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ABSTRACT

We demonstrate the existence of a distribution function that can be used to represent spherical mass-less cored stellar systems having
constant mildly tangential velocity anisotropy embedded in cuspy dark-matter halos. In particular, we derived analytically the func-
tional form of the distribution function for a Plummer stellar sphere in a Hernquist dark halo for β0 = −0.5 and for different degrees of
embedding. This particular example satisfies the condition that the central logarithmic slope of the light profile γ0 > 2β0. Our models
have velocity dispersion profiles similar to those observed in nearby dwarf spheroidal galaxies. Hence they can be used to generate
initial conditions for a variety of problems, including N-body simulations that may represent dwarf galaxies in the Local Group.

Key words. galaxies: dwarf – galaxies: kinematics and dynamics

1. Introduction

In the concordanceΛCDM cosmological model, galaxies are ex-
pected to be embedded in massive dark-matter halos. Recently,
much emphasis has been placed on measuring and modeling the
internal dynamics of dwarf spheroidal galaxies (dSph) because
these systems have very high mass-to-light ratios and appear to
be dark-matter dominated at all radii (see the recent reviews by
Walker 2013; Battaglia et al. 2013). Particular emphasis has been
placed on establishing the characteristics of the host dark-matter
halos and on determining whether their properties are consistent
with those expected in the context of the ΛCDM model (Stoehr
et al. 2002; Strigari et al. 2010). More specifically, it is an open
question whether the dSph satellites of the Milky Way could be
embedded in density profiles that are centrally cusped such as
the NFW profile (Navarro et al. 1996).

Much of this modeling work has been carried out using
the Jeans equations in the spherical limit (e.g., Łokas 2001,
2009; Koch et al. 2007; Walker et al. 2007, 2009; Richardson
& Fairbairn 2013). The general goal has been to constrain the
dark-matter content (i.e., to estimate the characteristic parame-
ters of given density profiles) by fitting the observed l.o.s. ve-
locity distributions, and more specifically, the second and fourth
moments, i.e., the dispersion and kurtosis profiles. In Jeans mod-
eling the functional form of the velocity anisotropy needs to
be specified. A fundamental limitation of this approach is that
the existence of a distribution function is not guaranteed, once
a solution has been found. Specifically, it is not certain that a
distribution function that is positive everywhere (i.e., that it is
physical) will exist.

Partly circumventing this problem, Wilkinson et al. (2002)
introduced a family of parametric distribution functions that may
be used to represent spherical stellar systems with anisotropic
velocity ellipsoids embedded in cored dark-matter halos. More
recently, the application of the Schwarzschild modeling tech-
nique to dSph has allowed considerating more general density
profiles (e.g., Jardel & Gebhardt 2012; Breddels et al. 2013;
Jardel et al. 2013; Breddels & Helmi 2013). In this approach the

distribution functions are obtained in a numerical fashion, and
by construction, they are positive everywhere. However, these
distribution functions have not been given in analytic form, and
it may not even be plausible to find a simple expression in the
most general circumstances.

The An & Evans (2009) theorem provides an important con-
straint regarding distribution functions that may be associated to
dSph. This theorem states that a system with a nonzero and fi-
nite central radial velocity dispersion must satisfy that the central
value of the logarithmic slope of the stellar density profile γ0 and
the central velocity anisotropy β0 are related through γ0 = 2β0.
This implies that if the light profile is perfectly cored, as is often
assumed, that is γ0 = 0, the velocity ellipsoid must be isotropic,
independently of the dark-matter halo profile (which should be
shallower than the singular isothermal sphere). However, if the
system is cold at the center, that is σr,0 = 0, the only constraint is
that γ0 > 2β0, which for cored stellar profiles is satisfied by tan-
gentially anisotropic ellipsoids (Ciotti & Morganti 2010). Since
these conditions refer to the intrinsic velocity dispersion, they
do not impose strong constraints on the line-of-sight velocity
dispersion (σlos), which is the observable, and one may obtain
flat σlos profiles even if the system is intrinsically cold at the
center.

Given the extensive modeling performed assuming cuspy
dark-matter halos and cored stellar profiles, the natural question
arises whether physical distribution functions that can reproduce
the properties of dSph exist in such cases. For example, Evans
et al. (2009) have shown that for a stellar Plummer profile with
an isotropic velocity ellipsoid and a strictly constant velocity dis-
persion profile, the dark-matter must follow a cored isothermal
sphere. We show here that this particular result cannot be gen-
eralized, and that (tracer) cored light distributions can exist in
equilibrium in cuspy dark-matter halos, once the condition of
constant velocity dispersion is relaxed.

In this letter, we present a distribution function that repre-
sents a mass-less stellar system having a constant anisotropy
β = −1/2 following a Plummer profile embedded in a Hernquist
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dark-matter halo. We focus on this particular example because
it is mathematically easy to manipulate, but also because it is
observationally sound. The surface brightness profiles of dSph
are well-fitted by Plummer models (Irwin & Hatzidimitriou
1995), and the velocity ellipsoids derived from Schwarzschild
models have radially constant, if slightly negative, anisotropies
(Breddels & Helmi 2013). Therefore, models such as that pre-
sented below can be used, for example, to generate initial condi-
tions for an N-body simulation of a dwarf galaxy resembling a
dSph satellite of the Milky Way.

2. Methods

2.1. Generalities

The distribution function of a spherical system in equilib-
rium can depend on energy E, and if the velocity ellipsoid
is anisotropic, also on angular momentum L: f (E, L). It can
be shown that when the distribution function takes the form
f (E, L) = f1(E)L−2β, with β = const., this β is the constant ve-
locity anisotropy of the system.

The functional form of the energy part of the distribution
function can be determined through an Abel equation, as out-
lined in Sect. 4.3.2 of Binney & Tremaine (2008). In that case
(see their Eq. (4.67)), we may derive f1(E) from

Cβ
d

dΨ

(
r2βν

)
=

(
1
2
− β

) ∫ Ψ

0
dε

f1(ε)
(Ψ − ε)β+1/2

, (1)

where ν(r) is the density,Ψ(r) = −Φ(r)+Φ0 is the relative grav-
itational potential, ε = −E = Ψ(r) − 1/2v2 is the relative energy,
and Cβ is a constant. This equation is valid for −1/2 < β < 1/2,
and might be inverted using the Abel integral to obtain an ana-
lytic expression for f1(ε). For β = −1, an additional derivative is
needed to reach the Abel integral equation form, but the distri-
bution function may also be derived, now from

f1(ε) = C′β=−1

∫ ε

0

dΨ

(ε −Ψ)1/2

d3
(
ν/r2

)
dΨ3

· (2)

These expressions are completely general, but for gravitational
potentials Ψ(r) of simple mathematical form it is possible to in-
vert and obtain r as function of Ψ, and to easily compute all
corresponding derivatives.

The case of β = −1/2 is particularly simple and yields (see
Eq. (4.71) of Binney & Tremaine 2008)

f1(ε) =
1

2π2

d2(ν/r)
dΨ2

⌋
Ψ=ε

· (3)

If the system were self-consistent, the density and the potential
would be related through the Poisson equation (see, e.g., Baes
& Dejonghe 2002). However, in the case of dSph, the gravita-
tional potential is largely determined by the dark-matter, and the
stars may simply be considered as tracers. In this case, the above
equations are still valid, but the density is that of the stars ν∗(r),
while we may assume the potential to be that of the dark-matter
only. A priori, there is no guarantee that the integral in Eq. (2)
will converge for example, and that a physical solution, that is,
a positive distribution function leading to a stable system, will
exist for every combination of ν∗(r) and Ψ(r).

The case of β = +1/2 is also mathematically simple (see
Sect. 4.3.2 of Binney & Tremaine 2008), but for cored profiles
the An & Evans (2009) theorem tells us that the resulting distri-
bution function will be un-physical (it will have negative values),
and therefore we did not consider this case in this work.
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Fig. 1. Energy part of the distribution function for a Plummer stellar
sphere of scale a embedded in a Hernquist dark-matter halo of mass M
and scale b, with constant velocity anisotropy β = −1/2, as given by
Eq. (7). The various lines correspond to different degrees of embed-
ding α = a/b of the stars in the (same) dark-matter halo, α = 0.01
(solid), 0.1 (dashed) and 1 (dotted).

2.2. Plummer stellar sphere in a Hernquist dark halo,
β = −1/2

For mathematical convenience we assumed that the gravitational
potential is given by the Hernquist model (Hernquist 1990), and
as explained above, it is meant to describe the (dominant) con-
tribution of the dark-matter. Although this model is not cosmo-
logically motivated, its density profile has the same r−1 limiting
behavior in the inner regions as the NFW model. On the other
hand, it has a finite mass M, and a steeper fall-off at large radii
(as r−4 instead of r−3). This is also why it is often used in the lit-
erature to set up N-body simulations. The gravitational potential
for the Hernquist model is

Ψ(r) = Ψ0
1

1 + r/b
, (4)

where b is the scale radius, and Ψ0 = GM/b. For the stars we
assumed a Plummer profile

ν∗(r) =
3

4πa3

1
(1 + r2/a2)5/2

, (5)

where a is the Plummer scale length. Note that there are two
characteristic length scales in the problem, namely a and b, and
we related these using the dimensionless parameter α = a/b, and
we expect that in general α ≤ 1 (i.e., that the stars are more con-
centrated than the dark-matter halo in which they are embedded).

Using Eq. (4), we may thus express r = r(Ψ) for the
Hernquist profile as

r = b
1 − Ψ̃
Ψ̃
, Ψ̃ = Ψ/Ψ0. (6)

The energy part of the distribution function f1(ε) may now be
computed explicitly from Eq. (3) using Eqs. (5) and (6), and after
taking the corresponding derivatives, we find

f1(ε) =
3

8π3(GMa)2

α4 ε̃4

(1 − ε̃)3(1 − 2ε̃ + (1 + α2)ε̃2)9/2
p(ε̃), (7)

where ε̃ = ε/Ψ0, 0 ≤ ε̃ ≤ 1, and p(ε̃) is the following
polynomial:

p(ε̃) = 30 − 108ε̃ +
(
132 − 5α2

)
ε̃2 + 24

(
−2 + α2

)
ε̃3

− 3
(
6 + 11α2

)
ε̃4 + 2

(
6 + 7α2 + α4

)
ε̃5. (8)
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Fig. 2. Velocity dispersion profiles associated to the distribution function presented in Fig. 1 for different degrees of embedding, namely α =
a/b = 0.01, 0.1, and 1 from top to bottom. Left column: intrinsic radial (solid) and tangential (dashed) velocity dispersions as a function of radial
distance r/a. Right column: corresponding line-of-sight velocity dispersions as a function of projected distance R/a. The resulting σlos profiles are
relatively flat, especially for small α, i.e., 0.01 and 0.1, and reach a finite value at the center. In general, the curves bear a good resemblance to the
observed velocity dispersion profiles of stars in dSph satellites of the Milky Way, as determined in, e.g., Walker et al. (2009).

Figure 1 shows the functional form of the distribution func-
tion f1(ε) for different values of α, namely α = 0.01, 0.1 and 1,
that is, for different degrees of embedding of the stars in the
dark-matter halo. The distribution function is well-behaved, it is
continuous and positive everywhere and has a positive slope, in-
dicating that it is stable to radial modes (see Sect. 5.5 of Binney
& Tremaine 2008).

We have checked that the density profile obtained by inte-
grating this distribution function over velocity space returns the
Plummer functional form. The left column of Fig. 2 shows the
velocity dispersion profiles in the radial (solid) and tangential
(dashed) directions for different values of α and makes explicit
the dependence of the internal kinematics on the degree of em-
bedding of the stars in the dark halo. For small α (top and mid-
dle left panels) the velocity dispersion profile is relatively flat
for r > 0.1r/a. Since the properties of the halo are fixed by the
mass M and the scale b, we note that the velocity dispersion has
a smaller amplitude for smaller values of α, as expected.

In the right column of Fig. 2 we have plotted the resulting
l.o.s. velocity dispersion profiles for the different values of α

explored. It shows that these profiles are relatively flat with a
projected radius over the range 0 < R/a < 2, which is similar
to that probed by the observations of the kinematics of stars in
the dSph satellites of the Milky Way. If we set M = 109 M�
and b = 2.5 kpc, the system with α = 0.01 (top panels)
would have a velocity dispersion of ∼2 km s−1 and a ∼ 25 pc.
On the other hand, if α = 0.1 (middle panels), a = 250 pc,
and σlos ∼ 6.3 km s−1 at the center. This case could represent
systems such as Carina, Sextans, or Ursa Minor dSph for exam-
ple. A more massive halo would probably be required if the aim
were to represent systems such as Sculptor or Fornax, as this
would allow a better match with the central value of σlos.

3. Conclusions

By example, we have demonstrated that a mass-less Plummer
stellar system embedded in a Hernquist dark-matter halo con-
stitutes a plausible physical configuration. We explicitly de-
rived the form of the distribution function for a tangential
anisotropy β = −1/2 and for different degrees of embedding
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of the stars, as quantified by the ratio of the scale length pa-
rameter α = a/b. This distribution function is positive for the
values of α = 0.01 − 1 and also leads to a system that is stable
to radial modes, as ∂ f /∂ε > 0. The line-of-sight velocity dis-
persion profiles characteristic of this family of distribution func-
tions resemble those observed for dSph and hence can be used
to represent these systems. They satisfy the An & Evans (2009)
theorem, namely that γ0 > 2β0, but clearly not the equality con-
dition. We also explored the β = −1 case and found an analytic
physical solution here as well, though this is more cumbersome
mathematically and hence not presented here.
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