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A model calculation is presented to investigate the conditions under which an excitation of a molecule or 
solid should be treated in a symmetry restricted or localized manner. The three important quantities in 
the model, the hole delocalization energy, the response time of the polarizable medium, and the interaction 
between the hole and the polarizable medium are included as variables. The exact solution is compared to 
approximations, and ranges of the three above-mentioned quantities are found for which the symmetry 
restricted or localized solutions yield the best results. It is found that the localized solutions with 
symmetrization afterwards yield the best results for a surprisingly large range of the three interactions 
and seems to be the better solution even for describing valence orbital photoelectron spectra. 

In a calculation of ionization potentials or excitation 
energies of molecules or solids as related to photoelec
tron or optical spectra, it is extremely important to 
start with Slater determinants of the N, N - 1, or N* 
(excited state) electron system in which the one-electron 
orbitals are chosen in such a way as to minimize the 
amount of configuration interaction (CI) required to ob
tain the correct result. In core electron photoionization 
or in optical spectra involving lone pair excitations, for 
example, one can start with either a molecular orbital 
or a localized description of the hole-state wave function 
to obtain the excitation energies. In the localized case, 
one assumes the core hole to be localized on a particular 
site allowing the outer valence electrons to move in and 
screen the core hole. After having determined this 
many-electron wave function, one can allow the core hole 
plus its polarization cloud to de localize according to the 
symmetry of the molecule or solid. This is the proce
dure used in polaron or, more specifically, electronic 
polaron theory in solids. It results in reduced band 
gaps and bandwidths relative to a one particle picture 
because of the "Franck-Condon" like overlap integrals 
of the polarization cloud which is assumed to move co
herently with the core hole. In molecules it will result 
in reduced splittings of the various symmetry molecu
lar orbitals. 

The other extreme approach is to do a symmetry
restricted calculation in which the core-hole wave func
tion is a Bloch wave function in a solid or molecular or
bital in a molecule. In this kind of calculation one is 
forced to do a conSiderable amount of CI to get any 
screening at all. In metals, for example, one would 
have to take an infinite number of excited configurations 
into account to describe a deep core electron binding 
energy. The questions then arise: What should one do, 
and when? In the calculation of the binding energy of a 
1s electron in O2 , for example, Bagus t has shown that 
considerably better results can be obtained using a sym
metry unrestricted calculation in which the core hole is 
found to be localized. On the other hand, it is usually 
assumed that valence electron excitations or ionizations 
can be described with symmetry restricted calculations. 

The quantities which are important in determining 
which approximation is the better are (1) the hole delo
calization time T c which is determined by the transfer 

integral of a hole between two sites or, in solids, the 
bandwidth of the hole T c = 'Ii/ AEc; (2) the electric field 
or gradient of the Coulomb potential felt by the other 
electrons due to a local hole; and (3) the response time 
Tv of the other electrons which is determined by the 
transfer integral or bandwidth of the valence electrons 
for unfilled bands or molecular orbitals and the excita
tion energies from filled bands or orbitals. 

To investigate this problem in more detail, we do a 
model calculation in which the three relevant interactions 
can be varied and for which an exact solution is possible 
which then can be compared with the solutions of the 
localized and de localized approximations. We consider 
the 1s photoelectron spectrum of the fictitious molecule 
Li; with electron configuration eft", at2u, a~", with at 
composed of 1s atomic orbitals and a2 of 2s atomic or
bitals. To avoid complications due to spin multipliCi
ties, we take the 2s electrons to be spin up and neglect 
exchange interactions with the 1s electrons. The ground 
state wave function is 

>¥,,= ~ I>¥~SA>¥~SA>¥~SB>¥~SB>¥~I 
We consider a Hamiltonian with only the matrix elements 

These matrix elements are directly related to the three 
important quantities discussed above. We could also 
include the other Coulomb interactions which, however, 
add nothing new to the physics involved. 

Within this model it is easy to determine the 1s pho
toelectron spectrum. The positions of the peaks are de
termined by the eigenvalues of the states with one 1s 
electron removed, and the intensities are given in the 
sudden approximation by 

(1) 

where >¥ 1(ls) is the frozen-state wave function with a 
hole in the 1s orbital and >¥ F(l s) is the eigenfunction of 
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the final state with a hole in the 1s orbital. The ener
gies of the possible final states are given by 

E, = 3EI5 +E2 .. + Q + Wi 

(2) 

resulting in four possible final states. Subtracting the 
energy of the ground state, we obtain binding energies 
of 

(3) 

(E1s <O, T2 .. >0, Q>O). 

The lowest binding energy corresponding to the energy 
of an adiabatic ionization is given by 

18_ E T Q+JQ2+4(T2s +TI/ (4) 
~ -- 1 .. + 2 .. - 2 

We want to compare these solutions to those of local
ized and delocalized approximations. The delocalized 
symmetry restricted solutions without configuration in
teraction are easily obtained yielding 

~~S(DL)=-EIs--t ±TIs (5) 

corresponding to the bonding and antibonding combina
tions of 1s orbitals. In the photoelectron spectrum 
these lines will have equal intensity. The localized 
solutions can be obtained by simply setting Tis = 0 in 
Eq. (3) yielding 

(6) 

Unlike the localized solution, the delocalized solution 
cannot be simply obtained from the exact solution. The 
two lines obtained from the localized solution are easily 
identified with the problem of a diatomic molecule dis
cussed by Hush. 2 The intensities of these lines are ob
tained using Eq. (1) with final state wave functions: 

'it}(1sB) = q'it~s 'it~s + CNi. 'it~s (7) B B B A 

(1SA in brackets refers to the 1s hole on atom A), where 
'it15 refers to a hole in the 1s orbital of atom A or B 

d
A,B 

an 'it 25A ,B refers to an electron in the 2s orbital of 
atom A or B. These wave functions reveal the corre
lation between the core hole and the 2s electron and, 
more explicitly, give the probability amplitude of the 
2s electron being on the same or other site as the core 
hole. The coefficient (Ci)Z gives the probability that the 
25 electron is on the same site as the core hole for the 
lowest binding energy state. This is shown in Fig. 1 as 
a function of Q / Tzs' For Q» Tz. the 2s electron moves 
in to completely screen the core hole. The coefficients 
Ct2 are given by 

(8) 

(9) 

,·0 

09 

0-8 

lei 
0·7 

FIG. 1. The probability that the 25 electron is on the same 
site as the core hole as a function of Q/T2s , assuming the core 
hole to be localized on a particular site. 

We see that, in the localized description, the two 
states corresponding to +, - in Eq. (6) are each doubly 
degenerate because of the two possible positions of the 
localized hole. The intensities of the two lines are 
given by 

(10) 

To see what these two solutions mean, we look at some 
limiting cases. For Q« T28 we find two lines at approx
imately ~~=-EI8 and ~~=-Els+2T2s with intensities of 
approximately 1- (Q2/T~s) and q/T~s' respectively. 
These correspond to a main line and a shakeup satellite 
in which the 2s electron has been excited to the antibond
ing orbital. 

Ip. the other limit, i. e., Tzs« Q, we again get two 
lines at 

and 

E~= -E1s - Q 

corresponding to the ionization of Li' and Lio with ap
proximately equal intensities. As pointed out by Hush, 2 

the spectrum now looks like that of a mixed valence com
pound, which it obviously is not in the ground state. A 
direct comparison can be made with the results obtained 
by Hush2 by setting a=2T2..!Q and realizing that CiC; 
= - CiCi so that the intensity ratio of the two peaks is 
given by 

2 .£. J1+(1+ aZ)1/2_ oJ 
r l1 + (1 + (0)1 7 2 + aJ 

as found by Hush. 2 

We now return to the original problem of comparing the 
localized and delocalized calculations to the exact one. 
There is, as mentioned in the introduction, one other 
rather obvious thing we should do with the localized cal
culation. As mentioned above, the two states found are 
each doubly degenerate because of the two possible pos
itions of the core hole. This degeneracy will be lifted 
as soon as we turn on the transfer integral Tis, and will 
result in eigenstates which have the symmetry of the 
molecule. Taking into account only an interaction be
tween the degenerate states, we get new eigenfunctions 
[from Eq. (7)] 
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o 

FIG. 2. The constant energy curves in units of TIs for the four levels obtained from the exact solution, as a function of T2/Tls 
and Q/Tls' The zero of energy is taken to be equal to Els' 

\It~6 = ,~ [\It~(1sA) + \It~(1sB)] 

\It~a = ,~ (\It~(1sA) - \It~(lsB)] (11) 

corresponding to the bonding and antibonding states of 
the hole plus its polarization cloud, respectively. Since 
the only term neglected in the Hamiltonian to obtain the 
localized solutions was that involving the one-electron 
transfer integral T ls , this will be the only term causing 
the splitting between the bonding and antibonding states. 
Of course, this term will also mix \It~(lsA) with \It'F(lsB) 
which for this simple molecule could also be taken into 
account, in which case we would get the exact result. 
This mixing will however not be as important because 
these states are well separated in energy. Also, we are 
trYing here to set up a procedure which can also be ap
plied to much larger molecules and solids, in which 
case the mixing of only the degenerate states remains 

a well-defined and relatively simple procedure. The 
splitting of the bonding and antibonding states will be 
given by 

which will be considerably less than 2TI9 because \It;(1sA) 
and \It;'(lsB) are not one-electron or one-hole wave func
tions but include the polarization cloud. In terms of the 
wave functions given by Eqs. (11) and (7), the splitting 
of the bonding and antibonding states is given by 

At;' = 4C~qTI. (12) 

which is strongly reduced from 2Tls because qq·<t. 
The coefficient cfC~ is just the overlap integral of the 
polarization cloud for the hole on atom A with that for 
the hole on atom B. 

For example, the lowest binding energy peak would 
now come at 
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7 
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FIG. 3. The constant energy curves in units of Tis for the two 
levels obtained from the symmetry restricted solution as a 
function of T2/T13 and Q/T1s' 

IsiL S )- E T Q+y'Q2+4T~s 
E t " ym-- Is+ 2s- 2 

-2 (Q+y'Q2+4T~s)T2.TI. (13) 
Q2 + 4T~.+ Q.JQ2 + 4T~s 

(Sym stands for symmetrized). It should be noted that 
this procedure is easily carried out for larger molecules 
or for solids, in the latter case corresponding to the 
electronic polaron. 

We now want to compare these solutions to the exact 
ones for various values of T2s , Tis' and Q. Since these 
are free parameters, we can also look at what happens 
for Tis!!>! T2s or Tis> T2s , corresponding to the photoelec
tron spectrum of a valence orbital. We first of all note that 

for the lowest binding energy peak for Q - 0 both >I1:(DL) and 
>I1~S(L, Sym) give the same result and are equal to the 
exact result for all values of T2s and Tis' This is rather 
interesting since here we would have expected the local
ized description to break down, but the symmetrization 
after doing the localized hole calculation again results 
in the exact solution for this limit. Also, in the other 
limit where Q» T2s and Q» Tis the localized solution 
results in the exact value whereas the de localized solu
tion is in error by Q/2 for the lowest binding energy 
peak. Also, in the limit that Q and T2s» Tis the local
ized description is exact whereas the de localized de
scription is far from the exact result. This already in
dicates that perhaps the localized description with sym
metrization is almost always the better procedure. 

To show this in more detail we have plotted in Figs. 
2(a) to (d) the constant energy curves for the four peaks 
of the exact solution in units of Tis and as a function of 
T 2s/Tls and Q/Tls ' In Figs. 3(a) and (b) the same plots 
are shown for the delocalized solutions, and in Figs. 
4{a} to (d) for the localized solution with (solid) and with
out (dashed) symmetrization. From t\1ese plots we see 
that for large Q or large T2s the delocalized solution 
clearly breaks down. Surprisingly, the localized solu
tion with symmetrization afterwards agrees very well 
with the exact solution over a large range of Q and T2s' 
This is especially so for the lowest and highest binding 
energy peaks. The central two peaks are expected to 
deviate more from the exact result because these have a 
smaller energy separation so that the neglect of \j!"F(1sA) 
with \j!~(1sB) mixing in Eqs. (11) and (13), respectively, 
will be more important. 

Of primary interest is the position of the lowest binding 
energy peak corresponding to an adiabatic ionization. 
In Figs. 5(a) and (b) we show constant energy difference 
curves between the exact and the localized solution with 
symmetrization, and the delocalized solution (again in 
units of Tis and as a function of T2.1TIs and Q/TIs ). Also 
shown in Fig. 5(a) is the curve on which the localized 
and delocalized solutions are equal. For all values of 
T 2s/T1s and Q/T1s larger than the boundary given by the 
curve Tis + 4Q2 = Tis the localized solution is better except 
for Q = 0, in which case the two are equal. This is rath
er interesting because we find that for all values of T2si 
Tis> 1 independent of Q the localized solution with sym
metrization afterwards is the better one. This means 
that even for the outer valence electrons the localized 
calculation with symmetrization will yield better results 
in many cases. We also find that for Q/TIs> 2 inde
pendent of T2S the localized solution gives better results. 
This limit is certainly satisfied by most core electrons 
and also for excitations out of lone pair orbitals. 

Although this is a simple model calculation it does 
take into account the three kinds of important interactions 
for this problem, and we might therefore generalize the 
conclusions to larger molecules and solids. To do this 
it is more convenient to talk in terms of characteristic 
times rather than interactions. The three times involved 
in general are (1) the delocalization time Tc of the hole 
created by the excitation which in our case is T c = Ii/ Tis; 
(2) the characteristic interaction time 7/ with the polar-
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FIG. 4. The constant energy curves in units of T I • for the levels obtained from the localized solution before (dashed) and after 
(solid) symmetrization. 

izable medium which in our model is Tr=hlQ (as noted 
in the introduction, Q represents the electric field pro
duced by a localized hole or the gradient of the potential 
felt by the polarizable medium); and (3) the response 
time T~ of the polarizable medium which in our model is 
T~ = hITz.. The conclusion then is that for Tv < Tc or for 
Tr<iTc the localized description with symmetrization is 
preferable. Of course, in a general system the polar
izable medium consists of many different parts each with 
its own characteristic response times. For example, 
core orbital polarization is a fast process in which the 
response time is given by Ii! t::.E, where t::.E is an excita
tion energy of the core electron involved. The valence 
electron response times will be determined by molecu
lar orbital splittings in molecules and by bandwidths 
(metals) and band gaps (semiconductors) in solids. 

From the calculation on the Lii model we conclude 
that the localized calculation is preferable in most 
cases, and also for the valence orbitals. This calcula-

tion with symmetrization afterwards is equivalent to an 
electronic polaron model. The assumption inherent in 
this calculation is that the polarization cloud, formed 
by the other electrons (both core and valence), can re
spond quickly enough to coherently follow the motion of 
the hole as it jumps from atom to atom in the molecule 
or solid. In a delocalized or symmetry restricted cal
culation one assumes that the polarization cloud cannot 
follow the motion of hole. In this case the response of 
the system calculated for a delocalized hole results in 
a smaller relaxation energy as compared to a localized 
calculation. 

The procedure the authors envision for the electronic 
or rather hole polaron calculation in a more realistic 
molecule or solid is as follows: We start with a symme
try restricted Hartree-Fock calculation of the ground 
state of the system described by a single Slater deter
minant of one-electron molecular orbitals. We assume 
that each of the so obtained molecular orbitals can be 
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FIG. 5. The constant energy difference curves in units of TIs 

for the lowest binding energy level between the exact and the 
symmetry restricted solution (b) and the exact and the localized 
solution (a). Also shown is the boundary curve on which the 
two solutions are equal. The localized solution with symmetri
zation afterwards is better for all values of T 2/T ls and Q/Tls 
outside of the region enclosed by the boundary curve. 

expressed in terms of a linear combination of atomic 
orbitals. We then do another Hartree-Fock calculation 
on an "tV - 1 electron system with the constraint that one 
of the atomic orbitals, say on atom i, which is a com
ponent of the molecular orbital of interest is kept unoc
cupied. This can be done for example by removing all 
the terms in the Hamiltonian connecting this orbital with 
others. The ground state wave functions so obtained in
volves a single Slater determinant of N - 1 electrons and 
the hole. This forms the polaron or a quasiparticle 
consisting of a local hole and its polarization cloud. We 
do this for all the atomic orbitals which appear as com
ponents of the molecular orbital of interest, realizing of 
course that all atoms related by symmetry operations 

will give equivalent wave functions. We now have a set 
of n Slater determinants each involving N - 1 electrons 
and a hole. We use this as a basis for the symmetri
zation. We now switch on the part of the Hamiltonian 
which we had removed before, obtaining again a set of 
molecular orbitals. The molecular orbitals however 
are no longer a combination of one-electron atomic or
bitals but a combination of N - 1 electron Slater deter
minants. Because of this all the off-diagonal matrix 
elements of the Hamiltonian will be reduced by the N - 1 
electron over lap integrals. 

This procedure is by no means exact and may give 
rise to difficulties in open shell systems. The reason 
for suggesting it is mainly because it is a fairly well 
defined procedure which is identical to the procedure 
used in the Li; calculation for which we have shown the 
validity for a large range of parameters. Also we 
should note that this procedure includes the atomic re
laxation contribution with an expected high degree of 
accuracy. 

It would be of interest to test this procedure on dia
tomic and polyatomic molecules and compare it to 
~SCF and symmetry unrestricted calculations. 

It should be noted that the above is not unrelated to 
the exciton model introduced by Ley et ai. 3 to describe 
relaxation energies. Here it is assumed that a whole 
valence electron is pulled into the site with a core hole. 
As can be seen from Fig. 1, this is expected to be a 
reasonable approximation if the Coulomb interaction is 
comparable to or larger than the molecular orbital 
splitting in molecules or bandwidths in solids. 

It should be noted that the same kind of arguments 
holds for the optical spectra of molecules except that 
here the interaction of the hole with the excited electron 
must also be taken into account. Especially interesting 
are excitation spectra involving lone pair orbitals as in 
parabenzoquinone4

,5 and PNDA6 which indeed are better 
described in a localized way with symmetrization after
wards which in this case leads to an excitonlike de
scription. 7 
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