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SOME CLASSES OF WATSON TRANSFORMS AND
RELATED INTEGRAL EQUATIONS FOR
GENERALIZED FUNCTIONS*

B. L. J. BRAAKSMAYt aNnD A. SCHUITMAN{

Abstract. Spaces of testing functions which are isomorphically mapped onto one another by the
Mellin and the inverse Mellin transform are used to prove that certain spaces are also mapped iso-
morphically onto one another by the so-called Watson transform. Then Watson transforms for
generalized functions are defined. Applications on Hankel transforms, fractional integrals and integral
equations of Love involving hypergeometric functions and of Fox involving H-functions are given.
Furthermore, dual integral equations for generalized functions with Hankel transforms and H-functions
are treated.

Introduction. In this paper we define Watson transforms and other convolution
transforms for generalized functions. To this end we introduce spaces of testing
functions which are mapped isomorphically onto each other by means of the
Mellin transform (§ 1). Using the connection of Watson transforms and Mellin
transforms (cf. Titchmarsh [13]) we show that Watson transforms map these
function spaces continuously into function spaces of the same type (§2). Then
these transforms are generalized to generalized functions in the dual spaces. Also
the inverses of these transforms are considered. In § 3 the same analysis is done
on certain subspaces of the spaces of testing functions of § 1. Examples including
Hankel transforms are given in § 4.

Another type of product convolutions is treated in § 5. In particular, operators
of fractional integration are considered including the so-called cut fractional
integrals. Using these fractional integrals we extend the definition of the Hankel
transform in § 6. Here also the cut Hankel transform appears which is useful for
the inversion of Hankel transforms. Furthermore relations between Hankel trans-
forms and fractional integrals of generalized functions are given. In §§ 7 and 8 we
give applications to dual integral equations for generalized functions involving
Hankel transforms and, more generally, transforms with H-functions of Fox
which contain many special integral transforms (cf. Fox [6]). Here we use a
method of Erdélyi and Sneddon [5]. We give precise conditions for the existence
of solutions of the dual integral equations, which were obtained fermally by Fox.
In § 9 we consider a special case of product convolutions involving hypergeometric
functions and related integral equations, which have been studied among others
by Love [11a] and [11b]. Some of the results of Love are also extended for ordinary
functions.

Other applications to differential equations may be given analogous to those
in Zemanian’s study of generalized integral transformations [14]. Our approach
to Mellin and Hankel transforms is different from Fung Kang’s [7] and from
Zemanian’s approach. Fractional integrals for distributions have been studied
recently by Erdélyi and McBride [4] and Erdélyi [3]. Our treatment is similar to
theirs, though we do not assume that the testing functions have compact support.
Watson transforms for generalized functions have been considered also by
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Hsing-Yuan Hsu [8], starting from testing function spaces closely related to those
of Zemanian.

1. The spaces T(4, u) and S(4, ). Throughout this paper R denotes the set
of the real numbers and R* = R U {— o0, c0}. C is the set of complex numbers.
N=1{012--}.

Let 4, ueR* A < u. Let (4,)%2, and ()%, be sequences of real numbers
with 4, | A, u, T and A, < u, for all ne N. T(4, u) is the space of all functions
¢ € C* (0, o0) with the property

(1.1) () = sup [°PPpP(t) < oo forallneN.
t>0

p=0,1,".n
AnScSpun

T(4, w) is a locally convex vector space with the topology generated by the sequence
of norms (7,). Related spaces have been considered by Zemanian [14, § 4.2].

Let 4, u, 4, and u, be as above. S(4, u) is the space of all functions @, analytic
on A < Res < u, with the property
(1.2) g, (@)= sup |[sPD(s)] < oo forallneN.

AnSRes<p,
p:O,l’...,n

With the topology generated by the sequence of norms (a,), S(4, u) is a locally
convex vector space.

The topologies of T(4, ) and S(4, u) are independent of the particular choice
of the sequences (1,) and (y,). Using standard arguments it may be shown that
both spaces are Fréchet spaces. In the following, isomorphisms and automor-
phisms between spaces are interpreted as linear continuous mappings onto with
continuous inverses.

If ¢ is some function, we denote its Mellin transform by . # ¢,

g

(1.3) (MP)(s) = f £ 1(0) dt.

0

If @ is some function we denote its inverse Mellin transform by .# ~'®,
1 c+ioo
(MDY (1) = -——f D(s)t % ds.
2mi c—io

We prove the following theorem.

THEOREM 1. The Mellin transform # defines an isomorphism of T(4, 1) onto
S(A, u). The adjoint Mellin transform /' defines an isomorphism of S'(A, u) onto
T'(A, p).

Proof If ¢ € T(4, p) and A < Res < u, peN, then

(HD)(s) = Bs) = f “ g ar = Y f: £+ 16000) di

0 )
by virtue of (1.1). (Notation: (s), = 1,(s), = (s + p — 1)(s),—1, p 2 1). Note that
[ee*P1¢P (1) dt has a zero in s = —h, he N, if 1 < —h < p. It follows that
D e S, p.
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IfdeSA u),A<c<pt>0andpeN, then
l ctioo
(a0 =90 =5 [ o ds,
27“ c—ioo

g = = f T o), 0(s) ds,

27Ii c—i

773

where the integrals are absolutely convergent. It follows that ¢ € T(4, u). From
the well-known inversion theorem for Mellin transforms it follows that # o .41
and /™' o 4 are the identity maps on S(4, u) and T(/, u). It remains to prove the

continuity.

We may assume that the sequences (4,) and (u,) are chosen in such a way
that 4, u, # 0, —1, —2, - -- . Consider the strip 4, < Re s < p,. For each integer
h £ 0 with 4, < h < u,, let D, be the interior of a disc with center h and which
lies entirely in the strip. We omit all the sets D, from the strip and denote the

remaining “‘reduced” strip by S. Let ¢ € T(4, u) and ® =.4¢. Then

P o
0, (D) = oSup |s”(D(s)|=Osup s_J‘ t””"q&‘”’(t)drl.

An<Res<pn SEE" (8)pJo
Now
Ko = sup [s"/(s),| < o0
O<psn
seS
and with
gzmin{in_ln+la.un+1_:un}’ ¢ =Res,
we have
1
,(®) < K, sup {f |tC+P"8¢(p)(t)|t—1+e dt
Ospsn 0
An=cSun
© K
+ f |tc+p+e¢(P)(t)|t—l—s dt} < _2_E—Otn+1(¢)-
1
This proves the continuity of /.
Let ® € S(4, ) and let ¢ = .# ~'®. Then
(@) = sup [tTPHP(r)|
Ospsn
AnScSun
>0
. 1 c+ioo
= [ g —s-p
st\:g > J; L (5),D(s)t ds
1 c—i ct+ioc (S)
= py{(f ‘. )'S"”“"”" i3] 1

+

|

Jc +.i (5),D(s)t° " " ds

c—

= Ko, 4,(D),
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where K depends only on n. Thus .# ~! is continuous. The second assertion of the
theorem follows at once.

2. Watson transforms on 7(4, u). In this section we will consider a Watson
transformation between two spaces of type T(4, ). Formally such a transforma-
tion is described by a pair of reciprocal formulas

W) = f: ko) dt,  §(x) = f: HCxtp(e) di.

By applying the Mellin transform to these formulas we may formally show that
the Mellin transforms K(s) and H(s) of k(z) and h(t) satisfy K(s)H(l — s) = 1,
(cf. Titchmarsh [13]). We prove two theorems on these transforms in spaces
T(4, p).

THEOREM 2. Let A, ueR*, 1 < u. Let K(s) be an analytic function on A <
Res < u such that K(c + it)e L(— o0, 00) for some ¢ with A < ¢ < y. Assume
moreover that for every pair (a,b) such that A < a < b < u there exists a real
number y such that

2.1 K(s) = O(s”) ass— oo, uniformlyona < Res < b.
Let
1 ct+ioo
(2.2) k@) = ——J K(s)t~*ds, t>0.
2TEl c—ioo

Then the map A:T(1 — p, 1 — 1) > T(4, ), defined by

(23) V) = (49 = | : KGxt)(0) di

is linear and continuous. The adjoint operator A' is continuous from T'(4, y) into
T — u, 1 = A).

Proof. The integral in (2.2) is absolutely convergent, hence k(t) exists for ¢t > 0.
It follows from the definition that if ¢ € T(1 — p, 1 — 1), then t™“¢p(t) € L(0, 00).
Then the reversion of the order of integration in the following computation is
allowed:

1 @© ¢ +ioo
0 = d)) = 5| g [ Keoworas,
(2.4) 1 c+iw o
Y(x) = Z_mj_ K(s)®(1 — s)x™*ds,

where ® = #¢. Since ®eS(1 — pu, 1 — 4), we have ®(1 — s)e S(4, n). More-
over, from (2.1) we obtain

SIK(s)D(1 — s) = O(s?*?"P) ass—>oo,ona < Res=<bifp,geN,
and we see that K(s)®(1 — s) e S(4, u). Define the map

A S(1— pu, 1 — A)—> S(A, w
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by
(A D)(s) = K(s)®(1 — s).
It is clear that ) is linear and continuous. Now (2.4) reads as
2.5) (AP)(x) = (M~ o A o M P)(x)
and the desired properties of A follow from the corresponding ones of the factors.
If we impose further conditions on K(s) in Theorem 2, then the map A is
even an isomorphism. From Fig. 1 it is seen that we have to choose K(s) in such

a way that & is an isomorphism. The following theorem gives the precise condi-
tions.

H
S@p) #zmmmmmmmmmmmmmeml S(-pl-A)
' A ¢
‘ H
MY :]Jl M :l Mt
v B '
T@ —EIITTIToTTooTon > TA-ml-7
A
FG. 1.

THEOREM 3. Let A, u and K(s) be as in Theorem 2 and let K(s) have no zeros in
A <Res < p. Define Hs) = K™'(1 —s),1 —u<Res<1— A Assume H(c, +
itye L(— o0, o) for some ¢, with 1 — p < ¢y <1 — A. Moreover, assume that to
every pair (a;,b,), 1 — u < a; £ b, <1 — A, there exists a constant y, such that

(2.6) H(s) = O(s™) ass — oo, uniformlyona, < Res < b,.

Then the map A in Theorem 2 is an isomorphism on T(1 — u, 1 — 1) onto T(4, p)
and the inverse B of A is given by

2.7 #(x) = (BY)(x) = f: h(xtyy(t)dt, Y eT(4,p,
where
(2.8) h(t) = 571; J:lj:H(s)t_‘ ds.

The adjoint operator A’ is an isomorphism from T'(4, p) onto T'(1 — p, 1 — 2) with
(4"t =B.
Proof. Define the map # : S(4, 1) - S(1 — u, 1 — 4) by
(#Y)(s) = HE)W( —s),  YeS@,p).

It is easy to see that J# is the continuous inverse of 2. If B is defined by (2.7),
then

(2.9) B=ull"toHol.
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This may be proved in the same way as (2.5). Combining (2.5) and (2.9) we see
that A and B are inverses of one another.

Remark 1. The conditions K(c + it) € L(— o0, o0) and H(c, + it)€ L(— o0, )
in Theorems 2 and 3 may be omitted provided (2.2), (2.3), (2.7) and (2.8) are
modified as follows.

From the assumptions on K(s) we deduce that there are numbers d e R,
¢ > 0 and a positive integer n such that

K(s)=0(s""'"% ass—>owonRes=d, i<d<pyu, d#1,2,---,n.
Then define

t""%ds

1 r“w K(s)

=§E d—io (1 - S)n

k,(t)
and

(2.10) (49)(x) =

d:r k(xt)p() " di, ifpeT( — pu, 1 — A).
X" Jo

d
Now
an e ~ 1 d+ioo K(s) )
= " e n Sd
e dx”L)dt¢“” znuLﬁm(l-ﬂfx” g
1 dn d+ico K(S) B J’°° .
" 2nidx" " sdt
2mi dx" L_iw ds(] 9.7 ), ()t
1 ar (4*i° K(s) B
=3 gon —_— 1 — n=s g
2mi dx"J:,_i00 a- S)n(/”ﬁb)( $)x s
1 d+ico

K(s)(AP)(1 — s)x"*ds.

2mi i

Similarly, h,(t) and B are defined. Fig. 1 remains valid.

3. Watson transforms on the subspaces 7, and S,,. In this section we shall
take 1€ C and u e R*, Re 1 < u. We want to define subspaces of T(Re A, ) and
S(Re 4, u) which are mapped onto one another by the maps 4 and B of § 2. The
motivation will become clear in the next section.

Let m be a positive number and Re 4 < u. Then T,,(A, ) is the linear space of
functions ¢ € T(Re A, 1) such that

o) = ™4™, >0, $eC[0,x).
We choose a topology on T,,(4, ) which is finer than the induced topology of
T(Re A, p). If pu, tends monotonically to u from below we define

T($) = sup (I + tnReDmtr) o)
p= 02
and we take the topology generated by the norms %, n € N on T,,(4, u). Then T,,(, 1)
is a Fréchet space.
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Furthermore S,(4, u) is the linear space of elements ® e S(Re A, u) such that
(i) @(s) is analytic if Re s < p except for at most simple poles in the points
s=A—mjjeN.
(ii) ®(s) = O(s~?) as s — oo uniformly on any stripa < Res < b < u for any
peN.
We choose on S,,(4, u) the topology generated by the norms &,, ne N, where

6,(®) = sup @) [ Is = 2 + mjl,

j=0
G,={seC:ReA—mn+m<Res < p,}.
It is very easy to prove that S,(4, p) is a Fréchet space.
THEOREM 4. The Mellin transform M is an isomorphism from T, (A, u) onto

Sw(4, 1). Its adjoint M' is an isomorphism from S, (4, u) onto T, (A, u).
Proof If ¢ e T,(A, 1), Re A < Res < p and pe N, then

M(s) = % rr«s-wm- 1$(x) de
0

= (S_J)).) f (6= A/m+p=1 @) 1) g

The last integral is analytic in s if ReA — mp < Res < u. Hence .#¢p e S, (A, pn)
and it easily follows that .# is continuous.
If®eS, (A u),d = 4"'® Rel <c <y, then

c+ioo
3(t) = .2% f D) Imds, 1> 0.

Consequently,

qg(p)(t) = LJ.C“OO (I)(s) A—s —p+1 tG=s9)m=p J¢
2mi m

¢y +ioo

=p! Res @)+ ——f

s=A—mp c1—io

% —-p+ l)t“‘ M =P dg.

where Res;_,_,, denotes “residue at s =1 —mp of”; if Red — m(p + 1) <
¢; <Red — mp, t > 0. Therefore ¢ e CP [0,0). Further it is easily seen that
¢ e T,(A, p) and that .4~ is continuous.

We now follow the method of § 2 to derive some further theorems.

THEOREM 5. Let A€ C, pe R*, Re A < u and m be a positive number. Assume
that K(s) is analytic for Res < u except for simple poles at s = 1 — jm, jeN.
Assume moreover that for each pair (a,b), a < b < u, there exists a constant y such
that (2.1) holds. Let K(c + it)e L(— oo, o) for some ¢ with Re 1 < ¢ < p. Then the
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map A of Theorem 2 maps T(1 — pu, 00) linearly and continuously into T,(4, u).
The adjoint map A’ is a continuous operator on T, (A, u) into T'(1 — p, o).

Proof. The map £ used in the proof of Theorem 2 is a continuous map on
S(1 — u, 00) into S,(4, ).

In the same way we have the following.

THEOREM 6. Let A, u and m be as in Theorem 5. Assume H(s) is analytic for
Res>1—pand Hs)=0if s=1—-A1+4+jm, j=0,1,2,---. Assume that for
each pair (a,,b,) such that 1 — p < a, £ b, there exists a constant y, such that
(2.6) holds. Moreover let H(c, + it)e L(— o0, 0) for some ¢, with | — u < ¢, <
1 — Re A. Then the map B defined by (2.7) maps T,(4, ) linearly and continuously
into T(1 — p, 0) and B' is a continuous operator on T'(1 — u, 00) into T, (2, 1).

IfH(s)K(1 — s) = landRe s > 1 — p,then Aisanisomorphismof T(1 — p, 00)
onto T, (A, u) with inverse B.

Remark 2. Here also we may omit the conditions K(c + it) € L(— o0, o0) and
H(c + it)e L(— o0, o0) as in Remark 1 of § 2.

4. Examples.

Example 1. Let m be a positive number, 1eC, 15, peR, ReA < Ay < p =
1 — Re A and let K,(s) be analytic on Res < p and on Res > 1 — pu, whereas
K,(s) = K{ (1 — s). Assume that (2.1) holds for K,(s) on any set ' < Res <
W <pandanysetl —pu <1l —pu <Res=<1-— 1. Assume

4.1) K (c+ it) = Ot~ @~ Dm=1=¢) 351 — o0

for some ¢ with 1, < ¢ < p and for some ¢ with 1 — u < ¢ <1 — 4, and some
¢ > 0. Define
D = Afm) o

K& = ra == gm™

Then K(s) = K~ !(1 — s) and Theorems 2 and 6 imply that 4 is a homeomorphism
from T(1 — u, 1 — Ay) onto T(4,, #) and from T(1 — u, oo) onto T,,(A, n), whereas
A = A™'. Condition (4.1) may be omitted if 4 is interpreted as in Remark 1.

Example 2. A special case of Example 2 is the following. Let K,(s) = 25~ /2
and

_ T+ + V2) 5172
T + 3 — 9/2) '

Now K(s) = K™}(1 —s), K,(5) = 0(1), K(s) = O(s®*~/2) as s — oo on any
stripa< Res <b,m=2,¢c <%and

k(t) = tY2J (1)

(cf. [13, p. 214)). Suppose Re v > —1 and choose A and u such that —Rev — 4 <
A<pu=<Rev+ 32 IfRev>0,1< —4%3 < uwemay choose c and ¢, such that
—Rev—-1i<e< -4, c<uyl—p<e, <—% ¢y <1 — A Then K(c + it),
K(c, + it)e L(— o0, 00). Hence, if Rev>0, —Rev—-4<1< -3, 3<u<
Re v + 3, the Hankel transform H, defined by

42) mmm=fuwmwwm

K(s)
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is a homeomorphism of T(1 — u,1 — A4) onto T(4, u) and of T(1 — u, o0) onto
T,(—v — %, u). Furthermore H, = H, '.

We may weaken these conditions by extending the definition of the Hankel
transform as in Remark 1 (see for a modification of this extension § 6). Then we
see that the extended Hankel transform is a continuous operator from T(1 — pu,
1 — A)into T(A, p), if —Rev — 1 < 1 < u. However, if

4.3) —Rev—-1<i<l, A<u,

then the extended transform and the transform given by (4.2) coincide, since the
differentiations in (2.10) may be performed under the integral sign. This follows
from the asymptotic behavior of the Bessel function near the origin and oo. It is
now easy to prove the following result for T(1 — u,1 — A) and some of its
subspaces.

THEOREM 7. The Hankel transform H, defined by (4.2) is a continuous operator of

@) T — u,1 — A)into T(4, u) if (4.3) holds;
(i) T(1 — p, ) into Ty(—v — L, p)if —Rev — 1 < u;
(iii) Ty(—v — % — 2h,p) into T(1 — p,0) if —Rev — 3 —2h < pu<Rev +
3 heN;

(iv) T,(—v — ¥ — 2h, o) into itselfif Rev > —h — 1,heN.
In the cases (iii) and (iv) with h = 0 it is an involutory isomorphism. It is also an
involutory isomorphism of T(1 — u,1 — A) if

—Rev—4<i<pusgRev+3 Ii<l1, pu>0.
In all these cases,
Ty +4+ 1)

@4 B T

2~ g h)(1 — s).

Remark 3. Let K(s) be as in Example 1 with K,(s) an entire function, K,(s) =
K71 —s), K,(s) = O(s?), s > oo on any set a < Re s < b, where y depends on
a and b. Assume (4.1) holds for some ¢ with Re A < ¢ and for some ¢ with ¢ <
1 — Re, (Re A <1). Then 4 = A~ ! is an automorphism on T,,(4, c0).

Example 3. Let m,n,p,qeN, n < p, m < q. Let a, e C?, b, C?; a; > 0,
j=1--,p;b;>0,j=1,---, q. Suppose

Reocj—1<c<Reﬁ,,

40 k) - 1’ b bl h = ]" b
43 a; b, ! "
Suppose
(4.6) Y a Z b; > Z a; — Z b;

i=1 j=m+1 j=n+1

or the following two conditions are satisfied :

m

4.7 iaj— i b; = Za—Zb

ji=1 j=m+1 j=n+1
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and
)4 q q —_ p 14 q
i= Jj=

Then we define according to Fox [6]:

a,a) 1 et I —o;+ a9 [ T(B; — bjs)x~*
b,B]  2miJe_ip [[%,, T — B; + bs) [[2,, T(e; — a;9)
if x > 0. This integral is easily seen to be absolutely convergent.

4.9) H',',';;(x

Suppose
(4'10) R—Cﬁ_llél<u§Reﬂh’ j=1a"'9n; h=19"',n1-
a; b,
Then the map A4 defined by
@.11) (Ad)(x) = J H';;;(xt a’“) o(t) dt
0 b,ﬂ

is a continuous linear map of T(1 — u, 1 — A) into T(4, u).
A is an isomorphism of T(1 — u, 1 — 4) into T(4, u) with

4.12) (A~ 1Y) (x) = f H‘[,;'””"”(xt i"‘f)./,(t)dt,
0 b,p
where
5: a” ,..',a’a,...,a”),
(413) ~ ( +1 p>“1
b=(bm+1a""bq:bla""bm)a
G=01+a,,qy — Ay, ,1+a,—0,,1+a, —ay,--,1+a,—a,),
(414)~ ( +1 +1 P P 1 1

ﬂ=(1+bm+l—ﬁm+1""al+bq'—ﬂq91+b1_ﬂl"“71+bm_—ﬁm)

if the following conditions are satisfied :
(i) 4.7), (4.8) and (4.10);

# = Re(aj/a)), j=n+1,---,p,

4.15 i1
@15 @ {Re«ﬁj—l)/b,)gz, j=m+ 1, g;

(iii) there exists a real number ¢, such that 1 — y <c¢; <1 — Aand
14 q p— q q 14
1 1 1 1

Proceeding as in Remark 1, § 2, we may extend the definition of 4 and A~ ! in
cases where (4.8) and (4.16) are not satisfied (cf. also § 8).

Since the G-function and many other special functions are special cases of
the H-function, many integral transforms are contained in this example. Especially
the Hankel transform of Example 2 may be considered as a special case of Example
3.
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5. Other product convolutions; fractional integrals. The Watson transforms
of §§ 2 and 3 have the so-called “product-kernel” k(xt). Another integral transform
arises if we replace k(xt) by k(x/t) and ¢(t) by (1/t)¢(1/t). Both integral transforms
are called product convolutions. Since

© x dt ® 1\dt
kl= — = -1=
[ o0 = w2 2
the new integral transform is a Watson transform applied to(1/t)¢(1/t). If g€ T(4, p),
then (1/t)¢(1/t)e T(1 — pu, 1 — A) and conversely. Hence we have the following.

THEOREM 8. If k(x) satisfies the assumptions of Theorem 2, then the map A,
of T(2, u) defined by

5.1) Ay p(x) = fw k(f) 4>(t)?, $e T, p),

is linear and continuous into T(4, p).

Moreover, if K(s) does not have zeros in A < Res < p and H(s) = K™ '(s)
satisfies (2.6) uniformly on any strip A < a; < Re s < by < p with some constant y,
depending on a, and b, and if H(c, + it)€ L(— o0, c0) for some ¢, with A < ¢; < p,
then A, is an isomorphism of T(4, u) onto T(4, ) and

© d
(52 (9w = | h(?) P07,

where h is defined by (2.8).
Remark 4. The maps 4, and A;! are given in Fig. 2;

Ky
S(A,w — - S(4.p)
: o $
M ‘; Mt M i M
[}
¢ 4, !
T R e—— A (Y )]
Al
FiG. 2.

where (A 0)(s) = K(s)D(s), (5, D)(s) = H(s)D(s). The conditions on K(s) and H(s)
may be weakened as in Remark 1. If we define k, and h,, as in Remark 1, then

(4809 = 1 [ k(f) por d,

dm o
U7 = 75 | h(f) Py~ d,

where ¢ € T(4, p). It is easy to formulate and to prove the analogues of Theorems
5 and 6 for the transform A4,.
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As an application of this type of product convolution we consider theoperators
of fractional integration, studied among others by Kober [9] and Erdélyi [3].
Let o, 7eC,Rea >0, 4, yy me R, m > 0, A < uand m(Ren + 1) > A. Then

m

12909 = s

m X x\m™ a—1 X —m(a+1n) dt
~ral R o

if we choose ¢ € T(4, u), x > 0. So we have the special case of Theorem 8 with

x—m(a+n)f (xm _ tm)a—ltmn+m—1¢(t)dt
(5.3) 0

=_rn_ m __ a—1.,~m@+n) ; — :
ko) = g = ' ift>1, k)=0 if0<t<I,

and

-1
(5.4) K(s)=r(1+n—i){r(1+n+a~i)} .
m m
Here K(s) = O(s™*) as s — oo uniformly on any strip a < Re s < b. Hence, I™* is
an automorphism of T(4, u) if Rea > 1 and
(5.5) A< u=ml+ Rep).

In order to relax the conditions on 1 we use the extension of fractional
integrals considered by Erdélyi [1]. If Rea > 1, ¢p € T(4, u), he N and

(5.5)" mRen+h)<A<pu<ml+Ren+h), h#O0,
we define
m x hot o — 1 .
I'r:',a x) = __x—m(a+n)|:f { xm — ¢m a—1 _ . ) — x Tmym xm(a—l)}
3909 = 1o R TG W I [C e
(5.3)h oh—1 [y

-l'm(1+")_1¢)(t)dt _ Z ] )(_x—mtm)jxm(a~l)tm(1+n)—1¢(t) dt]
x j=

It is easy to show that this so-called cut fractional integral operator is a product
convolution and that the Mellin transform of the kernel is given by (5.4). Moreover,
the operator I3 is continuous on T(4, u), he N, h # 0. For convenience we shall
use the notation I};% for I':* and (5.5)°, (5.3)° for (5.5), (5.3).

In order to avoid the condition on o« we may use Remark 4. However, an
adaption of the method in that remark is more useful. The starting point for this
extension is the relation

- d\"
(56) x m(a+n)(dxm xm(a+r1+n)]’r£‘,::;l+n — I’y:',::;”

which is valid on T(4, p) if Rea > 1, ne N and (5.5)" is satisfied. For, if we apply
the left-hand side of (5.6) to ¢ € T(4, p), then we obtain

1 d "fv“w I + 5 — (s/m))
dxm c—iow

m(a+n)

(D(S)(xm)a+ n+n—(s/m) dS,

%x‘ I'ad+o+n+n—(s/m)
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where A < ¢ < u, ® = .# ¢, and this expression is easily seen to be equal to I};5¢.
However, the left-hand side of (5.6) defines a continuous operator on T(4, ) if
Re (¢ + n) > 1 and (5.5)" holds. Therefore we use (5.6) as the definition of I}}5 on
T(A, p) if Re (a + n) > 1 and (5.5)" holds. If Re « > () and (5.5)" holds, then (5.3)"
remains valid.

The operator 115 is continuous on T(4, u) and

1 Cangaon =i +n =2 i v a2} oo,

if (5.5)" is satisfied and ¢ € T(/, u). From this it easily follows that
(5.8) IRhaoIns, = InsInbed = It
on T(4, p) if (5.5)" holds and
59) A<u=ml+ Ren+ Rea) ifh, =0,
mRen + Rea + hy)) <A< u=<m(l+ Ren+ Rea + hy) ifh, #0.
Then in particular,
(5.10) (Ips)~t = 113> IS = identity operator,

and I};5 is a topological automorphism of T'(4, u).
According to (5.6),

- —m(n—n d "
(5.11) Ihyn = x—m )(W) x™n, neN.
We may use this last relation as the definition for arbitrary values of #. Indeed, it
is easily verified that the right-hand side of (5.11) represents a continuous operator

of T(4, p) into itself even if (5.5)" is not satisfied.
Combining (5.8) and (5.11) we obtain an analogue of (5.6),

d n
56 ’ In,a — Ir],a+n —m(a+1n) m(a+q+n)‘
(5.6) mh mh X (_dx"‘) x
From (5.7) we readily deduce that if o = ne N, then

-1
(5.12) (AI3D)(s) = { } (M D)(s),

s
1 -2
v

n

and consequently, I'", is a continuous operator independent of h on T(4, ) if
h=n,

(5.12y mn + Ren) < 4 < u.
Finally (5.7) implies
(5.13) Inexh = xPput @em-a

on T(4, u) if the operators I exist. The above results are collected in the following
theorem.

THEOREM 9. Let h, neN, m > 0, n, 2 C, A < p. Let the operator I};," be
defined by (5.11) on T(A, p). It is independent of h. Let the operator 1.5 be defined by
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(5.3)" if Rea > O and (5.5)" holds. Here I%% = I%* and (5.3)°, (5.5)° denote (5.3),
(5.5). If o = n, h = n, then condition (5.5)" may be replaced by (5.12) and then I\,
is independent of h. If —n < Rea £ 0, —a ¢ N and (5.5)" holds, then I%5, is defined
by (5.6) on T(A, p). This definition does not depend on the choice of n.

In all these cases the operator IS is a continuous operator from T(A, u) into
itself. It satisfies (5.6), (5.6)', (5.7), (5.8) and (5.13) on T(A, u) provided the operators
I involved exist. In particular, IV, is an automorphism on T(4, u) satisfying (5.10)
if (5.5)" and (5.9) hold.

A second operator of fractional integration studied a.o. by Kober [9] and
Erdélyi is given by

K,'l;‘"q&(x) r() an (tm_ m)a ltm(l a—n)— l¢(t)dt

-l -

Here we choose ¢ € T(4, u), Re o« > 0, m Ren + p > 0. This is the special case of
Theorem 8 with

(5.14)

k(t)—-m(l el if0<t<1, k(t)=0 ift>1,

ko =r(r+ 2l rlaens 2]}

Now K(s) = O(s™*) as s — co uniformly on any strip a < Re s < b. Hence, K}}*
is an automorphism of T(4, ) if Rea > 1 and

(5.15) —mRen 2 A < p.

and

The extension to other values of # is given by

R e
(5.14y" * =0t/
gmmamm =gy gy — f '._1)(—t"”x'”)"t"”"“¢(t)dti|,
0 j=0 J

where ¢ € T(A, u), Rea > 0, he N and
(5.15)" —mRenp +h)£i<us —mRen+h—-1), h+#0.

Then K5 is a continuous operator on T(4, ). We use for convenience the
notation K% for K:* and (5.14)°, (5.15)° for (5.14), (5.15). In all cases we have

L + (s/m))

(5.16) (MK = T+ o)

(A )(s).

The analogue of (5.6) is

d n
| xmetngmarn — gre  peN.

m@+n+n)|
(5.17) x ( e
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This relation will be used as the definition of K5 if —n < Rea < 0. Then this
operator does not depend on n, it is continuous on T(4, u) and (5.16) remains true
if (5.15)" holds.

Using (5.14)", (5.16) and (5.17) it is easily seen that K5 also defines a con-
tinuous operator from T,(—m(a + 1 + h,), p) into T,(—m(y + h), u) if hy,heN
and

—mRen < pu incase h =0,
(5.18) —mRen +h)<pu=< —mRen +h—1) incaseh >0,
—mRe(x + 1+ hy) < p.

Analogous to (5.8) we have

(5.19) KraKahe! = K3t (Kna) ™' = Kb,
(5.19y KIhPK e = Kno*s,

on T(4, p) if (5.15)" holds and
(5:20) —mRe(x+n)=A<pu incaseh, =0,
—mRe(@+n+h)<Ai<u< —-mRe(@+n+h; —1) incaseh; >0,
whereas (5.19) holds on T,(—m(ax + B + n + hy), p) if (5.18) holds and
us —-mRe(@+n+hy—1) ifhy; >0 and —mRe(x+ f+n+ hy) <p.
(5.21)

The operator K5 is an automorphism on T(4, ) in the first case and it is an
isomorphism between T,,(—m(a + n + h,), u)and T,(—m(y + h), u) in the second
case (with h, = h).

The analogue of (5.11) is

(5.22) Kpy" = x""'( - Efi;'—) xmn=m, n,heN.
X

This relation may be used as the definition of K on T(4, ) if (5.15)" is not satisfied.
The analogue of (5.12) shows that K.} is a continuous operator on T(4, u) inde-
pendent of h if h = n and

(5.23) A<p= —mRen +n—1).
Then

(524) K = (=11

In the same way we obtain

(5.25) I = (= 1K

on T(A, u) if (5.12) is satisfied and h = n.
We deduce from (5.16),

(5.26) KLoxh = xPK16m-,

if the operators K exist.
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Combining (5.19) and (5.22) we get the analogue of (5.17):
d

dx™

Combining the results above we obtain the following theorem.

THEOREM 10. Let n, he N, m > 0, a, n€ C, A < . Let the operator K}; " be
defined independently of h by (5.22) on T(A, u). Let K5 be defined on T(4, u) by
(5.14)" and (5.17) respectively if (5.15)" holds and moreover Rea > 0 and —n <
Re o < O respectively. Here K}v% = Ki* and (5.15)° denotes (5.15). Ifa = n,h = n
the condition (5.15)* may be replaced by (5.23).

In these cases K5, is a continuous operator on T(A, p). It is also a continuous
operator from T,(—m(o + n + hy), p) into T,(—m(y + h), u) defined by (5.14)" and
(5.17), if hy € N and (5.18) holds.

This operator satisfies (5.16), (5.17), (5.17Y, (5.19) and (5.26) in all cases where
the expressions involved make sense according to the definitions above. In particular,
(5.19) holds on T(4, p)if (5.15)" and (5.20) are satisfied,and on T,,(— m(o. + B +n + h,), 1)
if (5.18) and (5.21) are satisfied. In the first case K% is an automorphism on T(A, p),
in the second case (with h, = h) it is an isomorphism between T,(—m(a + 1 + hy), 1)
and T,(—m(n + h), p).

We now define subspaces of T(4, ) which have useful properties for operators
of fractional integration.

DEFINITION. Let a be a positive number. Then T([0, a], ) is the subspace of
T(A, co0) of functions with support contained in [0, a]. In the same way T,,([0, a], 1)
is the subspace of T,,(4, c0) consisting of functions with support contained in [0, a].
Finally, T([a, o), p) is the subspace of T(— oo, u) consisting of functions with
support contained in [a, c0). It is clear that in this way really closed subspaces are
defined.

From the definitions of I and K it follows that

(i) I%*is a continuous operator from T([a, c0), ) into itself if

n
(517)’ K"L’f"l — K"k::}tt+nXM(a+n+n)(_ ) X_m(a+”),

(5.27) uw=m(l + Ren)
and it is an automorphism if moreover
(5.28) u=m(l + Rea + Ren);
(i) K*is a continuous operator from T([0, a], A) into itself if
(5.29) A= —mRen
and it is an automorphism if moreover
(5.30) A= —mRe(a + 1);

(iii) K*is an isomorphism from T,,([0, a], —ma — mn) onto T,([0, a], —mn).
The translation of the results above to the dual operators is easy. A simplification
of the notation may be obtained as follows. Suppose T(4,, o) = T'(1 — p, 1 — A).
This is the case iff A, < pu, 4 < po. Suppose fe T(4y, po), ¢€ T(1 — p,1 — ) and
(5.5)" is satisfied, and (5.5)" also holds with 4 and u replaced by A, and u,. Then

oo} (oo} 1
630 | Wi = [ JoKESC =+l
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Hence(K7w) = IS on any space T(4o, #o) = T'(1 — u, 1 — 2) and therefore we
use this relation as a notation on T'(1 — p, 1 — A) if (5.5)" is satisfied. In the same
way (5.31) motivates the notation (I7;Y = K& on T'(1 — pu, 1 — 4) if n, =
n — 1 + (1/m) and (5.15)" is satisfied.

THEOREM 11. Let n,h,h;eN,m,aeR,, A < u,o,neC,n, =n — 1 + (1/m).
Then the adjoint operator of I;¥, to be denoted by K%, is a continuous operator
on T'(1 — u,1 — 2) in the following cases:

() & = —n; (i) « = n, h = n and (5.23) holds; (iii) (5.15)" holds. The operator K%*
is a continuous operator on T'([a, o0), 1 — 1) if (5.29) holds.

Furthermore, the relations (5.17), (5.17)', (5.19), (5.19), (5.22), (5.24)(5.26) hold
in all cases where the operators involved make sense according to the definitions
above. In particular, (5.19) and (5.19) hold on T'(1 — p, 1 — A) if (5.15)" and (5.20)
are satisfied. In this case K% is an automorphism. Finally, K%:* is an automorphism
on T'([a, ), 1 — 1) if (5.29) and (5.30) are satisfied.

THEOREM 12. Let n, h,h, e N,m,aeR,, A < pua,neC,yy =n+ 1 — (1/m).
Then the adjoint operator of K}\'i, to be denoted by I}, is continuous on T'(1 — p,
1 — 1) in the following cases:

() « = —n; (i) « = n, h = n and (5.13) holds; (iii) (5.5)" holds. It is a continuous
operator from T, (1 — m(n + h + 1), p) into T;(1 — m(e + n + hy + 1), ) if (5.18)
with n replaced by n, holds.

Furthermore, I%* is continuous from T'([0, al, 1 — p) into itself if (5.27) holds
and an automorphism if moreover (5.28) holds. It is an isomorphism from T,([0, a],
1 — mn — m)onto T,([0,a], 1 — ma — my — m).

The operator I, satisfies (5.6), (5.6), (5.8), (5.10), (5.11) and (5.13) in all cases
where the operators involved exist according to the definitions above. In particular,
(5.8) holds on T'(1 — u, 1 — 2) if (5.5)* and (5.9) are satisfied. In this case, I%5, is
an automorphism on T'(1 — u,1 — 1), whereas it is an isomorphism from
Tl —mn+ h+ 1),u into Tp,(1 —m(e + n + hy + 1), p) if (5.18) and (5.21)
with n replaced by n, are satisfied.

6. Extension of the Hankel transform. The extension of the Hankel transform
H, to arbitrary values of v has been treated in [10] and [14] by means of auxiliary
operators N, and M, . (For the definitions cf. [14, pp. 135 and 163]). Our approach
includes these methods as is easily seen from the behavior of the differential
operators N, and M, with respect to the Mellin transform.

For the extension of the definition of the Hankel transform we use the relation

(6.1) H, = 2°x"°H,, KR+ 19+ 1/ -ay-a

This formula is valid on T(1 — u, 1 — J) if the following conditions are satisfied :
4.3),

(6.2) —Rev—1<i<1+Req,

A<u=<3+Re(v+20) incaseh=0,

(6.3)
Re(v+20)+2h—Li<i<pu<Re(v+20)+2h+3 incaseheN,h#0.

The proof is straightforward using Mellin transforms and Theorems 7 and 10.
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In particular, if n e N we obtain with (5.22),
(64) Hv — (_2)nx—nHv+nxv+n+(1/2)(dd?) x—v—(l/Z)'

The right-hand side exists and is a continuous operator on
@) TA —pu,1 —A)if —Rev—L1<i<n+1;
() T(—=v -3, wif —~Rev—-—2n—L<u<Rev+3;
(iti) T,(—v — 4, 0)if Rev > —n — 1.
Therefore we define in these cases H, by (4.2) and (6.4). By choosing n suitably we
thus obtain a continuous operator H,:
(i) from T(1 — u,1 — A)to TA, ) if A= —Rev — 4;
(i) from T,(—v — 3, u)to T — p, 0)if u < Rev + 3;
(iii) from T,(—v — 4, o) into itself for arbitrary values of v.
Then (6.1) holds:
(M on T(1 — u,1 — A)if A= —Rev — 1 and (6.3) is satisfied; if xe N, we
may omit (6.3) and then (6.1) reduces to (6.4) with o = n; if —aeN,
0 < —a £ h, we may replace (6.3) by 4 = Rev — 1 and use (5.24);
(II) on Ty(—v — 3 — 2g, p)if geN,

(6.5) —Rev—-2g -4 <pu<Rev+3,
—Re(v+20)—L<p ifh=0,

6.6)"
) —Re(v+20) —2h—Lt<u< —Re(v+20) —2h+3 ifheN,h#0;

if xe N we may omit (6.6), and now (6.1) reduces to (6.4) with o = n; if
—aeN, h = —a > 0, then we may replace (6.6) by u <3 — Rev, and
use (5.24).
(III) on Ty(—v — %, o) for arbitrary v and h = 0.
Next we consider the cut Hankel transform (cf. [1]). Suppose pe N, p # 0,
2< -4,

6.7y —Rev—1—-2p<Ai<pu=< —Rev+3—-2p.
Ifpe T — u, 1 — A), we define
P (= ety

(6.8) H, ,¢(x) = f: (xt)? { Jxt) = .

=) m}¢(t) dt.

Now

1 (TG + 141

H = 2 T2 T Plys-aidgy(] — s)x~*ds,
=g | T e o
if®=.4¢,x>01<c< —4% ¢ < pu Soagain,
TGy + 3+ 39)

(6.9) (#H, ,P)(s) = Tdv+ 2 -1y

2-W2Q(] — ).

Analogous to (6.1) we have

(6.10) H,,=2°x"°H,,, KM+ 1H+A12-ay —a
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if A < Rea — $ and (6.7)” and (6.3) are satisfied. In particular,
d n
(6.11) H,,= (—2)"x""Hv+n,px”+"+“”>(5;) XY,

if A < n — $and (6.7)" holds. By means of (6.11) with a suitable value of ne N we
may extend the definition of H, , on T(1 — pu, 1 — 4) if (6.7)° holds. Then (6.10) is
valid if (6.3) and (6.7)” are satisfied, and also if —ae N, h = —a, A = Rev — 3.

Since H,, = H, we conclude that H,, is a continuous operator from
T(1 — u,1 — A)into T(4, ) if pe N and (6.7)? holds where (6.7)° is given by

(6.7° —Rev—-3i<i<y

It follows that H
T — w1 — A)if
A<p<Rev+3 incaseq=0,

geN, is a continuous operator from T(4,u) into

v,q°

(6.12) 1 3 .
Rev+2g—7=A<u=<Rev+2g+3% incaseq > 0.

Using Mellin transforms, (6.9) and the Theorems 9 and 10 we may prove an
extension of Theorem 7.

THEOREM 7°. The Hankel transform H, , defined by (6.8) and (6.11) is a con-
tinuous operator from T(1 — u, 1 — A)into T(4, ) if pe N and (6.7)? holds. It is an
isomorphism between these spaces if moreover (6.12)? is satisfied for some g€ N.
Then

(6.13) (H,)"'=H,,

Furthermore, H, is an involutory automorphism on Ty(—v — %, co) for arbitrary v.
The following relations hold whenever the operators involved make sense:
(6.1), (6.10), (6.4), (6.11),

(6.14) H,, = 2% Igpr-Warame -y y-a
(6.15) H,, = 27K+ U8 -2mep o

- 1/2)v—(1/4)—(1/2)a,
(6.16) H,, = 27" H, 4, IS 2~ (19~ 120y

In particular, (6.1) holds in the cases (1), (11), (III) mentioned above. Moreover,
(6.14) with p = 0 holds in case (I). Formulas (6.10) and (6.14) hold on T(1 — p,
1 — A) if (6.3) and (6.7)° are satisfied; if o €N, we may omit (6.3) (then we may use
(5.22) and (5.11)), and if —aeN, 0< —a < h we may replace (6.3) by .. = Rev — 4.
In the last case we may transform (6.10) and (6.14) by means of (5.24) and (5.25).

The relations (6.15) and (6.16) hold on T(1 — p, 1 — A) if (6.7)” and

—Re(v+20)—3< A<y incaseh=0,
—Re(v+20)—2h—+<i<pu< —Re(v—20) —2h + 3
incase he N, h # 0.
Furthermore (6.15) with p = h = 0 is also valid on Ty(—v — 3, p) if

(6.18) —Rev—-3<pu<Rev+ 32+ min(0,2Ren),

(6.17)

whereas it holds on Ty,(—v — %, o) for arbitrary v.



Downloaded 12/19/18 to 129.125.148.19. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

790 B. L. J. BRAAKSMA AND A. SCHUITMAN

Now we consider the adjoint operator (H, ). We may simplify the notation
in view of the Parseval relation

(6.19) f: (H, ,$)((x) dx = f: () (H, () dx.,

which holds for example if ¢, Yy € T(1 — u, 1 — 1) and (6.7)? is satisfied (this may
be proved using Mellin transforms). Therefore we may denote (H, ,) on T'(4, u)
by H, .

F:om Theorems 7 and 7* we now deduce the following.

THEOREM 13. The Hankel transform H, , is a continuous operator from T'(4, )
into T'(1 — u, 1 — A)if(6.7)* holds. The operator H, is continuous from T'(1 — p, o)
into Ty(—v — % — 2h, p) if

(6.20) —Rev—31—2h<pu=<Rev+3  heN.

This operator is an involutory isomorphism from T'(1 — p, ) onto TH(—v — %, 1)
if (6.18) holds, and an involutory automorphism on T(—v — %, o) for arbitrary v.
The operator H, , is an isomorphism from T'(4, u) onto T'(1 — p, 1 — J) satisfying
(6.13) if (6.7) and (6.12) are satisfied.

The relation (6.14) with p = 0 holds in the following cases:

(i) on T'(4, w) if (6.7)° and (6.3) are satisfied. If o € N we may omit (6.3) and
use (5.11). If —ae N, 0 < —a < h, we may replace (6.3) by A = Rev — %
and use (5.25).

(i) on T'(1 — p, o0) if (6.5) with some ge N and (6.6)" are satisfied. If a e N
we may omit (6.6) and use (5.11). If —ae N, 0 < —a < h, we may replace
(6.6) by u < 3 — Re v and use (5.25).

(iii) on T%(—v — %, 00) for arbitrary v and h = 0.

Furthermore, (6.1) is valid on T'(A, ) if A = —Rev — 1 and (6.3) holds. If
o€ N we may omit (6.3) and then (6.1) reduces to (6.4). If —0e N, 0 < —a < h, we
may replace (6.3) by 2 = Re v — % and use (5.24). The relations (6.10) and (6.14) hold
on T'(A, p), if (6.3) and (6.7)" are satisfied; if « € N, we may omit (6.3) (then we may
use(5.22)and (5.11));if —aeN,0 < —a < h, wemay replace (6.3)by A = Rev — 3.
In the last case we may use (5.24) and (5.25). The relations (6.15) and (6.16) hold on
T'(A, w) if (6.7)" and (6.17)" are satisfied. Finally, (6.16) with p = h = 0 is valid on
T'(1 — u, o) if (6.20) holds, whereas it holds on Ty(—v — %, o) for arbitrary v.

7. A dual integral equation involving Hankel functions. Let ¢, ¢,, ve C,
a>0,1<u peN and

(7.1) 81€T'(0,a],1 — p— Recy), g, € T([a,0),1 — 4 — Rec,).
Consider the following dual integral equation:

(72) Hvxqf= gl’ Hv,pxczf = g2,

where the left-hand sides have to be interpreted as elements of T7°([0, a], 1 — u — Re
c¢y) and T'([a, ), 1 — A — Re c,) respectively. This is a distributional analogue
of a dual integral equation considered by Titchmarsh [13], Erdélyi and Sneddon
[5] and others. Erdélyi and Sneddon use fractional integrals in the solution of
their equation. We extend their method to the solution of (7.2). Thus we obtain
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all solutions f'e T'(4, ) of (7.2) if the following conditions are satisfied: he N,

(7.3) —Re(v+c¢,)—3SA<p=sRe(v—cy)+3,

7 4y p<Re(v—c,)+3, ifh=0,

(7.4) RC(V—02)+2h—%_§/1<u§Re(v_c2)+2h+% ifh >0,
(1.5 —Re(v+c¢,)—4<4 ifp=0

—Re(v+c¢,)—2p—31=<A<pus —-Re(v+c¢,)—-2p+3% ifp>0.

First we assume that a solution f of (7.2) exists. Let ¢ = ¥c; — ¢;). We apply
Theorem 13, formula (6.14) with v and « replaced by v + c and —c, h = p = 0.
Then we get

(76) 2—cch(Zl/Z)v—(1/4),chxclf — Hv+cx(1/2)(c1 +c2)f~

The conditions (6.7)° and (6.3) for formula (6.14) are satisfied because of (7.3).
Next we apply Theorem 13, formula (6.15) with v, o, hand p replaced by v + c,
—c¢, p and 0. Then we obtain

(77) 2cx—cK(21/2)v+(1/4)+c,—ch pxczf — Hv+cx(1/2)(c1 +c2)f-
The conditions (6.7)° and (6.17)? for formula (6.15) are satisfied because of (7.3)
and (7.5)".
Now let
(7.8) F = H,, x{1/ertes,

Then (7.2), (7.6) and (7.7) imply
F =27 I/ =Waegin T'([0,a], 1 — u — 3Re(cq + ¢3)),
F = 2°x~cKQav+aimre=co in T'([a, 0),1 — A — $Re(c; + ¢3)),

where the right-hand sides exist as elements of these spaces because of Theorems
11 and 12. Hence we know F completely if we can determine F on 2(3a, 3a).
However, by (7.9) we know the restriction of F on 9(4a, a) and on 9(a, 3a). There-
fore we may write F as the generalized derivative of some order g of regular
distributions on these spaces. Consequently F may be extended to a continuous
linear functional F, on the completions C, of 2(3a,a) and C, of 9(a,3a) in
C1a,3a].

Let ¢ € D(3a,3a) and ye D(3a,2a), x(x) = 1 if 3a £ x < 3a. Then we may
write

(19)

=0

(1.10) 60 = 3, <87 = a0 + 61(5) + (),

where ¢, € C,, ¢, € C,. Now (F,, ¢,) and (F,, ¢,) may be calculated using (7.9).
If ¢ € 9(3a, 3a), then we define

(7.11) (Fo, @) = (Fo, ¢1) + (Fo, ¢2).

Now (F, ¢) = (Fy, ¢) if ¢ € D(3a,3a) and ¢ vanishes in a neighborhood of a. So
F — Fye 9'(3a, 3a) is concentrated in a. Therefore F — F, is a linear combination
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of the delta-functional and a finite number of its derivatives concentrated in a.
Apart from these terms now F is uniquely determined on 9(1q,3a), and conse-
quently as an element of T'(1 — u — 1 Re(c; + ¢;), 1 — 1 — 1 Re(c; + ¢,)) by
means of g, and g,.

From Theorem 13 and (7.8) we now deduce

(7.12) f=xTURCrIH G Fe T, .

So if a solution of (7.2) exists in T'(4, p) it is given by (7.12). Conversely, it is easy
to check that the distributions f constructed above from g, and g, by means of
(7.9) and (7.12) are solutions of (7.2). Extensions to other dual integral equations
as in [2] may be given in an analogous way.

8. Dual integral equations involving H-functions. Before considering such
integral equations we first extend the definition of the operator A of § 4, Example 3.
In what follows we use the notation of that example and

@1 I, o, m) = Ik*, Ky, o, m) = K"
Suppose (4.7) and (4.10) are satisfied. If n < j < p,
8.2) p = Red/a;

and (4.8), and (4.8) with «; replaced by &; are satisfied, then
8.3) A= AK@& — a;,0; — &,a;") onT(l —p, 1 — 2),

where 4 is defined by (4.11) with «; replaced by d;. This may be shown using
Mellin transforms, (5.16) and (4.9).

If & — o;€ N, we may omit (8.2) and use (5.22). Choosing &; sufficiently large,
the right-hand side of (8.3) exists on T(1 — p, 1 — 1) even if (4.8) does not hold.
Hence we may use (8.3) to define A in case only (4.7) and (4.10) are satisfied. It is
a continuous operator of T(1 — u,1 — 1) into T(4, p) satisfying (8.3) if (4.7) and
(4.10) are fulfilled.

In the same way we have

(8.4) A = A*I(b, — B, BF — Bu, by ) on T(l — pu, 1 — A),

if m < h £ q, A* denotes the operator 4 with f, replaced by SF, (4.7), (4.10), (4.8)
and (4.8) with B, replaced by Bjf are satisfied and

(8.5) (Re B — 1)/b, = 4.

If B, — B e N we may omit (8.5) and use (5.11). If n = p and (4.7) holds, then
m < q. If in this case (4.10) is fulfilled but (4.8) is not satisfied, we may use (8.4)
with a suitably chosen S} as definition of 4. Hence A is defined as a continuous
operator of T(1 — u, 1 — 1) into T(4, p) if (4.10) and either (4.6) or (4.7) hold. The
relations (8.3) and (8.4) are valid on T(1 — u, 1 — A) if (4.10) and either (4.6) or
(4.7) are satisfied and in case of (8.3) also (8.2), in case of (8.4) also (8.5).

Incase(4.7),(4.10) and (4.15) are fulfilled, the inverse of 4 exists as a continuous
operator from T(4, u) into T(1 — u, 1 — A) and it is given by (4.12) with (4.13) and
4.14).
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Now we consider the adjoint A’ of A. It is a continuous operator from T'(4, p)
into T'(1 — u, 1 — 1) if (4.10) and either (4.6) or (4.7) hold. Using Parseval’s
formula we may show that
86) (A9, ¥)= (¢, 4Y) ifyeTd —p, 1 —-4), ¢eT(y,uy),

A+di<l<pu+p.
Therefore we denote A’ by A on T'(4, u). The dual relations of (8.3) and (8.4) are

(8.7) A=1@E —1,0; — ;a7 A
and
(8.8) A=K - B} B} — By, by NA*

which hold on T'(4, u) and on T(1 — u,1 — A) if either (4.6) or (4.7) holds, (4.10)
is satisfied, whereas in case of (8.7) we assume n < j < p and (8.2) and in case of
(8.8) we assume m < h < g and (8.5). Also (8.3) and (8.4) are valid on T'(A, u) with
corresponding conditions.

Let B be the operator which arises from A4 by replacing o; and f,; by y; and
opforj=1,---,pand h=1,---, q, where
8.9) mﬁ71§1<ugh@, j=1,--,n; h=1,---,m.

j h
Now we consider the dual integral equation,
(810) Af =g, inT'(0,a],1 —p), Bf=g, inT(a,0),1-42),

where a > 0 and g, and g, are given elements in these spaces and (4.7) holds.
Integral equations of this type for ordinary functions have been treated by Fox [6]
and Saxena [12]. We use here a construction of solutions which is analogous to
their formal solution.

Let C be the operator A4 with «; replaced by y(j=n+1,---, p) and B,
replaced by 6, (h = 1, --- , m). Define

P, ={ ]E[ Io; — 1,y — ozj,aj‘l)}{ ﬁ 16, — 1,8, — 6,,,b,,'1)},
h=1

j=n+1

(8.11) .
P2 ={ l—l K(l - aj, Olj - 'Yj,a;l)}{ 1—[ K(l - 5Inéh - Bh’bh_l)}‘
i=1

h=m+1

For the existence of these operators on T'(1 — u,1 — A) we assume (cf.
Theorems 11 and 12) besides (4.10) and (8.9) also

5, — 1 .
(8.12) ReZt §1<ugm%, h=m41,--,q: j=n+1,--,p.
h J
Then
(8.13) P,Af = Cf = P,Bf.

From this, (8.10) and Theorems 11 and 12 it follows that
(8.14) Cf=Pigy inT([0,a],1 — ), Cf=Pg, inT(a,0),1-47).
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Asin § 7 we may now determine F = Cfin T'(1 — u, 1 — ) from (8.14) apart from
a linear combination of the delta-functional with center a and a finite number of
its derivatives. From F we now obtain the solution f of (8.10) by means of

f= COFa
where C, is the adjoint of the operator defined by
Y- f H‘l‘,;""""”(xt
0

with & and b given by (4.13) and

a,o*
l~),ﬂ*)n//(t)dt

a*=(1+an+1—7)n+la"'sl+ap"?p’1+a1_a1s"'71+an_an)’
B*=(1+bm+l_ﬂm+1""71+bq*ﬁq’l +bl—51"”’1+bm_5m)'
This solution exists if (4.7), (4.10), (8.9), (8.12) and

-1 .
Bh———§2<u§ReL, h=m+1,---,q;j=n+1,---,p

R
¢ b, a;

are satisfied.

9. A convolution map involving a hypergeometric function. Finally we consider
another special case of the product convolution (5.1), viz. a hypergeometric
integral transform considered among others by Love [11a]and [11b]. LetRe ¢ > 1,

©.1) —Reaz ki, —Reb=i<uypu.
Then if ¢ € T(4, u), we define

<] c—1
9.2) (A¢)(x) = F:Z)J (1 - ;) F(a,b;c; | - i)qﬁ(t)%—t.

Now we have the special case of Theorem 8 where

I'(c)
k(x)=0 ifx>1.
The Mellin transform K(s) of k(x) is given by

_ Ta+ 91k + )
C4 K9 = [(c + s)[(a+ b + s)

This may be shown using Euler’s integral for the hypergeometric function or
Barnes’ integral representation for this function and Barnes’ lemma.

The condition Re ¢ > 1 may be removed as in Remark 4. However, we may
also use a modification of the method in Remark 4. If Re ¢ + n > 0, we define

(_ l)nxc+n ar
I'(c + n) dx"
This is consistent with the first definition in (9.2) since (9.5) implies .#(A4})(s) =

K(s)(# ¢)(s). Hence A defines a continuous mapping of T(4, u) into itself if (9.1)
holds.

1
k(x) = —1——(1 - x)"lF(a,b;c; 1 - ;) ifo<xs1,
9.3)

© c+n—1
9.5) (A¢)(x) = x"J (1 - ;) F(a,b;c +n;1 —é (i)(t)ilt—t.
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From Theorem 10, formula (5.16), and (9.4) we deduce
(9.6) A = K4%7°K%* on T(4, p).

This relation may also be proved directly using the definition (9.2) and Euler’s
integral for the hypergeometric function.
Now we consider the inverse of A, if it exists. First we assume

9.7) —Rec< A, —Re(a+bh) <A

Then it follows from (9.6) and Theorem 10 that A4 is an automorphism on T(4, u)
with

9.8) At = K§rhTeRgee

From (9.4) and Theorem 8 we may also deduce that A4 is an automorphism, and
if moreover Rec < —1,

_ © [x dt
09) a0 = 1o
where
_ _ e+ '@+ b +5s)
.10 hix) = {‘/” Tat L + 3) }( )

Using residue calculus we obtain

h(x) =0 ifx>1,
9.11)

h(x)

T U - X)""'F(—a, —=b; —c;1 —x) f0<x<1.

Hence if (9.7) holds and Re ¢ < 0, then the inverse B of 4 on T(4, u) is given by

1
I'(—c¢)

If Re ¢ < m, me N, we easily see using (9.10) that

(9.12) Bo(x) =

x‘f (t - x)"“F(—a, —b; —c;1 ~§ o(t) dt.

m

9.13) A= (= 1)"‘x0;x—m-xm_”Bm on T(L, p),

where B, is defined by (9.12) with ¢ replaced by ¢ — m and B by B,,.
Now we consider cases where (9.7) need not be fulfilled. Then we suppose

that 4 and u satisfy the following condition with p and ge N :
—p—Rec=A<u=sl-p-Rec,

9.14)
—q—Re(@a+b)<i<u=<1l-qg—Re(a+hbh).

If p=0 or ¢q =0 we may omit the expression “<1-—p— Rec” or
“<1-—q — Re(a + b)” respectively in this condition. Now (9.6) and Theorem
10 imply that A4 is an automorphism on T(4, u) with

(915) Al = Kti;bﬁaKci,‘ap—c.
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If Rec < —1 and (9.14) holds, we deduce (9.9) with (9.10) from Theorem 8 and
(9.4). Using residue calculus we get

.16 h(x) = —P(x) ifx > 1,

h(x) = x(1 —x) " 'F(—a, —b; —c;1 — x) — P(x)

I'(—c¢)
if 0 < x < 1, where

Ta+b-oc ”i‘(1+c—a)1{1+c—b)j "y
Ta—ofb—0o 5% jd+c—a—-b), -

I(c —a—b)i! (1 + a)(l + b);
I(=bI'(—-a) = j1 +a+b—c);
Hence if (9.14) is fulfilled and Re ¢ < 0, the inverse B of A on T(4, u) is given by

(1 tft me-d X x dt
(9.18) p
* (x t
[t
If Rec < m, me N, we have (9.13) where B,, is defined by (9.18) and (9.17) with

B, c and p replaced by B,,, c — mand p + m.
Finally, we consider the adjoint A’ of 4 on T'(4, ). Assuming (9.1),

P(x) =

(9.17)

xa+b+j

oeTA,u), feTW, W) T'(A,u) (hence A+ A <1 < pu+ y),

we have according to Parseval’s formula,
© 1 v+ioo
f f(x)Ap(x) dx = ——I K(s)®(s)F(1 — s)ds
0 2mi ), o

- L | T KA = 9Fe0 - 5 ds = fw () (bx) dx.,
0

—21'Ci 1-v—-io
where A<v<pul -y <v<l—1,F=4,0=4¢,

Ta+1—-b+1—5)
INc+1—sa+b+1-—15)

Hence A’ = A on T(X, i) where (cf. (9.3) and (9.4))

1 > t\ct X
xl“(c)_[, (1 —;) F(a,b,c,l —-?)f(t)dt,
iffe T, 1), 4 <1+ min(Rea,Reb), Rec >0,

(u Af) =

F(s).

(9.19) Af (x) =

I'(c + n)

iffe T(A, ), ¥ <1+ min(Rea,Reb),Rec + n > 0,neN.If(9.1) holds, 4 is a
continuous operator of T(1 — u, 1 — ) into itself.

- x~¢ dar X t ct+n—1 x
9.20 — L yetn—1 _ . g
9.20) Af(x) dx”x fo (1 x) F(a,b,c +n;1 t)f(t)dt
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Now A’ is a continuous mapping of T'(4, p) into itself if (9.1) is satistied, and
according to Theorem 12 and (9.8):

(921) A = Ili’alti’c—a.
If moreover (9.14) holds, then A4’ is an automorphism on T'(4, &) with
(0.22) (A)7 = IggeI g,

Analogous to A we define an operator B which plays the same role with
respect to (4")~ ! as A plays with respect to A'.
Suppose A’ < ¢, p,qeN,

A <1+ min{p + Rec,q + Re(a + b)},
p+Rec<py ifp#0, g+ Re(a+b) <y ifqg=#0.
Let P be defined by (9.17) and ge T(4, i'). If Re ¢ < 0, then

~ (1 [x met t t [t dt
Ao = [[{rctals = o) el e =) = sl o

1~ [t

If Rec < m, me N, we define

(9.23)

(9.24) B= x'"‘“—(!—x‘f!'m,
ax™

where B,, is defined by (9.23) and (9.17) with B, ¢ and p replaced by B,,, c — m and
p + m. Then the operator (4')"! on T'(A, u) coincides with B on T(X, u) if
A+ A <1 <p+ u,9.1)and (9.14) are satisfied. Furthermore, B is a continuous
operator on T(1 — pu, 1 — A)and itis the inverse of 4if (9.1) and (9.14) are satisfied.

It is obvious that instead of starting with the transformation 4 we could also
start with B, 4 or B and apply an analogous reasoning as above. We obtain
similar results by extending the definition of 4 and 4 in the same way as the
definition of B is extended from (9.12) and (9.18).
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