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Summary. The spectral sensitivity of the peripheral 
retinular cells R1-6 in nine species of intact flies was 
determined using non-invasive, optical measurements 
of the increase in reflectance that accompanies the 
pupillary response. Our technique is to chronically 
illuminate a localized region of the eye with a long 
wavelength beam, adjusted to bring pupillary scatter- 
ing above threshold, then, after stabilization, to stim- 
ulate with monochromatic  flashes. A criterion increase 
in scattering is achieved at each wavelength by adjust- 
ing flash intensity. Univariance of the pupillary re- 
sponse is demonstrated by Fig. 3. 

Action spectra measured with this optical method 
are essentially the same as the published spectral sen- 
sitivity functions measured with intracellular elec- 
trophysiological methods (Fig. 4 for Calliphora, Fig. 5 
for Drosophila, Fig. 7 for Eristalis, and Fig. 8 for 
Musca). This holds for both the long wavelength peak 
and the high sensitivity in the UV as was consistently 
found in all investigated fly species. 

Spectral sensitivity functions for R1-6 of hov- 
er flies (family Syrphidae) are quite different in differ- 
ent regions of the same eye. There can also be substan- 
tial differences between the two sexes of the same 
species. The ventral pole of the eye of female Allo- 
grapta (Fig. 10) contains receptors with a major peak 
at 450 nm, similar to those of  Eristalis. However, 
the dorsal pole of the same eye contains receptors 
with a major peak at 495 nm, similar to those of 
Calliphora. Both dorsal and ventral regions of the 
male Toxomerus eye, and the ventral region of the 
female eye, contain only the 450 nm type of R1 6 
(see Fig. 12). However, the dorsal region of the female 
eye also contains another spectral type of receptor 
that is maximally sensitive at long wavelength. Eyes 
of  both sexes of Allograpta (Figs. 10 and 11) contain 
a mixture of spectral types of receptors R1-6. 

Introduction 

Measuring the spectral sensitivities of the photorecep- 
tors of fly eyes has been approached by a number 
of different methods, each with its own virtues and 
shortcomings (Goldsmith and Bernard, 1974). The 
most popular and most successful in determining the 
characteristics of single types of retinular cells is the 
technique of intracellular, electrophysiological re- 
cording. Yet, an unavoidable difficulty inherent in 
the electrophysiological technique is that the experi- 
mental animal must be cut, punctured, or partially 
dissected for the electrode to penetrate the animal's 
exterior. Furthermore, the micropipette ordinarily 
penetrates the membranes of many cells in order to 
reach the cell in which its tip is embedded. Conse- 
quently, the length of time one can record from a 
cell is limited, and the results of  measurements can 
be affected by artifacts of preparation and penetra- 
tion. 

For  the last decade, a promising alternative tech- 
nique for optically probing the photoreceptor cells 
of completely intact, living invertebrates has remained 
underdeveloped. We refer to the pioneering work of 
Kirschfeld and Franceschini (1969) who demonstrated 
that pigment granules, contained within a photorecep- 
tor cell of  a fly, can move upon light-adaptation and 
congregate next to the rhabdomere, thereby control- 
ling the optical flux in the rhabdomere by absorbing 
and scattering light. This so-called pupillary response 
is measurable either as a decrease in transmittance 
or an increase in reflectance of the eye. Thus, either 
effect can be used to monitor the sensitivity of pho- 
toreceptor cells. The feasibility of the former ap- 
proach was first demonstrated by Franceschini 
(1972a, b), who measured the action spectrum for 
changes in antidromic transmittance caused by ortho- 
dromic illumination of the eye of a white-apricot mu- 
tant of Drosophila. 
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Noninvasive, optical techniques for measuring the 
spectral sensitivity of photoreceptor cells were further 
developed by Bernard (1976a, b; 1977a, b; 1979) 
on butterfly species that exhibit tapetal eyeshine. In 
this case, pupillary responses can be exquisitely mea- 
sured, since the migrating pigment granules reduce 
transmittance for both incident and reflected light- 
paths through the rhabdom. The results of the work 
on butterflies encouraged our attempt to extend the 
technique to insect eyes that exhibit optical scattering 
from pupillary pigment granules. 

The phenomenon of pupillary scattering is known 
not only for Diptera (Franceschini, 1972a, b; 
Franceschini and Kirschfeld, 1971a, b, 1976; Stav- 
enga, 1975), but also for Hymenoptera, Orthoptera, 
and a variety of other invertebrate orders (Frances- 
chini, 1975; Franceschini and Kirschfeld, 1976 ; Stav- 
enga, 1979a, b ; Stavenga and Kuiper, 1977 ; Stavenga 
et al., 1977). 

Species of Diptera and Hymenoptera proved to 
be suitable subjects, indeed. Our results have been 
summarized in a published abstract (Bernard and 
Stavenga, 1977), and our experiments on isolating 
responses from different spectral types of bumblebee 
photoreceptor cells have been reported (Bernard and 
Stavenga, 1978). This paper is devoted to flies. 

Methods 

(33-86-39-01) and quartz-fluorite achromatic condenser lens (33-86- 
53), two neutral-density wheels (6 inches diameter, density range 
0-2, metallic coating, made by Kodak) mounted on 1.8 ~ stepper 
motors, and a Vincent Uniblitz shutter (225). The two beams were 
combined in a UV-transmitting beam splitter (Oriel A43-564-60-3) 
before entering the microscope. 

The current from the photomultiplier was measured with a 
Keithly 616 digital electrometer set at one nA/V. the voltage from 
the 616 was both sampled by a Digital Equipment Corp. LAB/8E 
computer and monitored by a Tektronix 5103 storage oscilloscope. 
The shutter of the stimulating beam was controlled by a WPI 
series 800 pulse generator. 

Optical Alignment of the MSP 

The microscope objective was centered with respect to the optical 
axis of  the microscope. The optics were aligned by selecting the 
glass plate of the 0-pak illuminator and focussing on a front-surface 
mirror, adjusting the condenser of  the 0-pak to bring its field 
aperture into focus, then centering the field apertures of both the 
measuring beam and the stimulating beam. The field aperture of 
the stimulating beam, as measured in the front focal plane of 
the microscope objective, was set slightly larger than that of the 
measuring beam (e.g., 190 gm and 160 gm, respectively). Next, 
the back focal plane of the microscope objective was examined, 
and the aperture stop Aa was cet!tered and reduced to about 80% 
of its full diameter, then the exit-slit of the monochromator  was 
centered with respect to the aperture stop. Finally, both light ~ 
sources were adjusted for maximal intensity and uniformity as 
viewed in the front focal plane. The entrance slit of the monochro- 
mator  was set to 2.8 ram, corresponding to 10 nm bandwidth. How- 
ever, because less than 0.5 mm of  the exit slit was required to 
fill the back focal plane of the objective, the illumination at the 
fly's eye had a bandwidth of 8 nm or less. 

The apparatus required for implementation of this method is an 
incident-light microscope equipped with a photometer head and 
a specially constructed double-beam illuminator. The "measuring 
beam" is a steady beam that serves two purposes; it provides 
the illumination that the photometer head uses to measure the 
reflectance of the eye, and it sets the resting state of adaptation 
of the eye. T h e "  stimulating beam" provides monochromatic flashes 
of adjustable wavelength, intensity, and duration that elicit pupillary 
responses from the eye. 

The remainder of  the methods section first describes the appa- 
ratus and its alignment, next the preparation and mounting of 
the fly, and finally the procedure for measuring responses and 
computing spectral sensitivity. 

Mieroscope-Pho tometer 

We used a Leitz Ortholux microscope equipped with their 0-pak 
pol-illuminator (including an MPV changing slide), 8 x/0.18 P or 
5.6 x/0.15 P objective (or a Zeiss 10 x/0.2 Ultrafluar objective), 
MPV photometer head, and four-axis universal stage. The photom- 
eter head contained a centrable measuring aperture, a filter holder, 
and an EMI 9658RAM red-sensitive photomultiplier. 

The optical elements in the measuring beam (see Fig. 1) were 
a current-stabilized quartz-halogen 45-W lamp (General Electric 
Q6.6AT2 1/2-CL) operated at 6.5 A in a Schoeffel lamp-housing 
with quartz condenser, a filter-holder containing a 3 mm Schott 
KG-3 heat-filter plus neutral-density and colour filters, and a Stae- 
ble-Telexon 135 mm f/3.8 telephoto lens. 

The stimulating beam contained a Bausch & Lomb high-inten- 
sity monochromator  (33-86-76) with quartz-halogen illuminator 

Preparing the Fly for Measurements 

Flies were collected from Woods Hole and the surrounding coun- 
tryside, and placed in glass vials prior to preparation. A fly was 
prepared for measurements by first placing its vial in crushed ice 
until it ceased to move. Then its wings were fixed together with 
molten wax of low melting temperature. Next, the fly was fixed 
to a slotted plastic tube with wax that connected its thorax to 
the tube, then wax was applied between thorax and head. Finally, 
the six feet were waxed together, keeping the legs away from the 
head. Care was taken to avoid waxing the abdomen, the thoracic 
spiracles, or the mouth parts. The product of  the mounting proce- 
dure was a completely intact fly with head that was rigidly fixed 
to the plastic tube, but with movable abdomen and mouth parts. 
The mounted fly was then offered a drink of honey water. If 
the fly fed avidly after mounting, it usually survived for several 
days of measurements, if fed at least twice a day. 

Adjustment of the MSP with the Fly in Place 

The fly, mounted in its plastic tube, was inserted into the universal 
stage and placed beneath a Wild M5 stereo-microscope that had 
been equipped with a vertical-illumination prism (215-972). When 
the angte of  illumination was adjusted to be as close as possible 
to the angle of view through the right eyepiece, the pupillary scatter 
from the pseudopupil (as in Fig. 16b of  Franceschini, 1975) was 
easy to observe, even at intermediate settings of the tamp voltage 
(some species exhibit more scattering than others. See the Results 
section). After orienting the universal stage to illuminate the desired 



G.D. Bernard and D.G. Stavenga: Spectral Sensitivities of Fly Retinular Cells 97 

slimuIating beam " ] I 
I 

O s F s A n G A x L s A s W S 

I 
l 

7 measuring beam I 

I 
| t i 
a m FhFdFe LmAm [ 

I 

M 

% 
% 

Bq 

I 

j 
I Fp 

I Ap 
I 
I 

I 

I 

I 

I o 
L 

ol 

~Bg ~1 
Lo '~ [  

E l 

Fig. 1. Diagram of  apparatus. The measuring beam contains: Q~, 45 W quartz-iodine illuminator; F~, heat filter; Fa, neutral filter; 
Yc, cut-off filter;L,, ,  telephoto lens; A,,, field aperture. The stimulating beam contains: Qs, 45 W quartz-iodine illuminator; F~, stray-light 
filter; computer-controlled monochromator  G with entrance slit A, and exit slit A,; L~, quartz condenser; A,, field aperture; 
W, computer-controlled neutral-density wedge; S, fast electric shutter; M, mirror. The two collimated beams are combined in quartz 
beam splitter Bq and inserted into the epi-illuminator of the microscope. The microscope contains Aa, aperture diaphragm; Bg, glass 
plate; Lo, microscope objective; E, eye of intact fly; Le, 10 x eye piece. The photometer head contains Ap, adjustable and centrable 
photometer diaphragm; Fp, photometer filter; P, photomultiplier; D, micro-prism diffuser 

region of the eye, and examining the fly for obvious head move- 
ments, the stage was transferred to the MSP. A cut-off filter known 
to elicit a pupillary response (e.g., OG590) was placed in the measur- 
ing beam. Then the beam was switched on and the microscope 
was focussed on the deep pseudopupil. Subsequently, the trapezoi- 
dal region of  pupillary scatter was centered with respect to the 
field stop. The diameter of the field stop was then reduced to 
be somewhat larger than the trapezoidal region, so that movements 
of  the trapezoid (Franceschini and Kirschfeld, 1971 b) stay within 
the illuminated region: The measuring diaphragm (Ap) of the pho- 
tometer was centered on the pupillary trapezoid and opened to 
contain the field stop. 

Then the eye was checked for mechanical and optical stability 
with the following procedure: the measuring beam was turned 
off and its filter changed to one that elicits a large pupillary re- 
sponse (e.g., OG550). After a few minutes of darkness, the step- 
response to this bright light was monitored with the photomulti- 
plier. If the fly was able to move its head, it would do so in 
response to such bright illumination, causing massive fluctuations 
of the photomultiplier signal. However, if the response increased 
smoothly and remained high in the presence of the bright light, 
the experimental preparation was likely to be a good one. If the 
fly did move its head under these circumstances it was removed 
and waxed again. If the fly still moved it was discarded and a 
new fly was prepared. One can work with a healthy, stabile fly 
for days, so wasting time with a movable retina is ill advised. 

Selection of the Measuring Beam 

In all experiments the steady measuring beam contained a heat- 
absorbing filter and a cut-off filter. The particular choice of cut-off 
filter was governed by the desired state of the unstimnlated pupil. 
Unless otherwise specified, the filter was chosen so that the pupil- 
lary response of the dark-adapted eye to onset of the measuring 
beam was somewhat above threshold (by 0.3 log-unit or so). Having 
selected a filter for the measuring beam (e.g., RG610), a filter 
of shorter cut-wavelength (e.g., OG590) was placed in front of 
the photomultiplier (Fp of  Fig. 1), thereby eliminating stimulus 

artifacts at shorter wavelengths. Because fly metarhodopsins have 
bathochromically shifted absorbance spectra (Ostroy et al., 1974; 
Hamdorf, 1979; Stavenga, 1976, 1979a, b) the measuring beam 
also serves to maintain the titer of rhodopsin at a high level by 
photoconverting the metarhodopsin to rhodopsin. 

After the reflectance to the steady measuring beam stabilized, 
the photo-multiplier voltage was set to yield about 0.8 nA of cur- 
rent (0.8 V into the oscilloscope) and the vertical gain of the oscillo- 
scope was set to 50 mV/cm, or even 20 mV/cm, so that small 
changes in reflectance were easily resolved. 

Procedure for Measuring Action Spectra 

The principle underlying our measurements of  spectral sensitivity 
is the method of response invariance (Rodieck, 1973). The criterion 
response was achieved at each stimulus wavelength by adjusting 
the angular position of  the circular neutral-density wedge until 
a setting was found which yielded a criterion response. Some details 
follow. 

After choosing the criterion reflectance-increase large enough 
to reliably distinguish a response from noise, a reference combina- 
tion of wavelength and wedge setting was chosen (e.g., 490 nm 
and 108 ~ ) that gave criterion responses for five or ten flashes in 
a row, one every 30 s or 40 s. Having thus achieved stabilization, 
responses to a new, randomly selected wavelength were measured, 
adjusting the wedge between flashes until criterion was achieved. 
After every six or eight flashes a response to the reference combina- 
tion of wavelength and wedge setting was checked. In this way 
the entire spectrum was sampled in random order, collecting combi- 
nations of  wavelength and wedge setting that yield criterion. Near 
the end of an experiment a few widely spaced wavelengths were 
checked to guard against systematic errors caused by photochem- 
ical conversion. 

Another source of systematic errors can be wide-band stray 
light, and overlapping orders, from the monochromator.  These 
problems are controlled by inserting appropriate filters at F~ of  
Fig. 1, a Schott UG1 in the UV, and Schott cut-off filters when 
working at long wavelengths. 
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Radiometry and the Calculation 
of Spectral Sensitivity 

Having collected raw data for an action spectrum of the pupilIary 
response as combinations of wavelength and wedge setting, the 
quantum flux at each combination was measured within a day 
of the experiment. A calibrated 1 U.D.T. PIN10/UV diode was 
placed beneath the microscope objective, and readings were taken 
at each combinations 

Readings in the ultraviolet were corrected for wide-band stray 
light by subtracting the reading obtained after inserting a low- 
fluorescence Schott KV418 cut-off filter at position Fs of Fig. 1. 
This was necessary because the photodiode is relatively insensitive 
in the UV compared to the band 400 nm-1000 nm, and because 
the tungsten light-source is relatively deficient in UV content. 

The values of minimal quantum flux (Qmln) given in the Table 1 
are for individually different numerical apertures of the incident 
illumination, corresponding to the values for the individual experi- 
ments. 

The log-sensitivity functions shown in our figures were com- 
puted as l~ 

Results 

Properties of the Pupillary Response 

W h e n  an  inc rease  o f  i l l u m i n a t i o n  is de l i ve red  to the 

eye  o f  a fly, the  r e f l ec t ance  o f  the  eye  increases  due  

to s ca t t e r i ng  by  the  p i g m e n t  g ranu le s  as they  m o v e  

in to  the  l igh t  pa th .  Th i s  p u p i l l a r y  r e s p o n s e  is d e m o n -  

s t r a t ed  in Fig .  2. In  this e x p e r i m e n t  the  r e f l ec t ance  

o f  the  eye o f  a h o v e r  fly Syrphus sp. was  m e a s u r e d  

w i t h  a s u b - t h r e s h o l d ,  r ed  b e a m  ( c u t - o f f  f i l t e r  R G 6 3 0 )  

a n d  r e c o r d e d  w i t h  a pen -wr i t e r .  T h e  r e sponses  s h o w n  

in Fig .  2 were  e v o k e d  by  m o n o c h r o m a t i c  500 n m  

f lashes  o f  11 s d u r a t i o n  a n d  va r i ab l e  in tens i ty ,  sepa-  

r a t ed  by  an  i n t e rva l  o f  49 s b e t w e e n  f lashes .  Th is  

in tens i ty  series p r o v e s  tha t  the m a x i m a l  r e f l ec tance-  

inc rease  is a m o n o t o n i c  f u n c t i o n  o f  s t imu lus  i n t ens i t y ;  

the d y n a m i c  r ange  is 2 3 log-un i t s  (see a lso  F r a n c e s -  

chini ,  1972a,  b ;  F r a n c e s c h i n i  a n d  Ki r sch fe ld ,  1976). 

T h e  u n i v a r i a n c e  ( R o d i e c k ,  1973) o f  the p u p i l l a r y  

r e sponse  was  i nves t i ga t ed  by  c o m p a r i n g  an  in tens i ty  

series o f  540 n m  f lashes  to a n o t h e r  series o f  435 n m  

f lashes ,  a c c o r d i n g  to the  f o l l o w i n g  p r o c e d u r e :  f i r s t ,  

t h e  n e u t r a l - d e n s i t y  w e d g e  ( W  o f  F ig .  1) was  a d j u s t e d  

to  y ie ld  a 1 .6% r e s p o n s e  to  a 5 s, 540 n m  flash.  T h e n  

we s e a r c h e d  in the  b l u e  f o r  a w a v e l e n g t h  (435 nm)  

w h i c h  e l ic i ted  the  s a m e  r e sponse  w i t h o u t  c h a n g i n g  
the  w e d g e  set t ing.  N e x t ,  a series o f  six, 540 n m  f lashes  

were  d e l i v e r e d  to the  eye, d e c r e a s i n g  the w e d g e  den-  
sity by  a b o u t  0.2 log -un i t s  b e t w e e n  e a c h  f lash.  F ina l ly ,  

1 The diode was calibrated in 1974 by Optronic Laboratories, 
Silver Spring, Maryland, USA, and subsequently checked in 1978 
against a factory-calibrated UDT-101A radiometer in the Labo- 
ratory of Prof. R. Wehner at Ziirich, Switzerland. We believe the 
spectral calibration deviates from the truth by no more than 0.1 
log-unit in the band 350-800 nm 

reflect ion 

illumination ~-11 s-~J 

Fig. 2. A series of pupillary responses from a Syrphus hover fly. 
The reflectance of the eye was measured with a broad-band red 
beam (cut~off filter RG630). Stimulating flashes of duration 11 s 
and wavelength Z = 500 nm were delivered every 60 s. The neutral 
density wedge in the stimulating beam was adjusted between each 
flash. The density settings were 2.49, 2.34, 2.15, 1.98, 1.78, 1,59, 
1.41, 1.18, 0.91, 0.62, 0.28, and 0.00. Zero density at 500 nm corre- 
sponds to 2x 1014 quanta cm2/s. There is no stimulus artifact 
because a RG630 cut-off filter was inserted in front of the photo- 
multiplier. The baselines of the traces in this figure are separated 
from one another by a constant vertical shift for sake of clarity. 
The baseline of the bottom trace (corresponding to density = 2.49) 
is coincident with the baseline of the illumination trace. This series 
proves that the maximal reflectance increase is a monotonically 
increasing function of stimulus intensity, ranging from 0% at den- 
sity-2.49, to 47% at density=0 

nA 

1.00 

0.90 

0.80 [ 
0.75 

5s 
Fig. 3. A 540 nm intensity series matched to a 435 nm intensity 
series. Oscillograph showing pupillary responses to twelve 5 s 
flashes comprising one series of six 540 nm flashes and another 
series of six 435 nm flashes. The resting reflectance corresponds 
to a photomultiplier current of 0.8 hA. The flash intensities, in 
units of 1012 quanta/cm2/s are 2.8, 4.3, 6.6, 11, 19, and 36 at 
540nm; and at 435nm are 0.90, 1.5, 2.4, 3.8, 6.7, and 12.5. The 
stimuli are matched within 0.05 log-units throughout the entire 
range, and the responses are matched within 0.6%. This series 
demonstrates univariance of the pupillary response 

the  w e d g e  was  r e t u r n e d  to its in i t ia l  se t t ing  a n d  a 

series o f  six, 435 n m  f lashes  were  de l ive red ,  m a k i n g  
the s a m e  changes  in w e d g e  se t t ing  b e t w e e n  e a c h  f lash  
as fo r  the  f o r m e r  series. T h e  responses  to the  twe lve  
f lashes  are  s h o w n  in Fig.  3. In  b o t h  series,  the  max i -  
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99 

Fig. Sym- Genus Sex Eye Objec- nA of Filter Neutral Meas. 
bol re- t ive  illumi- density ap. 

gion nation (gm) 

Stim. Dura- Crite- Qmin Wave- 
ap. tion rion x 10-1z length 
(~tm) (s) (%) (nm) 

Date 

4 o Calliphora F V 8 x 0.10 RG630 0.0 126 
5 o Drosophila M V 10 x 0.16 RG630 1.0 106 
6 C Chlorops F E 10 x 0.16 OG590 0.6 106 

x Dirnecoenia M D 5.6 x 0 . 0 9  OG550 2.6 220 
7 o Eristalis F D 8 x 0.10 OG570 0.3 126 
8 o Musca M E 5.6 x 0 . 0 8  OG590 3.1 330 

x 1.3 
9 + Syrphus M V 5.6 x 0 . 0 9  OG570 0.0 220 

x 
2 V 8 x 0 .1 '0  OG550 1.3 150 
3 
5 OG570 0.0 

10 M Allograpta F E 5.6 x 0 . 0 9  OG570 1.3 220 
D D 
V V 

11 r Allograpta M D 10x 0.16 RG610 0.3 160 
x V OG590 0.7 
* V RG610 0.0 
+ V 

12 z Toxomerus M V 5.6 x 0 . 0 9  OG550 1.1 220 

155 6 2 1.8 490 8.9.77 
134 10 1.5 2.4 480 1.3.79 
134 7 2 3.3 480 13.8.77 
275 22 4 1.0 480 11.7.77 
155 5 2 7.9 450 10.9.77 
400 22 5 0.62 500 8.7.77 

3.4 490 
275 8 2.5 1.6 440 7.8.77 

1.5 1.6 
190 3 3.2 470 9.8.77 

4.5 3.1 
3 2.9 460 

275 9 2 0.72 460 27.7.77 
1.0 480 

7 0.17 450 
190 7 3 0.77 480 14.8.77 

0.63 450 
5 0.51 460 15.8.77 

0.21 450 
275 13 2.5 3.2 450 19.7.77 

real changes in reflectance were 1.6%, 3%, 11%, 
17%, and 26% for the six flashes. The time-course 
of  each response for 540 n m  was the same as its com- 
pan ion  response for 435 rim. 

Spectral  Sensit ivi ty Functions 

Nine species of flies were investigated, each f rom a 
different genus. Six families are represented. The re- 

sults given below are organized according to genus, 
proceeding f rom the well-studied to the unknown .  

The s t imula t ing  flashes of monoch roma t i c  light 
used in these experiments  were between 5 s and  22 s 
in dura t ion,  eliciting cri ter ion increases in reflectance 
of between 1.5 and  5.0%, with q u a n t u m  fluxes at 
max imal  sensitivity of between 8 x 10 l~ and 8 x 1012 
quanta/creels  (normalized to a numer ica l  aperture of 
0.1). The parameters  for individual  experiments are 
given in Table  1, keyed to the symbols  with which 
the spectral sensitivity funct ions  are plotted. Table 1 
conta ins  in fo rmat ion  on  genus, sex, microscope objec- 
tive, numer ica l  aperture of i l luminat ion,  filters in 
measur ing  beam, diameters of measur ing  and  stimu- 
lat ing beams as measured in the f ron t  focal plane 
of  the objective, dura t ion  of s t imulat ing flashes, 
cr i ter ion increase in reflectance, q u a n t u m  flux re- 
quired to elicit cr i ter ion at the long-wavelength peak 
of sensitivity, the value of that  wavelength,  and the 
date on which the measurements  were performed. 

Calliphora 

Our  results for one female C. vicinia Robineau-Des -  
voidy (this designat ion is now considered to have 
precedence over the more famil iar  name  C. eryth- 
rocephala) are plot ted in  Fig. 4a  with symbol  o.  The 
sensitivity at 350 n m  is greater than that  at 490 n m  
by a factor  of 1.75, while the local m i n i m u m  at  
400 n m  is a factor  of  0.36 below the lat ter  peak. F o r  
wavelengths greater than  550 n m  the func t ion  is ap- 
proximately log-linear, decreasing at a rate of 0.35 
log-units/10 nm. 

Drosophila 

Our  measurements  f rom one male D. melanogaster, 
Canton-S  wild-type are plotted in Fig. 5 with symbol  
o. The UV peak of sensitivity is at least 1.6 times 
higher than the peak at  480 nm. The local m i n i m u m  
at 400 n m  is quite deep, being a factor  of 0.31 below 
the 480 n m  peak. The long-wavelength l imb of the 
funct ion  decreases at a rate of  0.3 log-units/10 nm. 

Chlorops and Dimecoenia 

The flies of Fig. 6 were selected because of a possible 
visual impor tance  of their irr idescent corneas (Ber- 
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Fig.6. Pupitlary action spectra fiom a Chlokops fly (symbol C) 
and a Dimecoenia shore fly (symbol x ), compared to Drosophila 
(dots) 

na rd ,  1971). The fly Chlorops sp., a female  a b o u t  
the  size o f  Drosophila, is a m e m b e r  o f  fami ly  Ch lo ro -  
p idae .  The  shore  fly D. spinosa (Loew),  a male ,  is 
a m e m b e r  o f  fami ly  E p h y d r i d a e .  We f ind tha t  bo th  
species have eyes wi th  a ref lectance spec t rum tha t  
changes  on ly  by  a f ac to r  o f  two wi th in  the spec t ra l  
band  390 n m  750 nm, with a b r o a d  p e a k  in the far  
red, a m i n i m u m  in the green, and  a secondary  maxi-  
m u m  in the violet.  Fig.  6 shows tha t  the spec t ra l  sensi- 

t ivi ty funct ions  fo r  bo th  flies is the same as for  Droso- 
phila except  for  a s o m e w h a t  sha l lower  d ip  at  400 nm. 

Eristalis 

The circles in Fig. 7 show our  results for  a do r sa l  
region o f  the eye of  a female E, arbustorum (L.). We  
were unab le  to make  measu remen t s  in the U V  because  



G.D. Bernard and D.G. Stavenga: Spectral Sensitivities of Fly Retinular Cells 101 

)'- 0" I'- 
H 
> 
H 
I -  
bl 
03-1 
Z 
hi 
(,O 

(9 
O - 2  
J 

ERISTALIS 
. . . .  , . . . .  I ~ . . . l . . . .  I . . . .  i . . . .  I . . . .  

B BB Og 

BT 

0 

T 
0 

T 
B 

. . . .  i . . . .  I . . . .  i . . . .  I . . . .  l . . . .  I . . . .  

3 0 0  400  S00 6 0 0  
W A V E L E N G T H  - -  n r r ,  

Fig. 7. Eristalis: comparison of a pupitlary action spectrum to 
published intracellular electrophysiological spectra. Symbol o, re- 
sults from our optical method; symbol B, Bishop (1974); symbol 
T, Tsukahara and Horridge (1977) 

>'- 0 I -  
H 
> 
H 
I-- 
H 
0")-1 
Z 
l.d 
(,0 

(.9 
Q - 2  
J 

N U S C A  
. . . .  , . . . .  I . . i  , i  . . . .  I . . | i l  , . . . l i . . .  m 

% 
" + ; , . .~, i0~% 

0 

xXXXXX . 0 
X xXXX Xx .~ 

o X 

x o 

• 
X 

. . . .  ' . . . .  [ . . . .  , . . . .  I . . . .  | . . . .  I . . . .  

3 0 0  400  S00 6 0 0  
W A V E L E N G T H  --  n m  

Fig. 8. Musca: several comparisons of pupillary action spectra. 
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relatively large intensities were required to elicit a 
measurable pupillary response; there is a great deal 
of  diffuse, background reflection that makes the deep 
pseudopupil  of  Eristalis difficult to observe. In the 
spectral range that we did explore, the peak falls near 

450 nm, and the long-wavelength limb decreases at 
a rate of  0.31 log-units/10 nm. 

Musca 

Figure 8 shows two spectral sensitivity functions for 
the equatorial region of the eye of a male M. domes- 
tica, which differ according to the state of  pupillary 
adaptation. The symbol o is for a measuring light 
that was 0.2 log-units above pupillary threshold of  
the thoroughly dark-adapted eye. The symbol X is 
for a measuring light that was brightened by removing 
1.86 log-units of  density from the beam. In both cases 
the eye was allowed to stabilize before measuring 
sensitivity. The only difference between the results 
of  the two measurements is a vertical shift of the 
log-sensitivity function by about  0.7 log-units; the 
shapes of  the functions are the same. 

Comparisons to the dots in the same Fig. 8 show 
that the function for Musca is essentially the same 
as for CaIliphora. 

Syrphus 

A male Syrphus sp. was studied to learn if there were 
differences in spectral sensitivity among  the retinular 
cells R1-6. Measurements were restricted to selected 
portions of the deep pseudopupil  by masking all but 
the desired reflections with a movable,  adjustable 
diaphragm (Ap of  Fig. 1). Two regions in the medio- 
ventral part  of  the eye were studied, at elevations 

20 ~ and -30 ~ where 0 ~ elevation corresponds to the 
equator. A t - 2 0  ~ elevation, functions were measured 
for R2, R3, and R5, respectively, shown at the top 
of Fig. 9, The function for R3 is somewhat higher 
at long wavelengths compared to the others. 

A t - 3 0  ~ elevation, the sensitivity function for 
R1 + R 6  was compared to that for the entire trape- 
zoid, as shown at the bot tom of Fig. 9. There is no 
difference between the two functions. 

Atlograpta 

Three experiments were performed on one female 
A. obliqua (Say), to explore regional variations in 
spectral sensitivity. Figure 10 shows measurements 
from dorsal (D), equatorial (M), and ventral (V) re- 
gions. The measuring beam was the same for all three 
experiments. Whereas the ventral function is the fa- 
miliar blue-sensitive function similar to that of Eris- 
talis, the dorsal and equatorial functions are much 
higher at long wavelengths than expected. The shape 
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Fig. 10. Female Allograpta: pupillary action spectra from different 
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of the dorsal function is similar to that of  Calliphora, 
while the equatorial function is broader, with a 
depressed UV peak. The tong-wavelength, log-linear 
limb of the dorsal curve is shifted by 50 nm from 
that of the ventral curve. 

Four  experiments were performed on one male 
A. obliqua, to explore the possibility that there is a 
sudden change in spectral sensitivity across the eye's 
equator. Sensitivity functions were measured at the 
following elevations in the vertical plane that makes 
a fifteen degree angle with the body's axis: + 15 ~ 
+ 5 ~ - 5  ~ - 1 0  ~ and - 4 5  ~ where 0 ~ elevation corre- 
sponds to the equator. The functions shown in Fig. 11 
are similar to the equatorial function of the female 
(M in Fig. 10). The functions for the dorsal region 
are only slightly shifted from those of the ventral 
region. 

Additional experiments were performed at + 5 ~ 
and + 15 ~ to explore the possibility that changes in 
state of pupillary adaptation are responsible for the 
differences in spectral sensitivity functions. The mea- 
suring beam that was used to determine the function 
at + 5 ~ elevation elicited only a 4% pupillary response 
at onset. After having measured the function shown 
as ~ in Fig. 11, the measuring beam was made bright- 
er by replacing the RG610 filter with OG590+den-  
sity 1.26, which elicited a 12% pupillary response 
at onset. After allowing the pupil to stabilize, sensitiv- 
ity was measured at 400 rim, 420, 460, 500, 520, and 
560 rim. The result of  this experiment was no detect- 
able change in sensitivity function. 

Then the eye was rotated to + 15 ~ elevation, and 
sensitivity was measured with two different measuring 
beams: a) with filter RG610, flash duration 7 s, and 
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criterion 2.5%, sensitivity was determined at 470 nm, 
490, 510, 520, 530, and 550 nm. The shape was identi- 
cal to that at + 5  ~ elevation; b) with filter 
RG610 + density 0.29, flash duration 4 s, and criterion 
2.5%, sensitivity was determined at 370 nm, 410, 430, 
450, 470, 500, 510 and 530 nm. Again, the shape of 
the function was the same as that at + 5 ~ elevation. 

Toxomerus 

Near  the end of  the summer, having realized that 
Syrphidae may have males and females with differ- 
ences in spectral sensitivity even though members  of 
the same species, we sought to investigate this point 
further. Unfortunately,  the season for Allograpta had 
ended. However, the smaller Toxomerus marginatus 
(Say) were still available. In mid July we had mea- 
sured sensitivity of  the ventral region of a male's 
eye. That  function (Fig. 12) is the same as the ventral 
function for female Allograpta. 

In September we collected several of  both sexes 
and assayed the dorsal and ventral regions for differ- 
ences in spectral sensitivity functions. The procedure 
was to obtain criterion responses at 430 nm and at 
520 nm, and compare relative sensitivity to known 
spectral types. Results for both ventral and dorsal 
regions of  male eyes, and f rom ventral regions of  
female eyes, were within 0.05 log-units of  the value 

0.75 log-units that is expected for the 450nm type 
of receptor. However, measurements f rom the dorsal 
region of female eyes demonstrated much higher sen- 
sitivity at 520nm, being only 0.40 log-units below 
that at 430 nm instead of 0.75 log-units. 

To be sure that this difference was not a conse- 
quence of differences in state of  adaptation, the com- 
parison was repeated with six different measuring 
beams, containing first OG590+dens i ty  1.26, then 
OG570 +densi ty  0.29, then OG570, then OG550, then 
OG550 +densi ty  0.29 and finally, RG610. In all cases 
the sensitivity ratio was 0.4 log-units. 

Discussion 

Spectral sensitivity functions for fly retinular cells 
R1-6 are known to have two peaks separated by 
a minimum at 400 nm. The peak in the UV is usually 
near 350 nm, while the other peak ranges from about  
440 nm to 500 nm depending on the species. For  wave- 
lengths well beyond the latter peak, log-sensitivity 
decreases linearly with wavelength. Maximal sensitiv- 
ity is usually in the UV, but this is a variable finding. 
The most  thoroughly studied fly in these respects in 
the blowfly Calliphora and its white-eyed mutant.  

Calliphora 
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Fig. 12. Toxomerus: evidence for a sexual difference in spectral 
sensitivity. Symbol x, action spectrum from the ventral region 
of a male eye. The sensitivity at 430 nm relative to 520 nm is 
0.75 log-units for both dorsal and ventral regions of the male 
eye, and for the ventral region of the female eye. However, as 
marked by the cross, the ratio for the dorsal region of the female 
eye is only 0.4 log-units 

Figure 4a  compares our results for C. vicinia to those 
of  Burkhardt  (1962), D6rrscheidt-K/ifer (1972), and 
McCann and Arnett  (1972). Figure 4b compares our 
results for C. vicinia to results for its Australian coun- 
terpart  C. stygia, obtained by Horridge and Mimura 
(1975) and by Hardie (1979). 

The spectral sensitivity function for R1 6 of Calli- 
phora has peaks near 350 nm and 495 nm. There are 
substantial differences among the results of  these five 
electrophysiological papers, which we will discuss be- 
fore comparing the results of  the optical method. 

The data of Burkhardt  (1962, Fig. 6A) are for a 
single cell of  a wild-type fly, illuminated with an 
extended source. The substantial elevation of  values 
at 616 nm and 650 nm is caused by transparency of 
shielding pigments at long wavelengths. Subsequent 
investigations have alleviated this problem by work- 
ing with either white-eyed mutants or light sources 
of small angular extent. 

McCann and Arnett  (1972, Fig. 5) present averaged 
data (N=27)  for white-eyed mutants. Their curve is 
quite similar to Burkhardt 's  in the band 330-550 nm, 
with the exception of higher values near 380 nm and 
400 nm. 
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D6rrscheidt-K~fer (1972, Abb. 2) presents an 
averaged function (N= 11) for the white-eyed mutant 
"chalky" .  It is an unusually shaped curve, shifted to 
longer wavelengths compared to results of former 
workers. 

The results of our optical method applied to a 
wild-type female are shown with symbol o in Fig. 4a. 
The comparison to the electrophysiological results is 
good except for a somewhat higher UV peak. 

The paper of Horridge and Mimura (1975) is a 
valuable contribution because it presents a series of 
six spectral sensitivity functions for individual cells. 
The functions were obtained from wild-type C. stygia 
using a one-degree light source. Furthermore, these 
were the first experiments that controlled the photo- 
chemical state of a fly eye during intracellular mea- 
surements of spectral sensitivity. Unfortunately, Hor- 
ridge and Mimura did not present an averaged func- 
tion, so we computed one from their Fig. 1 according 
to the following procedure: the six curves were 
converted to log-sensitivity versus wavelength, then 
a normalization constant for each curve was found 
by fitting it to the function of McCann and Arnett. 
Our Fig. 4b shows all six functions, plotted with sym- 
bols A through F, but lowered by one log-unit for 
clarity. A mean of the log sensitivity, and its standard 
deviation (S.D.). was computed at each wavelength. 
The values for the mean are plotted with symbol 
x at the top of Fig. 4b, with error bars corresponding 
to + 1 S.D. Two other functions are also shown at 
the top of Fig. 4b. The symbol �9 plots the averaged 
data (N=6) from Hardie (1979, Fig. 2) for dark- 
adapted wild-type. The symbol �9 is for our measure- 
ments of C. vicinia, also shown in Fig. 4a. 

The averaged function from Horridge and Mi- 
mura's data is consistent with earlier electrophys- 
iological results except for a higher UV peak, and 
aberrantly elevated values near 500 nm. Hardie's 
function is similar for wavelengths greater than 
400 nm, but exhibits a substantially depressed UV 
peak which is significantly lower than found by other 
investigators. The difference in height of the UV peak 
is more than a factor of two when comparing Hardie 
(1979) to Horridge and Mimura (1975). This is diffi- 
cult to understand considering that both investiga- 
tions were conducted in the same laboratory. 

We believe that our intracellular optical method 
is measuring the same spectral sensitivity function 
as the intracellular electrophysiological method. 
Examination of Fig. 4a and b shows that the largest 
differences are in the ultraviolet region, where our 
function is slightly higher than all others. We attribute 
this to our procedure for measuring UV quantum 
flux, in which wide-band stray light is excluded. With- 
out such precautions the UV peak would drop by 

0.2 log units, to a level equal to that of early elec- 
trophysiological results. It is possible that part of 
the variability in electrophysiological measurements 
of the UV peak might be a consequence of this type 
of systematic error. 

Some of this variability must be physiological as 
well. The long wavelength portion of the spectral sen- 
sitivity function is determined by the absorption spec- 
trum of the visual pigment rhodopsin, as follows from 
the good agreement between physiological and spec- 
trophotometric data (for reviews, see Hamdorf, 1979; 
and Stavenga, 1979). The UV-peak is probably due 
to UV-absorption by both the rhodopsin and a pho- 
tostable, sensitizing pigment that somehow harnesses 
its absorbed energy to produce isomerization of rho- 
dopsin (Kirschfeld et al., 1977). Possibly a component 
of the variability in relative height of the UV-peak 
is a variability in the relative concentrations of sensi- 
tizing pigment and rhodopsin. 

Drosophila 

The technically difficult task of intracellularly measur- 
ing spectral sensitivity of Drosophila retinular cells 
was accomplished by Wu and Pak (1975; Fig. 8). 
Their averaged data from white-eyed mutants is 
shown in Fig. 5, plotted with symbol W. 

Genetic dissection and electroretinography have 
been used to determine spectral sensitivity functions 
for R1-6 of Drosophila. The function for R1 6 of 
white-eyed, sevenless mutants, taken from Harris et al. 
(1975; Fig. 4), is shown in Fig. 5 with symbol . .  
A later estimate of the function for R1-6, from Stark 
etal. (1979; Fig. 2), is shown in Fig. 5 with symbol 
+.  

Our results for a wild-type Drosophila of the Can- 
ton-S strain, which are plotted in Fig. 5 with symbol 
o, are quite similar to the electrophysiological results. 
Both methods show the UV peak to be substantially 
higher than the long wavelength peak. 

Chlorops and Dimecoenia 

The spectral sensitivity functions for R1-6 of these 
flies are shown in Fig. 6. Both are quite similar to 
our function for Drosophila which is plotted with dots 
in the same figure. Therefore, it is likely that the 
corneal irridescence of Chlorops and Dimecoenia does 
not significantly affect the shape of the spectral sensi- 
tivity functions of the underlying photoreceptors, but 
only affects the external appearance of the eyes. 

For further discussions on this theme, see Bernard 
(1971), Bernard and Miller (1968), Goldsmith and 
Bernard (1974), Miller (1979), and Stavenga (1979a). 
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Eristalis 

The drone fly E. tenax is exceptional among flies that 
have been studied with intracellular electrophysiology 
because R1-6 have peak sensitivity in the blue, near 
450 nm, and are relatively insensitive at long wave- 
lengths. Furthermore, the variability in the relative 
height of the UV peak is greater than for other flies. 

Bishop (1974) found fifteen cells with a peak in 
the UV, and low sensitivity at longer wavelengths. 
He also found three photoreceptor cells with a peak 
in the neighbourhood of 450 nm, and low UV sensi- 
tivity. The sensitivity function for one of the latter 
units, taken from Bishop's Fig. 2c, is plotted in our 
Fig. 7 with symbol B. 

Horridge et al. (1975) also found Bishop's 450 nm 
type of cell, but infrequently. They most often recorded 
from photoreceptor cells exhibiting a peak at 350 nm 
as well as 450 nm, but found considerable variation 
in relative height of the two peaks. In a subsequent, 
related publication Tsukahara and Horridge (1977) 
reported on a large number of intracellular measure- 
ments, finding double-peaked units in a continuous 
series of S(360)/S(450) ratios ranging from 0.35 to 
2.0. One of their sensitivity functions, for dark- 
adapted "cell 2",  is plotted in our Fig. 7 with sym- 
bol T. Tsukahara was able to hold this cell contin- 
uously for nine hours. Compared to Bishop's func- 
tion, the long wavelength peak of Tsukahara and 
Horridge's function has a peculiar flattened, broad- 
ened appearance. 

Our results from the dorsal region of the eye of 
a female E. arbustorum are plotted in Fig. 7 with sym- 
bol o. This function is essentially the same as Bishop's 
at wavelengths greater than 400 nm. Unfortunately, 
technical difficulties prevented our measuring UV 
sensitivity, so we can say nothing about the UV peak 
in this case. 

Musca 

The spectral sensitivity of the house fly has recently 
been measured with intracellular methods by Hardie 
(1979). His averaged data (N=  3) from dark-adapted, 
white-eyed M. domestica are shown in Fig. 8 with 
symbol +.  Earlier data from optomotor  experiments 
of Eckert (1971) are shown in the same figure with 
symbol *. Our data from a dark-adapted, wild-type 
fly are plotted with symbol �9 Our function is similar 
to Hardie's function for wavelengths greater than 
400 nm, and similar to Eckert's function for shorter 
wavelengths. 

Note that our curve for CalIiphora, plotted with 
dots in Fig. 8, is the same as our curve for Musca, 

plotted with o. Hardie's data shown in his Fig. 2, 
lead to the same conclusion; his dark-adapted func- 
tions for the two species differ by no more than 0.1 
log-unit. Yet, our functions and Hardie's do not agree. 
The UV peak is different by a factor of two, and 
the shape of the long wavelength peak has the same 
peculiar, flattened appearance as Tsukahara and Hor- 
ridge's cell 2, discussed just above for Eristalis. Consid- 
ering the foregoing comparisons made for Calliphora, 
we suppose that Hardie's data for both species are 
systematically low in the ultraviolet. 

Syrphus 

The purpose of experiments with the male Syrphus 
was to investigate the degree of homogeneity among 
cell types R l - 6  (see Fig. 9). At - 3 0  ~ elevation the 
function for R1-6 is identical to that for the entire 
trapezoid, and both are similar to the 450 nm function 
of  Eristalis. Therefore, it appears that ommatidia in 
this region of the male eye contain only a single spec- 
tral type of Rl-6 .  

At -20 ~ elevation the functions for R2, for R3, 
and for R5 are quite similar. However, the shape 
of the sensitivity function at this elevation is not well- 
fit by the 450 nm function, as if some of the eight 
or ten ommatidia contributing to the pupillary re- 
sponse contain a long-wavelength type of receptor. 

Allograpta 

The sensitivity function for the female A. obliqua 
is strikingly non-uniform over the eye, as shown in 
Fig. 10. Whereas the function from the ventral region 
is similar to the 450 nm function of  Eristalis, that 
of the dorsal region is similar to the 495 nm function 
of  Calliphora. 

The function measured from the equatorial region 
(Fig. 10, symbol M) has a unique shape, as if it were 
the composite spectrum of a mixture of spectral types. 
Similarly, all of the sensitivity functions measured 
from the male A. obliqua appear to be composite spec- 
tra, as shown in Fig. 11. The male eye probably con- 
tains a spectral variety of receptors too. 

Toxomerus 

All of our results from male T. marginatus can be 
explained by the existence of  a single spectral type 
of R1-6 over the entire eye having the typical, syrphid 
450 nm function. This is not true for the female ; the 
substantial elevation of S(520)/S(430) by 0.35 log-units 
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above the ratio expected for a 450 nm function argues 
for the presence of a long wavelength type of receptor 
in the female eye. 

the pigment encountered in Eristalis (Stavenga, 1976). 
However, this pigment is found only in the ventral 
part  of  the male eyes, whereas the dorsal part  contains 
visual pigment absorbing maximally at 490 nm. 

Alternative Hypotheses Conclusions 

We find that syrphid flies exhibit a diversity in the 
shape of  the action spectrum of pupillary responses, 
and hypothesize that its basis is a diversity in sensitiv- 
ity functions of  individual receptors, as caused by 
a diversity of  visual pigments. Several alternative hy- 
potheses have been considered and dismissed. 

The central cells, R7 and R8 might be contributing 
to the measured response, but are not. The brightest 
levels of  illumination available in our apparatus are 
below threshold for contributions to optical scattering 
f rom the central cells. 

Another  reasonable hypothesis is that the action 
spectrum depends on the state of  pupillary adapta- 
tion. Since the pupitlary pigment granules preferen- 
tially absorb in the blue, a closed pupil should sup- 
press sensitivity more at short wavelength than at 
long wavelength (Stavenga et al., 1973). Could our re- 
sults be attributed to a single spectral type of receptor 
acting in concert with a pupillary filter? We think 
not, for the following reasons. 

Our  results for Musca show no measurable distor- 
tion when the adapting light is two log-units above 
pupillary threshold. The dual intensity-series for Syr- 
phus (Fig. 3) exhibits univariance for responses as 
large as 26%. The sensitivity ratio S(520)/S(430) of  
the "compos i te  funct ion"  f rom the dorsal region of  
female Toxomerus was essentially unaffected when 
measured with a variety of  adapting lights. The in- 
tracellular recordings of  Hardie (1979) did demon- 
strate a modest  shift toward shorter wavelength upon 
light-adaptation which he attributed to the pupillary 
mechanism of the retinular cell. We specifically at- 
tempted to measure a spectral shift owing to pupillary 
adaptation, in several species. Within the range of  
intensities possible in our apparatus,  the higher states 
of  adaptat ion reduced the response to immeasurable 
values before a spectral shift was noticeable. We con- 
clude, therefore, that pupillary distortions of  spectral 
sensitivity functions were negligibly small for the re- 
gime of intensities and responses employed in our ex- 
periments. The question of whether or  not the pupil- 
lary action spectrum is distorted at extreme states 
of  l ight-adaptation remains unanswered. 

The diversity of  visual pigments in Syrphidae was 
recently confirmed directly with in vivo microspectro- 
photometry  (Stavenga, 1979b). All regions of the eye 
of Syrphus balteatus females contain a visual pigment 
absorbing maximally around 450-460 nm, similar to 

The most  important  conclusion f rom our experiments 
with Cattiphora, Drosophila, Eristalis, and Musca is 
that the spectral sensitivity function of retinular cells 
R1-6, measured with the new optical method, are 
essentially the same as functions measured with in- 
tracellular electrophysiological methods. 

The most  important  conclusions f rom experiments 
with syrphid flies is that R1-6 can have quite different 
spectral sensitivity functions in different regions of  
the same eye, and that there can be substantial differ- 
ences between the two sexes of  a given species. The 
variations range f rom the 450 nm function already 
known f rom Eristalis to one that is like the 495 nm 
function of Calliphora. 

This study proves the suggestion of earlier reports 
(Bernard and Stavenga, 1977, 1978) that  optical mea- 
surements of pupillary scattering are a useful tool 
for investigating the properties of  visual receptors. 
The most  important  advantage of this optical 
method is that the completely intact animal can be 
studied non-invasively. It  therefore offers the oppor-  
tunity to study photoreceptors of  a healthy animal 
for days, weeks, or even months.  
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