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SOME CLASSES OF WATSON TRANSFORMS AND
RELATED INTEGRAL EQUATIONS FOR

GENERALIZED FUNCTIONS*

B. L. J. BRAAKSMAf AND A. SCHUITMAN:

Abstract. Spaces of testing functions which are isomorphically mapped onto one another by the
Mellin and the inverse Mellin transform are used to prove that certain spaces are also mapped iso-

morphically onto one another by the so-called Watson transform. Then Watson transforms for
generalized functions are defined. Applications on Hankel transforms, fractional integrals and integral
equations of Love involving hypergeometric functions and of Fox involving H-functions are given.
Furthermore, dual integral equations for generalized functions with Hankel transforms and H-functions
are treated.

Introduction. In this paper we define Watson transforms and other convolution
transforms for generalized functions. To this end we introduce spaces of testing
functions which are mapped isomorphically onto each other by means of the
Mellin transform ( 1). Using the connection of Watson transforms and Mellin
transforms (cf. Titchmarsh [13]) we show that Watson transforms map these
function spaces continuously into function spaces of the same type ( 2). Then
these transforms are generalized to generalized functions in the dual spaces. Also
the inverses of these transforms are considered. In 3 the same analysis is done
on certain subspaces of the spaces of testing functions of 1. Examples including
Hankel transforms are given in 4.

Another type of product convolutions is treated in 5. In particular, operators
of fractional integration are considered including the so-called cut fractional
integrals. Using these fractional integrals we extend the definition of the Hankel
transform in 6. Here also the cut Hankel transform appears which is useful for
the inversion of Hankel transforms. Furthermore relations between Hanket trans-
forms and fractional integrals of generalized functions are given. In 7 and 8 we
give applications to dual integral equations for generalized functions involving
Hankel transforms and, more generally, transforms with H-functions of Fox
which contain many special integral transforms (cf. Fox [6]). Here we use a
method of Erd61yi and Sneddon [5]. We give precise conditions for the existence
of solutions of the dual integral equations, which were obtained formally by Fox.
In 9 we consider a special case of product convolutions involving hypergeometric
functions and related integral equations, which have been studied among others
by Love [1 la] and [1 lb]. Some of the results of Love are also extended for ordinary
functions.

Other applications to differential equations may be given analogous to those
in Zemanian’s study of generalized integral transformations [14]. Our approach
to Mellin and Hankel transforms is different from Fung Kang’s [7] and from
Zemanian’s approach. Fractional integrals for distributions have been studied
recently by Erd61yi and McBride [4] and Erd61yi [3]. Our treatment is similar to
theirs, though we do not assume that the testing functions have compact support.
Watson transforms for generalized functions have been considered also by
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772 B. L. J. BRAAKSMA AND A. SCHUITMAN

Hsing-Yuan Hsu [8], starting from testing function spaces closely related to those
of Zemanian.

1. The spaces T(2, #) and S(2, p). Throughout this paper denotes the set
of the real numbers and [* U {- , }. C is the set of complex numbers.
N {0,1,2,... }.

Let 2,/ *, 2 </t. Let (2,)=o and (/,)=o be sequences of real numbers
with 2, 2,/, T/ and 2, </, for all n N. T(2,/) is the space of all functions
b C (0, ) with the property

(1.1) r,(q) sup It +pqblp(t)l < oo for all n .
t>o

p= O,1,...,n
2n =< c-<t,,

T(2,/) is a locally convex vector space with the topology generated by the sequence
of norms 0",d. Related spaces have been considered by Zemanian [14, 4.2].

Let 2,/, 2, and/, be as above. S(2,/) is the space of all functions O, analytic
on 2 < Re s </, with the property

(1.2) r,((I)) sup Is(s)l < for all n .
.n < Re lt
p 0,1,...,n

With the topology generated by the sequence of norms (a,), S(2,/) is a locally
convex vector space.

The topologies of T(2,/) and S(2,/) are independent of the particular choice
of the sequences (2,) and (/.). Using standard arguments it may be shown that
both spaces are Fr6chet spaces. In the following, isomorphisms and automor-
phisms between spaces are interpreted as linear continuous mappings onto with
continuous inverses.

If b is some function, we denote its Mellin transform by

(1.3) (/{4))(s) dp(t) dt.

If is some function we denote its inverse Mellin transform by

c+i(-o)(t) O(s)t ds.

We prove the following theorem.
THEOREM 1. The Mellin transform l defines an isomorphism of T(2,/t) onto

S(2, ). The adjoint Mellin transform ////’ defines, an isomorphism of S’(2, ) onto

T’(2,
Proof If b 7"(2,/) and 2 < Re s </, p , then

(’4,)(s) O(s) t’- 4(t) dt
(--l)p t+-XcP)(t)dt
(s),

by virtue of (1.1). (Notation" (S)o 1, (s)p (s + p 1)(s)p_ 1, P >= 1). Note that

o t’+P-ckP)(t) dt has a zero in s -h, he if 2 < -h </. It follows that
e S(2, ).
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WATSON TRANSFORMS 773

IfOS(2, p), 2 < c < p, > 0 and p , then

fc+io O(s)t ds,(- ’0)(0 dp(t) i. c-,o

1)P (c + io

l t-s- P(S)pO(S) ds,
2rci io

where the integrals are absolutely convergent. It follows that 4) T(2,/). From
the well-known inversion theorem for Mellin transforms it follows that //o //-
and //- /are the identity maps on S(2,/) and T(2,/t). It remains to prove the
continuity.

We may assume that the sequences (2,) and (/t,) are chosen in such a way
that 2,, t. - 0, 1, -2, .... Consider the strip 2, _<_ Re s _< ,. For each integer
h =< 0 with 2, < h < kt,, let Dh be the interior of a disc with center h and which
lies entirely in the strip. We omit all the sets Dh from the strip and denote the
remaining "reduced" strip by S. Let b T(2,/) and b. Then

a.(O) sup IsPO(s)I sup +p- a(p)(t) dt
O<_p<=n O<=p<=n

An -< Re <= t. sS

Now

and with

we have

.(0) =< Ko

Ko sup Is’/(s),l <
0<p<n

e- min {2. .+ 1’ /n+ /n), c= Res,

sup itc+ -dptp)(t)lt- +e dt
O<=p<=n
2._<c_<,u.

+ It+P+d((t)lt - cl < + (d).

This proves the continuity of
Let S(2, St) and let b /- 10. Then

r.(b)-- sup Itc+PbtP)(t)l
O<_p<_n
2. _-< _-< u.

sup
t,c,p

tc+P c+i (S)pO(S)t- p ds-- c-ic

fc-i fc+i)/ Is+ 20(s)
c-i c+i

O((s), s)t ds

=< Ka,+ 2(0),
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774 B. L. J. BRAAKSMA AND A. SCHUITMAN

where K depends only on n. Thus .////- is continuous. The second assertion of the
theorem follows at once.

2. Watson transforms on T(2, ). in this section we will consider a Watson
transformation between two spaces of type T(2, #). Formally such a transforma-
tion is described by a pair of reciprocal formulas

@(x) k(xt)dp(t) dt, dp(x) h(xt)t(t) dt.

By applying the Mellin transform to these formulas we may formally show that
the Mellin transforms K(s) and H(s) of k(t) and h(t) satisfy K(s)H(1 -s)- 1,
(cf. Titchmarsh [13]). We prove two theorems on these transforms in spaces
T(2, #).

THEOREM 2. Let , la *, 2 < #. Let K(s) be an analytic function on 2 <
Re s < # such that K(c + it)6 L(-o, o) for some c with < c < #. Assume
moreover that for every pair (a, b) such that 2 < a <= b < la there exists a real
number such that

K(s) O(s) as s - o, uniformly on a <= Re s =< b.(2.1)

Let

fc+ic K(s)t ds, > O.(2.2) k(t)

Then the map A’T(1 p, 2) T(2, #), defined by

(2.3) (x) (A)(x) k(xt)dp(t) dt

is linear and continuous. The adjoint operator A’ is continuous from-T’(2, #) into

T’(1 p, 2).
Proof The integral in (2.2) is absolutely convergent, hence k(t) exists for > 0.

It follows from the definition that if t 6 T(1 #, 2), then t-c(t) L(O, ).
Then the reversion of the order of integration in the following computation is
allowed:

(2.4)
(x) (Adp)(x) dtdp(t) K(s)x-t ds,

c+i K(s)O(1 s)x ds,

where =/. Since eS(1-#,1-2), we have (1-s) eS(2, p). More-
over, from (2.1) we obtain

sqK(s)(1- s) O(sq + -p) assoo,ona=<Res=<bifp, q6N,

and we see that K(s)(1 s)e S(2, p). Define the map
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WATSON TRANSFORMS 775

by

(w,)(s)- K(s),( s).

It is clear that ffd is linear and continuous. Now (2.4) reads as

(2.5)

and the desired properties of A follow from the corresponding ones of the factors.
If we impose further conditions on K(s) in Theorem 2, then the map A is

even an isomorphism. From Fig. it is seen that we have to choose K(s) in such
a way that X" is an isomorphism. The following theorem gives the precise condi-
tions.

r(L) r(1 , 2)
A

FIG. 1.

THEOREM 3. Let 2,/z and K(s) be as in Theorem 2 and let K(s) have no zeros in
2 < Re s < #. Define H(s)= K-1(1 s), 1 # < Re s < 1 2. Assume H(cl +
it)6 L(-, ) for some c with # < c < 2. Moreover, assume that to

every pair (a,b), -/ < ax =< bl < 2, there exists a constant 7 such that

(2.6) H(s) O(s1) as s , uniformly on ax <= Re s =< b x.

Then the map A in Theorem 2 is an isomorphism on T(1 #, 2) onto T(2,/)
and the inverse B of A is given by

(2.7) b(x) (B)(x) f:
where

(2.8)

h(xt)$(t) dt, 6 T(2,

[, c + ioo

I H(s)t ds.h(t)
J,c,-ioo

The adjoint operator A’ is an isomorphism from T’(2, #) onto T’(1 -/z, 2) with
(A’) -1 B’.

Proof Define the map " S(2, #) S(1 #, 2) by

(tq)(s) H(s)q(1 s),

It is easy to see that is the continuous inverse of . If B is defined by (2.7),
then

(2.9) B ///- )f ///.
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776 B. L. J. BRAAKSMA AND A. SCHUITMAN

This may be proved in the same way as (2.5). Combining (2.5) and (2.9) we see
that A and B are inverses of one another.

Remark 1. The conditions K(c + it) L(- , ) and H(cl + it) L(- , )
in Theorems 2 and 3 may be omitted provided (2.2), (2.3), (2.7) and (2.8) are
modified as follows.

From the assumptions on K(s) we deduce that there are numbers d ,
e > 0 and a positive integer n such that

K(s)=O(s"--) assonRes=d, 2<d</2, d- 1,2,...

Then define

1 fa+ioo K(s)
k,(t)

.,a-,oo (1
t ds

and

(2.10)

Now

(Ack)(x) k,(xt)dp(t)t-" dr, ifOeT(1 -/2,1 -2).

d" f fa + ioo K(S)s).(xt)._ dsA4)x) d 4)- "--, 1

f, ds(1 f2d" d+ioo K(s) x"-
2rridx" d-ioo S). ck(t)t-Sdt

d" fd+ioo K(s)2rri dx"oa-ioo (1s)
(’q)(1 S)X ds

fd+ioo K(s)(//b)(1 s)x as.
2rci .,a-

Similarly, h(t) and B are defined. Fig. remains valid.

,t/.

3. Watson transforms on the subspaces T,, and S,,. In this section we shall
take 2 C and/2 [*, Re 2 </2. We want to define subspaces of T(Re 2,/2) and
S(Re 2,/2) which are mapped onto one another by the maps A and B of 2. The
motivation will become clear in the next section.

Let m be a positive number and Re 2 </2. Then Tm(2,/2) is the linear space of
functions T(Re 2,/2) such that

dp(t) t-z(tm), > 0, e C[0,

We choose a topology on Tm(2,/2) which is finer than the induced topology of
T(Re 2,/2). If/2, tends monotonically to/2 from below we define

?n(b) sup (1 "+" t(tl"-ReZ)/m)+P)l(P)(t)l
t>O

p= 0,1,...,n

and we take the topology generated by the norms, n e N on Tm(2,/0. Then Tm(2,
is a Fr6chet space.
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WATSON TRANSFORMS 777

Furthermore Sm(2, #) is the linear space of elements S(Re 2,/) such that
(i) (s) is analytic if Re s < except for at most simple poles in the points
s= 2- mj, j e [.

(ii) O(s) O(s -p) as s uniformly on any strip a Re s b < for any
p.

We choose on S(2, ) the topology generated by the norms #,, n , where

O,() sup [O(s)l Is- 2 + mjl,
seG. 0

G, {seC’Re2 mn + m Res p}.

It is very easy to prove that S(, ) is a Fr6chet space.
TORM 4. The Mellin transform is an isomorphism from Tin(2, p) onto

Sm(2, P). Its adjoint ’ is an isomorphismpore S(2, ) onto T(2, ).
Proof If T(2, p), Re 2 < Re s < p and p e N, then

(-) f .-/+-().
The last integral is analytic in s if Re 2- mp< Re s < g. Hence e S(2, )
and it easily follows that is continuous.

If e S(2, ), 4 -, Re 2 < c < , then

Consequently,

,c+io t(S)t(-s)lm ds,(t) -i c-ioo

t>O.

<I>(s)(t’)(t) --/,, ioo rn

p! Res
A-mp

...(2-Sm

m
p+l ((A-s)lm)-p ds

@(s) + ni c,-i m

p + (tz-s)lm)-pds,

where Ress=,_mp denotes "residue at s 2- mp of"; if Re 2- m(p + 1) <
ca < Re 2- mp, t> O. Therefore Cp [0, ). Further it is easily seen that
b 7,(2,/) and that //-1 is continuous.

We now follow the method of 2 to derive some further theorems.
THEOREM 5. Let 2 e C, # E*, Re 2 </ and m be a positive number. Assume

that K(s) is analytic for Re s </ except for simple poles at s 2- jm, j .
Assume moreover that for each pair (a, b), a <= b < #, there exists a constant y such
that (2.1) holds. Let K(c + it) L(-, )for some c with Re 2 < c </. Then the
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778 B. L. J. BRAAKSMA AND A. SCHUITMAN

map A of Theorem 2 maps T(1- #, oo) linearly and continuously into T,(2,
The adjoint map A’ is a continuous operator on T,(2,/) into T’(1 -/,

Proof. The map : used in the proof of Theorem 2 is a continuous map on
S(1 , oe) into S,(2, #).

In the same way we have the following.
TrmOREM 6. Let 2, In and m be as in Theorem 5. Assume H(s) is analytic for

Res > -/ and H(s) 0 if s 2 + jm, j O, 1,2,.... Assume that for
each pair (a, b) such that # < a <__ bl there exists a constant such that
(2.6) holds. Moreover let H(cx + it)e L(-oe, oo) for some c with p < c <

Re 2. Then the map B defined by (2.7) maps Tin(2,/) linearly and continuously
into T(1 p, c) and B’ is a continuous operator on T’(1 It, c) into T(2, p).

IfH(s)K(1 s) and Re s > #, then A is an isomorphism ofT(1 p, oe)
onto Tin(2, It) with inverse B.

Remark 2. Here also we may omit the conditions K(c + it) L(-oe, oe) and
H(c + it)e L(-oe, oe)as in Remark of 2.

4. Examples.
Example 1. Let m be a positive number, 2 e C, 20, # e JR, Re 2 _< 20 </ =<
Re 2 and let K x(s) be analytic on Re s </ and on Re s > -/, whereas

Kx(s) Ki-(1 s). Assume that (2.1) holds for K(s) on any set 2’ =< Re s _<

/’</andanyset 1-/< 1-/’_<Res=< 1-2’.Assume

(4.1) Kl(c + it) O(t -((2c-1)/m)-l-) as oo

for some c with 20 < c </t and for some c with -/t < c < 20, and some
e > 0. Define

F((s 2)/m)
K(s) K(s).F((1 2- s)/m)

Then K(s) K- (1 s) and Theorems 2 and 6 imply that A is a homeomorphism
from T(1 -/, 20)onto T(2o, g)and from T(1 -/, oe)onto T,(2, g), whereas
A A-1. Condition (4.1) may be omitted if A is interpreted as in Remark 1.

Example 2. A special case of Example 2 is the following. Let Kx(s) 2s-(/2)

and

F((v + 1/2 + )/2)2s_(1/2)K(s)
r((v + s)/2)

Now K(s)= K-(1- s), K(s)= O(1), K(s)= O(srt-(/z)) as s---, oe on any
strip a =< Res =< b, m 2, c < 1/2 and

k(t)

(cf. [13, p. 214]). Suppose Re v > and choose 2 and t such that -Re v 1/2 =<
2 </ __< Re v + -32 If Re v > 0, 2 < -1/2, -32 < # we may choose c and Cl such that
-Rev-1/2<c < -1/2, c</, -t<cx < -1/2, c < -2. Then K(c+it),
K(cl +it)L(-,). Hence, if Rev>0, -Rev-1/2=<2< -1/2, 23-</t<-
Re v + 23-, the Hankel transform Hv defined by

(4.2) (H/p)(x) (xt)/2j(xt)ck(t) dt

D
ow

nl
oa

de
d 

12
/1

9/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



WATSON TRANSFORMS 779

is a homeomorphism of T(1 #, 1 2) onto T(2, #) and of T(1 #, oe) onto
T2(- v 1/2,/). Furthermore H, H;- 1.

We may weaken these conditions by extending the definition of the Hankel
transform as in Remark (see for a modification of this extension 6). Then we
see that the extended Hankel transform is a continuous operator from T(1 #,

2) into T(2,/0, if Re v 1/2 =< 2 </. However, if

(4.3) -Rev-1/2=<2< 1, 2<,

then the extended transform and the transform given by (4.2) coincide, since the
differentiations in (2.10) may be performed under the integral sign. This follows
from the asymptotic behavior of the Bessel function near the origin and oe. It is
now easy to prove the following result for T(1 -/, 1- 2) and some of its
subspaces.

THEOREM 7. The Hankel transformH defined by (4.2) is a continuous operator of
(i) T(1 t, 2)into T(2,/) if(4.3) holds;
(ii) T(1 -/, )into T2(-v 1/2, )if- Re v 1/2 < t;

(iii) Tz(-V-1/2-2h, la) into T(1-/,)if-Rev-1/2-2h<#<Rev+

(iv) Tz( v 1/2 2h, oc into itself ifRe v > h 1, h e N.
In the cases (iii) and (iv) with h 0 it is an involutory isomorphism. It is also an
involutory isomorphism of T(1 #, 2) if

-Rev-1/2=<2</=< Rev+-}, 2<1, />0.

In all these cases,

(4.4) //Hdp(s)
r(1/2v + 1/4 + 1/2s)
F(1/2v + 1/4- 1/2s) /2)(///b)(1 s).

Remark 3. Let K(s) be as in Example with Kl(s an entire function, Kl(s)
Ki-1(1 s), Kl(s) O(s), s ---, c on any set a =< Re s =< b, where 7 depends on
a and b. Assume (4.1) holds for some c with Re 2 < c and for some c with c <

Re 2, (Re 2 < -}). Then A A- is an automorphism on T,,(2, oe).
Example 3. Let m,n,p,qN, n <= p, m <= q. Let a, otCp, b, licq; a > O,

j 1,..., p; bj > O,j 1,..., q. Suppose

(4.5)
Re aj Re flh< c < j= 1,...,n; h= 1,...,m.

aj b

Suppose

q p

(4.6) aj- 2 bj> Z aj-Z bj
j=l j=m+l j=n+l j=l

or the following two conditions are satisfied"

p

(4.7) aj- bj= aj-2 b
j=l j=m+l j=n+l j=l
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780 B. L. J. BRAAKSMA AND A. SCHUITMAN

and

(4.8) c a- b < -1 +
q- p+ReeJ-2Re.

j= j= 2

Then we define according to Fox [6]"

a, ot f,c+i I-IF(1-j+ajs)I-mF(flj-bjs)x
(4.9) H,m,’ x

b, c-, fl F(- as)
if x > 0. This integral is easily seen to be absolutely convergent.

Suppose

(4.10) Re- 2<#Reflh j= n"
a bh

Then the map A defined by

(4.11) (A)(x) Hp xt (t) dt

is a continuous linear map of T(1 , 2) into T(2, ).
A is an isomorphism of T(1 , 2) into T(2, ) with

where

ds

h= 1,.-.,m.

a an+l, ap, al, a
(4.13)

fi (bm/l, bq, bl, bm),

(1 + an+ n+,’’’, + a, %,, + a ,..., 1 + a ),
(4.14)

(1 + bin+ tim+,,’", + b- fl, + b, fl, ..., +bm- tim)

if the following conditions are satisfied"
(i) (4.7), (4.8) and (4.10);

Re(a/a), j n + 1,..., p,
(4.15) (ii)

Re((fl- 1)/b)2, j=m+ 1,...,q;

(iii) there exists a real number cl such that -/ < cx < 1 2 and

2

Proceeding as in Remark 1, ff 2, we may extend the definition of A and A- in
cases where (4.8) and (4.16) are not satisfied (cf. also 8).

Since the G-function and many other special functions are special cases of
the H-function, many integral transforms are contained in this example. Especially
the Hankel transform of Example 2 may be considered as a special case of Example
3.
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WATSON TRANSFORMS 781

5. Other product convolutions; fractional integrals. The Watson transforms
of 2 and 3 have the so-called "product-kernel" k(xt). Another integral transform
arises if we replace k(xt) by k(x/t)and (t) by (1/t)(1/t). Both integral transforms
are called product convolutions. Since

t’

the new integral transform is a Watson transform applied to(1/04)(1/t). If 4) T(2, #),
then (1/t)(1/t) T(1 -/z, 2)and conversely. Hence we have the following.

THEOREM 8. If k(x) satisfies the assumptions of Theorem 2, then the map A
of T(2, p) defined by

(5.1) axc(x) k (t) T(2,#),

is linear and continuous into T(2, #).
Moreover, if K(s) does not have zeros in 2 < Re s < # and H(s)= K-l(s)

satisfies (2.6) uniformly on any strip 2 < al <- Re s _< b </ with some constant
depending on al and bl and if H(cl + it)e L(-co, co)for some cl with 2 < cx <
then A is an isomorphism of T(2, #) onto T(2, #) and

(5.2) (A - I(D)(X h (t

where h is defined by (2.8).
Remark 4. The maps A1 and A-I are given in Fig. 2;

Af

FIG. 2.

where (o,f tI))(s) K(s)O(s), (’O)(s) H(s)(s). The conditions on K(s) and H(s)
may be weakened as in Remark 1. If we define k. and hm as in Remark 1, then

k
x

(A - 4)(x) d- hm 4(t)t"- dt,

where 4 e T(2, #). It is easy to formulate and to prove the analogues of Theorems
5 and 6 for the transform A 1.
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782 B. L. J. BRAAKSMA AND A. SCHUITMAN

As an application of this type ofproduct convolution we consider the operators
of fractional integration, studied among others by Kober [9] and Erd61yi [3].

Let a, r/e C, Re a > 0, 2, #, m E, rn > 0, 2 </ and m(Re r/ + 1) > 2. Then

rn -m(= + .) fl t=. lc(t) dt]m’a(X) -X (X tm)=-I +m

F()
ok(t)

if we choose q5 e T(2, #), x > 0. So we have the special case of Theorem 8 with

and

m
)a m(a +k(t) (-(t 1 t- if t> 1, k(t)=O if0<t< 1,

(5.4)

Here K(s) O(s -) as s uniformly on any strip a =< Re s _< b. Hence, I’ is
an automorphism of T(2, #) if Re a > and

2<#=<m(1 +Rer/).

In order to relax the conditions on r/ we use the extension of fractional
integrals considered by Erd61yi [1]. If Re > 1, b T(2, #), h N and

(5.5) m(Rer/+ h)__<2<#__<m(1 + Rer/+ h), h 0,

we define

rn m(a + rl) tm}I m’,h C/)(X ---X Xm- .,
j=O

(__ x-mlm)Jxm(a- 1) }
tm(l+.)-Idp(t)d f; hi

j=O

(__X-mtm)Jxm(-1)/m1 +.)-O(t)dt].
It is easy to show that this so-called cut fractional integral operator is a product
convolution and that the Mellin transform ofthe kernel is given by (5.4). Moreover,
the operator I’. is continuous on T(2, #), h N, h 0. For convenience we shall
use the notation Ira, o for I"m’" and (5.5), (5.3) for (5.5), (5.3).

In order to avoid the condition on we may use Remark 4. However, an
adaption of the method in that remark is more useful. The starting point for this
extension is the relation

*m,h Im,h

which is valid on T(2, #) if Re > 1, n N and (5.5) is satisfied. For, if we apply
the left-hand side of (5.6) to b T(2, #), then we obtain

_,.(+., dl"(c+ F(l+rl-(s/m))
2zri

x q(s)(x,)+.+. (/m) ds,
c-ioo F(1 + o + rl + n- (s/m))
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WATSON TRANSFORMS 783

where 2 < c < #, #b, and this expression is easily seen to be equal to Im,h(/).
However, the left-hand side of (5.6) defines a continuous operator on T(2, #) if
Re (a + n) > and (5.5)h holds. Therefore we use (5.6) as the definition of I’, on
T(2, ) if Re (a + n) > and (5.5) holds. If Re a > 0 and (5.5) holds, then (5.3)h
remains valid.

The operator I’, is continuous on T(2, ) and

(5.7) (I’O)(s) F 1 + q F 1 + + q ()(s),
m

if (5.5) is satisfied and T(2, ). From this it easily follows that

am,hi am,h

on T(2, ) if (5.5) holds and

2<m(1 +Req+Re) ifh =0,
.9)

m(Req +Re+hx)2<m(1 +Req+Re+h) ifh 0.
Then in particular,

"m,h In, identity operator,

and 1’, is a topological automorphism of T(2, ).
According to (5.6),

(5.11) Xmq, n .
We may use this last relation as the definition for arbitrary values of q. Indeed, it
is easily verified that the right-hand side of (5.11) represents a continuous operator
of T(2, ) into itself even if (5.5) is not satisfied.

Combining (5.8) and (5.11) we obtain an analogue of (5.6),

l,+nv-m(+) )nxm(++n)(5.6)’ ’, -m,,

From (5.7) we readily deduce that if n , then

and consequently, I2, is a continuous operator independent of h on T(2, ) if
hn,

(5.12)’ m(n + Re

Finally (5.7) implies

(5.13) ,h ,h

on T(2, ) if the operators I exist. The above results are collected in the following
theorem.
To 9. Let h, n e N, m > 0, , e e C, 2 < . Let the operator I2," be

d@ned by (5.11) on T(2, ). It is independent ofh. Let the operator I2. be defined by
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784 B. L. J. BRAAKSMA AND A. SCHUITMAN

(5.3)h if Re > 0 and (5.5)h holds. Here I’,o I’ and (5.3), (5.5) denote (5.3),
(5.5). If n, h >= n, then condition (5.5)h may be replaced by (5.12)’ and then I’,h
is independent of h. If- n < Re _< 0, - N and (5.5) holds, then I’, is defined
by (5.6) on T(2, ). This definition does not depend on the choice of n.

In all these cases t operator I. is a continuous operator from 7"(2, p) into

itsel It satisfies (5.6), (5.6)’, (5.7), (5.8) and (5.13) on 7"(2, p) provided the operators
I involved exist. In particular, Ih is an automorphism on 7"(2, p) satisfying (5.10)

(5.5) and (5.9) hold.
A second operator of fractional integration studied a.o. by Kober [9] and

Erd61yi is given by

m
xm)- tin(1x" (t" " (t) dtK’(x)

r()
(5.14)

m { ()m}- ). dt(t)
F(a)

Here we choose T(2, ), Re a > 0, m Re + > 0. This is the special case of
Theorem 8 with

and

k(t) ()(1 t") t’" if0<t< 1, k(t)=O if t> 1,

+ +.

Now K(s) O(s-) as s uniformly on any strip a =< Re s =< b. Hence,
is an automorphism of T(2, #) if Re e > and

K",(x) x" (t (-

($.14)"

S0 ]-’-"- 4(t) dt (- t-’x’)t-"- 4(t) dt
j=0 j

where e T(2, ), Re e > 0, h e N and

(5.15) -m(Req + h) N 2 < N -m(Req + h 1), h 0.

Then K;I is a continuous operator on T(2, ). We use for convenience the
notation K,o for K’" and (5.14), (5.15) for (5.14), (5.15). In all cases we have

r(n + (slm))
(s)(5.16)

F( + q + (sire))
(4)

The analogue of (5.6) is

(517) gm(a+"+")( X-re(a+ q)q,a+n

(5.15) -m Rer/_<_ 2 </.

The extension to other values of r/is given by
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WATSON TRANSFORMS 785

This relation will be used as the definition of Km’,’ if -n < Re =< 0. Then this
operator does not depend on n, it is continuous on T(2,/) and (5.16) remains true
if (5.15)h holds.

Using (5.14)h, (5.16) and (5.17) it is easily seen that K’, also defines a con-
tinuous operator from Tm(-m(cz + r/+ hi),/) into Tm(-m(r/+ h),#)if hl,h N
and

-mRer/<g in caseh=0,

(5.18) -m(Rer/+ h) </ =< -m(Rer/+ h 1) in case h > 0,

-m Re(0 + r/+ h)< #.

Analogous to (5.8) we have

(5.19) m,h m,h

(5.19)’ axl,h

on T(2,/) if (5.15)h holds and

-mRe(cz+r/)=<2</t in caseht =0,
(5.20)

-mRe(+r/+h)=<2<#_<_-mRe(+r/+h-l) in caseh>0,

whereas (5.19) holds on Tin(-m( +/ + r/+ h2) ,/t) if (5.18) holds and

/ =< -m Re( + r/+ h 1) if h > 0 and -m Re(0 -4- fl + r/+ h2) </.

(5.21)

The operator K’, is an automorphism on T(2, V) in the first case and it is an
isomorphism between T,,(-m( + r/+ ha), #)and T,,(-m(q + h), t)in the second
case (with h2 h).

The analogue of (5.11) is

xm("- " n h N

This relation may be used as the definition of K on T(2,/0 if(5.15) is not satisfied.
The analogue of (5.12) shows that K"..’," is a continuous operator on T(2, t) inde-
pendent of h if h __> n and

(5.23)

Then

(5.24) Km’,, 1)"I

In the same way we obtain

(5.25) I’,’ (- 1)"K,"-

on T(2, ) if (5.12)’ is satisfied and h _> n.
We deduce from (5.16),

(5.26) K""x

if the operators K exist.

2 </ =< -m(Re r/+ n- 1).
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786 B. L. J. BRAAKSMA AND A. SCHUITMAN

Combining (5.19) and (5.22) we get the analogue of (5.i7)"

(5.17)’ Km’,h aXm, X -m(t+ rl).

Combining the results above we obtain the following theorem.
THEOREM 10. Let n, h N, m > O, , r C, 2 < #. Let the operator Km’,-" be

defined independently of h by (5.22) on T(2, #). Let K’,h be defined on T(2, #) by
(5.14) and (5.17) respectively if (5.15)h holds and moreover Re > 0 and -n <

n, Knm, and (5.15) denotes (5.15) If n, h > nRe < 0 respectively. Here Km,o
the condition (5.15) may be replaced by (5.23).

In these cases Knm’,h is a continuous operator on T(2, #). It is also a continuous
operator from Tm(-m( + r + h), #)into Tm(-m(r/ + h),p)defined by (5.14) and
(5.17), ifh and (5.18) holds.

This operator satisfies (5.16), (5.17), (5.17)’, (5.19) and (5.26) in all cases where
the expressions involved make sense according to the definitions above. In particular,
(5.19)holds on T(2,#)if(5.15)hand(5.20)are satisfied, and on Tm(-m( + fl + r + h2),#)
if(5.18) and (5.21) are satisfied. In thefirst case Knm’,h iS an automorphism on T(2, #),
in the second case(with h2 h) it is an isomorphism between Tm(-m( + r + h), #)
and Tin(-re(r + h), p).

We now define subspaces of T(2, #) which have useful properties for operators
of fractional integration.

DEFINITION. Let a be a positive number. Then T([0, a], 2) is the subspace of
T(2, c) of functions with support contained in [0, a]. In the same way Tm([0, a], 2)
is the subspace of T,,(2, c) consisting of functions with support contained in [0, a].
Finally, T([a, ), p) is the subspace of T(-, p) consisting of functions with
support contained in [a, ). It is clear that in this way really closed subspaces are
defined.

From the definitions of I and K it follows that
(i) I"m’ is a continuous operator from T([a, ), #) into itself if

(5.27) # =< m(1 + Re q)

and it is an automorphism if moreover

(5.28) pm(1 +Rez+Rer/);

(ii) K"m’ is a continuous operator from T([0, a], 2) into itself if

(5.29) 2 >= m Re r/

and it is an automorphism if moreover

(5.30) 2 __> m Re ( + r/);

(iii) K’ is an isomorphism from Tm([0, a], -m0 mr/) onto Tm([0, a], -mr/).
The translation of the results above to the dual operators is easy. A simplification
of the notation may be obtained as follows. Suppose T(2o, Po) c T’(1 #, 2).
This is the case iff 2o < p, 2 < #o. Supposef T(2o,/o), b 6 T(1 t, 2) and
(5.5) is satisfied, and (5.5) also holds with 2 and # replaced by 2o and to Then

(5.31) c(x)I’,f(x) dx f(x)K"m,’(x) dx, r/o r + mD
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WATSON TRANSFORMS 787

Hence(K,),) I,h on any space T(2o, #o) c T’(1 #, 1 2) and therefore we
use this relation as a notation on T’(1 #, 1 2) if (5.5) is satisfied. In the same
way (5.31) motivates the notation ,-m,httn"’! Km,hrt,a on T’(1 #, 1- 2) if ql

r/ + (l/m) and (5.15)h is satisfied.
THEOREM 11. Let n, h, h , m, a R +, 2 < #, , r C, r r + (l/m).

Then the adjoint operator of I""’m,h, tO be denoted by K’Th, is a continuous operator
on T’(1 #, 1 2) in the following cases"

(i) a -n; (ii) n, h >= n and (5.23) holds; (iii) (5.15)h holds. The operator Knm’
is a continuous operator on T’([a, co), 1 2) if(5.29) holds.

Furthermore, the relations (5.17), (5.17)’, (5.19), (5.19)’, (5.22), (5.24)-(5.26) hold
in all cases where the operators involved make sense according to the definitions
above. In particular, (5.19) and (5.19)’ hold onT’(1 #, 2)/f(5.15)h and (5.20)
are satisfied. In this case Kin.h is an automorphism. Finally, K, is an automorphism
on T’([a, co), 1 2) if (5.29) and (5.30) are satisfied.

THEOREM 12. Let n, h, h , m, a +, 2 < #, , r C, r/x r + (l/m).
Then the adjoint operator ofK’ to be denoted by I’,h iS continuous on T’(1 #,’J m,h

2) in the following cases"

(i) -n; (ii) n, h >= n and (5.13) holds; (iii) (5.5) holds. It is a continuous
operator from T,(1 m(r/+ h + 1),#)into T,(1 m( + r/+ h + 1),#)if(5.18)
with r replaced by r/ holds.

Furthermore, I’ is continuous from T’([0, a], 1 #) into itself if (5.27) holds
and an automorphism if moreover (5.28) holds. It is an isomorphism from T,([0, a],
1 mr m) onto T,([0, a], m mr/ m).

The operator I’,h satisfies (5.6), (5.6)’, (5.8), (5.10), (5.11) and (5.13) in all cases
where the operators involved exist according to the definitions above. In particular,
(5.8) holds on T’(1 #, 2) /f (5.5)h and (5.9) are satisfied. In this case, I,h is
an automorphism on T’(1- #,1- 2), whereas it is an isomorphism from
T,(1 re(r/+ h + 1),#) into T,(1 m( + r/+ h + 1),#) if (5.18) and (5.21)
with r replaced by r/ are satisfied.

6. Extension of the Hankel transform. The extension of the Hankel transform
H to arbitrary values of v has been treated in [10] and [14] by means of aiaxiliary
operators N and M. (For the definitions cf. 14, pp. 135 and 163]). Our approach
includes these methods as is easily seen from the behavior of the differential
operators N and M with respect to the Mellin transform.

For the extension of the definition of the Hankel transform we use the relation

(6.1) Id(1/2)v+(1/,)+(1/2)ot,-otX-oH 2"x "Hv + 2,h

This formula is valid on T(1 #, 2) if the following conditions are satisfied"
(4.3),

(6.2) -Rev-1/2=<2< + Re,

(6.3)
2<#_<-+Re(v+2) in caseh=0,

Re(v+2)+2h-1/2_<2<#=<Re(v+2)+2h+ in casehN,h0.

The proof is straightforward using Mellin transforms and Theorems 7 and 10.
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788 B. L. J. BRAAKSMA AND A. SCHUITMAN

In particular, if n N we obtain with (5.22),

(6.4) .x/"//:(d-)"H (- 2)"x-"H + x -v-(1/2)

The right-hand side exists and is a continuous operator on
(i) T(1-#,l-2) if-Rev-1/2=<2<n+ 1;
(ii) T2(-v-1/2,#)if-Rev-2n-1/2</t=<Rev+;

(iii) T2(-v-1/2,)ifRev> -n- 1.
Therefore we define in these cases Hv by (4.2) and (6.4). By choosing n suitably we
thus obtain a continuous operator Hv"

(i) fromT(1-#,l-2) to T(2, #) if 2 >_ -Rev-1/2;
(ii) from T2(- v 1/2,/) to T(1 #, ) if # _< Re v + -;

(iii) from T2(- v 1/2, ) into itself for arbitrary values of v.
Then (6.1) holds"

(I) on T(1 #, 2) if 2 >= -Re v 1/2 and (6.3) is satisfied; if N, we
may omit (6.3) and then (6.1) reduces to (6.4) with n; if - N,
0 < - =< h, we may replace (6.3) by 2 >= Re v 1/2 and use (5.24);

(II) on T2(- v 1/2 2g,/) if g N,

(6.5) -Re v 2g 1/2 < # =< Re v + ,
-Re(v+2)-1/2<# if h=0,

-Re(v+2)-2h-1/2</t=< -Re(v+2)-2h+- ifh,h4:0;

if e [ we may omit (6.6), and now (6.1) reduces to (6.4) with n; if- 1, h >_ - > 0, then we may replace (6.6) by # =< - Re v, and
use (5.24).

(III) on T2(-v 1/2, )for arbitrary v and h 0.
Next we consider the cut Hankel transform (cf. [1]). Suppose p , p 4: 0,

;< -1/2,

(6.7)p -Rev-1/2-2p<_2<#=< -Rev+--2p.

If qb T(1 #, 2), we define

(6.8)

Now

H,p(x) (xt) 1/2 J(xt)-
j!F(v + j +

dp(t)dt.

fc+ioo F(1/2v + 1/4 + 1/2S)2s_(1/2)O(1H,.6(x) _._, r(v + - s) s)x-’ a,

if b,x > 0,2 < c < -1/2, c < #. So again,

I(1/2V + 1/4 + 1/2S)zs-(,/2)O(1(6.9) (/H,,pck)(s) F(1/2v + 1/4- 1/2s) s).

Analogous to (6.1) we have

(6.10) k"(1/2)v + (1/4) + (1/2)at, -atXHv,p 2atx-atHv+at,p, z,h
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WATSON TRANSFORMS 789

if 2 < Re cz 1/2 and (6.7)" and (6.3) are satisfied. In particular,

xV+n+(1/2)(d)n(6.11) Hv,p (-2)"x-"Hv+,,p x --tl/2),

if 2 < n 1/2 and (6.7)v holds. By means of (6.11) with a suitable value of n e N we
may extend the definition of H,p on T(1 -/, 1 2) if (6.7)p holds. Then (6.10) is
valid if (6.3) and (6.7)v are satisfied, and also if - e N, h >= -z, 2 >= Re v 1/2.

Since H,o H we conclude that Hv, is a continuous operator from
T(1 p, 2) into T(2, p) if p e N and (6.7)p holds where (6.7) is given by

(6.7) -Re v 1/2 =< 2 < p.

It follows that H,q, q e N, is a continuous operator from T(2, p) into
T(1 -/, 1 2)if

2<#_<Rev+ in caseq=0,
(6.12)q Rev+2q-1/2=<2<p=<Rev+2q+- in caseq>0.

Using Mellin transforms, (6.9) and the Theorems 9 and 10 we may prove an
extension of Theorem 7.

THEOREM 7a. The Hankel transform H,p defined by (6.8) and (6.11) is a con-
tinuous operator from T(1 #, 2) into T(2, ) ifp N and (6.7)p holds. It is an
isomorphism between these spaces if moreover (6.12)q is satisfied for some q N.
Then

(6.13) (H,,)- H,q.
Furthermore, Hv is an involutory automorphism on T2(-v 1/2, c) for arbitrary v.

The following relations hold whenever the operators involved make sense"

(6.1), (6.10), (6.4), (6.11),

{6.14) H p 2=x-at(1/2)v-(1/4)+tl/2)=’-Hv+=,px*2,h

(6.15) H p
2-==tl/E)v+tl/4) (1/2

*2,p )=’=Hv+=,hX
(6.16) H v 2-=x’H t(1/E)v-(1/4)-(1/E)=’=X=+,h*2,p

In particular, (6.1) holds in the cases (I), (II), (III) mentioned above. Moreover,
(6.14) with p 0 holds in case (I). Formulas (6.10) and (6.14) hold on T(1 ,
1 2) (6.3) and (6.7)v are satisfied; , we may omit (6.3) (then we may use
(5.22) and (5.11)), and- , 0 < - h we may replace (6.3) by 2 Re v .
In the last case we may transform (6.10) and (6.14) by means of(5.24) and (5.25).

The relations (6.15) and (6.16) hold on T(1 , 1 2) if(6.7)v and

(6.17)
-Re(v+2cz)-1/2=<2</t in case h=O,

-Re(v+2)-2h-1/2_<2</_< -Re(v-2)-2h+
in case h , h v O.

Furthermore (6.15) with p h 0 is also valid on T2(-v 1/2,/) if
(6.18) -Rev 1/2 < # =< Rev + - + min(0, 2 Re ),

whereas it holds on T2(-v 1/2, c) for arbitrary v.
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790 B. L. J. BRAAKSMA AND A. SCHUITMAN

Now we consider the adjoint operator (Hv,p)’. We may simplify the notation
in view of the Parseval relation

(6.19) (Hv,l,dP)(X)(x dx dp(x)(H,,)(x) dx,

which holds for example if b, T(1 -/, 2) and (6.7)p is satisfied (this may
be proved using Mellin transforms). Therefore we may denote (H,p)’ on T’(2, #)
by H,p.

From Theorems 7 and 7 we now deduce the following.
TI-mOREM 13. The Hankel transform H., is a continuous operatorfrom T’(2, #)

into T’(1 #, 2) if(6.7)p holds. The operator Hv is continuousfrom T’(1 #, c
into T’2(- v 1/2 2h, p) if
(6.20) -Re v 1/2- 2h </ _<_ Re v + , h N.

This operator is an involutory isomorphismfrom T’(1 #, c) onto T’2(- v 1/2, #)
if(6.18) holds, and an involutory automorphism on T’2(-v 1/2, ) for arbitrary v.
The operator H,p is an isomorphism from T’(2, #) onto T’(1 #, 1 2) satisfying
(6.13) if(6.7)p and (6.12)q are satisfied.

The relation (6.14) with p 0 holds in the following cases"

(i) on T’(2, #) if (6.7) and (6.3) are satisfied. If we may omit (6.3) and
use (5.11). If - , 0 < - <__ h, we may replace (6.3) by 2 _>_ Re v 1/2
and use (5.25).

(ii) on T’(1 #, c) if (6.5) with some g and (6.6) are satisfied. If
we may omit (6.6) and use (5.11). If - , 0 < - <= h, we may replace
(6.6) by # <= Re v and use (5.25).

(iii) on T’2(- v 1/2, )for arbitrary v and h O.
Furthermore, (6.1) is valid on T’(2, #) if 2 >__ -Re v- 1/2 and (6.3) holds. If

o we may omit (6.3) and then (6.1) reduces to (6.4). If - , 0 < - <_ h, we
may replace (6.3) by 2 >= Re v 1/2 and use (5.24). The relations (6.10) and (6.14) hold
on T’(2, #), if (6.3) and (6.7) are satisfied; if t , we may omit (6.3) (then we may
use(5.22)and(5.11));if- ,0 < - <_ h, wemayreplace(6.3)by2 >= Re v 2x-.
In the last case we may use (5.24) and (5.25). The relations (6.15) and (6.16) hold on
T’(2, #) if (6.7)’ and (6.17)h are satisfied. Finally, (6.16) with p h 0 is valid on
T’(1 p, )/f(6.20) holds, whereas it holds on T’z(-V 1/2, ) for arbitrary v.

7. A dual integral equation involving Hankel functions. Let
a > 0, 2 < #, p [ and

(7.1) gx T’([0, a], # Re cx), g2 T’([a, m), 2 Re c2).

Consider the following dual integral equation"

(7.2) H,xC’f g,, H,,xC2f g2,

where the left-hand sides have to be interpreted as elements of T’([0, a], 1 # Re
cl) and T’([a, ), 2 Re c2) respectively. This is a distributional analogue
of a dual integral equation considered by Titchmarsh [13], Erd61yi and Sneddon
[5] and others. Erd61yi and Sneddon use fractional integrals in the solution of
their equation. We extend their method to the solution of (7.2). Thus we obtain

D
ow

nl
oa

de
d 

12
/1

9/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



WATSON TRANSFORMS 791

all solutions f T’(2, #) of (7.2) if the following conditions are satisfied" h N,

(7.3) -Re(v + ca)- 1/2 -<_ 2 < # =< Re(v ca) + -,
p -< Re (v c2) -- , if h 0,

(7"4)h Re(V-CE)+2h-1/2=<2</_<_Re(V-CE)+2h+- if h>0,

(7.5)p -Re(v+c2)-1/2_<2 if p=0,
-Re(v+c2)-2p-1/2=<2<#=< -Re(v+c2)-2p+- if p>0.

First we assume that a solution f of (7.2) exists. Let c ca c2). We apply
Theorem 13, formula (6.14) with v and replaced by v + and -c, h p 0.
Then we get

(7.6) 2-CxClt2a/2)v-a/4),CHvXClf Hv+cXa/2)tcl
The conditions (6.7) and (6.3) for formula (6.14) are satisfied because of (7.3).

Next we apply Theorem 13, formula (6.15) with v, , h and p replaced by v + c,
-c, p and 0. Then we obtain

(7.7) 2Cx-CKt2a/2),+ta/,,,)+c,-CHv,pxC2f Hv+cxtl/2)tc +c2f.
The conditions (6.7) and (6.17)p for formula (6.15) are satisfied because of (7.3)
and (7.5)p.

Now let

(7.8) F Hv+cxtl/2)tc+c2)f.
Then (7.2), (7.6) and (7.7) imply

(7.9)
F 2-CxClt2a/2)v-ta/4)’Cg in T’([0, a] / 1/2 Re (Cl + c2))

F 2x-Ktza/Z)v+a/4)+’-g2 in T’([a, c), 2 1/2 Re (ca + c2)),

where the right-hand sides exist as elements of these spaces because of Theorems
11 and 12. Hence we know F completely if we can determine F on @(1/2a, -a).
However, by (7.9) we know the restriction of F on @(1/2a, a) and on (a, -a). There-
fore we may write F as the generalized derivative of some order q of regular
distributions on these spaces. Consequently F may be extended to a continuous
linear functional Fo on the completions Ca of (1/2a, a) and C2 of (a, a) in
C[1/2a, -a]

Let tk (1/2a,-a) and (1/4a, 2a), Z(x)= 1 if 1/2a -< x =< -a. Then we may
write

+/-
(7.10) qb(x) ) dpJ)(a)(x a)Jjt(x) + dpa(x) + bz(X),

j=o

where qba 6 Ca, qb2 6 C2. Now (Fo, qba) and (Fo, 2) may be calculated using (7.9).
If 6 (a, a), then we define

(7.11) (Fo, ) (Fo, ) + (Fo, 2).

Now (F, ) (Fo, ) if (a, a) and vanishes in a neighborhood of a. So
F Fo 6 ’(a, a) is concentrated in a. Therefore F Fo is a linear combination
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792 B. L. J. BRAAKSMA AND A. SCHUITMAN

of the delta-functional and a finite number of its derivatives concentrated in a.
Apart from these terms now F is uniquely determined on (1/2a, a), and conse-
quently as an element of T’(1 -/ 1/2 Re(c + c2), 2 1/2 Re(c + c2)) by
means of g and g2.

From Theorem 13 and (7.8) we now deduce

(7.12) f X -(1/2)(c’ +c’)H,+e,hF T’(2, #).

So if a solution of (7.2) exists in T’(2, #) it is given by (7.12). Conversely, it is easy
to check that the distributions f constructed above from gl and g2 by means of
(7.9) and (7.12) are solutions of (7.2). Extensions to other dual integral equations
as in [2] may be given in an analogous way.

8. Dual integral equations involving H-functions. Before considering such
integral equations we first extend the definition of the operator A of 4, Example 3.
In what follows we use the notation of that example and

(8.1) I(r/, , m) I’’, K(r/, , m) K’’.

Suppose (4.7) and (4.10) are satisfied. If n < j __< p,

(8.2) ,u <= Re
and (4.8), and (4.8) with ej replaced by are satisfied, then

(8.3) A .Y.K(j aj, o , af x) on r(1 -/t, 2),

where is defined by (4.11) with e replaced by . This may be shown using
Mellin transforms, (5.16) and (4.9).

If j ej s N, we may omit (8.2) and use (5.22). Choosing j sufficiently large,
the right-hand side of (8.3) exists on T(1 -/, 2) even if (4.8) does not hold.
Hence we may use (8.3) to define A in case only (4.7) and (4.10) are satisfied. It is
a continuous operator of T(1 #, 2) into T(2, #) satisfying (8.3) if (4.7) and
(4.10) are fulfilled.

In the same way we have

(8.4) A A*I(bh fl’, fl’ fib, b-1) on T(1 -/, 2),

if m < h _<_ q, A* denotes the operator A with flh replaced by fl’, (4.7), (4.10), (4.8)
and (4.8) with flh replaced by/3’ are satisfied and

(8.5) (Re fl’ 1)/b <= 2.

If flh fl’ e N we may omit (8.5) and use (5.11). If n p and (4.7) holds, then
m < q. If in this case (4.10) is fulfilled but (4.8) is not satisfied, we may use (8.4)
with a suitably chosen fl’ as definition of A. Hence A is defined as a continuous
operator of T(1 p, 2) into T(2, p) if (4.10) and either (4.6) or (4.7) hold. The
relations (8.3) and (8.4) are valid on r(1 #, 2) if (4.10) and either (4.6) or
(4.7) are satisfied and in case of (8.3) also (8.2), in case of (8.4) also (8.5).

In case (4.7), (4.10) and (4.15) are fulfilled, the inverse ofA exists as a continuous
operator from T(2, #) into T(1 #, 2) and it is given by (4.12) with (4.13) and
(4.14).
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WATSON TRANSFORMS 793

Now we consider the adjoint A’ of A. It is a continuous operator from T’(2, #)
into T’(1- #, 1- 2) if (4.10) and either (4.6) or (4.7) hold. Using Parseval’s
formula we may show that

(8.6) (A4,

Therefore we denote A’ by A on T’(2,/). The dual relations of (8.3) and (8.4) are

(8.7) A I(j 1,

and

(8.8) A K(1 fl’, fl’ flh, b;1)A*
which hold on T’(2, #) and on T(1 #, 2) if either (4.6) or (4.7) holds, (4.10)
is satisfied, whereas in case of (8.7) we assume n < j =< p and (8.2) and in case of
(8.8) we assume m < h __< q and (8.5). Also (8.3) and (8.4) are valid on T’(2,/) with
corresponding conditions.

Let B be the operator which arises from A by replacing aj and flu by yj and
6h forj 1,..., p and h 1,..., q, where

(8.9) Re 7 _< 2 </ =< Re 6h
aj

, j= 1,...,n; h= 1,...,m.

Now we consider the dual integral equation,

(8.10) Af=gl inT’([0, a],l-/), Bf=g2 inT’([a,),l-2),

where a > 0 and g and g2 are given elements in these spaces and (4.7) holds.
Integral equations of this type for ordinary functions have been treated by Fox [6]
and Saxena [12]. We use here a construction of solutions which is analogous to
their formal solution.

Let C be the operator A with ej replaced by yj(j n + 1,..., p) and h
replaced by 6h (h 1,..., m). Define

P1 I(e 1, e, a 1) 1-[ I(6h 1, Bh h, b- )
j=n+l h=l

(8.)

j=l h=m+l

For the existence of these operators on T’(1- #, 1- 2) we assume (cf.
Theorems 11 and 12) besides (4.10) and (8.9) also

(8.12) Re 6h_<2<#__<Re--, h=m+ 1,...,q; j=n+ 1,...,p.
b aj

Then

(8.13) P1Af Cf PEBf.
From this, (8.10) and Theorems 11 and 12 it follows that

(8.14) Cf- Pig1 in T’([0, a], #), Cf- PEg2 in T’([a, c), ).
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794 B. L. J. BRAAKSMA AND A. SCHUITMAN

As in 7 we may now determine F Cfin T’(1 #, ) from (8.14) apart from
a linear combination of the delta-functional with center a and a finite number of
its derivatives. From F we now obtain the solution fof (8.10) by means of

f= CoF,

where Co is the adjoint of the operator defined by

q, -, H,’-" xt , , (t) at

with and g given by (4.13) and

* (1 + an+ Yn+t, + ap yp, + a: ,..., + a,

* (1 + b+t +, ..., 1 + b ,1 + b: 6, ..., 1 + b
This solution exists if (4.7), (4.10), (8.9), (8.12) and

Reh.-l2<#Re--, h m + 1,..., q j n + 1,... p
b aj

are satisfied.

9. A eovoluon map involng a hyrgeometrie feon. Finally we consider
another special case of the product convolution (5.1), viz. a hypergeometric
integral transform considered among others by Love [11a] and [11b]. Let Re c > 1,

(9.1) -Rea2, -Reb2<.
Then if T(2, ), we define

F a,b’c;1 4(t)--.(9.2) (A)(x)
x

Now we have the special case of Theorem 8 where

k(x)=(1-x)-F a,b;c;1 if0<xN 1,

k(x)=O if x> 1.
The Mellin transform K(s) of k(x) is given by

F(a + s)F(b + s)
(9.4) K(s)

F(c + s)F(a + b + s)"
This may be shown using Euler’s integral for the hypergeometric function or
Barnes’ integral representation for this function and Barnes’ lemma.

The condition Re c > may be removed as in Remark 4. However, we may
also use a modification of the method in Remark 4. If Re c + n > 0, we define

F(c + n) dxx- F a, b’c + n’l 4(t)
dt

This is consistent with the first definition in (9.2) since (9.5) implies (A4)(s)
K(s)(4)(s). Hence A defines a continuous mapping of r(2, ) into itself if (9.1)
holds.
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WATSON TRANSFORMS 795

(9.6)

From Theorem 10, formula (5.16), and (9.4) we deduce

A Kafc-aK’a on T(2, #).

This relation may also be proved directly using the definition (9.2) and Euler’s
integral for the hypergeometric function.

Now we consider the inverse of A, if it exists. First we assume

(9.7) -Rec=<2, Re (a + b) =< 2.

Then it follows from (9.6) and Theorem 10 that A is an automorphism on T(2,/)
with

(9.8) A- Kal+b,-aKcl,a-c.
From (9.4) and Theorem 8 we may also deduce that A is an automorphism, and
if moreover Re c < 1,

(9.9) A- qS(x) h b(t)

where

(9.10) h(x) ={/g_F(c + s)F(a + b + s)}F(a + s)F(b + s)
(x).

Using residue calculus we obtain

(9.11)
h(x)=O if x> 1,

h(x)--xC(1-x)--aF(-a,-b;-c;1-x) if0<x< 1.
r(-c)

Hence if (9.7) holds and Re c < 0, then the inverse B of A on T(2,/) is given by

x (t x)-C-aF -a(9.12) Bdp(x)
F(-c) -b;-c;1-)dp(t)dt.

If Re c < m, m N, we easily see using (9.10) that

(9.13) A -1 (-- 1] cdmxm-cBm on T(2 #),
dx

where B,, is defined by (9.12) with c replaced by c m and B by Bm.
Now we consider cases where (9.7) need not be fulfilled. Then we suppose

that 2 and # satisfy the following condition with p and q N"

-p Rec _< 2 </_<_ p Rec,
(9.14)

-q-Re(a+b)_<2</<_ 1-q-Re(a+b).

If p 0 or q 0 we may omit the expression "N 1-p-Rec" or

"<= 1 q Re (a + b)" respectively in this condition. Now (9.6) and Theorem
10 imply that A is an automorphism on T(2, #) with

(9.15) A- k"a + b, k"c,a-c
1,q 1,p
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If Re c < -1 and (9.14) holds, we deduce (9.9) with (9.10) from Theorem 8 and
(9.4). Using residue calculus we get

h(x)= -P(x) if x> 1,
(9.16)

h(x) xC(1 x)-C- F( a, b c x) P(x)r(-c)

ifO<x< 1, where

F(a+b-c) (1 +c-a)(1 +c-b)x+e(x)=F(a_c)F(b_c) o j!(1 +c-a-b)
(9.17)

F(c-a-b)q (1 +a)(1 +b) xa+b+J.+
F(-b)F(-a)_oj!(1 +a+b-c)

Hence if (9.14) is fulfilled and Re c < 0, the inverse B of A on T(2,/) is given by

F -a, -b" -c; P (t)Be(x)
F(-c) x

(9.18)

If Re c < m, m IN, we have (9.13) where B,. is defined by (9.18) and (9.17) with
B, c and p replaced by B,,, c rn and p + m.

Finally, we consider the adjoint A’ .of A on T’(2,/). Assuming (9.1),

b e T(2, #), fe T(2’, p’) T’(2, #) (hence 2 + 2’ < 1 </ + p’),

we have according to Parseval’s formula,

fo K(s)O(s)F(1 s)dsf(x)A(x) dx

( s)e(s}(1 s) ds (f)(x}(x) dx,
2i

__
where 2< v<p,l-#’< v< 1-2’,F==,

F(a+ 1-s)F(b+ l-s)(f)
r(c + s)ra + b + -s)F(s)"

Hence A’ on r(2’, #’) where (cf. (9.3) and (9.4))

(9.19) f(x)
xF(c)

F a, b; c; f(t) dt,

iffe r(2’, p’), 2’ < 1 + min (Rea, Reb), Rec > 0,

fo (+- a b;c+n f(t)dt(9.20) f(x)=
r(c + n)dxnx

iffe T(2’, p’), 2’ < + min (Re a, Re b), Re c + n > 0, n e N. If (9.1) holds, is a
continuous operator of T(1 #, 1 2) into itself.
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Now A’ is a continuous mapping of T’(2, #) into itself if (9.1) is satisfied, and
according to Theorem 12 and (9.8):

(9.21) A’ tb,ata,-a
1 1

If moreover (9.14) holds, then A’ is an automorphism on T’(2,/) with

(9.22) (A’)- "llc’a-cla+b’-a,p"1 ,q

Analogous to X we define an operator B which plays the same role with
respect to (A’)- as X plays with respect to A’.

Suppose 2’ < if, p, q 6 ,
2’< +min{p+Rec, q+Re(a+b)},

p+Rec<g’ ifp0, q+Re(a+b)<g’ if q#0.

Let P be defined by (9.17) and g T(2’, if). If Re c < 0, then

Bg(x)
F(-c)

F -a, -b;-c;1 P g(t)

(9.23)
P g(t) dr.

x

If Re c < m, m e , we define

(9.24) x- dx
where is defined by (9.23) and (9.17) with , c and p replaced by , c m and
p + m. Then the operator (A’)- on T’(2, g) coincides with on T(2’, if) if
2 + 2’ < < + if, (9.1) and (9.14) are satisfied. Furthermore, is a continuous
operator on T(1 , 2) and it is the inverse of if(9.1) and (9.14) are satisfied.

It is obvious that instead of starting with the transformation A we could also
start with B, or and apply an analogous reasoning as above. We obtain
similar results by extending the definition of A and in the same way as the
definition of B is extended from (9.12) and (9.18).
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