University of Groningen

Negative parity bands in 100Ru and 150Sm and the interacting boson approximation
de Voigt, MJA; Sujkowski, Z; Chmielewska, D; Jansen, JFW; van Klinken, J; Feenstra, SJ
Published in:
Physics Letters B

DOI:
10.1016/0370-2693(75)90686-3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1975

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Voigt, MJA., Sujkowski, Z., Chmielewska, D., Jansen, JFW., van Klinken, J., \& Feenstra, SJ. (1975). Negative parity bands in 100Ru and 150Sm and the interacting boson approximation. Physics Letters B, 59(2), 137-141. https://doi.org/10.1016/0370-2693(75)90686-3

[^0]Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

NEGATIVE PARITY BANDS IN ${ }^{100} \mathrm{Ru}$ AND ${ }^{150} \mathrm{Sm}$ AND THE INTERACTING BOSON APPROXIMATION

M.J.A. De VOIGT, Z. SUJKOWSKI *, D. CHMIELEWSKA**, J.F.W JANSEN, J. Van KLINKEN and S.J. FEENSTRA
Kernfysisch Versneller Instttuut and Laboratorium voor Algemene Natuurkunde, University of Groningen, The Netherlands

Received 23 September 1975

Abstract

Ground-state band members up to $J^{\pi}=10^{+}$in ${ }^{100} \mathrm{Ru}$ and up to 14^{+}in ${ }^{150} \mathrm{Sm}$ and odd-spin negative parity states up to 15^{-}in both nucleı have been identified from ($\alpha, 4 \mathrm{n}$) in-beam γ-ray and conversion electron spectra The data are interpreted in terms of interacting quadrupole and octupole bosons.

Strıkingly regular patterns ("bands") of energy levels not belonging to the ground-state bands (GSB) are found in a number of vibrational and transitional nuclei. These levels are characterized by energy spacings which increase regularly with the spin, by fast E2 transitions within the bands and by apparent regularities in the competing deexcitation modes. Particularly good examples of these features are the negative parity bands (NPB) which recently were reported for ${ }^{126,128} \mathrm{Ba}$ [1] and for the $N=88$ isotones ${ }^{152} \mathrm{Gd}$ [2], ${ }^{156} \mathrm{Er}[3,4]$ and more tentatıvely for ${ }^{154}$ Dy [5].

The NPB seen in ${ }^{156} \operatorname{Er}$ [4] and in ${ }^{126,128} \mathrm{Ba}$ [1] have been interpreted as a rotational band built on a twoquasıparticle state. Alternative interpretations of the NPB in transitional nucles have been proposed in terms of vibrational type excitations of a $K^{\pi}=0^{-}$octupole band [3], and of an octupole vibration coupled either to a deformed core [6] or to a spherical core [2]. Iachello and Arima have shown that this coupling can be treated in a simple way within the frame work of the Interacting Boson Approximation (IBA) model [7,8]. Transitional and vibrational nuclei which are expected to exhibit bands arising from such couplings can be found e.g. in the mass regions $A \approx 100$ and 150 . This paper presents relevant experimental evidence for ${ }^{100} \mathrm{Ru}$ and ${ }^{150} \mathrm{Sm}$, which are both six neutrons away from a major closed shell. The GSB and several states supposed to belong to side bands in ${ }^{100} \mathrm{Ru}$ and ${ }^{150} \mathrm{Sm}$

[^1]have been established in previous work, particularly in $(\alpha, 2 n \gamma)$ reactions [9,10]. The present investigation verifies and extends this information, specifically on the high-spin members of both GSB and NPB.

Metallic self-supporting targets of ${ }^{100} \mathrm{Mo}$ and ${ }^{150} \mathrm{Nd}$ enriched to about 97% were bombarded with a 45 MeV α-particle beam from the Groningen cyclotron. Counc1dence $\gamma-\gamma$ events and their relative time delays were recorded on magnetic tape by a PDP-15 computer. Gamma-time and electron-tıme spectra (see below) were also recorded, with the RF signal of the cyclotron as time reference. No evidence was found for delayed transitions with $\tau_{\mathrm{m}}>5 \mathrm{~ns}$. Angular distributions were measured at six angles between $\theta=90^{\circ}$ and 155° with a $110 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector at a distance of 20 cm from the target. The data were analysed with a computer code based on the equations of Polett1 and Warburton [11], modified to allow for a Gaussian distribution of the populations of the magnetic substates. The theoretical curves for all possible spin combinations were fitted to the data in a least-squares procedure with the width of the Gaussian population distribution and the quadrupole/dipole amplitude mixing ratio as parameters. The measured mixing ratios are consistent with pure dipole character of the interband transitions between NPB and GSB members. The parities of the observed levels were established from measurements of internal conversion coefficients with a mıni-orange spectrometer [12]. A prompt ($\Delta t<10 \mathrm{~ns}$) conversion electron spectrum of ${ }^{150} \mathrm{Sm}$ taken for one hour with a 4 nA beam is shown in fig. 1 along with the corresponding γ-ray spectrum. The results, given in table 1 , clearly show

Fig. 1. A conversion electron spectrum of ${ }^{150} \mathrm{Sm}$ (bottom) taken with a $07 \mathrm{mg} / \mathrm{cm}^{2}{ }^{150} \mathrm{Nd}$ target with a corresponding γ-ray spectrum (top) taken with a $5 \mathrm{mg} / \mathrm{cm}^{2}$ target.

E2 character for the intraband transitions and E1 character for the interband transitions. This proves the negative parity of the side bands both in ${ }^{100} \mathrm{Ru}$ and ${ }^{150} \mathrm{Sm}$.

The decay schemes for the GSB and NPB in ${ }^{100} \mathrm{Ru}$ and ${ }^{150} \mathrm{Sm}$ are given in fig. 2. Spin assignments are based on the combined evidence of the measured angular distributions, of the conversion coefficients, of the comparison of relative γ-ray intensities in the $(\alpha, 4 \mathrm{n})$ and $(\alpha, 2 \mathrm{n})[9,10]$ reactions and for ${ }^{150} \mathrm{Sm}$ of the relative excitation functions in the ($\alpha, 2 \mathrm{n}$) reaction [10]. Brackets indicate spin assignments which do not satisfy the confidence criteria as recommended by Nuclear Data Sheets.

In the IBA model the eigenvalues of the inter-
acting boson Hamiltonian are given $[7,8]$ as $E_{\mathrm{g}}(J=2 n)$ $=n \epsilon_{2}+\frac{1}{2} c_{4} n(n-1)$ for the GSB and $E(J=2 n+3)$ $=E_{\mathrm{g}}+\epsilon_{3}+c_{5} n$ for the odd-spin NPB in the case of total alignment of angular momentum. Here n denotes the quadrupole phonon number, c_{4} and c_{5} the qua-drupole-quadrupole and quadrupole-octupole interaction strengths, respectively, and ϵ_{2} the quadrupole and ϵ_{3} the octupole boson energles. With four free parameters per nucleus a fairly accurate description of the experimental energies in the GSB and NPB can be obtained (cf. fig. 2). The GSB shows deviations above the 10^{+}or 12^{+}states, where backbending may be expected to occur which is not accounted for by this simple model. It is satisfying to notice that there is little or no sign of backbending in the NPE at the corre

Table 1
Energies and angular distribution coefficients of γ-rays and internal conversion coefficients from the ${ }^{100} \mathrm{Mo},{ }^{150} \mathrm{Nd}(\alpha, 4 \mathrm{n}){ }^{100} \mathrm{Ru}$, ${ }^{150} \mathrm{Sm}$ reactions at $E_{\alpha}=45 \mathrm{MeV}$

$J_{1}^{\pi} \rightarrow J_{\mathrm{f}}^{\boldsymbol{\pi}}$	$\begin{aligned} & E_{\gamma}^{\mathrm{a})} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & A_{2} / A_{0} \\ & \left(\times 10^{2}\right) \end{aligned}$	$A_{4}{ }^{\prime} A_{0}$	$\alpha_{K}^{\exp }$	$\left(\times 10^{5}\right)^{\left.\alpha_{K}^{\text {th }} \mathrm{b}\right)}$	$\begin{aligned} & E_{\gamma}^{\mathrm{a})} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & A_{2} / A_{0} \\ & \left(\times 10^{2}\right) \end{aligned}$	A_{4} / A_{0}	$\alpha_{\mathrm{K}}^{\text {exp }}$	$\left(\times 10^{4}\right)^{\left.\alpha_{\mathrm{K}}^{\mathrm{th}} \mathrm{~b}\right)}$
${ }^{100} \mathrm{Ru}$						${ }^{150} \mathrm{Sm}$				
$2^{+} \rightarrow 0^{+}$	5397	22 ± 2	- 4 ± 3		375 c)	334.0	25 ± 3	-8 ± 5		$320{ }^{\text {c) }}$
$4^{+} \rightarrow 2^{+}$	687.4	24 ± 2	-7 ± 3		195 ${ }^{\text {c) }}$	439.6	27 ± 3	-7 ± 5		$148{ }^{\text {c) }}$
$6^{+} \rightarrow 4^{+}$	8500	28 ± 6	-15 ± 7	110 ± 17	112	505.7	26 ± 5	-14 ± 8	97 ± 10	103
$8^{+} \rightarrow 6^{+}$	9852	25 ± 2	- 5 ± 3	70 ± 9	79	558.3	27 ± 5	-10 ± 8	77 ± 12	80
$10^{+} \rightarrow 8^{+}$	1024.0	28 ± 3	-5 ± 3	95 ± 20	73	596.3	24 ± 5	-12 ± 8	74 ± 12	68
$12^{+} \rightarrow 10^{+}$						615.1	18 ± 10	-12 ± 7	61 ± 10	63
$14^{+} \rightarrow 12^{+}$						627.5	16 ± 9	-12 ± 7	49 ± 15	60
$7 \rightarrow 5^{-}$	424.3	36 ± 8	-2 ± 10	900 ± 500	750					
$9^{-} \rightarrow 7^{-}$	552.2	26 ± 5	-10 ± 5	700 ± 400	355	467.5			140 ± 40	125
$11^{-} \rightarrow 9^{-}$	7277	33 ± 6	-9 ± 7	170 ± 70	166	512.0			75 ± 20	99
$13^{-} \rightarrow 11^{-}$	932.4	28 ± 8	-11 ± 9	150 ± 50	91	549.5	21 ± 5	-19 ± 8	110 ± 30	83
$15^{-} \rightarrow 13^{-}$	1036.3	43 ± 12	3 ± 14	<300	75	620.8	16 ± 9	- 9 ± 15	55 ± 12	62
$5^{-\rightarrow 4^{+}}$	13016	-31 ± 3	6 ± 4	26 ± 13	21	5845	-20 ± 9	6 ± 14	< 30	27
$7-6^{+}$	8767	-32 ± 4	0 ± 6	45 ± 10	42	486.1	-28 ± 9	5 ± 14	55 ± 25	40
$9^{-\rightarrow 8^{+}}$	443.3	-33 ± 8	3 ± 10	<250	196	395.3	-29 ± 4	- 2 ± 17	78 ± 20	64
$11^{-} \rightarrow 10^{+}$						311.2	-22 ± 13	1 ± 20	95 ± 25	116
$13^{-} \rightarrow 12^{+}$						2449	-8さ4	-8 ± 4		
$10^{+} \rightarrow 9^{-}$						200.6	-25 ± 13	12 ± 20		
$12^{+} \rightarrow 11^{-}$						304.1	-16 ± 10	25 ± 16		120

a) Expermental errors are $\pm 03 \mathrm{keV}$.
b) The theoretical conversion coefficients correspond to unmixed transitions with the lowest possible multipolarity.
c) Experimental value normalized to theory
spondıng J^{π} values 13^{-}or 15^{-}, which is in agreement with the assumed coupling mechanism and with the interpretation of the backbending as being due to band crossing.

The IBA model also gives a simple relationship [8] for the $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ branching ratios for transitions depopulating the NPB states
$\frac{B\left[\mathrm{E} 1 ;(J=2 n+3)^{-} \rightarrow(J=2 n+2)^{+}\right]}{B\left[\mathrm{E} 2 ;(J=2 n+3)^{-} \rightarrow(J=2 n+1)^{-}\right]}=\frac{n+1}{n} C$,
where C is a constant for a given nucleus. Thus the $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ values are expected to vary smoothly with boson number n with differences smaller than a factor of two. The experimental $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ values in units of $10^{-5} b^{-1}$ are 0.9 ± 0.2 and 3.3 ± 0.6 for the decay of the 7^{-}and 9^{-}states in ${ }^{100} \mathrm{Ru}$ and 21 ± 4, 10 ± 3 and 12 ± 2 for the decay of the $9^{-}, 11^{-}$and 13^{-}states in ${ }^{150} \mathrm{Sm}$, respectively. The experimental ratio 0.27 ± 0.10 of the $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ values for the decay of the 7^{-}state relative to that of the 9^{-}state
in ${ }^{100} \mathrm{Ru}$ deviates by a factor of four from the calculated ratio 1.12 . On the other hand the experimental ratios 1.7 ± 0.6 and 0.8 ± 0.3 for the decay of the 9^{-}and 11^{-} states relative to that of the 13^{-}state in ${ }^{150} \mathrm{Sm}$ are in fair agreement with the calculated ratios 1.11 and 1.04, respectively. Since the transition probabilities are very sensitive to configuration mixing, which is absent in this simple version of the IBA model this agreement can be considered satısfactory. Similar results have been reported [14] for ${ }^{162}$ Er. However, we bring attention to the observed $12^{+} \rightarrow 11^{-}$and $10^{+} \rightarrow 9^{-}$transitions in ${ }^{150} \mathrm{Sm}$, for which the corresponding $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ values are (2.4 ± 0.6) and $(4.8 \pm 1.2) \times 10^{-5} b^{-1}$. These transitions are forbidden in the first approximation of the IBA model, while the measured $B(\mathrm{E} 1) / B(\mathrm{E} 2)$ ratios are on the average a factor of four smaller than those of the transitions depopulating the NPB levels.

In summary we may conclude that the main properties of the observed GSB and NPB populated in ${ }^{100} \mathrm{Ru}$

Fig. 2. Experimental information on the ${ }^{100} \mathrm{Ru}$ and ${ }^{150} \mathrm{Sm}$ decay schemes obtained from the ($\alpha, 4 \mathrm{n}$) reactions compared with the results of IBA calculations. Relative γ-ray intensities are given in brackets. The 3^{-}state in ${ }^{150} \mathrm{Sm}$ was not observed, see ref. [13] and refs. mentioned therein. The IBA parameters $e_{2}, \epsilon_{3}, c_{4}$ and c_{5} are $450,2249,148$ and -260 keV for ${ }^{100} \mathrm{Ru}$ and $356,1077,66$ and -47 keV , respectively, for ${ }^{150} \mathrm{Sm}$.
and ${ }^{150} \mathrm{Sm}$ by ($\alpha, 4 \mathrm{n}$) reactions are well accounted for by the simple IBA model.

The authors wish to thank Dr. F. Iachello and Prof.
A. Arima for stimulating discussions. Two of them
(Z. Sujkowski and D. Chmielewska) express their appreciation to the staff of the K.V.F. for the warm hospitality during their stay. Thıs work was performed as part of the research program of the "Stichting voor Funda-
menteel Onderzoek der Materie" (FOM) with financial support from the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek" (ZWO).

References

[1] C. Flaum, D. Cline, A.W. Sunyar and O.C. Kistner, Phys. Rev. Lett. 33 (1974) 973.
[2] D.R. Zolnowski, T. Kishimoto, Y. Gono and T.T. Sugihara, Phys. Lett. 55B (1975) 453.
[3] Y. Gono, D.R. Zolnowski, D.R. Haennı and T.T. Sugihara, Phys. Lett. 49B (1974) 338.
[4] A.W. Sunyar, Brookhaven Natıonal Laboratory, Upton, N.Y., private communication.
[5] H. Beuscher et al., Proc. Int. Conf. on Reactions between Complex Nucleı, Nashville (1974) p. 189.
[6] M. Nomura, Phys. Lett. 55B (1975) 357.
[7] F. Iachello, Proc. Int. Conf. on Nuclear Structure and Spectroscopy, Amsterdam (1974) vol. 2, p. 163; F. Iachello and A. Arima, Phys. Lett. 53B (1974) 309.
[8] A Arıma and F. Iachello, Phys. Lett. 57B (1975) 39.
[9] C.M. Lederer, J.M. Jaklevic and J.M. Hollander, Nucl. Phys. A169 (1971) 449.
[10] J. Kownacki, Z. Sujkowski, H. Ryde and I. Adam, Proc Int. Conf. on Nuclear Structure and Spectroscopy, Amsterdam (1974) vol. 1, p. 103; and to be published.
[11] A.R. Poletti and E.K. Warburton, Phys. Rev. 137 (1965) B595.
[12] J. van Klinken and K Wisshak, Nucl. Instr. 98 (1972) 1 and J. van Klinken, S.J. Feenstra, K. Wisshak and H. Faust, Nucl. Instr., to be published.
[13] F. Bečvár, R.E. Chrien and O.A. Wasson, Nucl. Phys. A236 (1974) 173.
[14] M. Fenzl et al., Z. Physik A273 (1975) 163

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

[^1]: * On leave of absence from the Institute for Nuclear Research (I.B.J.) 05-400 Swierk, Poland.
 ** I.B.J. Swierk, Poland, on leave from I F.J. Krakow, Poland.

