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Abstract

We construct a supersymmetric extension of three-dimensional Newton–Cartan

gravity by gauging a super-Bargmann algebra. In order to obtain a non-trivial

supersymmetric extension of the Bargmann algebra one needs at least two

supersymmetries leading to a N = 2 super-Bargmann algebra. Due to the fact

that there is a universal Newtonian time, only one of the two supersymmetries

can be gauged. The other supersymmetry is realized as a fermionic Stueckelberg

symmetry and only survives as a global supersymmetry. We explicitly show

how, in the frame of aGalilean observer, the system reduces to a supersymmetric

extension of the Newton potential. The corresponding supersymmetry rules

can only be defined, provided we also introduce a ‘dual Newton potential’. We

comment on the four-dimensional case.

PACS numbers: 04.90.+e, 11.30.Pb, 04.65.+e

1. Introduction

It is known that non-relativistic Newtonian gravity can be reformulated in a geometric way,

invariant under general coordinate transformations, thus mimicking General Relativity. This

reformulation is known as Newton–Cartan theory [1, 2]. By (partially) gauge fixing general

coordinate transformations, non-geometric formulations can be obtained. The extreme case

is the one in which one gauge fixes such that one only retains the Galilei symmetries,

corresponding to a description in free-falling frames, in which there is no gravitational force.

A less extreme case is obtained by gauge fixing such that one not only considers free-

falling frames, but also includes frames that are accelerated, with an arbitrary time-dependent

acceleration, with respect to a free-falling frame. The observers in such a frame are called

‘Galilean observers’ [3, 4] and the corresponding formulation of non-relativistic gravity is
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called ‘Galilean gravity’4. In such a frame, the gravitational force is described by the Newton

potential8. Such frames are related to each other by the so-called acceleration extendedGalilei

symmetries, consisting of an extension of the Galilei symmetries in which constant spatial

translations become time-dependent ones5. In this paper, we will construct a supersymmetric

version of both Newton–Cartan gravity, as well as Galilean gravity, and show how they are

related via a partial gauge fixing.

In a previous work, some of the present authors showed how four-dimensional (4D)

Newton–Cartan gravity can be obtained by gauging the Bargmann algebra6 which is a central

extension of the Galilei algebra [8]. An important step in this gauging procedure is the

imposition of a set of constraints on the curvatures corresponding to the algebra [9]. The

purpose of these constraints is to convert the abstract time and space translations of the

Bargmann algebra into general coordinate transformations. In the relativistic case, i.e. when

gauging the Poincaré algebra, one imposes that the torsion, i.e. the curvature corresponding to

the space-time translations, vanishes:

Rµν
a(P) = 0, µ, a = 0, 1, 2, 3. (1.1)

These constraints are called conventional constraints. The same set of constraints serves

another purpose: it can be used to solve for the spin-connection fields corresponding to the

Lorentz transformations in terms of the other gauge fields. This is different from the non-

relativistic case where setting the curvature corresponding to time translations equal to zero is

a true constraint:

Rµν (H) = ∂µτν − ∂ντµ = 0. (1.2)

This constraint cannot be used to solve for any spin connection. Instead, it allows us to write

the temporal Vierbein τµ as

τµ(xν ) = ∂µτ (xν ) (1.3)

for an arbitrary scalar function τ (xν ). One can use the time reparametrizations to choose this

function equal to the absolute time which foliates the Newtonian space-time7:

τ (xν ) = x∅ ≡ t, τµ(xν ) = δµ
∅. (1.4)

This can be viewed as a gauge condition that fixes the time reparametrizations with local

parameters ξ∅(xµ) to constant time translations8:

ξ∅(xν ) = ξ∅. (1.5)

One also imposes the conventional constraint that the curvature of the spatial translations

equals zero:

Rµν
a(P) = 0, µ = 0, 1, 2, 3; a = 1, 2, 3. (1.6)

However, this constraint by itself is not sufficient to solve for both the spin-connection fields

corresponding to the spatial translations as well as the spin-connection fields corresponding

to the boost transformations. In order to achieve that one needs to extend the Galilei algebra

to the Bargmann algebra and impose that the curvature corresponding to the central extension

vanishes as well [8]. Together with (1.6) this conventional constraint can be used to solve for

all spin-connection fields. The invariance of the non-relativistic theory under central charge

4 The case in which constant accelerations are considered, instead of time-dependent ones, leads to ordinary

Newtonian gravity, described by a time-independent Newton potential.
5 The group of acceleration-extended Galilei symmetries is also called the Milne group [5].
6 The Bargmann algebra does not contain any conformal symmetries. Non-relativistic conformal (super)algebras,

and their relation to Newton–Cartan space-time, were investigated in [6, 7].
7 We use a notation where ∅ indicates a curved µ = 0 index.
8 With the exception of sections 2.1 and 4, we will assume that any parameter, without any space-time dependence

indicated, is constant. This should be contrasted to fields where we do not always indicate the explicit space-time

dependence.
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transformations corresponds to particle number conservation which is indeed a non-relativistic

property.

It is the purpose of this work to extend the construction of [8] to the supersymmetric case

by gauging a supersymmetric extension of the Bargmann algebra. A N = 1 supersymmetric

extension of the Bargmann algebra was considered in [10]. According to this algebra, the anti-

commutator of two supercharges leads to a central charge transformation. We are however

primarily interested in a non-trivial supersymmetric extension in which the anti-commutator of

the fermionic generators contains the generators corresponding to time and space translations.

It turns out that this can only be achieved provided we consider a N = 2 supersymmetric

extension of the Bargmann algebra [11]. The analysis of [11] also leads to a realization of this

algebra, as global symmetries, on the embedding coordinates of a non-relativistic superparticle

propagating in a flat Newtonian space-time.

For technical reasons explained below, we consider from now on only the three-

dimensional (3D) case. 3D gravity is interesting by itself, both relativistically as well as

non-relativistically. Although the relativistic theory does not have any local degrees of freedom

and there is no interaction between static sources, moving particles can still exhibit non-trivial

scattering [12]. In contrast, in the non-relativistic Newtonian theory, there is an attractive

gravitational Newton force that goes as the inverse of the distance between point masses.

This theory can thus not be viewed as a non-relativistic limit of General Relativity. Indeed,

in the latter, there is no attractive force between static sources, while Newton gravity does

exhibit such a gravitational attraction. Coming back to the supersymmetric extensions of non-

relativistic gravity, we note that supersymmetric extensions of the 3D Bargmann algebra were

considered in [13].

When gauging the N = 2 super-Bargmann algebra, one must at some point impose that

the super-covariant extension of the bosonic curvature Rµν (H) equals zero:

R̂µν (H) = 0. (1.7)

This is the supersymmetric generalization of the constraint (1.2). We find that under

supersymmetry this constraint leads to another constraint that sets the super-covariant curvature

corresponding to one of the two gravitini, ψµ+, equal to zero:

ψ̂µν+ = 0. (1.8)

In the same way that the time reparametrizations, up to constant time translations, can be

used to fix the temporal dreibein according to (1.4), one may now use one of the two local

supersymmetries, with arbitrary fermionic parameters ε+(xµ), to set the ψµ+ gravitini equal
to zero:

ψµ+ = 0. (1.9)

This gauge choice fixes the local ε+-supersymmetry to constant ones:

ε+(xµ) = ε+. (1.10)

The remaining supersymmetry, with parameters ε−(xν ) can be non-trivially gauged. Only the

commutator of a constant and a gauged supersymmetry leads to a (local) spatial translation.

We find that the commutator of two constant supersymmetries leads to a (constant) time

translation while the commutator of two gauged supersymmetries leads to a (local) central

charge transformation. It turns out that one can only truncate away the global but not the

local supersymmetry. This explains why we need at least two supersymmetries to obtain a

non-trivial supersymmetry algebra where the commutator of two supersymmetries gives a

translation.
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The above paragraph refers to a so-called full gauging, in which all symmetries are

gauged. This leads to a geometric description of Newtonian supergravity, that uses a temporal

and spatial dreibein and is invariant under arbitrary general coordinate transformations.

This theory can appropriately be called ‘Newton–Cartan supergravity’. The case in which

we consider a description that is only invariant under the acceleration extended Galilei

symmetries, is obtained by a ‘medium gauging’ and the corresponding supergravity theory

can be called ‘Galilean supergravity’. In this work, we will obtain the medium gauging

from the fully gauged Newton–Cartan supergravity by a partial gauge fixing9. The Galilean

supergravity we thus obtain, contains a field, corresponding to the Newton potential, as well as

a fermionic superpartner. The Newton potential of Galilean supergravity replaces the temporal

and spatial dreibeins of Newton–Cartan supergravity. We find that, in order to write down

the supersymmetry transformation rules, we also have to introduce a ‘dual Newton potential’.

The Newton potential and its dual can be seen as real and imaginary parts of a meromorphic

function, whose singularities indicate the positions of added point-like sources.

All the above arguments are equally valid when gauging the 4D N = 2 super-Bargmann

algebra. However, in the 4D case we are dealing with the additional complication that in the

relativistic case the algebra can only be closed provided we introduce more fields than the

gauge fields associated to each of the generators of the algebra. To be precise, the N = 2

super-Poincaré algebra requires besides the usual gauge fields the introduction of an extra

Abelian gauge field. In the non-relativistic case, one would expect that, similarly, extra fields

are needed to close the algebra. We have performed the 4D gauging procedure and verified

that it is not enough to introduce a single Abelian vector field in the non-relativistic case. More

fields are needed and that is what makes the 4D case more complicated. In the conclusions we

will comment on this issue.

This work is organized as follows. As a warming-up exercise, we will first review in

section 2 the gauging, leading to Newton–Cartan gravity, and subsequent gauge fixing, leading

to Galilean gravity, in the bosonic case. In section 3 we present the 3DN = 2 super-Bargmann

algebra. In section 4 we perform the gauging of this algebra, following the procedure outlined

for the bosonic case in [8] and reviewed in section 2. We explicitly perform the gauge fixing

that brings us to the frame of a Galilean observer in section 5 and show how the Newton–Cartan

supergravity theory reduces to a Galilean supergravity theory in terms of a Newton potential

and its supersymmetric partner. We present our conclusions in section 6. The notation and

conventions we use in this work are presented in a separate appendix.

2. Newton–Cartan and Galilean gravity

In this section, we will show how the Newton–Cartan theory can be obtained by gauging the

Bargmann algebra and how subsequently Galilean gravity can be obtained by partial gauge

fixing.

2.1. Newton–Cartan gravity

Our starting point is the Bargmann algebra which is a central extension of the Galilei algebra:

[Jab, Pc] = −2δc[aPb], [Jab, Gc] = −2δc[aGb],

[Ga, H] = −Pa, [Ga, Pb] = −δabZ, a = 1, 2. (2.1)

9 The full gauging corresponding to Newton–Cartan gravity and the medium gauging leading to Galilean gravity

have been discussed in [14].

4



Class. Quantum Grav. 30 (2013) 205005 R Andringa et al

Table 1. This table indicates the generators of the Bargmann algebra and the gauge fields, local

parameters and curvatures that are associated to each of these generators.

Symmetry Generators Gauge field Parameters Curvatures

Time translations H τµ ζ (xν ) Rµν (H)

Space translations Pa eµ
a ζ a(xν ) Rµν

a(P)

Boosts Ga ωµ
a λa(xν ) Rµν

a(G)

Spatial rotations Jab ωµ
ab λab(xν ) Rµν

ab(J)

Central charge transf. Z mµ σ (xν ) Rµν (Z)

For simplicity, we consider the 3D case only. Without much change, the gauging procedure we

describe below also works in 4D. In table 1 we have indicated the symmetries, gauge fields,

local parameters and curvatures that one associates to each of the generators.

According to theBargmann algebra (2.1) the gauge fields transformunder spatial rotations,

boosts and central charge transformations as follows10:

δτµ = 0,

δeµ
a = λa

beµ
b + λaτµ,

δωµ
ab = ∂µλab + 2λc[aωµ

b]
c, (2.2)

δωµ
a = ∂µλa − λbωµ

a
b + λabωµb,

δmµ = ∂µσ + λaeµa.

The following curvatures transform covariantly under these transformations:

Rµν (H) = 2∂[µτν],

Rµν
a(P) = 2∂[µeν]

a − 2ω[µabeν]b − 2ω[µaτν],

Rµν
a(G) = 2∂[µων]

a − 2ω[µabων]b,

Rµν
ab(J) = 2∂[µων]

ab,

Rµν (Z) = 2∂[µmν] − 2ω[µaeν]a.

We then proceed by imposing the following conventional constraints

Rµν
a(P) = 0, Rµν (Z) = 0. (2.3)

On top of this, we impose the additional constraints:

Rµν (H) = 0, Rµν
ab(J) = 0. (2.4)

The first equation defines the foliation of a Newtonian space-time. The second one is needed

to obtain Newton gravity in flat space. The constraints (2.3), together with the first constraint

of (2.4) can then be used to convert the H- and Pa-transformations, with parameters ζ (xν ) and

ζ a(xν ), of the algebra into general coordinate transformations, with parameters ξλ(xν ).

The gauge fields τµ and eµ
a can now be interpreted as the temporal and spatial dreibeins.

Their projective inverses, τµ and eµ
a, are defined as follows:

eµ
aeµ

b = δa
b, τµτµ = 1,

τµeµ
a = 0, τµeµ

a = 0, (2.5)

eµ
aeν

a = δν
µ − τµτ ν .

10 All parameters in this section, as well as in section 4, are dependent on the coordinates xµ, even when not explicitly

indicated. When we discuss the gauge fixing in later sections, we will always explicitly indicate the dependence on

the time and/or space coordinates of the various parameters.
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Using these projective inverses one can use the conventional constraints (2.3) to solve for the

spin-connections fields ωµ
ab(xν ) and ωµ

a(xν ) in terms of τµ, eµ
a and mµ:

ωµ
ab(xν ) = 2eρ[a∂[ρeµ]

b] + eµ
ceρaeνb∂[ρeν]

c − τµeρaeνb∂[ρmν], (2.6)

ωµ
a(xν ) = eνa∂[µmν] + eµ

beνaτ ρ∂[νeρ]
b + τ ν∂[µeν]

a + τµτ νeρa∂[νmρ]. (2.7)

At this point, the only non-zero curvature left is the one corresponding to the boost

transformations. Plugging the previous constraints into the Bianchi identities one finds that

the only non-zero components of the boost curvature are given by

R0(a,b)(G) 6= 0. (2.8)

The dynamical equation defining Newton–Cartan gravity is given by the trace of the above

expression:

R0a,a(G) = 0. (2.9)

These equations of motion are invariant under general coordinate transformations, local

boosts, local spatial rotations and local central charge transformations, with parameters

ξλ(xµ), λa(xµ), λab(xµ) and σ (xµ), respectively.

2.2. Galilean gravity

To obtain Galilean gravity, described in terms of a Newton potential 8(xµ), we perform a

partial gauge fixing of the Newton–Cartan theory. We now describe the details of this partial

gauge fixing. First, we solve the constraints (2.4) by imposing the gauge fixing conditions

τµ(xν ) = δµ
∅, ωµ

ab(xν ) = 0. (2.10)

This fixes the local time translations and spatial rotations to constant transformations:

ξ∅(xν ) = ξ∅, λab(xν ) = λab. (2.11)

No compensating transformations are induced by these gauge fixings. Next, we gauge fix the

spatial dependence of the spatial translations by imposing the gauge fixing condition

ei
a(xν ) = δi

a. (2.12)

Requiring δei
a = 0 leads to the condition

ξ a(xν ) = ξ a(t) − λaix
i. (2.13)

The solution (2.13) for the spatial dependence of the spatial translation parameters expresses

the fact that, after imposing the gauge fixing condition (2.12), the i index should be treated

as an a index and therefore only feels the constant spatial rotations. Note that after imposing

the gauge fixing (2.12) space is flat and we do not distinguish anymore between the i and a

indices and upper and down indices.

At this stage the independent temporal and spatial dreibein components and their projective

inverses are given by11

τµ(xν ) = δµ
∅, eµ

a(xν ) = (−τ a(xν ), δi
a),

τµ(xν ) = (1, τ a(xν )), eµ
a(x

ν ) = (0, δi
a), (2.14)

where the τ a(xν ) are the only non-constant dreibein components left. The only other

independent gauge field left is the central charge gauge field mµ(xν ). Taking into account

11 Remember that τ i = τ aδi
a and that we do not distinguish between τ i and τ a anymore.
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the compensating gauge transformation given in (2.13) we find that the remaining fields

τ a(xν ), m∅(xν ) and mi(x
ν ) transform as follows:

δτ a(xν ) = λa
bτ

b(xν ) − λc
dxd∂cτ

a(xν ) + ξ∅∂∅τ
a(xν ) + ξ j(t)∂ jτ

a(xν ) − ξ̇ a(t) − λa(xν ),

(2.15)

δmi(x
ν ) = ξ∅∂∅mi(x

ν ) + ξ j(t)∂ jmi(x
ν ) + λi

jm j(x
ν ) − λ j

kxk∂ jmi(x
ν ) + λi(x

ν ) + ∂iσ (xν ),

(2.16)

δm∅(x
ν ) = ξ∅∂∅m∅(x

ν ) + ξ̇ i(t)mi(x
ν ) + ξ i(t)∂im∅(x

ν ) − λi
jx

j∂im∅(x
ν )

− λa(xν )τa(x
ν ) + σ̇ (xν ). (2.17)

The three fields τ a(xν ), mi(x
ν ) and m∅(xν ) are not independent. Since the gauge field

ωµ
ab(xν )whichwe gauge fixed to zero, see equation (2.10), is dependent we need to investigate

its consequences. It turns out that the spatial part of these conditions does not lead to restrictions

on the above fields but the time component does. Using the other gauge fixing conditions as

well, we find that the gauge fixing condition ω∅ab(xν ) = 0 leads to the following restriction:

∂[iτ j](x
ν ) + ∂[im j](x

ν ) = 0. (2.18)

This implies that, locally, one can write12

τi(x
ν ) + mi(x

ν ) = ∂im(xν ). (2.19)

Without loss of generality, we can thus eliminate mi(x
ν ) for τi(x

ν ) and m(xν ), which is what

we will do in the following. The transformation rule for m(xν ) can be found from δτi(x
ν ) and

δmi(x
ν ):

δm(xν ) = ξ∅∂∅m(xν ) − ξ̇ k(t)xk + ξ j(t)∂ jm(xν ) − λ j
kxk∂ jm(xν ) + σ (xν ) + Y (t), (2.20)

whereY (t) is an arbitrary time-dependent shift. At this point we are left with three independent

fields τ i(xν ), m∅(xν ) and m(xν ) whose transformation laws are given by (2.15), (2.17), (2.20),

respectively.

From the transformation rule (2.20), we see that the central charge transformation acts as a

Stückelberg shift on the fieldm(xν ).We can thus partially fix the central charge transformations

by imposing

m(xν ) = 0. (2.21)

This fixes the central charge transformations according to

σ (xµ) = σ (t) + ξ̇ a(t)xa, (2.22)

where it is understood that we also fix Y (t) = −σ (t) in (2.20). After this gauge fixing the

transformation rules of the two independent fields τ i(xν ) and m∅(xν ) are given by:

δτ i(xν ) = λi
jτ

j(xν ) − λ j
kxk∂ jτ

i(xν ) + ξ∅∂∅τ
i(xν ) + ξ j(t)∂ jτ

i(xν ) − ξ̇ i(t) − λi(xν ),

δm∅(x
ν ) = ξ∅∂∅m∅(x

ν ) − ξ̇ i(t)τi(x
ν ) + ξ i(t)∂im∅(x

ν ) + ξ̈ k(t)xk

−λi
jx

j∂im∅(x
ν ) − λi(xν )τi(x

ν ) + σ̇ (t). (2.23)

We note that the local boost transformations, with local parameters λi(xν ), end up as a

Stueckelberg symmetry. This Stueckelberg symmetry can be fixed by imposing the final gauge

condition

τ a(xν ) = 0. (2.24)

12 Note that we freely lower and raise the i or a index on τ i here and in the following. So, τi no longer refers to the

i-components of τµ at this point.
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Table 2. This table indicates the gauge fixing conditions and corresponding compensating

transformations that lead to Galilean gravity. We have also included the restrictions that follow

from the fact that the spin-connection field ωµ
ab is dependent. At the bottom of the table we

have summarized the expressions of the non-zero remaining gauge fields in terms on the Newton

potential 8(xν ).

Gauge condition/restriction Compensating transformation

τµ(xν ) = δµ
∅ ξ∅(xν ) = ξ∅

ωµ
ab(xν ) = 0 λab(xν ) = λab

ei
a(xν ) = δi

a ξ a(xν ) = ξ a(t) − λaix
i

τi(x
ν ) + mi(x

ν ) = ∂im(xν ) –

m(xν ) = 0 σ (xν ) = σ (t) + ξ̇ a(t)xa

τ a(xν ) = 0 λi(xν ) = −ξ̇ i(t)

m∅(x
ν ) = 8(xν ) ω∅

a(xν ) = −∂a8(xν )

This leads to the following compensating transformations:

λi(xν ) = −ξ̇ i(t). (2.25)

The only independent field left now is

m∅(x
ν ) ≡ 8(xν ), (2.26)

which in a minute we will identify as the Newton potential. Using the gauge condition

(2.24) and taking into account the compensating transformations (2.25) we find that the

transformation rule of this field is given by

δ8(xν ) = ξ∅∂∅8(xν ) + ξ i(t)∂i8(xν ) + ξ̈ k(t)xk − λi
jx

j∂i8(xν ) + σ̇ (t). (2.27)

The fact that we identify the field m∅(xν ) with the Newton potential 8(xν ) is justified by

looking at the equations of motion. In terms of 8(xν ) the expressions for the only non-zero

dependent boost spin-connection field, see equation (2.7), is given by

ω∅
a(xν ) = −∂a8(xν ). (2.28)

If we now plug this expression for the boost spin-connection components into the equation of

motion (2.9) we find the expected Poisson equation for the Newton potential:

48 = ∂a∂a8 = 0. (2.29)

This equation is invariant under the acceleration extended Galilei symmetries (2.27).

The transformations (2.27) close an algebra on 8(xν ). One finds the following non-zero

commutators:

[δξ∅ , δξ i(t)]8(xν ) = δξ i(t)(−ξ∅ξ̇ i(t))8(xν ),

[δξ∅ , δσ (t)]8(xν ) = δσ (t)(−ξ∅σ̇ (t))8(xν ),

[δξ i
1(t)

, δξ i
2(t)
]8(xν ) = δσ (t)

(

ξ̇
j

1 (t)ξ
j

2 (t) − ξ̇
j

2 (t)ξ
j

1 (t)
)

8(xν ),

[δξ i(t), δλ jk ]8(xν ) = δξ i(t)(λ
i
jξ

j(t))8(xν ), (2.30)

where we have indicated the parameters of the transformations on the right-hand-side (rhs) in

the brackets. Note that in calculating the commutator on 8(xν ) we do not vary the explicit xa

that occurs in this transformation rule. This xa-dependence follows from solving a parameter,

see equation (2.22), and we do not vary the parameters of the transformations when calculating

commutators.

This finishes our review of the bosonic case. For the convenience of the reader we have

summarized all gauge conditions and resulting compensating transformations in table 2.

8
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3. The 3D N = 2 super-Bargmann algebra

A supersymmetric extension of the Bargmann algebra can be obtained by contracting the

super-Poincaré algebra with a central extension, similar to how the Bargmann algebra can

be obtained from a trivially extended Poincaré algebra. It turns out that in order to obtain

a true supersymmetric extension of the Bargmann algebra in which the anti-commutator of

two supersymmetry generators gives both a time and a space translation we need at least

two supersymmetries [11]. In this work we will consider the minimal case, i.e. N = 2

supersymmetry.

Our starting point is therefore the 3DN = 2 super-Poincaré algebrawith central extension

Z , whose non-zero commutation relations are given by

[MBC, PA] = −2ηA[BPC], [MCD, MEF ] = 4η[C[EMF]D],

[MAB, Qα] = − 1
2
[γAB]α

βQβ,
{

Qi
α, Q

j

β

}

= −[γ Aγ 0]αβPAδi j + εαβεi j
Z . (3.1)

The indices A, B, . . . = 0, 1, 2 are flat Lorentz indices, α = 1, 2 are 3D spinor indices and

i = 1, 2 count the number of supercharges. We have collected the four supercharges into two

two-component Majorana spinors Qi
α .
13

Following [13], we define the linear combinations

Q±
α ≡ Q1α ± εαβQ2β (3.2)

and apply the following rescaling, with a real parameter ω, of the generators and the central

extension:

Q−
α →

√
ωQ−

α , Q+
α → 1√

ω
Q+

α ,

Z → −ωZ + 1

ω
H, P0 → ωZ + 1

ω
H, Ma0 → ωGa. (3.3)

We furthermore rename Mab = Jab.

The non-relativistic contraction of the algebra (3.1) is now defined by taking the limit

ω → ∞. This leads to the following 3D N = 2 super-Bargmann algebra:

[Jab, Pc] = −2δc[aPb], [Jab, Gc] = −2δc[aGb],

[Ga, H] = −Pa, [Ga, Pb] = −δabZ,

[Jab, Q±] = − 1
2
γabQ±, [Ga, Q+] = − 1

2
γa0Q

−,

{Q+
α , Q+

β } = 2δαβH, {Q+
α , Q−

β } = −[γ a0]αβPa,

{Q−
α , Q−

β } = 2δαβZ. (3.4)

The bosonic part of the above algebra is the Bargmann algebra, involving the Hamiltonian

H, the spatial translations Pa, the spatial rotations Jab, the Galilean boosts Ga and the central

charge Z. Note that the bosonic Bargmann generators and the central charge, together with the

fermionic Q− generators form the following N = 1 subalgebra [10]:

[Jab, Pc] = −2δc[aPb], [Jab, Gc] = −2δc[aGb],

[Ga, H] = −Pa, [Ga, Pb] = −δabZ, (3.5)

[Jab, Q−] = − 1
2
γabQ−, {Q−

α , Q−
β } = 2δαβZ.

The same does not apply if we include the Q+ generators instead of the Q− generators.

This is due to the [G, Q] commutator, see (3.4), in which the Q+ and Q− generators occur

13We use a Majorana representation for the γ -matrices, in which the charge conjugation matrixC is given byC = γ 0.

9
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Table 3. This table indicates the generators of the N = 2 super-Bargmann algebra and the

gauge fields, local parameters and super-covariant curvatures that are associated to each of these

generators. The fermionic generators are indicated below the double horizontal line.

Symmetry Generators Gauge field Parameters Curvatures

Time translations H τµ ζ (xν ) R̂µν (H)

Space translations Pa eµ
a ζ a(xν ) R̂µν

a(P)

Boosts Ga ωµ
a λa(xν ) R̂µν

a(G)

Spatial rotations Jab ωµ
ab λab(xν ) R̂µν

ab(J)

Central charge transf. Z mµ σ (xν ) R̂µν (Z)

Two supersymmetries Q±
α ψµ± ε±(xν ) ψ̂µν±

asymmetrically. TheN = 1 sub-algebra (3.5) is not a true supersymmetry algebra in the sense

that the anti-commutator of twoQ− supersymmetries does not give a time and space translation
but a central charge transformation. Although the N = 2 supersymmetry algebra (3.4) is a

true supersymmetry algebra it is not true that every N = 2 super-algebra is necessarily a true

supersymmetry algebra.

Finally, we note that the above 3DN = 2 super-Bargmann algebra can be embedded, via

a null reduction, into a N = 1 super-Poincaré algebra [15].

4. 3D N = 2 Newton–Cartan supergravity

In this section we apply a gauging procedure to the N = 2 super-Bargmann algebra (3.4)

thereby extending the bosonic discussion of section 2 to the supersymmetric case. As a first

step in this gauging procedure we associate a gauge field to each of the symmetries of the

N = 2 super-Bargmann algebra and we promote the constant parameters describing these

transformations to arbitrary functions of the space-time coordinates {xµ}, see table 3.
The corresponding gauge-invariant curvatures, see table 3, are given by:

R̂µν (H) = 2∂[µτν] − 1
2
ψ̄[µ+γ 0ψν]+,

R̂µν
a(P) = 2∂[µeν]

a − 2ω[µabeν]b − 2ω[µaτν] − ψ̄[µ+γ aψν]−,

R̂µν
a(G) = 2∂[µων]

a − 2ω[µabων]b,

R̂µν
ab(J) = 2∂[µων]

ab,

R̂µν (Z) = 2∂[µmν] − 2ω[µaeν]a − ψ̄[µ−γ 0ψν]−,

ψ̂µν+ = 2∂[µψν]+ − 1
2
ω[µ

abγabψν]+,

ψ̂µν− = 2∂[µψν]− − 1
2
ω[µ

abγabψν]− + ω[µ
aγa0ψν]+. (4.1)

According to the N = 2 super-Bargmann algebra (3.4) the gauge fields given in table 3

transform under spatial rotations, boosts and central charge transformations as follows:

δτµ = 0,

δeµ
a = λa

beµ
b + λaτµ,

δωµ
ab = ∂µλab + 2λc[aωµ

b]
c,

δωµ
a = ∂µλa − λbωµ

a
b + λabωµb, (4.2)

δmµ = ∂µσ + λaeµa,

δψµ+ = 1
4
λabγabψµ+, δψµ− = 1

4
λabγabψµ− − 1

2
λaγa0ψµ+.

We will discuss the other transformations of the N = 2 super-Bargmann algebra below.

10
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The next step in the gauging procedure is to impose a set of constraints on the curvatures.

We first impose the following set of conventional constraints:

R̂µν
a(P) = 0, R̂µν (Z) = 0. (4.3)

These conventional constraints can be used to solve for the spin connections in terms of the

other gauge fields as follows14:

ωµ
ab = 2eρ[a

(

∂[ρeµ]
b] − 1

2
ψ̄[ρ+γ b]ψµ]−

)

+ eµ
ceρaeνb

(

∂[ρeν]
c − 1

2
ψ̄[ρ+γ cψν]−

)

−τµeρaeνb
(

∂[ρmν] − 1
2
ψ̄[ρ−γ 0ψν]−

)

, (4.4)

ωµ
a = eνa

(

∂[µmν] − 1
2
ψ̄[µ−γ 0ψν]−

)

+ eµ
beνaτ ρ

(

∂[νeρ]
b − 1

2
ψ̄[ν+γ bψρ]−

)

+τ ν
(

∂[µeν]
a − 1

2
ψ̄[µ+γ aψν]−

)

+ τµτ νeρa
(

∂[νmρ] − 1
2
ψ̄[ν−γ 0ψρ]−

)

. (4.5)

On top of this we impose the following additional constraints:

R̂µν (H) = 0, ψ̂µν+ = 0, R̂µν
ab(J) = 0. (4.6)

The first constraint defines a foliation of Newtonian space-time. As we will see below the

second constraint follows by supersymmetry from the first constraint and, similarly, the third

constraint follows from the second one. This third constraint defines flat space Newton–

Cartan supergravity. Note that, unlike in the bosonic case, this constraint is enforced upon

us by supersymmetry. The constraints (4.3), together with the first constraint of (4.6) can be

used to convert the time and space translations into general coordinate transformations, with

parameter ξµ(xν ).

The supersymmetry variation of the conventional constraints does not lead to new

constraints as they are used to determine the supersymmetry transformation rules of the now

dependent gauge fields (4.4) and (4.5). We find the following rules for these gauge fields15:

δQωµ
ab = − 1

2
ε̄+γ [aψ̂b]

µ− + 1
4
eµcε̄+γ cψ̂ab

− − 1
2
τµε̄−γ 0ψ̂ab

−

− 1
2
ε̄−γ [aψ̂b]

µ+ + 1
4
eµcε̄−γ cψ̂ab

+,

δQωµ
a = 1

2
ε̄−γ 0ψ̂µ

a
− + 1

2
τµε̄−γ 0ψ̂0

a
− + 1

4
eµbε̄+γ bψ̂a

0− + 1
4
ε̄+γ aψ̂µ0−

+ 1
4
eµbε̄−γ bψ̂a

0+ + 1
4
ε̄−γ aψ̂µ0+. (4.7)

In contrast, we must investigate the supersymmetry variations of the non-conventional

constraints (4.6). In order to do this, we must first determine the supersymmetry rules of

the independent gauge fields.

According to the super-Bargmann algebra (3.4) the supersymmetry transformations of the

independent gauge fields are given by

δQτµ = 1
2
ε̄+γ 0ψµ+,

δQeµ
a = 1

2
ε̄+γ aψµ− + 1

2
ε̄−γ aψµ+,

δQmµ = ε̄−γ 0ψµ−,

δQψµ+ = Dµε+,

δQψµ− = Dµε− + 1
2
ωµ

aγa0ε+, (4.8)

whereωµ
a is the dependent boost gauge field. The covariant derivativeDµ is only covariantized

with respect to spatial rotations. When acting on the parameters ε±, it is given by

Dµε± = ∂µε± − 1
4
ωµ

abγabε± (4.9)

in terms of the dependent connection field ωµ
ab.

14 The projective inverses τµ and eµ
a of τµ and eµ

a are defined in equation (2.5).
15 Recall that ψ̂ab = ea

µeb
ν ψ̂µν .
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At this point we have obtained the supersymmetry rules of all gauge fields, both

the dependent as well as the independent ones. We find that with these supersymmetry

transformations the supersymmetry algebra closes on-shell. To be precise, the commutator

of two supersymmetry transformations closes and is given by the following soft algebra:

[δQ(ε1), δQ(ε2)] = δg.c.t.(ξ
µ) + δJab

(λa
b) + δGa

(λa) + δQ+ (ε+) + δQ− (ε−) + δZ(σ ), (4.10)

provided the following equations hold:

γ µτ νψ̂µν− = 0, eµ
aeν

bψ̂µν− = 0. (4.11)

The first equation can be seen as an equation of motion, the second one does not contain any

time derivatives and should be viewed as a fermionic constraint. Here g.c.t. denotes a general

coordinate transformation and the field-dependent parameters are given by

ξµ = 1
2
(ε̄2+γ 0ε1+)τµ + 1

2
(ε̄2+γ aε1− + ε̄2−γ aε1+)eµ

a,

λa
b = −ξµωµ

a
b,

λa = −ξµωµ
a,

ε± = −ξµψµ±,

σ = −ξµmµ + (ε̄2−γ 0ε1−). (4.12)

We are now in a position to investigate the supersymmetry variations of the three

constraints (4.6) and of the equation of motion/constraint (4.11). One may verify that

under supersymmetry the first constraint in (4.6) transforms to the second one and that the

supersymmetry variation of the second constraint leads to the third one. This third constraint

does not lead to new constraints because the supersymmetry variation of ωµ
ab vanishes on-

shell, see equation (4.7).

Substituting the constraints into the super-Bianchi identities, it follows that the only non-

zero bosonic curvature we are left with is the boost curvature R̂µν
a(G) and we find that only

the following components are non-vanishing:

τµeν
(aR̂µν

b)(G) ≡ R̂0(a
b)(G) 6= 0. (4.13)

Using this it follows that the supersymmetry variation of the second constraint in (4.11)

does not lead to a new constraint. On the other hand, the supersymmetry variation of the

fermionic equation of motion, i.e. the first constraint in (4.11), leads to the bosonic equation of

motion

R̂0a
a(G) = 0. (4.14)

To finish the consistency check of the gauging procedure we should check whether the

supersymmetry variation of the bosonic equation of motion (4.14) does not lead to new

constraints and/or equations of motion. Instead of doing this we shall show in the next section

that after gauge fixing all constraints can be solved leading to a consistent system with a closed

algebra.

This finishes our construction of the 3D N = 2 Newton–Cartan supergravity theory.

5. 3D Galilean supergravity

In this section we will perform a partial gauge fixing of the bosonic and fermionic symmetries

to derive the Newton–Cartan supergravity theory from the Galilean observer point of view.

We will define a supersymmetric Galilean observer as one for which only a supersymmetric

extension of the acceleration extended Galilei symmetries are retained. Due to the constant

12
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time translations, this implies in particular that only half of the supersymmetries will be

gauged, see below. We closely follow the analysis given in section 2 for the bosonic case.

First, we solve the constraints (4.6) by imposing the gauge fixing conditions

τµ(xν ) = δµ
∅, ωµ

ab(xν ) = 0, ψµ+(xν ) = 0. (5.1)

This fixes the local time translations, spatial rotations and ε+ transformations to constant
transformations:

ξ∅(xν ) = ξ∅, λab(xν ) = λab, ε+(xν ) = ε+. (5.2)

No compensating transformations are induced by these gauge fixings.

We now partially gauge fix the spatial translations by imposing the gauge choice

ei
a(xν ) = δi

a. (5.3)

This gauge choice implies that wemay use from now on the expressions (2.14) for the temporal

and spatial dreibein components and their projective inverses. We will derive the required

compensating transformation below. First, using the above gauge choices and the fact that the

purely spatial components R̂i j
a(G) of the curvatures of boost transformations and the purely

spatial components ψ̂i j− of the curvature of ε− transformations are zero, for their expressions
see equation (4.1), we derive that

∂[iω j]
a = 0, ∂[iψ j]− = 0. (5.4)

The first equation we solve locally by writing

ωi
a = ∂iω

a, (5.5)

where ωa is a dependent field since ωi
a is dependent. This also explains why we have not

added a purely time-dependent piece to the rhs of the above solution.

We next partially gauge fix the ε− transformations by imposing the gauge choice

ψi−(xν ) = 0. (5.6)

This fixes the ε− transformations according to

ε−(xν ) = ε−(t) − 1
2
ωaγa0ε+. (5.7)

Given the gauge choice (5.6) the spatial translations are now fixed without the need for any

fermionic compensating transformation. Indeed, from the total variation of the gauge fixing

condition (5.3) we find:

ξ i(xν ) = ξ i(t) − λi
jx

j. (5.8)

At this point, we are left with the remaining fields τ a, mi, m∅ and ψ∅−. These fields
are not independent since the gauge field ωµ

ab which we gauge fixed to zero is dependent,

see equation (4.4). Like in the bosonic case, only the time component ω∅ab = 0 leads to a

restriction16:

∂[i(τ j] + m j])(x
ν ) = 0. (5.9)

As in the bosonic case, this implies that we can write locally:

τi(x
ν ) + mi(x

ν ) = ∂im(xν ). (5.10)

Without loss of generality we will use this equation to eliminate mi in terms of the other two

fields. The variation of m is determined by writing the variation of τi + mi as a ∂i-derivative.

16 Recall that τi = τ aδia. Note also that under supersymmetry the variation of this constraint gives ε̄+γ[i∂ j]ψ∅− = 0

which is equivalent to the fermionic equation of motion (which after gauge fixing takes the form (5.24)). Therefore,

this constraint is consistent with supersymmetry.

13
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Table 4. This table indicates the gauge fixing conditions and corresponding compensating

transformations that lead to 3D Galilean supergravity. We have also included the restrictions that

follow from the fact that the spin-connection field ωµ
ab is dependent. At the bottom of the table we

have summarized the expressions of the non-zero remaining gauge fields in terms of the Newton

potential 8(xν ) and its supersymmetric partner χ(xν ), which is related to 9(xν ) via (5.26).

Gauge condition/restriction Compensating transformation

τµ(xν ) = δµ
∅ ξ∅(xν ) = ξ∅

ωµ
ab(xν ) = 0 λa(xν ) = λab

ψµ+(xν ) = 0 ε+(xν ) = ε+
ei

a(xν ) = δi
a ξ i(xν ) = ξ i(t) − λi

jx
j

ψi−(xν ) = 0 ε−(xν ) = ε−(t) − 1
2
ωa(xν )γa0ε+

τi(x
ν ) + mi(x

ν ) = ∂im(xν ) –

m(xν ) = 0 ∂iσ (xν ) = ξ̇ i(t) + 1
2
ε̄+γiψ∅−(xν )

τ a(xν ) = 0 λi(xν ) = −ξ̇ i(t) − 1
2
ε̄+γiψ∅−(xν )

m∅(x
ν ) = 8(xν ), ω∅

a(xν ) = −∂a8(xν ) ψ∅−(xν ) = 9(xν )

This is trivial for most of the terms, except for the ε+ term. Before addressing this issue below,
it is convenient to write down the total variation of ∂im instead of m. From equation (5.10) we

find

δ∂im = ξ∅∂∅∂im + ξ j(t)∂ j∂im + λi
j∂ jm − λm

nxn∂m∂im + ∂iσ (xν ) − ξ̇ i(t) − 1
2
ε̄+γiψ∅−.

(5.11)

Note that the terms proportional to the local boost parameters λi(xν ) have cancelled out. We

may now partially gauge fix the central charge transformations by putting

m(xν ) = 0. (5.12)

We thus obtain

∂iσ (xν ) = ξ̇ i(t) + 1
2
ε̄+γiψ∅−(xν ), (5.13)

which is sufficient to calculate the transformation rule of ∂im∅. After this gauge fixing, taking
into account all the compensating transformations, see table 4, and the restriction (5.10) with

m = 0 substituted, we find the following transformation rules for the remaining independent

fields:

δτi = ξ∅∂∅τi + ξ j(t)∂ jτi − ξ̇ i(t) + λi jτ
j − λk

lx
l∂kτi − λi(x

ν ) − 1
2
ε̄+γiψ∅−,

δ∂im∅ = ξ∅∂∅∂im∅ + ξ j(t)∂ j∂im∅ + ξ̈ i(t) − ξ̇ j(t)∂iτ j + λi
j∂ jm∅ − λm

nxn∂m∂im∅

−∂i(λ
j(xν )τ j) + ε̄−(t)γ 0∂iψ∅− + 1

2
∂i(ω

aε̄+γaψ∅−) + 1
2
ε̄+γiψ̇∅−,

δψ∅− = ξ∅∂∅ψ∅− + ξ i(t)∂iψ∅− − λi
jx

j∂iψ∅− + 1
4
λabγabψ∅−

+ε̇−(t) + 1
2
(ω∅

a − ω̇a)γa0ε+. (5.14)

Note that ω∅a and ωa depend on the fields τi, m∅. Using expression (4.5) for the dependent
boost gauge field ωµ

a one can calculate that

ωi
a ≡ ∂iω

a = −∂iτ
a → ωa = −τ a, (5.15)

ω∅
a = −τ̇ a − ∂a

(

m∅ − 1
2
τ iτ i

)

. (5.16)

As a final step we now fix the local boost transformations by imposing

τ i(xν ) = 0, (5.17)
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which leads to the following compensating transformations:

λi(xν ) = −ξ̇ i(t) − 1
2
ε̄+γiψ∅−(xν ). (5.18)

One now finds that

ωa = 0, ω∅
a = −∂am∅ ≡ −∂a8, (5.19)

where 8 is the Newton potential. In terms of the ‘Newton force’ 8i and its supersymmetric

partner 9 defined by

8i = ∂i8, 9 = ψ∅−, (5.20)

one thus obtains the following transformation rules:

δ8i = ξ∅∂∅8i + ξ j(t)∂ j8i + ξ̈ i(t) + λi
j8 j − λm

nxn∂m8i + ε̄−(t)γ 0∂i9 + 1
2
ε̄+γi9̇, (5.21)

δ9 = ξ∅∂∅9 + ξ i(t)∂i9 − λi
jx

j∂i9 + 1
4
λabγab9 + ε̇−(t) − 1

2
8iγi0ε+. (5.22)

Note that the central charge transformations only act on the Newton potential, not on the

Newton force. Determining the transformation rule of the Newton potential 8 is non-trivial,

due to the fact that the last term of (5.21) cannot be manifestly written as a ∂i-derivative. The

above transformation rules are consistent with the integrability condition

∂[i8 j](x
ν ) = 0, (5.23)

by virtue of the fermionic equations of motion (4.11) which, after gauge fixing, take on the

form

γ i∂i9(xν ) = 0 ⇔ ∂[iγ j]9(xν ) = 0. (5.24)

Under supersymmetry these fermionic equations of motion lead to the following bosonic

equation of motion:

∂ i8i(x
ν ) = 0. (5.25)

The same bosonic equation of motion also follows from equation (4.14) after gauge fixing.

In order to obtain transformation rules for the Newton potential 8 and its fermionic

superpartner, we need to solve the fermionic equations of motion/constraint (5.24). The second

form of this constraint makes it clear that the equations of motion are solved by a spinor χ ,

that obeys:

γi9 = ∂iχ. (5.26)

Note that this only determines χ up to a purely time-dependent shift. From (5.26), it follows

that χ obeys the constraint:

γ 1∂1χ = γ 2∂2χ. (5.27)

9 can thus be expressed in terms of χ in a number of equivalent ways:

9 = γ 1∂1χ = γ 2∂2χ = 1
2
γ i∂iχ. (5.28)

As an aside, we note that in case one works in a basis, in which

γ 1 =
(

0 1

1 0

)

, γ 2 =
(

1 0

0 −1

)

, (5.29)

the constraint γ 1∂1χ = γ 2∂2χ , implies that χ2 + iχ1 (where the 1, 2 refer to spinor indices)
is a holomorphic function, as it obeys the Cauchy–Riemann equations. It is now possible to

determine the transformation rule of 8 by rewriting δ8i as a ∂i-derivative:

δ8i = ∂i(δ8). (5.30)
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The resulting transformation rule for the Newton potential is

δ8 = ξ∅∂∅8 + ξ i(t)∂i8 + ξ̈ i(t)xi − λm
nxn∂m8 + 1

2
ε̄−(t)γ 0i∂iχ + 1

2
ε̄+χ̇ + σ̃ (t). (5.31)

Note that we have allowed for an arbitrary time-dependent shift σ (t) in the transformation

rule, whose origin stems from the fact that 8i = ∂i8 only determines 8 up to an arbitrary

time-dependent shift.

In order to determine the transformation rule of χ , we try to rewrite γiδ9 as a ∂i-

derivative17:

γiδ9 = ∂i(δχ ). (5.32)

Most of the terms in γiδ9 can be straightforwardly written as a ∂i-derivative. Only for the ε+
transformation, the argument is a bit subtle. We thus focus on the terms in γiδ9, given by

− 1
2
γi8

jγ j0ε+ = − 1
2
γi∂

j8γ j0ε+ = − 1
2
∂ j8γi j0ε+ − 1

2
∂i8γ0ε+. (5.33)

The last term is already in the desired form. To rewrite the first term in the proper form, we

note that the Newton potential 8 can be dualized to a ‘dual Newton potential’ 4 via

∂i8 = εi j∂
j4, ∂i4 = −εi j∂

j8. (5.34)

Using the convention that γi j0 = ε0i j = εi j, we then get

− 1
2
γi8

jγ j0ε+ = 1
2
∂i4ε+ − 1

2
∂i8γ0ε+. (5.35)

One thus obtains the following transformation rule for χ , which includes the dual Newton

potential 4:

δχ = ξ∅∂∅χ + ξ i(t)∂iχ − λm
nxn∂mχ + 1

4
λmnγmnχ + xiγiε̇−(t) + 1

2
4ε+ − 1

2
8γ0ε+ + η(t).

(5.36)

Note that we have again allowed for a purely time-dependent shift η(t), whose origin lies in

the fact that (5.26) only determines χ up to a purely time-dependent shift.

In order to calculate the algebra on8, χ , we also need the transformation rule of the dual

potential 4. This rule is determined by dualizing the transformation rule of 8:

∂i(δ4) = −εi j∂
j(δ8). (5.37)

By repeatedly using (5.26) and (5.34), we get:

δ4 = ξ∅∂∅4 + ξ i(t)∂i4 + ξ̈ i(t)εi jx
j − λm

nxn∂m4 + 1
2
ε̄−(t)γ i∂iχ − 1

2
ε̄+γ0χ̇ + τ (t), (5.38)

where we again allowed for a purely time-dependent shift τ (t).

The algebra then closes on8 and χ , using (5.26), (5.27), (5.34) . One finds the following

non-zero commutators between the fermionic symmetries:

[δε1−(t), δε2−(t)] = δσ (t)

(

d

dt
(ε̄2−(t)γ 0ε1−(t))

)

,

[δε1+ , δε2+] = δξ∅

(

1

2
(ε̄2+γ 0ε1+)

)

,

[δε+ , δε−(t)] = δξ i(t)

(

1

2
(ε̄−(t)γ iε+)

)

,

[δη(t), δε+ ] = δσ̃ (t)

(

1

2
(ε̄+η̇(t))

)

. (5.39)

17 Note that even though 9 = 1
2
γ i∂iχ , the correct transformation rule of χ cannot be found by writing δ9 as 1

2
γ i∂i

of an expression. In particular, one would miss the term involving the dual Newton potential 4 in the transformation

rule of χ . This is due to the fact that 9 = 1
2
γ i∂iχ is a consequence of the defining equations γi9 = ∂iχ , but is not

equivalent to it.
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The non-zero commutators between the bosonic and fermionic symmetries are given by:

[δξ i(t), δε+] = δε−(t)

(

1
2
ξ̇ i(t)γ0iε+

)

, [δλi j , δε+ ] = δε+

(

− 1
4
λi jγi jε+

)

,

[δξ∅ , δε−(t)] = δε−(t)(−ξ∅ε̇−(t)), [δξ i(t), δε−(t)] = δη(t)(−ξ i(t)γiε̇−(t)),

[δλi j , δε−(t)] = δε−(t)

(

− 1
4
λi jγi jε−(t)

)

, [δσ̃ (t), δε+]=δη(t)

(

1
2
(σ̃ (t)γ 0ε+)

)

,

[δξ∅ , δη(t)] = δη(t)(−ξ∅η̇(t)), [δλi j , δη(t)] = δη(t)

(

− 1
4
λi jγi jη(t)

)

.

(5.40)

The bosonic commutators are not changed with respect to the purely bosonic case and are

given by (2.30).

It is interesting to comment on the appearance of holomorphic functions in the above

description. In a basis in which

γ 1 =
(

0 1

1 0

)

, γ 2 =
(

1 0

0 −1

)

, (5.41)

the constraint (5.27) on χ reduces to the Cauchy–Riemann equations for a holomorphic

function χ2 + iχ1, where the indices 1, 2 refer to spinor indices. Interestingly, the appearance
of the dual potential implies that a holomorphic function, given by8+ i4, also emerges in the
bosonic sector. Indeed, the definition of (5.34) corresponds to the Cauchy–Riemann equations

for this function. Both the real and imaginary parts of this holomorphic function then satisfy

the two-dimensional Laplace equation.

This finishes our discussion of the N = 2 Galilean supergravity theory. Like in the

bosonic case, see the end of section 2, we have summarized all gauge fixing conditions and

resulting compensating transformations in table 4.

6. Discussion

In this work we constructed a supersymmetric extension of 3D Newton–Cartan gravity by

gauging the N = 2 supersymmetric Bargmann algebra. An, at first sight, un-usual feature

we encountered is that only half of the N = 2 supersymmetry is realized locally, the other

half manifests itself as a fermionic Stueckelberg symmetry. After fixing the Stueckelberg

symmetry the second supersymmetry is realized only as a global supersymmetry. A similar

feature occurs in the bosonic case where the time reparametrizations occur as a Stueckelberg

symmetry that after fixing leaves us with constant time translations only.

We have discussed a full gauging, corresponding to ‘Newton–Cartan supergravity’ and a

medium gauging, obtained by partial gauge fixing, corresponding to ‘Galilean supergravity’. In

the latter formulation, we have been able to realize the supersymmetry algebra on a multiplet

containing the Newton potential, as well as its dual. The Newton potential and its dual

correspond to the real and imaginary parts of a holomorphic function. This holomorphic

structure is reminiscent of the 3D relativistic case [12], as well as of branes with two transverse

directions such as cosmic strings and D7-branes [16, 17]. It would be interesting to see how

these features can be generalized to higher dimensions.

The reason that we restricted ourselves to 3DNewton–Cartan supergravity is that it is non-

trivial to find the additional fields, beyond the gauge fields associated to the supersymmetric

Bargmann algebra, that are needed to realize the supersymmetry algebra. This is different

from the relativistic case where an off-shell counting of the field degrees of freedom restricts

the possible choices. One way to make progress here is to better understand the representation

theory of the super-Bargmann algebra thereby mimicking the relativistic case. Another useful

approach could be to extend the work of [18] and approach the issue from a five-dimensional
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(5D) point of view. We note that the reduction of a 5D Poincaré multiplet to 4D gives an

irreducible 4D N = 2 Poincaré multiplet plus a N = 2 vector multiplet. It is not clear

that such a reducibility into two multiplets also occurs in the non-relativistic case. This

might indicate that more fields, namely those of the vector multiplet, are needed to close the

supersymmetry algebra in the non-relativistic case18.

It is clear that more work needs to be done to come at a full grasp of the possible Newton–

Cartan supergravities in arbitrary dimensions. We hope that this work, starting with the 3D

case, will help to better understand the higher-dimensional cases.
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Appendix. Notation and conventions

Flat indices are denoted by capital Latin letters A, B, . . . . In the Newton–Cartan formalism,

they are split in time-like and space-like flat indices {0, a}. Curved indices are denoted by
Greek letters µ, ν,. . . and are split as µ = {∅, i}. Raising and lowering is still done using the
usual Minkowski metric (with signature mostly plus). Raising or lowering a 0-index is thus

done at the expense of a minus-sign. Turning curved into flat indices is done using the (inverse)

vielbeins τµ and eµ
a, as in the following example:

F̂0a = τµeν
aF̂µν,

F̂ab = eµ
aeν

bF̂µν . (A.1)

The relations (2.5) can be used to turn flat into curved indices. They also imply the inverse

vielbein variations

δeµ
a = −eµ

beν
aδeν

b − τµeν
aδτν, (A.2)

δτµ = −τµτ νδτν − eµ
aτ

νδeν
a. (A.3)

To check the closure of the supersymmetry algebra on fermions, the following three-

dimensional Fierz identity

ψλ̄ = − 1
2
(λ̄ψ) − 1

2
(λ̄γ 0ψ)γ0 − 1

2
(λ̄γ aψ)γa (A.4)

is needed.
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