally, we consider the chain m c. In this case it is possible to obtain spectra with the correct rotational struc­
ture. We thus write the Hamiltonian 

(3.61) 

The energy eigenvalues corresponding to Eq. (3.61), in the special case B' = 2B, are given by 

EJlc
) (Nt. N2, ri*, 1"1, 1"2' JP

, M) =F' + A*[ - Nl N2 + n*(NI + N2) - ri*(n* - 3) 1 + B[('T1 + 1"2)(1'1 + 1"2 + 2) 1 + CJ(J + 1). (3.62) 
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FIG. 8. Schematic representation of a 
spectrum with 0(t)(4) ®0(2)(4) symmetry 
in the nonlinear case. The energy levels 
are calculated using Eq. (3. 60) with N 1 

=6,N2=4,A1 =0.25B,A2 =B, andB 
negative. The vibrational quantum num­
bers Vit V2, v3 are indicated next to the 
levels and the occurring values of K 
above them. 
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U·(4) 

Introducing now the quantum numbers 

one can recast Eq. (3.62) in the form 

FIG. 9. Schematic representation of a 
spectrum with U* (4) symmetry in the 
nonlinear case. The energy levels are 
calculated using Eq. (3.64) with Nt =6, 
N 2 =4, A*=B, andB negative. The no­
tation is the same as in Fig. 8. 

(3.63) 

E(Nt , N2, Vt> V2' va,K, JP, M) = F" - 4B(NI + N2 + 4)(Vt + 1/2) + 4B(Vt + 1/2)2 - 4B(Nt + N2 + 4)(V2 + 1/2) 

+ 4B(V2 + 1/2)2 - (4B -A*)(Nt + N2 + 4)(vs + 1/2) + (4B -A*)(vs + 1/2)2 (3.64) 

+ 8B(vt + 1/2)(v2 + 1/2) + 8B(V2 + 1/2)(vs + 1/2) + 8B(Vl + 1/2)(vs + 1/2) + CJ(J + 1) . 

Equation (3.64) is similar to Eq. (3.60) but with two vibrational modes degenerate. The corresponding spectrum 
is shown in Fig. 9. Remarks similar to those following Eq. (3.48) apply here too. 

In concluding this section we remark that the 0(4) group discussed here is not related to that used to describe 
triangular configurations in Ref. 8. The 0(4) group used in Ref. 8 arises from the degeneracy group of the spheri­
cal topt1 and an 0(4) representation contains all states with the same J and different values of M and K. In the pres­
ent approach, the 0(4) representations contain all possible rotational levels in the same band. It would be interest­
ing to study the connection between the two approaches. 

IV. VIBRATIONAL SPECTRA OF RIGID MOLECULES 

The dynamic symmetries discussed in Sec. III provide a zeroth order description of the energy spectra of tri­
atomic molecules. In order to improve this description one can add terms of higher order in the Casimir invari­
ants e of the appropriate groups and/or introduce symmetry breaking terms. In this section, we study the latter 
approach. This study can be done by returning to the most general Hamiltonian (2. 18)-(2.19) and diagonalizing it 
numerically. A good basis for this diagonalization is given by the group chain I a [Eq. (3.13)]. As mentioned above, a 
computer codelO has been written for this purpose. However, for large values of the vibron numbers Nt and N2 the 
dimension of the matrices to diagonalize is very large. A simpler diagonalization can be performed if one insists 
that the molecule is rigid. In that case one can assume that the 0(4) dynamical symmetry is preserved and one can 
diagonalize H within the subspace of states carrying the same representation labels h'lo T2) of 0(4). This is analo­
gous to diagonalizing a rotationally invariant Hamiltonian in the space of states characterized by the same angular 
momentum J. Since the Hamiltonian H has, in this case, only off-diagonal matrix elements within a subspace of 
states with 2Vl +V2+2va=constant, l2=constant [see Eqs. (3.31), (3.40), (3.47), (3.58), and (3.63)], the corre­
sponding matrices have relatively small dimensions (at least for small values of the vibrational quantum numbers 
vt> V2, and va)' An appropriate basis for this diagonalization is provided by one of the three chains ill a, ill b, and 
ill c. Of them, the most convenient appears to be the chain III a. Thus, a computer program has been written to 
diagonalize the most general 0(4) Hamiltonian in this basis. IS 

A. Model Hamiltonian and matrix elements 

The most general 0(4) Hamiltonian can be constructed with the Casimir invariants of all the groups appearing in 
the group lattice 

(4.1) 
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Since the quadratic Casimir invairant of U*(4) is related to those of U(4), 0(1)(4), and 0(2)(4) by Eq. (3.43), we 
need not introduce it. We can therefore write the most general 0(4) invariant Hamiltonian as 

(4.2) 

If A = 0, we then have the dynamic symmetry III a; if AI =A2 = 0, we have the dynamic symmetry III b, and if AI 
=A2 =A* /2, A = -A*, we have the dynamic symmetry IIIc. 

In the basis III a all terms except that containing the Majorana operator :m: are diagonal. We thus need to con­
struct only matrix elements of this operator. This construction is done in Appendix B. Once the matrix elements 
are calculated, the corresponding matrix can be diagonalized. Before presenting results of the numerical diagonal­
ization, we study the case in which the coefficient A in Eq. (4.2) is small and thus we can use perturbation theory. 
In the basis IlIa labeled by Vb v~2, V3 [Eq. (3.31)], the diatonal matrix elements of the Majorana operator are given, 
up to terms of the order l/NI and 1/N2, by 

{NI , N 2, VI, V~2, v31~ INto N2, Vb v~2, V3) 

= (Nt + N2 + 1)v2 - (1/4) (4 + ~ + ~)v~ + (1/4)(~ + ~)l~ + N2(1 + ~)Vt + Nt (1 + ~)V3 - (1 - ~)VtV2 - (1 - ~)V2V3' 
(4.3) 

The vibrational energy levels of a linear triatomic molecule are given, up to first order in perturbation theory, by 

E(Nto N 2, Vt, V~2, V3' J P , M) =F' - [4Bt(Nt + N2 + 4) + 4At(Nt + 2) -A(N2 + 1) ](Vt + 1/2) + 4(A.t + Bt)(vt + 1/2)2 

- [2Bt(Nt + N2 + 4) -A(Nt +N2 + 4)](V2 + 1) + ~t - (1 + ~ + :~)}V2 + 1)2 + [Bt + ~(~ + ~)] l~ 
- [ 4Bt (N t + N 2 + 4) + 4A2(N 2 + 2) - A(l + Nt) ](V3 + 1/2) + 4(A.2 + B t)(V3 + l/W + 8Bt(vt + 1/2)(v3 + 1/2) 

+ [4Bt -A (1 - ~)}V3 + 1/2)(V2 + 1) + [4Bt -A (1 - ~)}Vt + 1/2)(v2 + 1) + CJ(J + 1) , (4.4) 

and thus in terms of only four parameters Ato A 2, B t , A, in addition to the vibron numbers Nt, N2• 

An interesting situation occurs when two vibrational modes are aCCidentally degenerate. One expects then the 
presence of resonances. An example is the approximate degeneracy of the states Vt +u, V2 - 2u, v3, with u integer. 
This situation occurs in CO2 as discussed below. 

In this case, first order perturbation theory cannot be used and one must diagonalize H among the degenerate 
states. The matrix elements of:m:, up to order l/Nt and 1/N2, between the different degenerate states are given by 

(Nto N2, Vt, v~2, v31~INtoN2' Vt -1, (V2 +2)/2, V3) 

(Nt + N2 + 4) t/2[( )2 2]t/2{ [4 3 1 
:: - 2(Nt +2)112 Vt V2 +2 -l2 1- (Nt +N2 +4) - 2(Nt + 2)J Vt 

- ENt + ~2 + 4) + 2(N~ + 2) + 2(N~ + 2)]<V2 + 2) - [(Nt +!2 + 4) + (N2:' 2)]<V3 + 1/2)} . (4.5) 

These matrix elements are similar to those used to dis­
cuss the Fermi resonance in CO2 in the potential ap­
proach. t9 

Perturbative techniques are also of importance for 
the treatment of small contributions coming from terms 
in the Hamiltonian H that are outside the group lattice 
(4.1). 

V. APPLICATION TO REALISTIC SPECTRA 

In this section we investigate the extent to which the 
simple Hamiltonian H of Eq. (4.2) can describe experi­
mental spectra. For linear molecules, we set B' = O. 
Thus H contains four parameters At> A 2, B, and A, in 
addition to the vibron numbers Nt and N2• The parame­
ter F does not play any role since it sets only the zero 
of the energy scale that we take to coincide with the en­
ergy of the ground states. In all cases discussed below, 
a least mean square fit to the data was obtained using a 

Simplex method20 in combination with the program 
VIBRON. Such a method provides only local minima. 
Our best fit to the data was obtained by varying the ini­
tial guess. A fair description of all energies, including 
the highly excited ones, for which there is an increaSing 
interest, 2t,22 was considered to be more important than 
a very accurate description of the low-lying states. 
Hence, all energy levels were given equal weight. 

A. HCN 

Using the energies of the vibrational excitations of 
the electronic ground state of HCN listed in Refs. 22 
and 23, we have performed several least square fits. 
The results are given in Table III. In the fits I, II, and 
III only the experimental data on :E states were taken 
into account. The reason for considering only those 
states is that the order of the :E,~, ••. and II, <1>, ••• 
species in a given vibrational excitation cannot be ad-
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TABLE m. Observed (Refs. 23 and 24) and calculated energies (cm-1) of the vibrational states of HCN. In fits I, II, and m only 1: 
1: states were included. The average deviation c5 is defined in Eq. (6.4). The Hamiltonian used in the calculations is given in 
Eq. (4.2) with B ' = O. Columns IT and V show the effect of keeping N1 and N 2 fixed and columns m and VI show that the introduc­
tion of the Majorana term Aml gives only a sUgbt improvement. 

V1 

o 
1 
o 
o 
1 
2 
o 
1 
o 
2 
1 
1 
o 
1 
1 
o 
o 
3 
2 
1 
o 
5 
o 
o 
1 
o 
1 
2 
o 
1 
o 
o 
o 
1 
o 

o 
o 
1 
o 
o 
o 
1 
1 

2 
o 
1 
2 
3 
2 
3 
4 
5 
3 
4 
5 
6 
2 
o 
o 
o 
1 
o 
o 
1 
1 
2 
o 
o 
o 
1 

Parameters 

A 

Obs. 

1411.43 
2096.85 
3311.48 
2802.85 
3501.13 
4173.07 
4684.32 
5393.70 
6519.61 
5571.89 
6761.33 
8585.57 
9627.02 
9914.41 

11674.46 
12635.90 
15551.94 
15710.53 
16674.21 
17550.39 
18377.01 
16640.31 

711.98 
2113.46 
2805.58 
4004.17 
4201.29 
4878.27 
5366.86 
6083.35 
7194.75 
1426.53 
2818.16 
3516.88 
4699.21 

Average deviation c5 

1406.49 
2102.37 
3301.32 
2798.19 
3494.07 
4180.26 
4693.01 
5388.90 
6506.45 
5557.17 
6765.80 
8579.23 
9615.39 
9941.34 

11673.38 
12628.14 
15544.71 
15715.92 
16690.06 
17573.11 
18365.08 
16625.53 

143.599 

46.559 

-1.212 

-10.174 

-1. 849 

0"-

11.633 

II 

1406.61 
2102.67 
3299.69 
2798.48 
3494.54 
4180.93 
4691.57 
5387.63 
6504.10 
5.558.08 
6764.78 
8577.31 
9613.23 
9939.73 

11671.71 
12627.06 
15545.62 
15715.48 
16690.17 
17574.64 
18368.88 
16626.18 

144a 

4~ 

-1.208 

-10.070 

-1.841 

0"-

11.939 

aNot varied in the least mean square search. 

m 
1409.68 
2099 •. 51 
3299.79 
2804.97 
3494.35 
4174.69 
4694.46 
5384.47 
6504.58 
5554.68 
6764.29 
8574.43 
9614.37 
9939.21 

11669.39 
12629.15 
15548.93 
15706.47 
16685.22 
17574.29 
18373.69 
16634.79 

144a 

4~ 

-1.178 

-10.012 

-1. 862 

- O. 033 

11.002 

IV 

1413.30 
2104.63 
3299.38 
2811.46 
3502.79 
4184.22 
4697.54 
5388.87 
6503.50 
5567.24 
6771.89 
8577.86 
9612.37 
9945.75 

11671.59 
12625.99 
15544.35 
15714.92 
16689.12 
17573.30 
18367.46 
16624.91 

706.65 
2112.38 
2803.71 
3998.46 
4194.30 
4875.73 
5389.05 
6080.38 
7195.01 
1405.73 
2803.89 
3495.22 
4689.97 

139.659 

47.083 

-1.238 

-10.015 

-1.892 

0"-

12.344 

V 

1413.28 
2104.48 
3299.59 
2811.44 
3502.64 
4183.97 
4697.76 
5388.96 
6503.80 
5567.01 
6772.00 
8578.05 
9612.63 
9945.98 

11671.76 
12626.07 
15544.13 
15715.06 
16689.11 
17573.03 
18366.80 
16625.14 

706.64 
2112.36 
2803.56 
3998.67 
4194.16 
4875.49 
5389.28 
6080.48 
7195.33 
1405.72 
2803.88 
3495.08 
4690.20 

140"-

4~ 

-1.234 

-10.034 

-1.889 

oa 
12.345 

VI 

1414.86 
2102.74 
3298.65 
2816.03 
3502.14 
4180.61 
4697.36 
5385.97 
6502.77 
5564.54 
6769.20 
8574.65 
9612.37 
9941.66 

11668.82 
12627.45 
15547.99 
15707.22 
16684.69 
27573.61 
18373.99 
16636.95 

707.07 
2115.09 
2802.07 
3997.60 
4194.63 
4872.21 
5389.50 
6077.19 
7193.58 
1406.57 
2807.75 
3493.84 
4689.00 

14cf 

4~ 

-1.148 

- 9. 852 

-1.960 

- 0.140 

11.712 

Obs. -Calc. 
VI 

-3.43 
-5.89 
12.83 

-13.18 
-0.01 
-7.54 

-13.02 
7.73 

16.83 
7.35 

-7.87 
10.92 
14.65 

- 27. 25 
5.64 
8.45 
3.95 
3.31 

-10.48 
-23.22 

3.02 
3.36 
4.91 

-1.63 
3.51 
6.57 
6.66 
6.06 

-22.64 
6.16 

-0.83 
19.96 
10.41 
23.04 
10.21 

justed with the simple Hamiltonian (4.2). Higher order 
terms should be added. For example, a term like 

to the real values obtained previously. Several remarks 
on the values of Nt and N2 can be made. As discussed 

(J. D)2 would correct for the discrepancy. This term 
does not affect ~ states. 

In order to obtain an estimate of the values of Nt and 
N 2, we performed two fits (I and IV), using the analytic 
formula (3.32) for the 0<11(4) ® 0(2)(4) dynamic symmetry. 
This allowed us to treat Nt and N2 as real parameters 
instead of integers. Subsequently, we performed a new 
search, keeping Nt and N2 fixed to the integers closest 

in Sec. III and in I, Nt and N2 are related to the number 
of vibrational bands, and hence to the dissociation en­
ergy [obtained using D(HC-N)t6 and D(HC)24] 

(5.1) 

A remarkable feature of the values of Nt and N 2 shown 
in Table III, is that they are very close to the values 
that one would obtain by considering the diatomic mole-
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25,000 HCN 
(All vib. states) 

20,000 

15,000 

N 

10,000 

5000 

HCN 
1500 (Only I states) 

1000 

N 

500 

100 

40 

cules CH and CN separately. Using Eq. (3.10) of I, it 
follows that for CN24 

N+2"", ~ = 2068.7"", 158 
we Xe 13.134 ' 

(5.2) 

and for CH24 

N+2"",~=2859.1 "",45 
weXe 63.3 ' 

(5.3) 

where we have used the usual spectroscopic notation we' 
We Xe , for the coefficients of the (v + 1/2) and (v + 1/2)2 
terms. The close correspondence between Eqs. (5.2) 
and (5.3) and the values obtained in our fit 144 and 47 
appears to be related to the fact that the HCN molecule 
exhibits normal vibrational modes which are very nearly 
localized in the CN and CH bonds. 25 

(e) 

(b) 

100 

YNT 1 

120 XI03 

FIG. 10. The density of vibra­
tional states in the vibron descrip­
tion of HeN WI =140, N 2=47) as 
a function of the excitation energy. 
(a) all states, (b) only 1: states. 

From Table III one can see that hardly any improve­
ment in the fit is obtained by adding the Majorana term 
(fits In and VI). We thus conclude that HCN can be con­
sidered as a good example of a dynamic 0(11(4) all 0(21(4) 
symmetry in molecular spectra. The corresponding 
description employs five parameters Nt> N2, At> A 2, 

and B and it gives an average deviation of 

(5.4) 

where 1/ is the number of data point. 

Once a fit has been obtained, several other properties 
can be calculated. As an example, we show the density 
of states as a function of excitation energy (Fig. 10). 
The calculated states extend above the dissociation en­
ergiesU 
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TABLE IV. Observed (Refs. 14 and 19) and calculated energies (em-I) of the vibrational states 
ofe02• The Hamiltonian used in the calculation is given in Eq. (4.2) with B ' = O. The aver-
age deviation {) is defined in Eq. (5.4). States in Fermi resonance are in brackets. 

VI '2 v2 V3 Obs. II 

0 Z' ~} 1285.41 1290.69 1289.97 
1 0° 1388.19 1390.89 1390.80 
0 rfJ 1 2349.16 2338.80 1339.53 
0 0° ~} 3612.84 3613.80 3613.59 
1 0° 3714.78 3713.59 3713.96 
0 4° n 4853.63 4862.69 4861.83 
1 tJ 4977.81 4976.54 4976.84 
2 0° 5099.61 5104.49 5104.98 
0 (jl 3 6972.49 6956.20 6956.91 
0 6° 1 ' 6075.93 6084.36 6082.88 
1 4,0 Ii 6227.88 6288.02 6228.85 
2 2° 

I 
6347.81 ~) 6346.62 6347.95 

3 0° 6503.05 6506.72 6507.72 
0 2° 

3} 8192.62 8199.81 8199.16 
1 (jl 3 8294.01 8298.82 8298.66 
0 0° 5 11496.85 11493.28 11492.01 
0 11 0 667.38 674.51 674.35 
0 31 

~} 1932.47 1940.83 1939.88 
1 11 2076.50 2081.17 2081.10 
0 31 

~ } 4247.71 4255.67 4255.13 
1 11 4390.63 4395.60 4395.87 
0 11 2 5316.09 5315.53 5316.09 
0 11 3 7602.85 7605.93 7606.12 
0 71 1 6688.54 6691.33 6689.52 
1 51 1 6893.91 6862.97 6863.40 
2 31 1 7024.03 7021. 45 7022.79 
3 11 1 7204.22 7203.33 7204.64 
0 22 0 1335.13 1343.40 1343.08 
0 42 1 4888.00 4896.54 4895.67 
1 22 1 5061.78 5067.38 5067.51 
0 22 2 5960.08 5967.88 5968.05 
0 33 0 2003.28 2006.66 2006.18 
0 5' 0 3341.80 3316.33 3315.54 

Parameters 

N1 150" 160" 

N2 900. 800. 

Al 0.479 0.032 

A2 2.373 2.168 

B - 2.870 - 2. 547 

A -2.930 - 2. 338 

A verage deviation <5 9.208 9.025 

aNot varied in the least mean square search. 

(5.5) 

and 

(5.6) 

We know of no other approach where (at least, semi­
quantitative) estimates of the density of quasibound vi­
brational states can be so readily obtained. Such quasi­
bound vibrational states (which appear as bound states 
in the present formalism) decay by vibrational energy 
redistribution, i. e., by vibrational predissociation. 26 

They are analogous but not identical to the rotational 

III Obs-Calc III 

1289.28 -3.87 
1390.34 -2.15 
2339.58 9.58 
3613.26 -0.42 
3713.92 0.86 
4861. 51 -7.88 
4976.71 1.10 
5104.91 - 5.30 
6956.70 15.79 
6082.55 -6.62 
6229.36 -1.48 
6348.40 -0.59 
6507.51 -4.46 
8199.17 -6.55 
8299.05 -5.04 

11 491. 08 5.77 
674.39 -7.01 

1939.17 -6.70 
2080.54 -4.04 
4254.97 -7.26 
4395.93 - 5.30 
5316.53 -0.44 
7606.58 -3.73 
6689.15 - 0.61 
6863.83 30.08 
7023.20 0.83 
7204.33 -0.11 
1343.16 - 8.03 
4895.69 -7.69 
5067.70 -5.92 
5968.95 - 8.87 
2006.31 -3.03 
3315.75 26.05 

17rr 

700. 

- 0.166 

2.130 

- 2. 414 

- 2. 017 

8.974 

predissociating states discussed in I. Such states can 
be detected both spectroscopically and in collision ex­
periments (see the discussion of Hi below). 

B. CO2 

The CO2 molecule differs from HCN in several re­
spects. First, the vibrational modes in CO2 are known 
to be non local. Second, CO2 exhibits Fermi resonances 
among the symmetric stretching and bending vibrations. 
These differences are reflected in the different values 
of the parameters we obtain in the fits. 
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TABLE V. 0(4)00(4) components in some vibrational state of CO2 (fit IT of Table IV). 

VI v~2 V3 EcaIC(cm-l ) Wit 0)0Wh O) WI -2,O)0W2, 0) WIo 0)0W2 - 2, 0) 

0 ?Ji 0 1289.97 -0.5897 -0.1850 0.7862 

1 0° 0 1390.80 0.8053 - 0.2078 0.5552 

0 0° 1 2339.53 -0.0606 -0.9605 - O. 2715 

We began with a search for the optimum values of Nl 
and N 2• It turns out that the quality of the fits is almost 
independent from Nl + N2• We thus fixed Nl + N2 using 
a different criterion, namely that the highest calculated 
state had an energy approximately equal to19 

Do(O-C-O) = 133 X 103 cm -1 • (5.7) 

This gives Nl + N2 "" 240. Table IV gives the results of 
fits for several values of Nl and N2• The best fit is ob­
tained when N 1 "" 2N 2' 

In order to describe the energies of the levels which 
are in Fermi resonance, we found it necessary to intro­
duce a relatively large Majorana term. One can see 
from Table IV that with this Majorana term one is able 
to account quite well for the energies of the multiplets in 
resonance (connected by lines in the table). It is inter­
esting to analyze the wave functions obtained from these 
fits. In Table V, we list the components of the wave 
functions of three states in the 0(1)(4) 00(2)(4) basis. 
One can see that the asymmetric stretching vibration 
(00°1) is almost purely (92%) obtained from the configu­
ration (N1 - 2, 0) 0 (N2, 0), whereas the symmetric 
stretching (10°0) and bending (02°0) modes (which are 
in resonance) are obtained from strongly mixed 0(1)(4) 
00(2)(4) configurations. This is consistent with a nor­
mal mode interpretation of type 1 and type 2 vibrons 
since the mode which is not affected by the Fermi reso­
nance is almost purely an excitation of system 1 [as one 
can see by comparing the configuration (Nl - 2, 0) 0 (N2, 0) 
with the ground state configuration (Nt, 0) 0 (N2, 0)]. In 
the previous subsection, we remarked that a descrip­
tion of the vibrational spectrum of HCN with an 0(1)(4) 
® 0(2)(4) dynamical symmetry leads, by construction, to 
an interpretation of the vibrons as normal modes. How­
ever, in contrast with CO2, the normal modes in HCN 
are very nearly local, due to the specific properties of 
that molecule (the small mass of the H atom). In con­
clUSion, we have obtained a single description of the en­
ergy levels of CO2 in terms of six parameters At> A 2, 

B, A, Nt, and N 2, with an average deviation of 6 ~ 9 
cm-t • 

C. H~ 

In order to illustrate how the algebraic approach can 
be used for a description of nonlinear molecules, we 
consider the molecule Hi. This molecule has a triangu­
lar equilibrium shape and recently some measurements 
of its rotation-vibration spectrum have been per­
formed. 27,28 In Table VI we show fits to the vibrational 
energy levelS obtained in ab initio calculations. 29 The ex­
perimental data are not extensive enough to allow us to 
perform a direct fit. The fits in Table VI are done as-

suming either an unbroken 0(1)(4) ® 0(2)(4) symmetry in­
cluding the operator e2(04) as described in Sec. IIID or 
an unbroken U*(4) symmetry. In the former case, there 
are five parameters describing the vibrational spectra 
AI, A 2, B, N1, and N2 [Eq. (3.60)]. In the special case 
of Hi, because of the additional symmetry of this mole­
cule, one must put Nl =N2 and Al =0 (if the degenerate 
modes are labeled by VI and V2)' This leaves three 
parameters A 2, B, and Nl =N2 = (N/2). Furthermore, 
since there is not enough information available on the 
high energy part of the spectrum, we kept N 1 = N 2 = 30 
fixed. Although the fits describe qualitatively the spec­
tra, they show large deviations (± 100 cm-I ) from the 
"experimental" results. In particular, the fits are un­
able to account for the couplings between states with VI' 

V2, V3, and VI ± 2, V2, v3 'f 2 as it occurs in H;. These 
couplings occur where the first excited state of the sym­
metric and antisymmetric normal modes belong to dif­
ferent symmetry species but have comparable frequen­
cies. They were first pointed out by Darling and Denni­
sonso for H20. A more recent example is ozone. 31 It 
appears, that, in contrast to the case of Fermi reso­
nances as discussed earlier, couplings between anhar-

TABLE VI. Calculated energies (em-I) of the vibrational 
states in H; compared with ab initio results (Ref. 29). 
The Hamiltonian used is given in Eq. (4.2). The average 
deviation 6 is defined in Eq. (5.4). 

VI Vz v3 Ab initio I IT 

1 0 0 2515.99 2505.73 2506.49 
0 1 0 2516.17 2505.73 2506.49 
0 0 1 3185.32 3180.98 3174.29 
2 0 0 4799.19 4927.93 4929.42 
0 2 0 5000.26 4927.93 4929.42 
1 1 0 5007.99 4927.93 4929.42 
1 0 1 5567.62 5603.18 5597.22 
0 1 1 5568.00 5603.18 5597.22 
0 0 2 6267.77 6233.42 6243.48 

Parameters 

NI 30a 3ea 

Nz 30a 30& 

Al ea -A/2 

A z - 5. 627 -A/2 

B -10.440 -15.829 

B' 2B 2B-A 

A ea -10.771 

Average deviation 6 59.750 58.477 

&Not varied in the least mean square search. 
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monic overtones cannot be described by an interaction, 
which is, at most, bilinear in the generators Eqs. (2. 15) 
and (2.16). In order to treat these situations one must 
return to the most general Hamiltonian Eq. (2.9) and 
add higher order terms. The same conclusions apply 
to the U*(4) symmetry. 

Furthermore, because of the particular nature of the 
triangular configurations, reflected in the algebraic ap­
proach in the choice B' = 2B [Eq. (3.57)] any perturba­
tion introduced by operators that break the 0(1)(4) ® 0(2)(4) 
symmetry will necessarily couple the vibrational and 
rotational degrees of freedom. 

Finally, we have also calculated the density of states 
corresponding to this case, as shown in Fig. 11. The 
quasibound states (above the dissociation limit) of this 
figure, will be detected as "complexes" in proton-H2 
collisions. 32 It is therefore worth noting that the density 
of such states declines quite rapidly with energy. This 
feature (noted also for other systems) conforms to our 
general expectations that at higher energies molecular 
colliSions tend to be direct even in the presence of a 
deep well. 33 It emerges from Figs. 10 and 11 that the 
transition from a compound to a direct mechanism is 
over at a collision energy which is about equal to the 
well depth. 

We conclude this section by remarking once more that 
while we have achieved an excellent description of rigid 
linear molecules within the framework of an algebraic 
approach with a Hamiltonian, which is, at most, qua­
dratic in the generators, this has not been the case for 
rigid nonlinear molecules. Work to include higher or­
der terms is presently in progress. 

FIG. 11. The density of vibra­
tional states in the vibron descrip­
tion of H;Wl =N2 ~30) as a function 
of the excitation energy. 

VI. EXTENSION TO LARGER MOLECULES 

On the basis of a simple counting of the number of 
degrees of freedom, one expects that rotation-vibration 
spectra of (k + 1) atomic molecules can be described in 
terms of the group structure 

(6.1) 

In order to illustrate how this proceeds in practice we 
consider the case of tetra-atomic molecules (k = 3). 
The corresponding boson space consists of k sets of C1 

and 1[ vihrons, distinguished by an appropriate label. 
We shall not give a complete account of all the group 
chains that can be constructed. They can be found by 
generalizing the arguments leading to Eq. (3.8). We 
shall discuss only one chain which is a generalization of 
the chain mao 

States in this chain are characterized by the quantum 
numbers 

0(3) :) 0(2) 

J J 
(6.2) 

The 0(1+21(4) group is generated by the sum of generators 
of 0<1>(4) and 0(2)(4), as in Eq. (3.7). The total 0(4) 
group is obtained by adding the generators of 0(3)(4). 
The values of ('1'/1, '1'/2) follow from the decomposition of 
the product (Wf,0)®(W2,0) as in Eq. (3.19). The values 
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FIG. 12. Schematic representation of the normal vibrations of 
a linear X z Y z molecule. 

of (Tt. T2) can be obtained from the product (1'/t,'12) 
® (w 3, 0).11 They will not be given here explicitly. Note 
that the representation (Tt. T2 = 0) always occurs twice if 
1'/2'" 0, once with a positive parity bandhead and once with 
a negative one. 

3000 

I+ 
40 /1::. I~ I- I+ ----r 

By using arguments similar to those discussed in Sec. 
III, one can obtain the energy spectrum corresponding 
to the dynamic symmetry III a in linear rigid tetra­
atomic molecules 

E(4)(Nt. N2, N3, wt. w2, w3, 1'/1, 1'/2' Tt , T2, J P
, M) 

=F + At Wt(Wt + 2) + A2 w2(w2 + 2) + A3 W3(W3 + 2) 

+ B1[1'/t(1'/t + 2) +1'/~] + B2[Tt(Tt + 2) + T~] + CJ(J + 1) . 
(6.3) 

The group theoretical quantum numbers can be related 
to those of the three stretching and the two bending 
modes (Fig. 12) by 

Wt=Nt-2Vt, w2=N2 -2V2' wa=Na -2va, 

1'/t=Nt+N2-(2Vt+2v2+V4) , 1'/2=l" (6.4) 

Tt=Nt+N2+N3-(2Vt+2v2+2va+v,+V5) , T2=l4+ l5' 

Since the behavior of the stretching modes is rela­
tively Simple, we consider here only bending modes, 
andsetvt=v2=v3=0, Nt =N2=N3=(N/3). Then, the 
energy eigenvalues (6.3) can be rewritten as 

~~+ -----""r 2 2 ,r 
13 /I~I-~r 

~'I::. 04 ~+ 

2QJn 
2000 

----cz, 

T 
E 

~+ S 
W 

1000 

_Io_n 

21 ~ 
~ ~,n 

cz, ....QLAI 
----cz, 

II I~r 
~ 02 I+ 
~ 

~n 

-----r 

FIG. 13. Schematic representation of a spec­
trum of a linear tetra-atomic molecule with 
0(1)(4) ® 0(2)(4)®0(31 (4) symmetry. The energy 
levels are calculated using Eq. (6. 5) with N I 
=N2=N3=50, BI =0.5, B2=2.0 cm-I• These 
values are appropriate to C2H2• Only a por­
tion of the spectrum of the bending vibrations 
is shown. 
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=F' - r(4B1 + 6B2)V4 + (B1 + B2)V4(V4 - 2) + (B1 + B2)l~ 

- 2NB2V5 + B2VS (V5 - 2) + B21; - 2B2V4V5 + 2B21415 • 
(6.5) 

The corresponding energy levels are shown in Fig. 13 
with values of N, B1, and B2 appropriate to C2H2. Again, 
it appears that the 0(1)(4) ® 0(2)(4) ® 0(3)(4) symmetry de­
scribes quite well the vibrational levels of rigid linear 
tetra-atomic molecules. 

VII. CONCLUSIONS 

We have presented here an algebraic description of 
rotation-vibration spectra of triatomic molecules. In 
particular, we have concentrated our attention to rigid 
linear and nonlinear molecules and shown that an alge­
braic Hamiltonian with, at most, two-body vibron inter­
actions can well account for the observed properties of 
rigid linear molecules, including fine details such as 
Fermi resonances. For nonlinear, triangular mole­
cules, this is no longer the case and higher order terms 
must be added. Work in this direction is in progress 
and it will be presented in a subsequent publication. 

One of the main advantages of the algebraic approach 
is that, in addition to providing a quantitative descrip­
tion of the excitation spectra in terms of few parame­
ters, it allows one to calculate all other properties. An 
example was shown in Fig. 10. Others include the cal­
culation of the excitation probabilities in collisions and 
laser excitations. Finally, because of its group struc­
ture, the vibron model provides an excellent arena in 
which one can study the relation between classical and 
quantal behavior of molecules, 34 intermolecular energy 
transfer, 35 classical chaos,36 and shape phase transi­
tions. 37 
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APPENDIX 

Matrix elements of operators in the 0(4) basis can be 
calculated using the isomorphism 0(4) RlSU(2)®SU(2). 
The group chain u(4):>SU(2)®SU(2) was studied in detail 
by Hecht and Pang. 13 In this Appendix, we relate their 
notation to ours, so that matrix elements of any opera­
tor can be calculated analytically. 

«(f ](s"m;')(t"m;') I T~:;'~ It",,) I (f ](s' m;)(t' mm 

TABLE VIT. Relations between the U(4) generators (2.17) 
and the SU(2)®SU(2} tensors TI!l~1 )(t "'t)' N is the total 

• & • 

vibron number N =n. +na• 

3 
~.- 2N=13 ~<1, m,l, -m I 0, 0) TU~~I)(I ...... ) 

m 

J~) =TU~!!) (0,0) +T\~!~l (I,m) 

D~) = TH~!!) (0,0) - Tlij!M (I,m) 

R~)=12 .4 <I, m -m ',I, m' II, m) TH!~I ..... ,)U,,,,,) 
m 

Q(2) - "" 1 ' 1 ' I 2 ) TI2111 '" - L.J < ,m-m" ,m ,m Im...".')(lm'> ", , , 

A. The single U(4) case 

The generators of 0(4): 

{Gh(4)={D~Il,J~Il} (Al) 

are related to those of SU(2)® SU(2) by 

S ~1l ::= (1/2)(J~1l + D~Il), T~1l = (1/2)(J~1l - D~1» . (A2) 

We conSider three group chains with basis states labeled 
by 

U(4)::> 0(4) ::> 0(3) ::>0(2) 

I t 1 1 I (f] (p, T) JP M) 
(A3) 

U(4) ::>SU(2) ® S U(2) ::>SU(2) :>0(2) 1 , , , , 
I (f] s JP M ) 

(M) 

U(4):>S U(2) ® S U(2):> 0(2) ® 0(2) 
, , , I I 

I (f] s ma m, ) 
(A5) 

For notational purposes, it is convenient to group to­
gether {s, t} in Eq. (A4) and (s, m.)(t, m,) in Eq. (A5). 
Furthermore, in these equations [f] denotes the Young 
tableau of U(4), (f] == [/t.J2.t3.J4]' 

For diatomic molecules, (f] == [N, 0, 0, 0] == [N], but we 
consider here the most general case. The labels p, T 

and s, t are related by 

p = (s + t), T = (s - t) • (A6) 

Tensors in Eqs. (A4) and (A5) are related by 

(A7) 

where (sm. tmt I JM) is a Clebsch-Gordan coefficient. 
The relation between these tensors and those defined in 
Eq. (2.16) is given in Table vn. 0(4)-reduced matrix 
elements of generators of U(4) can now be defined by 
making use of the Wigner-Eckart theorem for 0(4), 

= [(2s" + 1)(2t" + 1) t112 (s'm; sm. I s"m;/)(t'm~ tm, I t"m~'}<(j ]{s", ttl} II T!!!!? II (f]{s', t'})ow . (AS) 
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TABLE VIII. 0(4) reduced matrix elements of the U(4) generators (Ref. 13). 

s' t' s" t" [(2s +1) (2t+l)rI/2 ([NJ{s, t}1I T !!W,t" ,II [NJ{s', t'})OI() 

s+1 s+1 1 1 _ [(2s+3) W -2s) W+4+2s)T/2 
4(2s +1) 

1 1 
W+2) 

s s --Z-

s -1 s-1 1 1 _ [(2S-1)W+2-2S)W+2+2s)J/2 
4(2s+1) 

s s 1 0 [s(s+1)11/2 

S S 0 1 (s(s + 1) 11/2 

The relation between 0(3)- and O(4)-reduced matrix elements is 

([j ]{s", t"}J" II T\!!!? II [j Hs', t'}J'}O(3) 

~[(2.1" + 1)(2J' + 1)(2.1 + 1)J'" {: 
t" J"l 
t' ~ ([j l{s", t"} II Tf!!!lll[f ]{s', t'}}O(4) , (A9) 

where the curly bracket denotes a 9-j symbol. These equations enable us to calculate 0(3)-reduced matrix ele­
ments of operators in the 0(4) basis. Using the results of Hecht and Pang, 13 given in Table VIII, we can calculate 
the 0(3)-reduced matrix elements shown in Table IX. 

B. The coupled Vlt ) (4) ® V(2) (4) case 

The results of Appendix A can be used to calculate matrix elements of operators in the coupled case. As an ex­
ample, we calculate matrix elements of the Majorana operator (3.36) in the 0(1 )(4) ® 0(2)(4)=>0(4) basis. This opera­
tor can be rewritten as 

(B1) 

Note that the tensors Tf;!HJ acquire now an additional label (1 or 2) to distinguish vibron operators of type 1 or 2. 
The only nondiagonal term in Eq. (B1) has matrix elements 

([Ntl, [N2], (W1o 0), (w 2, 0), (Tl, T2) I ~(_)J (T1 ~~~!~J' T2 ~~~U)I [Ntl, [N2], (wi, 0), (w2, 0), (T1o T2)) 

= _ "'2+"'i+~1 {Wt/2 w2/2 (Tl + T2)/2} {Wl/2 w2/2 (Tl - T2)/2} 

( ) w2l2 wt/2 1 w2/2 wt/2 1 

x ([Ntl, {Wl/2, wl/2} II Tl ~~!~~ II [Ntl, {wt/2, w1l2}}ow ([N2], {w2/2, w2/2}11 T2 ~~!~~ II [N2], {w2/2, w2l2}}ol4> , (B2) 

where the curly bracket denotes 6-j symbols and we have considered only totally symmetric representations [Ntl 
and [N2]. From (B2), inserting the appropriate values of the 6-j symbols, one can obtain the results quoted in 
Sec. IV, 

TABLE IX. 0(3) reduced matrix elements of some generators in the 0(4) basis. 

([NI. (p, 0), J Iln.1I (NI, (p, 0), J)013) = (2J+1)1/2r N -1 + J(J~1) ~ +z)l 
[z Zpp+2 J 

([NI, (p, 0), J +111 D CI ) II [NI. (p, 0), J)013) = [(p +J + 2) (J +1) (p _J)11/2 

([NI, (p, 0), J +1IlR1!)fI (NI, (p, 0), J)OIS) = W +(Z) (J :1) [(p+J + 2) (J +l){p _J)]il2 
P p+Z 

(WI (p+Z 0) J+IIIR (1 )II[NI (p 0) J) = _ _ l_x [(J+1)(P+J+Z)(P+J+3)(P+J+4)(P+1-J)W-P)W+P+4)] 1/2 
, " , , '013 Z(p + Z) (p + 1) (p + 3) 

([NI (p-Z 0) J+IIIR(1)11 WI (p 0) J) =-~x [(J+U(P+J+l) (P-J)(P-J-l)(P-J-Z)W-P+Z)W+P+ZI]1/2 
, " , , , 0(3) Zp (p-l) (p+l) 
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([Nd. [N2]. (w t • 0). (w2• 0). (Tb T2) I ~(-)' T t ~:~~~J' T2 :::gJI [Ntl. [N2]. (WI> 0). (W2, 0), (Th T2~ 
(Nt + 2){N2 + 2) [ 

= lawt (w
t 
+ 2)W2(W2 + 2) Wt(Wt + 2) + W2(W2 + 2) - (Tt + T2)(Tt + T2 + 2)][wt (Wt + 2) + W2(W2 + 2) - (Tt - T2)(Tt - T2 + 2)] , 

(B3) 
and 

([NIl, [N2], (Wt - 2, 0). (W2, 0). (Tb T2) I ~ (-)' T t ~~~:: J' T 2 ~~:!:J I [Nd. [N2], (Wh 0), (W2, 0), (Tb T2~ 
(Na + 2) ([( 2)2 2][( )2 2] = 32w2(w2+2)wt(wf-l) Tt+ Wt+ W2+ -T2 Wt+ W2- Tt -T2 

x [(Tt + Wt - w2)2 - TU(Tt + w2 - Wt + 2)2 - T~][wi -l][(Nl + 2)2 - wm1l2 • (B4) 
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