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Representation matrices for U(4) 
G. J. Balster, O. S. van Roosmalen,a) and A. E. L. Dieperink 
Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, The Netherlands 

(Received 23 November 1982; accepted for publication 22 December 1982) 

We propose an algorithm for the numerical calculation of matrix elements of general U(4) group 
elements, applicable to large totally symmetric representations ofU(4). A possible generalization 
to the U(6) case is pointed out. 

PACS numbers: 02.20.Qs, 02.70. + d 

I. INTRODUCTION 

The application of an algebraic model in which a U(4) 
group structure is proposed to describe rotation-vibrational 
degrees of freedom of diatomic molecules 1 stimulated our 
interest in the properties of this group. In particular, to cal
culate transition probabilities,2 we found it necessary to cal
culate representation matrices (lei<G I) of this group for to
tally symmetric representations [N] with large N. In this 
paper we present an algorithm to calculate these matrix ele
ments numerically using the concept of coherent states. In 
Sec. II we give an outline of the problem, and in Sec. III we 
describe the algorithm. In the Sec. IV we summarize the 
merits of the proposed formulation, and indicate how it can 
be generalized to the case ofU(6), the symmetry group of the 
interacting boson model,3 which has been applied to describe 
collective properties of nuclei. 

II. OUTLINE OF THE PROBLEM 

We will use a Fock representation of the U(4) structure 
in terms of identical bosons that can occupy a scalar s state 
and a vector p state. All unitary transformations on these 
four single-boson states define the U(4) group of interest 
here. All states formed by distributing Nbosons among these 
four single boson states constitute the completely symmetric 
representation [N] ofU(4). Such states can be explicitly con
structed by creating Nbosons in the vacuum 10). The cre
ation and annihilation operators are 

st,pZ and s,jJf'=( - Y'P-f' (ft = -1,0,1), (1) 

respectively. They satisfy the usual commutation rules. The 
16 generators Gil of the U(4) group can be expressed in terms 
of these operators: 

(Gj,j = 1 ... 16J = ((st s)~I,(ptjJ)bOI, (ptjJ)~I, 

(pt jJ)~I,( P t S + st jJ)~I,i( pt s _ st jJ)~I}, (2) 

where the brackets denote angular momentum coupling. 
Since we have assigned, to the single-boson states, definite 
transformation properties under the rotation group 0(3), 
there are only two group chains according to which we can 
label the N-boson states: 

-) Present address: W. K. Kellogg Radiation Lab., California Institute of 
Technology, Pasadena, CA 91125. 

U(4j:) U(3j:) 0(3j:) 0(2), 

U(4):J 0(4):J 0(3):J 0(2). 

(3a) 

(3b) 

While the chain (3b) is appropriate for the description of 
molecular spectra I in practice it is more convenient to use 
the basis of the chain (3a) since the U(3) group consists of the 
transformations among the p-bosons and has n (the number 
of p-bosons) as an invariant. The quantum labels related to 
the chain (3a) are: [N], n, I, m, and the corresponding states 
[the so-called U(3) basis] 

I [N]nlm) = Anl(st)N - n (pt .pt )In -1)/2 ;??11m (pt). (4) 

(The dot product is defined as a·b = ~f' ( - Y' aft b _ f')' The 
coefficients Ani are derived in Ref. 4: 

Ani = ( - )In -1)/2 [417"/(n + I + l)!!(n -l)!!(N - n)!]1/2 (5) 

and the ;??11m ( P t ) are solid harmonics in the p-boson creation 
operators. 

A general element of the U(4) group can be expressed in 
terms of the generators 

U(€j) = exp(i~ €jGj ). (6) 

We are interested in the evaluation of the following matrix 
elements: 

([N]nlm I U (€j)1 [N]n' I'm'). (7) 

A 4 X 4 matrix representation for the generators can be ob
tained by considering their action on the four states st 10) 
andpZ 10). The unitary operator U can then be expressed 
simply as a 4 X 4 matrix if by diagonalizing ~j€j Gj , expon
entiating and transforming back to the original basis. 

III. THE ALGORITHM 

The procedure is based on three important properties of 
so-called coherent states,S which are product wavefunctions 
of the form 

I[N]af') =_l_(~l_a.a·st +a.pt)NIO). (8) 
JNi. 

First, they have a simple behavior under the action of a 
group element (6), 

U(€j)1 [N]a,.,) = exp(if3N )1[N]a~), (9) 

where f3 (real) and a~ can be determined from 
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(
al 

) (a; ) f ao ." ao U = e'f.' 
a_I a~l 

(1 - a.a*)I/2 (1 _ a'.a,*)1/2 

(10) 

Secondly, the overlap of such a state with a U(3) basis state is 
given by [compare with Eq. (4)] 

([N]nlm 1 [N]aJ.! ) 

= (N!) 1/2Ant!1 - a'a*)(N- n)/2 (a.a)(n -1)12 ~/m (a). 
(11 ) 

Thirdly, one can decompose any U(3) basis state in coherent 
states using 

I[N]nlm) = (21TA n/ )-1(2N IN!)1I2 

X f1T dX f~ I d cos 0 f1T d¢> 

Xexp( - inx)Y~(O,¢> )1 [N]aJ.! (X,O,¢> ), (12) 

with 

( 

- (1IY2) sin 0 e - it$) 
1 . Ll 

aJ.! lY,O,¢> ) = - e'x cos u . 
..fi (1IY2) sin 0 eit$ 

(13) 

An important point to note is that one can replace the three
dimensional integral in Eq. (12) by a summation in an exact 
fashion due to the fact that the states in the representation 
[N] ofU(4) are polynomials in the boson operators of (finite) 
order N. In particular the decompositon (12) of a general 
U(3) basis state remains exact if we replace the integration 
over ¢> by a (2N + 1 )-point, the one over X by an (N + 1)
point equidistant summation, and the integral over cos 0 b.y 
an (N + I)-point Gaussian summation. We replace symbolI
cally: I-t.. Using Eqs. (9)-(13), one obtains the result 

([N]nlmIUI[N]n'I'm) = 2N12AnIA n"""0,1 exp(i/3N) 
2" 1 )rr 

X t dx t d cos (! t d¢> exp( - in'x) 
o I U 

X Y~,(O,¢>)(1 - a'.a,*)(N - nl/2 (a'.a,)(n -1)/2 ~/m (a'). 
(14) 

If one considers a general boson-number-conserving, rota
tionally invariant Hamiltonian,6 its eigenstates can be ex
pressed in the U(3) basis as 

I[N]vlm) = I a~(l)I[N]nlm), (15) 
n 

where the a~ (I ) are the expansion ~oefficients. 
To obtain matrix elements of Ubetween the eigenstates 

without the necessity of determining all matrix elements (7) 
(which is particularly convenient if the number of states in 
the representation [N] is large and if one is interested in only 
a few matrix elements in the basis of eigenstates), one re
places in Eq. (14) 

An/(1 - a'.a,*)(N - n)l2 (a'.a,)(n -/1/2 

by 

n 

and 
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A n"""0,1 exp( - in'x) 

by 

I a~,(/') A n-:I,I exp( - in'x)· (17) 
n' 

In particular, this last replacement will be efficient regarding 
computational time. 

IV. DISCUSSION 

There are two main reasons why the above described 
procedure is attractive. First, this method is numerically effi
cient. Because of the unique property (9) of coherent states 
one only needs to decompose the ket of a matrix element (7). 
In any other basis one would need to calculate all the matrix 
elements of U and use transformation brackets to return to 
the U(3) basis [for both the bra and the ket in Eq. (7)], which 
is inconvenient for large N I this advantage of the coherent 
state basis is partly compensated for by the fact that the 
decomposition (12) in order to be exact involves a number of 
coherent states that is larger than the dimension of the repre
sentation [N] J. In addition, one is usually interested in only 
few matrix elements of U (Ej) (particularly for large N) and 
these are easily provided by Eq. (14). Instead of transform a
tion brackets only simple numerical procedures and func
tions are involved. Secondly, if one considers a typical Ha
miltonian possessing a dynamical symmetry [corresponding 
to the group chains (3a) or (3b)) the ground state has special 
properties and can be decomposed rather easily. For exam
ple, in the U(3) limit one obtains 

(18) 

and in the 0(4) limit 

I[N],gs) =fffl dcosO f1T d¢> 

X [(lIY2)st + (lIY2)a( X = O,O,¢> ).pt]N 10). (19) 

Therefore, the evolution of the ground state of such a system 
under an operator (6) can be calculated rather simply. Also 
certain symmetries in the problem can easily be implemen
ted, for instance, in the case of cylindrical symmetry one can 
omit the ¢> integration in (14). 

We have written a computer code based upon this algo
rithm. It is available on request. 

Extensions ofthese techniques to U(6) are straightfor
ward, although the resulting expressions are more involved. 
The U(6) formula corresponding to Eq. (4) is given in Ref. 7, 
where also the generalizations of the spherical harmonics 
appropriate for the U(6) problem are treated. An equation 
analogous to (14) would involve a five-dimensional integral 
and contain more complicated functions. Simplifications in 
the spirit of the points mentioned above could be applied. 

Let us finally emphasize that the special realization of 
the U(4) group, and in particular the 0(3) structure assumed 
here, is by no means essential. An appropriate coherent state 
basis can also be found for other chains of subgroups. 
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