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Abstract

While multitasking has received a great deal of attention from researchers, we still know little about how well people adapt
their behavior to multitasking demands. In three experiments, participants were presented with a multicolumn subtraction
task, which required working memory in half of the trials. This primary task had to be combined with a secondary task
requiring either working memory or visual attention, resulting in different types of interference. Before each trial,
participants were asked to choose which secondary task they wanted to perform concurrently with the primary task. We
predicted that if people seek to maximize performance or minimize effort required to perform the dual task, they choose
task combinations that minimize interference. While performance data showed that the predicted optimal task
combinations indeed resulted in minimal interference between tasks, the preferential choice data showed that a third of
participants did not show any adaptation, and for the remainder it took a considerable number of trials before the optimal
task combinations were chosen consistently. On the basis of these results we argue that, while in principle people are able
to adapt their behavior according to multitasking demands, selection of the most efficient combination of strategies is not
an automatic process.
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Introduction

Multitasking has become a staple of modern society: its

influence reaches into just about every aspect of our daily lives.

The prevalence of multitasking affects the grades of students [1],

the way jobs are performed [2], our safety during driving ([3–5];

for an overview see [6]), and even performance during sports [7].

Multitasking research has focused on determining the perfor-

mance cost of executing several tasks concurrently compared to

performing a single task. One important part of multitasking

behavior that has received less attention is how people determine

which activities to do simultaneously, and at what time. Factors

that are important in these decisions are intrinsic motivation

(enjoyment, expertise), and personality traits such as impulsivity or

sensation seeking [8]. Some of these factors could influence the

utility [9] of a task, which determines how likely a task is chosen in

a multitasking context. This raises an interesting question: Is utility

purely based on aspects of the task itself, and therefore

independent of multitasking, or can the multitasking context

change the utility of tasks and therefore the decision process?

We hypothesize that task utility can also be influenced by how

effectively a second task combines with the primary activity: some

combinations of tasks may decrease overall performance, while

other tasks do not. If people want to maximize their utility, they

should combine tasks that minimize the performance decrement.

Although there is some evidence for this from the area of

sequential multitasking (i.e., people alternating between tasks

[10,11]), almost no data is available in the context of concurrent

multitasking: research has been limited to the influence of task

priority imposed by instructions to the participants [12].

In this paper we investigate whether people adapt their choices

in concurrent multitasking to combinations of tasks that work

together well, even though it is not immediately obvious what

these combinations are. Furthermore, we examine whether this

adaptation is part of a learning process, or determined instantly.

Interference in Multitasking
The decrement in performance that can occur when multiple

tasks are performed concurrently is typically attributed to

interference between the tasks. Theories regarding the effect of

interference can roughly be divided into theories emphasizing

processing bottlenecks versus theories emphasizing capacity

sharing. According to bottleneck theories, certain processing

stages (e.g., perception, response) cannot be performed in parallel:

when two tasks require such a stage at the same time, one task will

be delayed until the other task no longer requires it [13]. Proposed

bottleneck theories hold different views regarding which stages or

resources can become a bottleneck, and which can be used in

parallel [13–16].

Capacity sharing theories state that resources can be shared by

tasks. However, when two tasks have to share the capacity of a

single resource, performance degrades [17]. A well known account

of this type is multiple resource theory [18]. According to Wickens,

interference increases when tasks share more resources. These

resources can be cognitive or response-related stages, but also

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e79583



sensory modalities or information channels. While this gives us a

measure of the amount of interference we can expect, it does not

explain the mechanism that leads to the performance decrease.

The bottleneck and capacity sharing theories have both

influenced the development of cognitive architectures. This

resulted in several different computational accounts of multitasking

interference. In EPIC (Executive-Process Interactive Control) [19],

all central cognitive resources (e.g., declarative memory, produc-

tion memory) can, but peripheral resources (e.g., vision, motor)

can not be used by multiple tasks at the same time. Use of the

resources is accomplished through a decision rule system, and

serial behavior is a result of a combination of peripheral

bottlenecks and a strategy that interleaves production rules of

multiple tasks.

A more recent explanation of multitasking interference is

threaded cognition [20]. According to threaded cognition, all

cognitive resources (i.e., visual perception, motor control, working

memory) can only be used by a single process at any given time.

Interference will occur when use of a resource by one process will

delay another. Task scheduling is achieved by a straight-forward

interleaving process: whenever a task needs a particular resource

and that resource is not in use by another task, it can use it,

otherwise it has to wait. Threaded cognition has been used to

explain a variety of multitasking results [14,21,22], and is in line

with recent investigations into multitasking interference, which

identify both serial and parallel components in task processing

[23]. This led us to use predictions from threaded cognition to

develop a paradigm suitable for investigating how people adapt

their multitasking behavior.

Paradigm
To test whether people adapt their choices to minimize

multitasking interference, we developed a paradigm where the

expected severity of multitasking interference was varied between

four possible task combinations. Participants were given a fixed

primary task, multicolumn subtraction, which had to be

performed in every trial. The subtraction task consisted of ten

columns that had to be solved digit-by-digit in standard right-to-

left order. There were two types of subtraction problems: in the

easy condition all upper-term digits were larger than the

corresponding lower-term digits. Participants therefore did not

need to remember any carries in order to solve the problem. In

hard condition, six of the ten columns required the participant to

perform a carry operation. The subtraction task requires visual

(attention and processing), manual (motor control of the hands), as

well as declarative memory (retrieving facts about subtracting

numbers) resources.

The difference between the two subtraction conditions is that in

the hard condition the state of the carry must be maintained

between the columns. Based on earlier research we believe this

carry to be stored in working memory (WM) [14]. The concept of

WM we employ is very similar to that of the focus of attention

[14,24], and is based on the memory system present in ACT-R

[25]. This focal WM can contain only a single chunk of

information. When multiple chunks have to be remembered, only

one chunk will be in the focus, and the rest will be in declarative

memory (DM). Thus, requiring WM-like access to multiple chunks

will require that chunks be swapped between focal WM and DM.

As swapping from DM takes time (in the order of several hundred

milliseconds, [26,27], and there is a risk that a chunk can no longer

be retrieved from DM because it has been forgotten, requiring

WM-like access to multiple chunks causes interference.

At the start of every trial, participants were shown the

subtraction condition (easy or hard), and were given a choice

between two secondary tasks: tone-counting or tracking. In the

tracking task [28] participants had to keep a moving dot within a

circle using a trackball peripheral device. From a cognitive

standpoint, the tracking task used both visual and manual

resources, but WM is unlikely to be involved. In the tone-counting

task tones were presented to participants through a pair of

headphones. After completing the last digit of the subtraction task,

participants were prompted to type in the number of tones they

had heard. The tone-counting task required aural (auditory

attention and processing) and WM resources, but not the visual

resource.

There is no contention for WM resources when either tone-

counting or tracking is combined with the easy subtraction task

since the easy subtraction task does not require WM. However,

since both tracking and subtraction require the visual and manual

resources, threaded cognition predicts that easy subtraction is

more compatible with tone-counting than with tracking. However,

during a hard subtraction problem, there is significant overlap

with each of the secondary tasks: The overlap with tracking is in

the visual and manual resources, while the overlap with tone-

counting is in the WM resource. Overlap in the WM resource is

typically thought to be more disruptive than overlap in the visual

and manual resources: visual and manual interference typically

lead to delays in the order of 100–200ms, while reinstating WM

contents from declarative memory consumes much more time and

has a chance of failure [14,26]. Based on these results, we predict

that hard subtraction is more compatible with the tracking task

than with the counting task. To summarize, the conditions form

an interference gradient ranging from no interference (easy

subtraction and tone-counting) to severe interference (hard

subtraction and tone-counting), as a function of both resource

overlap and resource type. We predict that if people adapt their

choices to maximize utility during multitasking, they will choose

task combinations that minimize interference.

We present three experiments aimed at investigating if and how

behavior adapts to multitasking interference. In Experiment 1 we

investigated whether task combinations led to the expected

interference patterns and preference. Participants were first

trained on all combinations of primary and secondary tasks, and

were then given the choice of secondary tasks at the onset of every

trial. In Experiment 2 we further investigate preference, as well as

the learning behavior that leads to task preferences. We more

strictly controlled the motivation to perform well, and participants

were no longer trained on the task combinations before they were

allowed to choose the second task freely. In Experiment 3 we

further explore the degree of interference required for correct

determination of ideal task combinations, by making the difference

in interference between combinations more distinct.

Experiment 1

Participants
A total of 23 participants (16 female, Mage = 21.0, age range: 18–

24) were recruited for the experiment. This study was approved by

the Ethical Committee Psychology of the University of Groningen,

and written informed consent was obtained for all participants.

Participants received J10 per hour for their participation. All

participants had normal or corrected to normal vision.

Materials and Methods
The setup consisted of the subtraction task with either tracking

or tone counting. Participants were instructed to perform both

tasks concurrently as well as they could. The subtraction was either

an easy or hard problem. In all of the subtraction problems only

Concurrent Multitasking Decisions

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79583



the column to be solved was visible to the participants, with all

other columns masked by hash marks. This was to prevent

participants from using visual cues instead of WM to keep track of

carries in the carry subtraction condition (cf. [29]). The left hand

was positioned on the numeric keypad of a keyboard to solve the

subtraction. Feedback on subtraction was only given during

practice trials by coloring the number either green for correct or

red for incorrect.

For tracking, the right hand was placed on the trackball.

Feedback was audio-visual: each time the dot went outside the

circle, the participant would be signaled by a beep, and the color

of the circle would change from black to red. Given that motor

skills can vary widely, we adapted task difficulty to the

performance profiles of each participant: when the dot stayed in

the circle for three seconds its movement speed would increase by

7% of the base speed. Whenever the dot went outside the circle,

the movement speed would decrease by 14% of the base speed.

Typically, this caused the dot to be inside the circle around 90% of

the time.

In the tone-counting task participants had to click a trackball

button with their right thumb when they heard a tone. This was

done to keep both hands occupied, keeping participants from

counting using their fingers. Participants had to respond at the end

of the trial. If they reported the wrong number of tones when

prompted, a buzzer sounded and the text ‘Wrong’ with the correct

number of tones was displayed for six seconds. When answered

correctly, the text ‘Correct’ would appear for half a second.

The study consisted of a single-task practice block (Block 0: 16

subtraction, divided into eight easy and eight hard trials, one tone

counting, and one tracking trial) followed by a dual-task practice

block (Block 1: 16 trials, with every concurrent task combination

appearing four times). The order of combinations in Block 1 was

counterbalanced between participants. This dual-task block with

fixed combinations was added to give participants some experi-

ence with all possible combinations before introducing free choice

of the secondary task. In the 48 trials of Block 2 the subtraction

task alternated between easy and hard every two trials: before each

trial the participants were shown the subtraction difficulty of the

upcoming trial and could choose whether they wanted to perform

tone counting or tracking concurrently with subtraction.

Results
All reported F- and p-values are from repeated-measure

ANOVAs, and all accuracy data were transformed with a logit

transformation before performing ANOVAs. For the accuracy and

latency data only Block 1 data were considered, as the number of

trials per condition in Block 2 were unbalanced as the participants

chose the task combinations. Table 1 summarizes the results.

Interference effects. Analysis of the subtraction accuracy

data (Figure 1A) shows a main effect of subtraction type (F(3, 66)

= 89.35, p ,.001, g2
p = 0.58), indicating that the accuracy of hard

subtraction was lower than easy subtraction. There was an effect of

secondary task (F(3, 66) = 6.91, p = .011, g2
p = 0.09), as the

reduction in subtraction accuracy between easy and hard was

smaller when subtraction was combined with tracking instead of

tone-counting (6% vs. 10% accuracy reduction). There was also an

interaction between type and secondary task (F(3, 66) = 4.77,

p = .033, g2
p = 0.07): while easy subtraction performance is very

similar for either secondary task, hard subtraction performance

degrades more when combined with tone-counting.

A post-hoc Tukey honest significant difference (HSD) test showed

that, apart from easy subtraction with tracking versus easy

subtraction with tone counting, conditions were significantly

different from each other (at the p ,.001 level, except for hard

subtraction with tracking versus hard subtraction with counting,

which was significant at the p ,.01 level). Contrary to tone-

counting, and in line with the hypotheses, the addition of tracking

did not affect subtraction accuracy much: participants performed

only slightly worse compared to subtractions with no secondary

task (a 0% error increase for easy subtractions, and a 1% error

increase for hard subtractions). This indicates the visual interfer-

ence resulted in only a mild performance reduction. For latency

(Figure 1B) there is a main effect of subtraction type for solving a

single column (F(3, 66) = 148.39, p ,.001, g2
p = 0.83), as hard

subtractions take considerable more time to complete.

Examination of the performance on the tone counting and

tracking tasks shows that while tracking accuracy (Figure 1C) is

hardly affected by subtraction type (F(1, 22) = 4.07, p = .056), tone

counting (Figure 1D) is associated with lower accuracies when the

subtraction task is hard: the mismatch between the given and the

correct answer is larger (F(1, 22) = 16.20, p ,.001, g2
p = 0.42). The

effect of resource overlap is clear in the performance of the

secondary task: tracking performance does not change much

depending on the subtraction type, but participants make

significantly more mistakes in tone-counting.

The tracking task adapts to the participant, so it is possible that

a reduction in tracking speeds during hard subtraction trials causes

the performance to remain steady. However, no difference was

found between the average adapted tracking speeds of easy and

hard trials as the average tracking speed during hard subtractions

was 0.2% higher compared to easy subtractions (F , 1). As such, it

is unlikely that the stable performance results from variances in

tracking difficulty. This stability is expected if the interference

between tracking and subtraction does not change when carries

are introduced.

Task preference. The performance results are highly

compatible with our initial prediction, and suggest that our

paradigm is suitable to investigate choice adaptation to multitask-

ing interference. An analysis of the Block 2 choice data (Figure 2A)

shows that on average participants selected tone counting in 82%

of the trials where the subtraction task had no carries. When faced

with hard subtraction condition, there was a significant (F(1, 22)

= 8.13, p , 0.01, g2
p = 0.27) shift towards selecting the tracking

task, which was chosen in 41% of all trials. This implies that

participants had a strong preference for the optimal combination

Table 1. Summary of ANOVA results for Experiment 1.

Subtraction Task

Accuracy Response Times

Source F(3,66) p gp
2 F(3,66) p gp

2

Type 89.35 ,.001 .58 148.39 ,.001 .83

Secondary Task 6.91 .011 .09 1.83 .181 .03

Type x Secondary Task 4.77 .033 .07 ,1 - -

Secondary Task

Tone-counting Tracking

Source F(1,22) p gp
2 F(1,22) p gp

2

Type 29.76 ,.001 .57 4.07 .056 .16

Type = Subtraction type.
doi:10.1371/journal.pone.0079583.t001

Concurrent Multitasking Decisions
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Figure 1. Performance results of Block 1 for Experiment 1. Averages for each condition are shown as a black dot, with a corresponding 95%
confidence interval. The gray volume behind the averages is an estimate of the density, computed from the distribution of the data underlying the
averages [29]. Panel A: Percentage of incorrect columns in a subtraction problem. Panel B: Latency on solving a single subtraction column. Panel C:
Percentage of time outside the circle during the tracking trials. Panel D: Error distance of tone counting answers.
doi:10.1371/journal.pone.0079583.g001

Figure 2. Secondary task choices for Experiment 1. Averages and 95% CI are plotted and the gray volume behind the averages is a plot of the
estimated density of the underlying data [29] Panel A: Average choices for the best task combinations over all participants. Panel B, C and D: average
combination choices for the participants that favored counting, tracking, and switching secondary task, respectively.
doi:10.1371/journal.pone.0079583.g002

Concurrent Multitasking Decisions
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when subtraction was easy, but showed much less certainty when

subtraction was hard, as secondary task preference was close to

chance when subtraction was hard.

How well choices conform to the expected optimal task

combinations can be described in terms of signal detection theory

[30]. If we reason from the perspective of the tone-counting task,

each secondary task choice can fall into one of four categories: hit

(easy & tone-counting), false-alarm (hard & tone-counting), miss

(easy & tracking), and correct rejection (hard & tracking). To

measure detection performance, the true positive rate (TPR, also

known as sensitivity) can be compared against the false positive rate

(FPR, or one minus specificity). Within our paradigm, the TPR can be

defined as the proportion of easy & tone-counting choices.

Similarly, the FPR is the proportion of hard & tone-counting

choices.

We performed a two-dimensional hierarchical clustering of the

participants based on their TPR and FPR scores [31], and found

three distinct groups (shown in Figure 2B, 2C and 2D):

participants who chose tone-counting almost exclusively (n = 14,

or 61%), participants who chose tracking almost exclusively (n = 2,

or 9%), and participants who, as predicted for sufficient

interference sensitivity, switched secondary task (n = 7, or 30%).

Choices of the participants who switched are in the direction of the

expected combinations, but did not seem to show a learning effect:

preferences over trials as presented in Figure 3 show no

convergence toward the predicted optimal combinations during

Block 2, as during later trials participants still combined hard

problems with counting and easy problems with tracking.

Discussion

With Experiment 1 our aim was to determine whether the

predicted interference between certain combinations of tasks held,

and whether or not people base their choice of tasks only on the

tasks themselves, or also on the multitasking context. The

behavioral results were in line with our predictions: the task

combination with the highest expected interference, hard

subtraction with tone-counting, leads to the lowest performance.

This is followed by hard subtraction with tracking; the remaining

two combinations result in the least interference, and thus in

highest performance. This is consistent with the concept of overlap

in resources leading to interference, and that WM interference is

more detrimental to performance than visual interference. Of the

secondary tasks, only tone-counting showed large interference

effects; indicating that tracking and subtraction are quite

compatible within this paradigm.

As the Block 1 performance results were within expectations, we

predict that, if people adapted to multitasking interference, tone-

counting would be chosen for easy subtractions, while tracking

would be chosen for hard subtractions. The data showed a strong

preference for tone-counting when subtraction was easy, but a

much weaker preference for tracking when subtraction was hard:

participants seem to adapt only partially. A closer look revealed

large individual differences in decision behavior. Most participants

always selected the same secondary task, even though it resulted in

suboptimal performance. This indicates that for these participants

the interference did not affect task utility enough to switch tasks

strategically. The remaining participants showed strong adapta-

tion to the different subtraction conditions by switching between

secondary tasks. However, only a portion of that group made

decisions that conformed to the optimal combinations. The other

switching participants showed the general expected pattern, but

did not converge to the optimal choices over time. It is possible

these participants were still experimenting with task combinations

to find the optimal solution when the experiment ended.

The results argue that most people do not adapt their choices to

minimize the multitasking interference, at least not in the time

available in the experiment. A possible explanation is that their

preference for one of the tasks outweighed the possible advantage

of avoiding multitasking interference. An additional potential

benefit of always selecting the same secondary task is that it keeps

things simpler, and offers more opportunity for speed improve-

ments due to practice.

Experiment 2

The goal of experiment 2 is to diminish the impact of preference

for one of the two secondary tasks, thereby boosting the possible

effect of multitasking context. Moreover, it will investigate whether

learning occurred in the choice process.

Importantly, the experiment was set up to discourage partici-

pants from picking the same secondary task all the time. This was

accomplished by changing the difficulty of the secondary tasks

depending on the choices of the participant. After each trial, the

difficulty of the chosen secondary task increased, while the

difficulty of the not-chosen secondary task decreased. In order

not to give participants any additional clues regarding the nature

of the experiment, they were informed that the task difficulty could

change, but not when and how this change would occur. We

assume that increased difficulty of a secondary task decreases the

motivation of participants to choose it, and we therefore expect to

see more participants exhibit switching behavior. As such, it will

not be the switching per se that will measure whether participants

adapted their choices to the interference, but how much higher the

proportion of optimal combinations (in line with the expected

preferences) is compared to the proportion of switches that can be

considered random (performed in order to keep difficulty

manageable). As preferences were mostly stable after Block 1 of

Experiment 1, we did not include a block with predetermined task

combinations: this should result in a clear measurement of a

possible learning effect for optimal task combinations. Further-

more, we increased the number of trials during which participants

Figure 3. Change in preference over time for Experiment 1. Task
preference over time is shown for the participants that switched
between secondary tasks. Theoretically, the lowest interference is
obtained when easy subtraction problems (‘‘+’’) are combined with
counting, and hard subtractions (‘‘x’’) are combined with tracking.
doi:10.1371/journal.pone.0079583.g003

Concurrent Multitasking Decisions
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could choose a secondary task, in case convergence to optimal

preferences takes longer than we previously anticipated. As shown

by the previous experiment, free choice in task combinations can

result in an unequal number of observations per condition, which

leads to an unbalanced design. A solution would have been to stop

the experiment only after each condition has been seen an equal

number of times. However, in practice this could prove infeasible:

as some participants never explore all possible combinations, the

experiment might not end. Therefore the number of trials was

kept at a fixed number.

Participants
A total of 41 new participants (28 female, Mage = 22.1, age range:

18–25) were recruited for the experiment. This study was

approved by the Ethical Committee Psychology of the University

of Groningen, and written informed consent was obtained for all

participants. Participants received J10 per hour for their

participation. All participants had normal or corrected to normal

vision.

Materials and Methods
All three tasks used in the setup were identical to those in the

previous experiment. Participants performed the same practice

block used in Experiment 1. After the practice trials the

participants were presented with a single block of 72 trials in

which the subtraction condition was randomized such that in

every four trials the participants would see both subtraction types

twice. The difficulty of the secondary task depended on the history

of choices: if the secondary task chosen in trial n is the same as that

of trial n-1, the difficulty of that task will be increased after the trial.

The difficulty of both secondary tasks had limits: from the starting

difficulties DCs and DTs (reflecting the difficulty of the ‘‘C’’ounting

and the ‘‘T’’racking task respectively) both tasks could increase

and decrease by a maximum of 7 steps, resulting in a total of 15

difficulties per task. For tracking, one step was a change of 10% of

DTs, (taken as the average adapted tracking speed in Experiment

1, minus one standard deviation) leading to a speed range from

0.3DTs to 1.7DTs. In similar fashion, one difficulty step for tone-

counting was a change of 0.2 seconds in average tone interval,

giving an average tone interval range of 0.5 to 3.5 seconds. Note

that the tracking adaptation using in Experiment 1 was not used in

Experiment 2.

Results
As the number of observations per condition was inherently

unbalanced due to the design of the paradigm, we used linear

mixed-effects models instead of ANOVAs to interpret the results.

Table 2 summarizes the results.

The performance within each group bear a strong qualitative

resemblance to the results of Experiment 1 (represented by the

gray crosses in each panel of Figure 4 for easy comparison),

indicating that the task combinations that minimize interference

were not influenced by changes to the paradigm. Subtraction

accuracy (Figure 4A) shows a main effect for subtraction type

(b = –2.30, z = –23.81, p,.001), which argues that easy subtrac-

tions were indeed easier than hard subtractions. Furthermore,

there was an interaction between subtraction type and secondary

task (b = 0.27, z = 2.84, p,.001), indicating that subtraction

accuracy decreased less from easy to hard when tracking was

used as secondary task. In Figure 4B, subtraction latency shows a

pattern very similar to accuracy. Latency only shows a main effect

of subtraction type (b = 2.09, t = 36.92, p,.001), just as we

observed in Experiment 1: hard subtractions took much longer

to complete than easy subtractions.

Tracking performance (Figure 4C) is numerically higher in the

hard condition (b = 0.18, z = 2.14, p = .032). There was a large

effect of tracking difficulty on accuracy (b = –47.09, z = –26.27,

p,.001), as well as an interaction between tracking difficulty and

subtraction type (b = –4.28, z = –2.33, p,.020), indicating that

increased difficulty led to lower tracking performance when

subtraction was hard. This is likely due to the higher latency of

hard subtractions, which left less time for tracking. Much like

tracking accuracy, the size of tone-counting errors (Figure 4D)

depended strongly on tone-counting difficulty (b = –2.35, t = –3.71,

p,.001). While there was no main effect of subtraction type on the

size of the errors (b = 0.33, t,1), this main effect was found for the

number of correct counts (b = –1.10, z = –2.76, p = .005). This

indicates that there were more errors during hard subtractions, but

the spread of the error distance remained the same between the

two subtraction types. Overall, the qualitative performance

differences are very similar to what was found in Experiment 1,

with changes in task difficulty having a significant negative impact

on each task.

Similar to the analysis of Experiment 1, we used a hierarchical

clustering [31] on the TPR and FPR scores to group participants.

Two distinct groups were found: participant who switched

regularly between secondary tasks (n = 21, or 51%, number of

switches: Mswitch = 31.57, SDswitch = 11.57), and participants who

hardly switched at all (n = 20, or 49%, number of switches:

Mswitch = 4.05, SDswitch = 4.49). By plotting the TPR against the

FPR we visualize samples in Receiver Operating Characteristic

(ROC) space [30] as presented in Figure 5A: points closer to the

top-left corner indicate a greater adaptation to the optimal

combinations, points on the diagonal mean chance-level task

choices, and points closer to the bottom-right equal lower-than-

chance adaptation. Against expectation, the majority of the not-

switching group (n = 15, or 75% of the not-switchers) only used the

tracking task (bottom left corner), which is an inversion of the tone-

counting preference (top right corner) found in Experiment 1. Of

the participants that switched, those clustered around the middle

of the diagonal showed a random switching pattern (n = 6, or 40%

of the switchers). The remaining switchers are in the top left

Table 2. Summary of mixed-effects model results for
Experiment 2.

Subtraction Task

Accuracy Response Times

Source b z p b t p

Type –2.30 –23.81 ,.001 2.09 36.92 ,.001

Secondary Task –1.05 –6.07 ,.001 –0.03 1.58 .113

Type x Secondary Task 0.83 7.05 ,.001 –0.04 ,1 -

Difficulty –0.53 –4.88 ,.001 0.27 3.82 ,.001

Secondary Task

Counting Accuracy Tracking Accuracy

Source b z p b z p

Type –1.10 –2.76 .005 0.18 2.14 .032

Difficulty 1.03 6.67 ,.001 –47.09 –26.27 ,.001

Type x Difficulty –0.15 ,1 - –4.28 –2.33 .020

Type = Subtraction type, difficulty = Secondary task difficulty.
doi:10.1371/journal.pone.0079583.t002
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corner, and conformed to the expected optimal choices (n = 9, or

60% of the switchers). This means that of the participants who

switched, the majority adapted their choices to the multitasking

interference, and that out of all the participants slightly over a fifth

adapted their behavior (9 out of 41, or 22%).

Figure 4. Performance results for Experiment 2. Similarly to Figure 1, averages and 95% CI are plotted and the gray volume behind the
averages is a plot of the estimated density of the data [29]. Observed averages of Experiment 1 are plotted as gray crosses. Panel A: Percentage of
incorrect columns in a subtraction problem. Panel B: Latency on solving a single subtraction column. Panel C: Percentage of time outside the circle
during the tracking trials. Panel D: Error distance of tone counting answers.
doi:10.1371/journal.pone.0079583.g004

Figure 5. Adaptation to interference for Experiment 2. Panel A: Sensitivity of each participant, grouped according to ta hierarchical clustering
of the preference data. Panel B: Change in preference over trials of the optimally switching participant group.
doi:10.1371/journal.pone.0079583.g005
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For the optimally switching participants, the preference over

time is presented in Figure 5B. Optimal switchers did not

immediately exhibit the predicted switching behavior: the

preferences are unstable during early trials. About halfway

through the experiment the secondary task preferences converged

to the predicted minimal interference combinations, giving strong

evidence that adapting behavior to multitasking interference

progresses as a learning curve. Preferences for both difficulties

start out with a bias for tracking as secondary task. This seems in

line with the not-switching participants, who also largely prefer

tracking. However, this is a departure from the counting bias

found in Experiment 1, and could be caused by the absence of the

fixed combinations block, which could influence preference before

the start of the free-choice block.

Discussion
Based on the hypothesized explanation that the penalty for

suboptimal performance was too low in Experiment 1, we

predicted that a larger proportion of participants would show

switching behavior in Experiment 2. The increased proportion of

switching participants supports this hypothesis. Furthermore, due

to the removal of the block with fixed task combinations, we

obtained a better description of changes in preference over time.

Although some participants chose the same secondary task

exclusively, it is clear that when participants are made more aware

of the increased costs of suboptimal combination of tasks, their

concurrent multitasking decisions improve. A possible explanation

why some participants never switched is the prioritization of the

subtractions: the second task becomes less relevant, and perfor-

mance on that task is largely ignored in favor of high performance

on the subtraction, even though overall performance suffers.

Prioritizing the concurrently performed task that is perceived as

most important has been observed in other research as well [32].

Furthermore, participants could have been prioritizing a single

secondary task: instead of having to learn two additional tasks,

they focused on improving their performance in either tone-

counting or tracking, ignoring the other task.

The majority of participants that focused on one secondary task

chose tracking. This is not a bad choice: tracking is optimal with

hard subtraction, and only slightly worse than tone-counting for

easy subtractions. The small difference between tracking and tone-

counting for easy subtractions might have caused a substantial

number of participants to be stuck in this sub-optimal solution. Of

the switching participants, about half eventually converge toward

task preferences that minimize interference. However, this

learning curve takes considerable time, at approximately the same

rate for both subtraction conditions.

The data of Experiment 2 imply that a fifth (9 out of 41) of

participants adapt their choices to minimize interference, and

almost half of all participants performed sub-optimally. Several

factors could have contributed to this result: for easy subtractions

the difference in performance between tone-counting and tracking

might have been too small to be noticed by the majority of

participants. Furthermore, the random-switching and not-switch-

ing behavior might also have arisen due to a lack of instruction

regarding mechanism that determined secondary task difficulty. In

Experiment 3 we investigate how these factors affect adaptation to

multitasking interference.

Experiment 3

The effects of instruction clarity and interference strength were

investigated by introducing two changes to the paradigm. First,

before the experiment the participants were informed how the

secondary task difficulty changed depending on their choices.

Second, to increase the visual interference between tracking and

easy subtraction, the easy subtraction task was visually degraded

(see Figure 6), thereby increasing the visual processing load. This

change should make the interference difference for secondary tasks

more explicit in the easy condition, while maintaining the

difference between secondary tasks in hard subtractions. We

predict that these changes will increase the proportion of

participants that switch secondary task, compared to Experiment

2.

Participants
For the final experiment 28 new participants (13 female,

Mage = 20.9, age range 17-25) were recruited. This study was

approved by the Ethical Committee Psychology of the University

of Groningen, and written informed consent was obtained for all

participants. Participants received J10 per hour for their

assistance, and all participants had normal or corrected to normal

vision.

Materials and Methods
Apart from the changes listed here, the paradigm was similar to

Experiment 2. The largest change was the visual degradation: the

font was changed from the highly legible ‘Courier’ to the more

difficult to process ‘Mlurmly’, and lines with a thickness of three

pixels were drawn across the numbers at regular intervals (Figure

6). By using the legibility measure proposed by Van Rossum [33],

we determined that the new easy subtraction text was 53% less

legible than the old text: while still readable, processing the new

easy subtraction task should take slightly longer now. In addition,

before the start of the experiment participants were instructed that

changes in difficulty were based on their history of task choices.

Finally, the main trial block was slightly shorter, as it now consisted

of 60 trials.

Figure 6. Subtraction task used in Experiment 3. The easy
subtraction was visually degraded to increase the cost of visual
attention switching when combined with tracking. In the actual
experiment all columns except the one to be solved were masked
with # marks.
doi:10.1371/journal.pone.0079583.g006
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Results
As in Experiment 2, the performance data was analyzed using a

mixed-effects model to account for the differences in the number

of observations per condition. Table 3 summarizes the results.

When comparing the results of Experiment 3 (error bars in

Figure 7) with the results of Experiment 2 (see Figure 5 for the full

data, or the crosses in Figure 7 for easy comparison), a number of

notable differences can be observed: Participants were slower at

performing the subtraction task, and easy subtraction performance

was worse due to the visual degradation we introduced. There was

an interaction between subtraction type and secondary task (b = –

0.27, z = –2.13, p = .033), as tone-counting caused a larger

accuracy loss when subtraction changes from easy to hard, whilst

subtraction combined with tracking shows the opposite pattern.

Thus, the visual degradation change seems to have had the desired

effect on the subtraction task. Furthermore, subtraction difficulty

seems to have become more similar between both types compared

to the earlier experiments. For latency, we see a main effect for

subtraction type (b = 2.17, t = 28.06, p,.001): hard subtractions

required more time than easy subtractions. There is a main effect

for secondary task (b = 1.21, t = 8.56, p,.001) as well, as tracking

leads to longer subtraction latency than tone-counting does.

However, the interaction between subtraction type and secondary

task (b = –0.53, t = 4.88, p,.001) suggests that for tracking the

latency increased less when the subtraction becomes hard when

compared to tone-counting.

Tracking shows a clear main effect of subtraction type (b = 0.60,

t = 4.79, p,0.001), as well as a main effect of secondary task

difficulty (b = –95.15, t = –23.36, p,0.001): Compared to Exper-

iment 2 difficulty was better controlled on average as instructions

regarding the changing secondary task difficulty were more clear,

but the visual degradation in the easy subtractions reduced time

available for the tracking task. Overall tone-counting performance

has improved a bit compared to Experiment 2, and clearly shows

main effects for subtraction type (b = 3.55, t = 4.66, p,0.001).

As in the first two experiments, a hierarchical clustering was

performed to identify distinct groups of behavior (Figure 8A). As

only a few participants kept selecting tracking almost all the time

(n = 3, or 11%), the changes to the paradigm seem to have had the

anticipated effect by preventing the majority of participants from

choosing suboptimal task combinations. This means that in

accordance with our prediction, most participants displayed

switching behavior (n = 25, or 89%). Almost two-thirds of the

switching participants are located in the top left corner, indicating

that they showed the predicted choice preferences (n = 16, or 64%

of the switchers), while the rest switched more or less randomly by

choosing the optimal preferences at chance level (n = 9, or 36% of

the switchers). Hence, the proportion of expected to random

switching has changed only slightly compared to Experiment 2.

Within the predicted switching group, the convergence to the

expected preference (Figure 8B) seems to occur at the same rate as

in Experiment 2. Thus, the larger interference difference between

secondary tasks in the easy subtraction condition does not seem to

have had any effect on the learning speed.

Discussion
In Experiment 3 almost all participants show switching

behavior, which is a clear difference from Experiment 2. However,

both the ratio of optimal to random switching (60% vs. 64% of

switching participants) as well as the convergence to the predicted

preferences was comparable to the results of Experiment 2. This

would imply that while the changes in the experiment promoted

switching between secondary tasks, they did not affect how

secondary task utility was influenced by the paradigm: the severity

of interference has only a small effect on adaptation of choices to

the interference. Given that the proportion of participants

switching randomly to participants switching in an optimal

manner is very similar in two experiments, this seems to be a

robust finding. This could mean that there are people who are less

sensitive to multitasking interference, or that some were simply not

motivated enough to take the effort to find optimal combinations.

However, if motivation were truly an issue, then it would be less

effortful to simply pick the same task every time instead of

reasoning about which task to pick at each trial, so it seems more

likely that the differences in interference were too subtle for the

randomly switching participants.

The rate of adaptation towards optimal combinations also

seems to suggest that utility dynamics were not affected by the

changes in the paradigm. While discovering optimal combinations

took time, the speed of learning was very similar to Experiment 2.

Thus, an increased difference in interference severity between two

selectable dual-task alternatives did not affect the rate at which

task utility changed. This could imply that the change in

interference was too subtle to cause any changes in adaptation

rate, or that the task utility for non-optimal tasks was higher at the

start of the experiment for this batch of participants. Alternatively,

it could be that some sort of evidence accumulation process, which

is independent of utility, influences how fast preferences converge

to optimal combinations.

In conclusion, as Experiment 2 and 3 are in agreement

regarding how many people adapt to multitasking interference and

how fast this adaptation occurs, we have strong evidence that a

small majority of people will adapt their choice behavior to reduce

interference between tasks, and that this adaptation has a

considerable learning curve.

General Discussion

We investigated whether people adapt their decisions to

minimize the interference found in a concurrent dual-task. We

found that most people are indeed sensitive to subtle effects of

interference. A series of three experiments show increasing levels

of choice adaptation when preference for a single secondary task is

Table 3. Summary of mixed-effects model results of
Experiment 3.

Subtraction Task

Accuracy Response Times

Source b z p b t p

Type –0.07 ,1 - 2.17 28.06 ,.001

Secondary Task –0.27 –2.13 .033 1.21 8.56 ,.001

Type x Secondary Task 0.98 9.73 ,.001 –0.53 –4.88 ,.001

Difficulty 0.17 1.52 .129 –0.06 ,1 -

Secondary Task

Counting Error Size Tracking Accuracy

Source b t p b z p

Type 3.55 4.66 ,.001 0.66 10.98 ,.001

Difficulty –0.93 –3.24 .001 –77.59 –46.14 ,.001

Type x Difficulty –0.90 –2.23 .026 –4.49 –2.91 .004

Type = Subtraction type, difficulty = Secondary task difficulty.
doi:10.1371/journal.pone.0079583.t003
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Figure 7. Performance data for Experiment 3. Averages and 95% CI are plotted and the gray volume behind the averages is a plot of the
estimated density of the underlying data [29]. Observed averages of Experiment 2 are plotted as gray crosses. Panel A: Percentage of incorrect
columns in a subtraction problem. Panel B: Latency on solving a single subtraction column. Panel C: Percentage of time outside the circle during the
tracking trials. Panel D: Error distance of tone counting answers.
doi:10.1371/journal.pone.0079583.g007

Figure 8. Adaptation to interference for Experiment 3. Panel A: Detection sensitivity for each participant group, as determined by the
hierarchical clustering. Panel B: Change in preference over time for the participants that show the predicted preferences.
doi:10.1371/journal.pone.0079583.g008
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ruled out as much as possible. However, it takes time before the

choices are fully adapted to the multitasking context: combinations

that minimize interference are not recognized immediately.

Despite our attempts to discourage a preference for a single

secondary task, some participants did not exhibit any switching

behavior. It seems that the preference for a certain task is so strong

that our manipulations are not yet sufficient to entice them to

explore other possibilities. To put this in terms of utility, there are

two possibilities why some participants do not switch: it could be

that the a priori utility of a one secondary task is so high that it

cannot be surpassed by another secondary task in the time it took

the experiments to complete. The second possibility is that for

some participants the utility for secondary tasks is simply not

affected by the manipulations of the paradigm. This could be the

case if secondary task utility was ignored in order to concentrate

on the primary subtraction task. If subtractions were prioritized in

such a way, it could be that the change in utility was ignored, or

utility was no longer affected in a meaningful way by the effects of

task interference. In our experiment we did not investigate the

effect of task prioritization on choice adaptation, so this area is left

open for further exploration.

Of all the participants that switched secondary task, some did so

randomly. The simplest explanation is that while these participants

were not able to detect what combinations have the lowest

interference, they did try to adapt to the increasing difficulty of

trials. This explanation would mean their task choices were not

based on the utility of any of the involved tasks. A more intricate

version of this account that does take task utility in account is that

it could be another possible response to prioritizing the subtraction

task: by keeping the secondary task difficulty low its impact on the

subtraction task remains small.

Prioritizing the primary subtraction task seems to be a recurring

explanation for not adhering to the optimal switching behavior.

Even though participants were instructed to perform both tasks

equally well, the constant presence of subtractions might have

created a subconscious bias toward that task. Unfortunately, the

current work offers no way to infer the subtraction priority for

individual participants. Establishing the effect of priority on

secondary task preference would be a valuable addition that

supplements the current work, and therefore and interesting topic

for further investigation.

Alongside task priority, the learning rate of optimal combina-

tions also leads to new questions. Surprisingly, increasing the

difference in inference between competing combinations did not

show an effect on learning rate. From a utility standpoint this is

suboptimal: A greater difference in interference should result in a

greater difference in reward for either choice, with the reward of

the better choice being higher. This should lead to the utility of the

corresponding task to increase more rapidly, and as such the

preference for that task should increase faster as well. As of yet, the

cause of the static learning rate is still an open issue.

Finally, it is important to highlight one difference with everyday

multitasking. While participants had some freedom in task choices,

the choice of whether or not to multitask was fixed: participants

could not choose to perform just one task. As such, our findings are

only relevant to situations where multitasking is strongly promoted

or required. More generalizable conclusions about adaptation to

interference would require a paradigm where one of the options

available to the participants is to focus solely on a single task.

In conclusion, it seems that people are in principle able to make

correct judgments about the costs of multitasking, although it

might take some time and experience. Thus, the adage stating that

people are poor at multitasking might need to be amended.

Authors’ Notes
Data collected from the experiments can be obtained from the

corresponding author.

Author Contributions

Conceived and designed the experiments: MN NT AB HvR. Performed

the experiments: MN AB. Analyzed the data: MN AB NT JB HvR. Wrote

the paper: MN. Reviewed manuscript: NT HvR JB.

References

1. Junco R, Cotten SR (2012) No A 4 U: The relationship between multitasking

and academic performance. Computers & Education 59: 505–514. doi:10.1016/

j.compedu.2011.12.023.

2. Mark G, Gonzalez V (2005) No task left behind? Examining the nature of

fragmented work. CHI ’05 Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. pp. 321–330.

3. Lesch MF, Hancock PA (2004) Driving performance during concurrent cell-

phone use: are drivers aware of their performance decrements? Accident;

analysis and prevention 36: 471–480. doi:10.1016/S0001-4575(03)00042-3.

4. Salvucci D, Macuga K (2002) Predicting the effects of cellular-phone dialing on

driver performance. Cognitive Systems Research 3: 1–19.

5. Strayer DL, Johnston W (2001) Driven to distraction: dual-task studies of

simulated driving and conversing on a cellular telephone. Psychological Science

12: 462–466.

6. Horrey WJ, Wickens CD (2006) Examining the Impact of Cell Phone

Conversations on Driving Using Meta-Analytic Techniques. Human Factors:

The Journal of the Human Factors and Ergonomics Society 48: 196–205.

doi:10.1518/001872006776412135.

7. Green AL, Helton WS (2011) Dual-task performance during a climbing traverse.

Experimental Brain Research 215: 307–313. doi:10.1007/s00221-011-2898-2.

8. Sanbonmatsu DM, Strayer DL, Medeiros-Ward N, Watson JM (2013) Who

multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability,

impulsivity, and sensation seeking. PloS one 8: e54402. doi:10.1371/journal.-

pone.0054402.

9. Rescorla R, Wagner A (1972) A theory of Pavlovian conditioning: Variations in

the effectiveness of reinforcement and nonreinforcement. Classical conditioning

II: Current research and theory. pp. 64–99.

10. Kushleyeva Y, Salvucci DD, Lee FJ (2005) Deciding when to switch tasks in

time-critical multitasking. Cognitive Systems Research 6: 41–49. doi:10.1016/

j.cogsys.2004.09.005.

11. Salvucci DD, Bogunovich P (2010) Multitasking and monotasking: the effects of

mental workload on deferred task interruptions. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems: CHI 10: 85–88.

12. Brumby D, Davies S, Janssen C, Grace J (2011) Fast or safe?: how performance

objectives determine modality output choices while interacting on the move.

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI’11. pp. 473–482.

13. Pashler H (1994) Dual-task interference in simple tasks: data and theory.

Psychological bulletin 116: 220–244.

14. Borst J, Taatgen NA, Van Rijn H (2010) The problem state: a cognitive

bottleneck in multitasking. Journal of Experimental Psychology Learning,

Memory, and Cognition 36: 363–382. doi:10.1037/a0018106.

15. Bratzke D, Rolke B, Ulrich R (2009) The source of execution-related dual-task

interference: Motor bottleneck or response monitoring? Journal of Experimental

Psychology: Human Perception and Performance 35: 1413–1426.

16. Marti S, Sigman M, Dehaene S (2012) A shared cortical bottleneck underlying

Attentional Blink and Psychological Refractory Period. NeuroImage 59: 2883–

2898. doi:10.1016/j.neuroimage.2011.09.063.

17. Navon D, Gopher D (1979) On the economy of the human-processing system.

Psychological review 86: 254–284.

18. Wickens C (2002) Multiple resources and performance prediction. Theoretical

issues in ergonomics science 3: 159–177.

19. Meyer D, Kieras D (1997) A computational theory of executive cognitive

processes and multiple-task performance: part 2. Accounts of psychological

refractory-period phenomena. Psychological review: 1109–1120.

20. Salvucci DD, Taatgen NA (2008) Threaded cognition: an integrated theory of

concurrent multitasking. Psychological Review 115: 101–130. doi:10.1037/

0033-295X.115.1.101.

21. Taatgen NA, Juvina I, Schipper M, Borst JP, Martens S (2009) Too much

control can hurt: a threaded cognition model of the attentional blink. Cognitive

psychology 59: 1–29. doi:10.1016/j.cogpsych.2008.12.002.

Concurrent Multitasking Decisions

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e79583



22. Salvucci DD, Taatgen NA (2011) The multitasking mind. New York: Oxford

University Press.
23. Sigman M, Dehaene S (2008) Brain mechanisms of serial and parallel processing

during dual-task performance. The Journal of neuroscience 28: 7585–7598.

doi:10.1523/JNEUROSCI.0948-08.2008.
24. Oberauer K (2002) Access to information in working memory: Exploring the

focus of attention. Journal of Experimental Psychology: Learning, Memory, and
Cognition 28: 411–421.

25. Anderson JR (2007) How can the human mind occur in the physical universe?

USA: Oxford University Press.
26. Borst J, Buwalda T, Van Rijn H, Taatgen N (n.d.) Avoiding the problem state

bottleneck by strategic use of the environment. Acta Psychologica.
27. Salvucci D, Taatgen N, Borst J (2009) Toward a unified theory of the

multitasking continuum: from concurrent performance to task switching,
interruption, and resumption. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems: CHI 2009: 1819–1828.

28. Martin-Emerson R, Wickens CD (1992) The vertical visual field and

implications for the head-up display. Human Factors Society, Annual Meeting,

36th. pp. 1409–1412.

29. Borst J, Taatgen NA, Stocco A, Van Rijn H (2010) The neural correlates of

problem states: testing fMRI predictions of a computational model of

multitasking. PloS ONE 5: e12966. doi:10.1371/journal.pone.0012966.

30. Green DM, Swets JA (1966) Signal detection theory and psychophysics. John

Wiley and Sons Inc.

31. Ward J (1963) Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association 58: 236–244.

32. Janssen CP, Brumby DP, Rae G (2012) Natural break points: the influence of

priorities and cognitive and motor cues on dual-task interleaving. Journal of

Cognitive Engineering and Decision Making 6: 5–29. doi:10.1177/

1555343411432339.

33. Van Rossum MCW (1997) A new test of legibility. Quaerendo 27: 141–147.

Concurrent Multitasking Decisions

PLOS ONE | www.plosone.org 12 November 2013 | Volume 8 | Issue 11 | e79583


