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Abstract

The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease
progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the
investigation of long-term effects of a (pharmacological) treatment, to establish its applicability and to identify potential
side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories
(ADAPT), to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of
model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is
predicted by identifying necessary dynamic changes in the model parameters to describe the transition between
experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected
underlying biological systems and identify the molecular events that should be studied in more detail to unravel the
mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome
levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT
was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR), a
potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of
adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1), a
receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and
-excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged
treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1 in hepatic
membranes. Next to the identification of potential unwanted side effects, we demonstrate how ADAPT can be used to
design new target interventions to prevent these.
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Introduction

A central aim of medical systems biology is the development of

computational models and techniques to study molecular mecha-

nisms that drive disease progression [1–13]. One potential

contribution of computational modeling is to assess the effectiveness

of pharmacological interventions to treat progressive diseases, e.g.,

Type 2 Diabetes and cardiovascular disease. A complicating factor

to simulate and predict the effects of these interventions is the

multiscale nature of the affected biological systems. The kinetic

computational models in biology are typically constructed to

simulate processes at a single timescale, usually capturing short-

term dynamics ranging from seconds to hours [14–19]. On the other

hand, pharmacological interventions usually affect multiple process-

es that operate at different timescales, which in turn range over an

extended time frame. A challenging but particularly relevant task is

the investigation of long-term effects of a pharmacological treatment

to determine its applicability and to identify potential side effects.

Formulating mathematical descriptions of these effects is further-

more complicated by the lack of sufficient information of the

underlying network structure and interaction mechanisms. An

example is the study of pharmacological treatments associated with

metabolic diseases [20,21]. The acquired experimental data

predominantly concern changes in plasma and tissue metabolite

concentrations during one or more stages of the treatment.

Conversely, it is less well understood to what extent the actual

metabolite fluxes change in time and how corresponding processes

are modulated by the treatment via interactions with the proteome

and transcriptome. As a consequence, in many cases insufficient

information is available to explicitly model the interaction mecha-

nisms that modulate the metabolic processes. The lack of

mechanistic descriptions of the modulating interactions in a

mathematical model, referred to as undermodeling [22], forms a

serious complication when studying the effects of a pharmacological

treatment by means of computational analyses.

In the present paper we propose a computational approach that

overcomes the aforementioned issues. The approach, called

Analysis of Dynamic Adaptations in Parameter Trajectories
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(ADAPT), employs mathematical modeling to predict the long-

term effects of a pharmacological intervention. We introduce a

concept of time-dependent descriptions of model parameters to

study the dynamics of molecular adaptations, making use of

experimental data obtained during different stages of an interven-

tion. These model parameters typically represent reaction rate

constants (linked to mass action or Michaelis-Menten kinetics), but

could be any other quantity expressible in a mathematical model.

The progression of adaptations is predicted by identifying

necessary dynamic changes in the model parameters to describe

the transition between experimental data obtained during different

stages of the treatment. The obtained dynamic trajectories of

model parameters, as well as metabolite concentrations and -

fluxes, are constrained by the network topology and kinetic

equations of the molecular processes. As such, our method exploits

and integrates the merits from constrained-based modeling

approaches (e.g., Flux Balance Analysis) and kinetic modeling.

ADAPT is therefore particularly useful to study biological systems

from which the network topology is relatively well known, such as

the mass fluxes in metabolic pathways. The modulating effects on

these pathways via interactions with the proteome and transcrip-

tome, which are less well understood, can be captured by the time-

dependent descriptions of the parameters. Hence, as will be shown

here, an advantage of ADAPT is that pathway adaptations can be

described without the necessity to develop detailed kinetic models

of the modulating mechanisms. Moreover, it could provide a

means to capture the effects of complex phenomena such as cell

differentiation, developmental changes, and aging, that may

contribute to the progression of long-term adaptations. The

approach originates from our previous work in which computa-

tional modeling was used to identify necessary differences in

parameters to describe how one phenotype could be evolved from

another [1]. While the latter study aimed to explore steady-state

differences between two experimentally observed phenotypes, the

present study focused on the identification of dynamic adaptations

induced by a treatment intervention.

Relevant applications of ADAPT are the investigation of

metabolic pathways in relation to progressive diseases such as

Type 2 Diabetes and cardiovascular disease. Dyslipidemia is an

important risk factor for these diseases, and recognized markers

such as plasma triglycerides, LDL- and HDL-cholesterol, are used

in clinical settings to assess disease risk and status. However, the

underlying molecular mechanisms inducing adaptations in lipid

metabolism are not fully understood, complicating the develop-

ment of effective treatments. In the present study, ADAPT was

applied to a model of mouse hepatic lipid and plasma lipoprotein

metabolism to identify which metabolic adaptations are induced

upon pharmacological treatment of mice by liver X receptor

(LXR) agonist T0901317. The family of liver X receptors, LXRa
and LXRb, plays a central role in the control of cellular lipid and

sterol metabolism. Activation of LXRs by pharmacological

agonists promotes the cellular efflux, transport, and excretion of

cholesterol from the body, hereby reducing atherosclerotic plaques

in rodents [23]. Therefore, LXRs are considered as potential drug

targets to treat or prevent atherosclerosis [24–26]. However,

pharmacological activation of LXR also induces the accumulation

of hepatic triglycerides and promotes the secretion of enlarged

very-low-density-lipoprotein (VLDL) particles, which complicates

the clinical application of LXR agonists [20,21]. The underlying

molecular mechanisms inducing these adaptations in lipid and

sterol metabolism are not fully understood. An extensive data set

of C57BL/6J mice treated with T0901317 for 0, 1, 2, 4, 7, 14, and

21 days was generated and included in the computational analysis.

A remarkable prediction was obtained concerning the scavenger

receptor class B1 (SR-B1), a receptor that facilitates the uptake of

cholesterol from high-density-lipoproteins (HDL) by the liver. As

LXR agonists promote cholesterol efflux from peripheral cells and

excretion of cholesterol from the body, it was expected that hepatic

SR-B1 expression would be induced upon treatment to accom-

modate the increased hepatobiliary cholesterol excretion. Howev-

er, the computational analysis showed that the SR-B1 expression

decreased rather than increased upon T0901317 treatment. We

recently confirmed this counter-intuitive prediction experimentally

by immunoblot analysis of SR-B1 protein expression in hepatic

membranes [27]. Results from the computational analysis

provided an integrative understanding of the dynamic response

induced by T0901317 treatment that was not directly apparent

from the experimental data itself. For instance, the results show a

clear distinction between the processes that had an early onset and

were rapidly activated, and processes that changed progressively

during the treatment period.

Methods

In the following sections we present a step-by-step generic

description of the methodology underlying ADAPT. The ap-

proach consists of several steps which are discussed below and

schematically depicted in Figure 1. A more in-depth illustration of

how the time-varying parameters are estimated is provided in

Figure 2.

Ethics statement
A detailed description of the experimental materials and

procedures is available (see Supporting Information Text S1).

Experimental procedures were approved by the Ethics Committee

for Animal Experiments of the University of Groningen.

Experimental data and Monte Carlo sampling of
interpolants

Quantitative experimental data at different stages of a treatment

intervention are required to study the dynamics of induced

molecular adaptations. In metabolic research the acquired

Author Summary

A driving ambition of medical systems biology is to
advance our understanding of molecular processes that
drive the progression of complex diseases such as Type 2
Diabetes and cardiovascular disease. This insight is
essential to enable the development of therapies to
effectively treat diseases. A challenging task is to investi-
gate the long-term effects of a treatment, in order to
establish its applicability and to identify potential side
effects. As such, there is a growing need for novel
approaches to support this research. Here, we present a
new computational approach to identify treatment effects.
We make use of a computational model of the biological
system. The model is used to describe the experimental
data obtained during different stages of the treatment. To
incorporate the long-term/progressive adaptations in the
system, induced by changes in gene and protein expres-
sion, the model is iteratively updated. The approach was
employed to identify metabolic adaptations induced by a
potential anti-atherosclerotic and anti-diabetic drug target.
Our approach identifies the molecular events that should
be studied in more detail to establish the mechanistic basis
of treatment outcome. New biological insight was
obtained concerning the metabolism of cholesterol, which
was in turn experimentally validated.

Trajectory Analysis to Identify Treatment Effects
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Figure 1. Computational workflow of ADAPT to analyze the effects of a treatment intervention. Step 1. Quantitative experimental data
was generated at different stages of a treatment intervention. Step 2. Cubic smoothing splines were calculated that describe the dynamic trend of the
experimental data. To account for experimental and biological uncertainties a collection of splines was calculated using a Monte Carlo approach. Step
3. The cubic splines were used as input for the computational approach to iteratively estimate dynamic trajectories of metabolic parameters and
fluxes. The additional insights obtained via the computational analysis could be used to design new experiments, and repeat the mentioned steps.
For each step an example is given. The data is represented by means + standard deviations.
doi:10.1371/journal.pcbi.1003166.g001

Trajectory Analysis to Identify Treatment Effects
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experimental data typically provides information about changes

in metabolite concentrations in plasma and tissue compartments

[28–31] (Figure 1, step 1). In the present study mathematical

modeling is employed to generate additional insight on the

treatment response by predicting which metabolic parameters

and consequently metabolic fluxes necessarily have to change to

describe the dynamic trend in the experimental data. The

metabolic parameters and fluxes can generally not be considered

constant in time. Due to the treatment intervention these

quantities typically change in a time-dependent fashion. To

allow for estimation of dynamic trajectories of metabolic

parameters and fluxes, continuous dynamic descriptions of the

experimental data were used as input for ADAPT. For this

purpose, cubic smoothing splines were calculated that describe

the dynamic trend of the experimental data (Figure 1, step 2). To

account for experimental and biological uncertainties a collection

of splines was calculated using a Monte Carlo approach.

Different random samples of the experimental data were

generated assuming Gaussian distributions with means and

standard deviations of the data. Subsequently, for each generated

sample a cubic smoothing spline was calculated.

Mathematical modeling to describe the underlying
biological system

Fundamental in ADAPT is the development of a computational

model that includes mathematical descriptions of the molecular

pathways of interest. The present study focused on biological

systems that are described by a set of (non)linear ordinary

differential equations:

_~xx~xx(t)~N~ff (~xx(t),~hh,~uu) ð1Þ

~yy(t)~~gg(~xx(t),~hh,~uu) ð2Þ

~xx(t0)~~xx0 ð3Þ

Figure 2. Estimation of time-dependent parameters. The progression of adaptations induced by a treatment intervention is predicted by
identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different
stages of the treatment. The time-dependency of the parameters is introduced by dividing a simulation in Nt steps of Dt time period. Initially (n~0)

the system is in steady-state and corresponding parameters ~hh½0� are estimated to describe the experimental data of the untreated phenotype.
Subsequently, for each step nw0 the system is simulated for a time period of Dt using the final values of the model states of the previous step
~XX ½n{1� as initial conditions (B). Simultaneously, parameters~hh½n� are estimated (A) by minimizing the difference between the data interpolants and

corresponding model outputs ~YY ½n� (C). Here, the previously estimated parameter set ~hh½n{1� was provided as initial set for the optimization
algorithm.
doi:10.1371/journal.pcbi.1003166.g002

Trajectory Analysis to Identify Treatment Effects
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where _~xx~xx is a vector of first derivatives of molecular species (or

states)~xx which are given by the topology of the network, matrix N,

and a set of functions ~ff . The initial concentrations of ~xx are given

by~xx0. The vector~yy represents the model outputs, which are given

by a set of functions ~gg including mathematical expressions that

map the model states to specific quantities of interest. Both

functions ~ff and ~gg depend on kinetic parameters ~hh and optional

inputs ~uu.

Parameterization of the untreated phenotype
In ADAPT the mathematical model is first used to describe

the untreated phenotype (t~0). It was assumed that prior to the

onset of a treatment intervention the concentrations and fluxes

in the biological system were in steady-state. The following

protocol was employed to capture multiple parameter sets

describing the untreated phenotype. The weighted sum of

squared errors between the experimental data of the untreated

phenotype and corresponding steady-state model outputs is

given by:

x2
0(~hh)~

XNy

i~1

yss,i(~hh){di(0)

si(0)

 !2

ð4Þ

where Ny is the number of measurement signals, ~yyss the steady-

state model outputs, ~dd the interpolant functions describing the

experimental data and ~ss corresponding standard deviations

(which are here evaluated at t~0). The parameters were

estimated by applying a weighted least squares algorithm that

minimizes (4):

~̂hh~hh0~arg min
~hh

x2
0(~hh) ð5Þ

where ~̂hh~hh0 represents the optimized parameter set for the

untreated phenotype. A Monte Carlo approach was employed

to account for methodological and experimental uncertainties.

First, the optimization procedure was repeated for a widely

dispersed range of initial parameter values (10{6 to 106).

Secondly, in each optimization a different spline function for ~dd
was used. Finally, a collection of N0 parameter sets is obtained

denoted by ĤH0 that describe the untreated phenotype:

ĤH0~ ~̂hh~hh0,1,~̂hh~hh0,2, � � � ,~̂hh~hh0,N0

n o
ð6Þ

These parameter sets will serve as a starting point from which

necessary dynamic changes are identified to describe the

transition between experimental data obtained during different

stages of the treatment.

Time-dependent descriptions of model parameters
In many cases insufficient information is available to define the

essential interaction mechanisms which are modulated by a

specific treatment intervention, let alone to generate explicit

mathematical descriptions of these processes. As a consequence,

the dynamic adaptations in molecular processes were captured by

inferring necessary changes in the model parameters which are

therefore time-dependent. Note that it is not known a priori how

the model parameters change during the experiment. Conse-

quently, it is not possible to perform a dynamic simulation of the

entire experiment in one go. This issue was addressed by dividing

the simulation of the system in Nt steps of Dt time period using the

following discretization (Figure 2):

~XX ½n�~~xx(Dt,~hh½n�) with ~xx(0)~~XX ½n{1� ð7Þ

~YY ½n�~~gg(~XX ½n�,~hh½n�,~uu) ð8Þ

~XX ½0�~~xxss(~hh½0�), ~hh½0�[ĤH0 ð9Þ

where ~XX and ~YY are the discretized quantities of ~xx and ~yy
respectively, and 0ƒnƒNt with NtDt the time period of the entire

experiment. The simulation is initiated (n~0) using the steady-

state values of the model states ~xxss obtained with parameter set
~hh½0�, which is part of the collection ĤH0 that describes the untreated

phenotype. Subsequently, for each step nw0 the system is

simulated for a time period of Dt using the final values of the

model states of the previous step n{1 as initial conditions. Note

that the model parameters are time-dependent and that each step

the system is simulated with a different parameter set. Parameters
~hh½n� were estimated by minimizing the difference between

experimental data (corresponding data interpolant) and corre-

sponding model outputs ~YY ½n�. Here, the previously estimated

parameter set ~hh½n{1� was provided as initial set for the

optimization algorithm. It was assumed that the induced

adaptations proceed progressively in time. Therefore, highly

fluctuating parameter trajectories were considered to be unphys-

iological. To prevent the occurrence of such behavior, a

regularization term, given by the sum of squared derivatives of

the normalized parameter values at current step n, was included in

the parameter estimation procedure. An optimized parameter set,

denoted by ~̂hh~hh½n�, is defined as follows:

~̂hh~hh½n�~arg min
~hh½n�

(x2
d (~hh½n�)zlrx

2
r (~hh½n�)) ð10Þ

where x2
d represents the objective function that minimizes the sum

of squared differences between the data interpolants and model

outputs, and x2
r represents the regularization objective function.

Equations of the objective functions x2
d and x2

r are respectively

given by:

x2
d (~hh½n�)~

XNy

i~1

Yi½n�{di(nDt)

si(nDt)

� �2

ð11Þ

x2
r (~hh½n�)~

XNp

i~1

hi½n�{hi½n{1�
Dt

1

hi½0�

� �2

ð12Þ

where Np is the number of parameters, and lr a constant

determining the strength of the regularization term. A minimal

value for lr was chosen to bias the data fitting as little as possible

[1]. Note that x2
r effectuates that changing a parameter is costly,

which will therefore be avoided if this is not required to describe

the experimental data. Relative derivatives were used to assign

equal relevance to all parameters and to avoid domination of the

optimization by large absolute values. Finally, trajectories of the

parameters (and consequently also for the model states and fluxes)

are obtained that describe the transition of the phenotype during

the treatment intervention. By repeating the optimization proce-

Trajectory Analysis to Identify Treatment Effects
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dure for all initial parameter sets in collection ĤH0 a distribution of

trajectories is obtained (Figure 1, step 3).

Time-dependent sensitivities of trajectories
The calculated trajectories of molecular states, parameters and

fluxes can be used for a wide range of analysis techniques to study

the induced molecular adaptations. A class of computational

techniques that is frequently applied to systems biology models

(and complex systems in general) is sensitivity analysis [32–35].

One such method is the multi parametric sensitivity analysis

(MPSA), which is frequently used to study the relative importance

of parameters with respect to model outputs. MPSA is a global

sensitivity method that was first proposed in the field of hydrology

[36]. More recently, the method was also applied to study

biological systems [33,35,37,38]. An advantage of the MPSA

method is that it allows to detect combinatorial effects of

parameters on model outputs (by varying all parameters simulta-

neously) that might go unnoticed in local parameter sensitivity

analysis based methods (see Supporting Information Text S2 for

an example). Here, we briefly discuss the methodology and

illustrate how this technique can be applied within the framework

of ADAPT. Consider a parameter v and a model output of interest

w. The basic principle of MPSA is to propagate the uncertainty of

v into w by sampling parameter sets from predefined distributions

and evaluate corresponding outcomes of the model output. For the

present case these distributions are given by the outcomes of the

trajectories corresponding to v and w at a specific time step n. The

samples of v are subsequently classified as acceptable or

unacceptable by comparing corresponding outputs w (or some

metric involving w) with a threshold. A threshold that is typically

used, which was used here as well, is the mean of w [33,35,37,38].

Next, the samples are sorted according to parameter v and

cumulative distributions of the acceptable (Sa) and unacceptable

(Su) cases are computed:

Sa(r)~
1

Ns

XNs

i~1
Vi ½n�ƒr

pa(Vi½n�) ð13Þ

Su(r)~
1

Ns

XNs

i~1
Vi ½n�ƒr

pu(Vi½n�) ð14Þ

with pa and pu given by:

pa(Vi½n�)~
1, if Vi½n�ƒh(~WW ½n�)
0, otherwise

(
ð15Þ

pu(Vi½n�)~
1, if Vi½n�wh(~WW ½n�)
0, otherwise

(
ð16Þ

h(~WW ½n�)~ 1

Ns

XNs

i~1

Wi½n� ð17Þ

where ~VV ½n� and ~WW ½n� are vectors (sorted according to parameter v)

of length Ns containing the samples of v and w respectively at time

step n. The supremum of the difference between these distribu-

tions (Kolmogorov-Smirnov distance) is defined as:

KS~ sup
r

DSa(r){Su(r)D ð18Þ

where KS represents the Kolmogorov-Smirnov distance. The KS
distance serves as a sensitivity metric indicating how strongly

acceptance and nonacceptance correlate to parameter v, i.e., how

sensitive the output w is with respect to the uncertainty in

parameter v. Note that the KS distance is bounded between zero

and one, where a higher value indicates a relatively higher

importance of the parameter variation to the model output. A

critical value for KS was obtained from the Kolmogorov

distribution using a significance level of 0:05 [39,40]. Another

remark is that v can be any quantity expressed in the mathematical

model and is not restricted to parameters. The KS distance was

calculated for each time step to study the time-dependency of

model sensitivities.

Results

In the present section ADAPT is applied to identify which

metabolic adaptations are induced upon pharmacological treat-

ment of mice with LXR agonist T0901317 up to three weeks. The

perturbation by means of this treatment starts at the proteome

level and subsequently induces adaptations at the other levels

(Figure 3, left part). Mathematical modeling was focused on

integrating pathways from the metabolome level, as the network

topology is relatively well known and the majority of the

experimental data was derived from this level (Figure 3, right

part). The modulating effects on metabolic pathways via

interactions with the proteome and transcriptome levels were

captured by time-dependent descriptions of the parameters.

Pharmacological treatment of LXR using agonist
T0901317

An extensive data set of C57BL/6J mice treated with T0901317

for 0, 1, 2, 4, 7, 14, and 21 days was generated and included in the

computational analysis. A detailed description of the experimental

materials and procedures is available (see Supporting Information

Text S1). In brief, the set contains quantitative measures of hepatic

triglyceride, free cholesterol, and cholesterylester levels, as well as

the fractional contribution of de novo lipogenesis to the hepatic

triglyceride pool. Furthermore, data on plasma concentrations of

triglyceride, total cholesterol, HDL-cholesterol, and free fatty acids

(FFA) were included. We also included data on VLDL production,

VLDL clearance, VLDL particle size, and VLDL composition.

Quantitative data on hepatic cholesterol uptake in untreated mice

was derived from [41].

Computational framework
A mathematical multi-compartment model of mouse hepatic

lipid and plasma lipoprotein metabolism was used to predict the

dynamics of metabolic adaptations induced upon pharmacological

activation of LXR [1]. In the present study several small

modifications were made to this model. In brief, the mathematical

model contains three compartments representing the liver, blood

plasma, and peripheral tissues. The liver includes the production,

utilization and storage of triglycerides and cholesterols, as well as

the mobilization of these metabolites to the endoplasmic reticulum

where they are incorporated into nascent produced VLDL

particles. These VLDL particles are subsequently secreted in the

plasma compartment and provide nutrients for peripheral tissues.

The model furthermore includes the hepatic uptake of free fatty

acids from the plasma that predominantly originate from adipose

Trajectory Analysis to Identify Treatment Effects
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tissue. Finally, the model includes the reverse cholesterol transport

pathway, i.e., the net transport of cholesterol from peripheral

tissues back to the liver via HDL. A detailed description of the

mathematical model, including equations, is available (see

Supporting Information Text S3).

The rationale for including the aforementioned biological

processes in the mathematical model is to generate a close and

balanced match between model complexity and the available

experimental data. The level of detail at which certain biological

processes can be integrated in a mathematical model is determined

by the selection of molecular species, as well as the type and

quality of the measurements. Therefore, the model size and

complexity of the reaction equations was kept to a minimum.

Furthermore, model development was focused on integrating

biological pathways from which the topology is well known and a

substantial amount of components were measured quantitatively,

i.e. mass fluxes at the metabolome level. The network topology of

metabolic pathways is relatively well known and is available for

different organisms in various pathway databases such as listed in

Pathguide (http://www.pathguide.org). The modulating and

regulatory effects on metabolic pathways via interactions with

the proteome and transcriptome levels are less well understood. At

present it is not yet feasible to include a full mechanistic

description of these interactions in the model. Note that the

computational model does not include any mathematical descrip-

tions of processes involved in LXR activation and its transcrip-

tional response. ADAPT overcomes the problem of undermodel-

ing by introducing time-dependent parameters that account for

the missing interactions.

Analysis of the cascade of induced molecular adaptations
The computational workflow of ADAPT was carried out using

the computational model and the acquired experimental data. An

overview of the experimental data and corresponding spline

interpolants that were used as input for ADAPT is presented in

Supporting Information Text S4. Parameter trajectories were

estimated using 200 time steps. The impact of changing the

number of time steps on the model outputs was investigated (see

Supporting Information Text S5). A small value of 0:01 for

regularization factor lr was chosen to bias the data fitting as little

as possible (see Supporting Information Text S6). A collection of

10000 acceptable parameter trajectory sets was obtained

describing the experimental data. The dynamic characteristics

of the resulting state, parameter, and flux trajectories were

investigated to study the cascade of induced molecular adapta-

tions. For this purpose, the rise and fall periods of the trajectories

were calculated [42,43], which provides a broad overview of the

response dynamics. The rise period is defined as the time period

during which a trajectory rises from 10% to 90% of its maximal

value or between two extrema. Similarly, the fall period is defined

as the time period during which a trajectory falls from 90% to

10% of its maximal value or between two extrema. Figure 4

shows a selection of the rise and fall periods of metabolic

concentrations, parameters, and fluxes, clustered by four major

metabolic pathways: HDL metabolism, VLDL metabolism,

hepatic triglyceride metabolism, and hepatic cholesterol metab-

olism. The rise and fall periods are respectively represented by

light-gray and dark-gray bars (median + median absolute

deviation). A few observations can be made. First, there is a

clear distinction between processes that have an early onset and

were rapidly activated, and those that changed progressively

during the treatment period. This is of importance as the latter

processes likely play a crucial role in the long-term effects of the

pharmacological intervention. Secondly, the majority of the

processes were up-regulated in time. Interestingly, only a small

collection of processes included in the model was down-regulated

in time compared to the untreated phenotype. Two of these

processes, the secretion of VLDL particles and the hepatic HDL-

C uptake capacity, were explored in more detail as outlined in the

following sections.

Figure 3. Application of ADAPT to identify adaptations upon pharmacological treatment of mice by LXR agonist T0901317. The
intervention starts at the proteome level and subsequently induces adaptations at the other levels (left part, vertical arrows). Mathematical modeling
was focused on integrating biological pathways from which the topology is well known and a substantial amount of components were measured
quantitatively, i.e. the metabolome level (right part). A detailed description of the mathematical model is presented in Supporting Information Text
S3. The modulating effects on metabolic pathways via interactions with the proteome and transcriptome levels are less well understood. At present it
is not yet feasible to include a full mechanistic description of these interactions in the model. ADAPT overcomes this problem by introducing time-
dependent parameters that incorporate missing modulating effects.
doi:10.1371/journal.pcbi.1003166.g003
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The rate of VLDL particle secretion is reduced upon LXR
activation

The estimated trajectories representing the dynamic behavior of

the hepatic secretion of VLDL particles to the plasma were

investigated. To this end 2D histograms were calculated to

determine the density of trajectories during the treatment period

(Figure 5). A darker color represents a higher density of trajectories

in that specific region and time point. The white lines enclose the

central 67% of the densities. It can be observed that the VLDL

particle secretion decreased rapidly up to one week of treatment

and subsequently stabilized upon prolonged treatment (Figure 5a).

Although the secretion of VLDL particles decreased, an increased

release of VLDL-TG to the plasma was experimentally observed

(Figure 5b). Similarly, the computational analysis showed an

increased production of VLDL-CE to the plasma (Figure 5c).

According to the model the progressive increase of these fluxes was

facilitated by an increased loading of triglycerides and cholesterol

onto VLDL particles (Figure 5d,e).

The hepatic HDL-C uptake capacity is reduced upon LXR
activation

Fast protein liquid chromatography (FPLC) measurements from

pooled mice plasma showed an increased level of HDL-C (&2 fold

increase) after one week of treatment, which remained at this

elevated level upon prolonged treatment (Figure 6a). Analysis of

the parameter and flux trajectory densities revealed that the rise in

HDL-C was initiated by a progressive increment of cholesterol

efflux from peripheral cells to HDL particles during the first week

of treatment (Figure 6b). This increased efflux was accompanied

by an elevated hepatic HDL-C uptake (Figure 6c). Interestingly,

only a minor difference between the efflux and uptake rates of

HDL-C (&4%) could be observed during the first week of

treatment (Figure 6d), implicating that only a small net effect in

HDL-C metabolism underlies the marked increase in circulating

HDL-C levels (Figure 6a). Although the hepatic uptake of HDL-C

was increased, the computational analysis showed that the hepatic

HDL-C clearance capacity was reduced upon treatment

(Figure 6e). Here, clearance capacity is defined as the ability to

clear a certain amount of substrate per time unit from the plasma,

which depends on the receptor number and corresponding activity

level. The scavenger receptor class B1 (SR-B1) contributes to the

hepatic uptake of cholesterol. Recently, we experimentally

confirmed that the SR-B1 protein level is reduced in hepatic

membranes upon T0901317 treatment (Figure 6e) [27]. Of note,

this data serves as an independent validation which was not

included in the optimization procedure.

Analysis and targeting of unwanted side effects
Besides its beneficial effects on cholesterol metabolism, phar-

macological LXR activation also induces unwanted side effects

such as the accumulation of triglycerides in the liver. A sensitivity

analysis was performed to investigate to which adapting processes

the hepatic triglyceride level is sensitive, and therefore potentially

played a role in the excessive accumulation of triglycerides in the

liver. The quantity of interest w is given by the total hepatic

triglyceride pool (x4zx5zx6zx7). Figure 7 presents the mean

KS distances for all states, parameters, and fluxes. To assess the

consistency of the KS distances, one hundred batches were

generated, each containing thousand randomly selected optimized

trajectories. Subsequently, the temporal sensitivities were calcu-

lated for each batch, providing a measure of the uncertainty

associated with the calculated profiles. Changing the number of

batches did not qualitatively change the profiles. A KS distance

was considered significant when it exceeds the critical value

indicated by the dotted lines (obtained from the Kolmogorov

distribution using a significance level of 0:05). The hepatic

triglyceride level was found to be sensitive to adaptations in only

a small subset of the model quantities. Three examples of dynamic

sensitivity profiles are presented (Figure 7, bottom). With respect to

the metabolic states, the total hepatic triglyceride level is sensitive

with respect to adaptations in the cytoplasmic triglyceride pool (x4

and x6) as expected. However, note that the total hepatic

triglyceride level is merely negligible sensitive to adaptations in

endoplasmic reticulum triglyceride pool (x5 and x7). The analysis

furthermore shows that the total hepatic triglyceride level is

sensitive to changes in the triglyceride catabolism capacity, as well

as the transport capacity/fluxes of triglyceride from the cytoplasm

to the endoplasmic reticulum. Note that the sensitivity profiles are

not static but change during the treatment period, implying that

the response of w induced by perturbation of v will vary between

different stages of the treatment.

The processes to which the hepatic triglyceride level is sensitive

are potential targets for future interventions to prevent the

unwanted side effect of excessive triglyceride accumulation in

the liver. To illustrate this, we performed a computational analysis

to investigate whether it is possible to prevent hepatic triglyceride

accumulation upon T0901317 treatment by targeting one of the

sensitive quantities, i.e., the triglyceride catabolism capacity (p8).

Here, triglyceride catabolism is defined as the hydrolysis of

triglyceride into fatty acids and glycerol which are subsequently

used in processes such as b-oxidation, gluconeogenesis, ketogen-

esis, sterol- and phospholipid synthesis. The 10000 parameter

trajectory sets obtained from the previous analysis were used as

input to simulate the computational model, with an exception for

p8. This parameter is iteratively re-estimated (while keeping the

other parameters fixed according to their trajectories) to maintain

a constant hepatic triglyceride level (x4zx5zx6zx7) during the

treatment intervention. The results of this analysis are depicted in

Figure 8. The previous computational analysis showed that the

triglyceride catabolism capacity was reduced upon treatment (top

left), which is partly responsible for the hepatic triglyceride

accumulation (top right). Re-estimation of parameter p8, while

forcing the total hepatic triglyceride pool to remain constant in

time (bottom right), indicates that this objective could be achieved

by designing an intervention that maintains the triglyceride

catabolism capacity at the level of untreated mice (bottom left).

Furthermore, applying this perturbation induced only negligible

adaptations in the other metabolite concentrations (see Supporting

Information Text S7). Another possibility is to target the

triglyceride transport from the cytoplasm to the endoplasmic

reticulum (f11 and p11). Although targeting p11 also provides a

successful strategy to prevent hepatic triglyceride accumulation, it

induces another unwanted side effect, i.e., the accumulation of

triglycerides in the plasma (see Supporting Information Text S7).

Discussion

A relevant topic explored in medical systems biology is the

development of computational models and techniques to study the

effectiveness of pharmacological interventions to treat progressive

diseases. We presented ADAPT, a new modeling approach to

analyze the long-term effects of a pharmacological intervention,

which is particularly useful to study adaptations in metabolic

pathways.

Pharmacological interventions are usually very complex in the

sense that they affect multiple processes operating at different

levels (metabolome, proteome, and transcriptome) and different
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Figure 4. Rise and fall periods of metabolic concentrations, parameters, and fluxes. The rise and fall periods are represented by light-gray
and dark-gray bars (median + median absolute deviation), respectively. The rise period is defined as the time period during which a trajectory rises
from 10% to 90% of its maximal value. Similarly, the fall period is defined as the time period during which a trajectory falls from 90% to 10% of its
maximal value.
doi:10.1371/journal.pcbi.1003166.g004
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Figure 5. The VLDL particle secretion is reduced upon LXR activation. 2D histograms were calculated from the 10000 acceptable sets to
determine the density of trajectories during the treatment period. A darker color represents a higher density of trajectories in that specific region and
time point. The white lines enclose the central 67% of the densities. A) VLDL particle secretion. B) VLDL-TG production. The data is represented by
mean + standard deviation. C) VLDL-CE production. D) Ratio of VLDL-TG production to VLDL particle secretion. E) Ratio of VLDL-CE production to
VLDL particle secretion.
doi:10.1371/journal.pcbi.1003166.g005

Figure 6. The hepatic HDL-C uptake capacity is reduced upon LXR activation. 2D histograms were calculated from the 10000 acceptable
sets to determine the density of trajectories during the treatment period. A darker color represents a higher density of trajectories in that specific
region and time point. The white lines enclose the central 67% of the densities. A) HDL-C concentration. The white dots represent the experimental
data obtained via FPLC measurements from pooled mice plasma. B) Peripheral cholesterol efflux to HDL particles. C) Hepatic uptake of HDL-C. D)
Difference between peripheral cholesterol efflux to HDL and HDL-C uptake by the liver. E) Normalized hepatic uptake capacity of HDL-C, which is
assumed to be proportional the SR-B1 protein level. This prediction was recently confirmed experimentally by immunoblotting measurements of SR-
B1 in hepatic membranes [27] (data represent means + standard deviations). Note that this data serves as an independent validation and was not
included in the optimization procedure.
doi:10.1371/journal.pcbi.1003166.g006
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timescales. Therefore, in many cases insufficient information is

available to define the essential interaction mechanisms which are

modulated by a specific treatment intervention. Hence including a

full mechanistic description of these interactions in a mathematical

model is not possible. ADAPT provides a solution to overcome the

problem of undermodeling by introducing time-dependent

parameters that account for the missing interactions. We have

previously reported a concept of varying parameters [1]. In this

study parameter differences/adaptations were estimated to iden-

tify molecular differences between phenotypes. The approach was

developed to study steady-state differences in concentrations and

fluxes between experimentally observed phenotypes. In contrast to

ADAPT, no notion of time is integrated in the approach and the

dynamics between phenotype transitions were not considered.

ADAPT aims to dynamically link different experimentally

observed phenotypes (phenotype snapshots) as a function of time,

hereby providing an integrated understanding of the outcome of a

pharmacological intervention or disease progression.

A concept of time-varying parameters is also used in linear

parametric-varying (LPV) control analysis. LPV systems are

predominantly applied to design gain-scheduled multivariate

controllers [44,45]. LPV systems are developed for different

purposes and there are several essential differences compared to

ADAPT. First, LPV controllers are restricted to linear systems.

Second, LPV control analysis requires the time variation of

parameters to be measured in real-time. The field of Systems

Biology deals with the opposite challenge however. In case of

biological systems the time variation in parameters is typically not

known, and it is therefore the objective of ADAPT to estimate

these. Linear time-varying (LTV) systems represent another class

of systems in control theory that bear similarities with ADAPT. In

LVT systems the input-output characteristics vary with time.

These systems are used to design adaptive observers and

controllers [46,47]. These methods also presume that the

mechanisms causing the time-dependent differences in output

behavior are known or can be measured.

To allow for time-dependent optimization of model parameters

according to equation (10) at any time point during a treatment

intervention, experimental data at that specific time point is

needed. Therefore, continuous dynamic descriptions of the

experimental data are required. This issue was addressed by

calculating data interpolants. The selection of an appropriate

interpolation scheme is important as it determines the dynamic

behavior of corresponding model quantities. Considering the

uncertainty associated with the acquired experimental data, it was

decided to use cubic smoothing splines to describe the experi-

mental data. These descriptions are preferred in cases of noisy

observations [48]. Note that the usage of splines provides the

Figure 7. Sensitivity analysis of the hepatic triglyceride accumulation. A sensitivity analysis was performed to identify adapting processes
for which the hepatic triglyceride level is sensitive. The quantity of interest w is given by the total hepatic triglyceride pool (x4zx5zx6zx7). A
hundred batches, each containing thousand randomly selected optimized trajectories, were generated. Subsequently, for each batch the temporal
sensitivities were calculated. Top) mean KS distances for all states, parameters, and fluxes. Bottom) Three examples of dynamic sensitivity profiles. A
KS distance was considered significant when it exceeds the critical value indicated by the dotted lines (obtained from the Kolmogorov distribution
using a significance level of 0:05).
doi:10.1371/journal.pcbi.1003166.g007
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possibility to estimate the model parameters in a step-wise manner.

However, when considering ‘small’ models (low number of model

parameters Np) and/or a ‘low’ time resolution (low number of time

points Nt), such that the total number of parameters to be

estimated (Np|Nt) is relatively small, one could opt for an

approach to estimate all parameters in a single optimization

procedure. This approach is computationally expensive but could

provide a means to avoid the usage of data interpolants.

To account for variations in the dynamic behavior as well as

experimental and biological uncertainties, a collection of smooth-

ing splines was calculated using a Monte Carlo approach in which

random samples of the experimental data were generated. This

provides the possibility to determine the propagation of data

uncertainty through model predictions, and hence allows to

distinguish between predictions that are well constrained and as

such can be made confidently, and those that display a large

variation in possible outcomes. In case when parameter trajecto-

ries (or trajectories of states and fluxes) are not well-constrained by

the experimental data, it might be worthwhile to study relative

differences of these trajectories compared to the untreated

phenotype, which for several cases display consistent behavior

(see Supporting Information Text S8). The analysis of parameter

and prediction uncertainty is an important topic that triggered the

development of various methods [49–57]. The sampling of

replicates of experimental data and their subsequent utilization

in parameter estimation is a common approach to assess

prediction uncertainty, a class of methods also referred to as

bootstrapping [56,58–63]. Other approaches based on parameter

optimization have been proposed to assess the identifiability of

parameters [64] and predictions [50] or to probe consistent model

behavior (core predictions) among multiple parameter sets

[51,52,54,56]. Furthermore, Bayesian methods are available that

provide a probabilistic assessment of prediction uncertainty

[49,65–67]. A review of the state-of-the-art methods for uncer-

tainty analysis is presented in [68]. An additional analysis was

performed to investigate the identifiability of parameters for the

untreated phenotype, using ADAPT and the Profile Likelihood

method [64] (see Supporting Information Text S9).

ADAPT was applied to a model of hepatic lipid and plasma

lipoprotein metabolism to predict the metabolic adaptations

induced upon pharmacological treatment of mice with the LXR

agonist T0901317. As values for model parameters need to be

inferred from experimental data, mathematical modeling was

focused on integrating biological pathways from which a

substantial amount of components were measured quantitatively.

For the present case these predominantly concerned measure-

ments of metabolite concentrations in the liver and plasma.

Therefore, mathematical modeling was centered on integrating

corresponding pathways at the metabolic level. Interactions and

processes at the proteome and transcriptome levels were not

included, as insufficient information of the underlying network

structure and interaction mechanisms was available. Conversely,

Figure 8. Treatment design to prevent hepatic triglyceride accumulation. A computational analysis was performed to explore the
possibility to prevent hepatic triglyceride accumulation upon T0901317 treatment by targeting the triglyceride catabolism capacity (p8). The previous
computational analysis showed that the catabolism capacity decreased upon treatment (top left), which is partly responsible for the hepatic
triglyceride accumulation (top right). Re-estimation of parameter p8 , while forcing the total hepatic triglyceride pool to remain constant in time
(bottom right), indicates that this objective could be achieved by designing an intervention that maintains the untreated triglyceride catabolism
capacity (bottom left). The data is represented by means + standard deviations. The white lines enclose the central 67% of the densities.
doi:10.1371/journal.pcbi.1003166.g008
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these modulating effects were captured by inferring necessary

changes in the model parameters. Note that the computational

model does not include any mathematical descriptions of processes

involved in LXR activation and its transcriptional response. We

were able to quantitatively integrate data of untreated mice, as

well as mice treated with T0901317 up to three weeks into a

consistent model. The presented model predictions are in good

agreement with experimental observations and our previous

results [1]. An additional analysis was performed that confirms

that the parameters have to change in a time-dependent manner

to describe the experimental data. It was not possible to describe

the experimental data by simulating the system with time-constant

parameters or a step-wise response in the parameters (see

Supporting Information Text S10). The calculated trajectories of

metabolic states, parameters and fluxes can be used for a wide

range of analysis techniques to study the induced molecular

adaptations. Several of its potential applications were presented

here, e.g., sensitivity analysis, and therapy design.

The obtained trajectories provided the opportunity to study the

cascade of metabolic adaptations. Our results show a clear

distinction between processes that had an early onset and were

rapidly activated, and processes that changed progressively during

the treatment period. For instance, the peripheral uptake of

triglycerides via lipolytic enzymes is rapidly induced, while this

process is induced progressively in the liver (Figure 4, f22 vs. f23).

Analysis of the trajectories revealed that the majority of the processes

were up-regulated in time. Interestingly, only a small subset of the

included processes were down-regulated in time. One example

concerns the secretion of VLDL particles. The computational

analysis revealed that the secretion decreased rapidly up to one week

of treatment and subsequently stabilized upon prolonged treatment

(Figure 5a). This model prediction is consistent with the following

experimental observations. A reduced level of hepatic apolipoprotein

B mRNA (each VLDL particle contains one apolipoprotein B

protein) was observed in T0901317 treated mice [20,21,69].

Although the secretion of VLDL particles decreased upon

T0901317 treatment, the VLDL-mediated transport of triglycerides

and cholesterol to the plasma increased progressively (Figure 5b,c).

This was accomplished by an increased loading of these lipids onto

VLDL particles (Figure 5d,e), resulting in an enlargement of the

particle volume (see Supporting Information Text S4).

Model predictions furthermore indicated that the efflux of

cholesterol from peripheral tissues to HDL particles increased up

to one week of treatment (Figure 6b), which most likely resulted

from the induction of the cholesterol transporters ABCA1 and

ABCG1 in peripheral tissues. The increased cholesterol efflux was

closely followed by an increased uptake of HDL-C by the liver

(Figure 6c). However, a minor difference between the efflux and

uptake rates of HDL-C can be observed during the first week of

treatment (Figure 6d), resulting in an elevated plasma HDL-C level

(Figure 6a). Another interesting prediction obtained from the

computational analysis concerns SR-B1, a receptor that facilitates

the uptake of cholesterol from HDL by the liver. As LXR agonists

promote the efflux of cholesterol from the periphery and excretion

of cholesterol from the body, it was expected that SR-B1 expression

level would be induced upon treatment to accommodate the

increased hepatobiliary flux. In contrast, the computational analysis

showed that the hepatic capacity to clear HDL-C (assumed to be

proportional to the SR-B1 level) was reduced upon treatment

(Figure 6e). This counter-intuitive prediction was recently con-

firmed experimentally by immunoblotting analysis of SR-B1 protein

expression in hepatic membranes [27]. Hence, the increased HDL-

C concentration is not only a consequence of increased peripheral

cholesterol efflux to HDL particles [20,70] but also of impaired SR-

B1-mediated cholesterol uptake by the liver.

The calculated trajectories form a hypothesis on how the

various metabolic states, parameters, and fluxes changed during

the treatment intervention. These trajectories can subsequently be

exploited to establish the efficacy of a treatment and to identify its

potential side effects. In case unwanted side effects occur, the

trajectories may be used to design new or additional target

interventions to prevent these. Here, we presented an example

concerning the excessive accumulation of triglycerides in the liver

upon LXR activation. First, a sensitivity analysis was performed to

identify adapting processes to which the hepatic triglyceride level is

sensitive, and therefore potentially contributed to the accumula-

tion of triglycerides in the liver (Figure 7). Subsequently, we

performed a computational analysis to investigate the possibility to

maintain normal hepatic triglyceride levels upon T0901317

treatment by targeting the triglyceride catabolism capacity (p8),

one of the sensitive quantities. This parameter is iteratively re-

estimated to maintain a constant hepatic triglyceride content

during the treatment intervention, while keeping the other

parameters fixed according to their trajectories obtained from

the original analysis (Figure 8). Note that although all parameters

are fixed (with an exception for p8), the concentrations and fluxes

can change due to the targeting of p8. Here, we assumed that the

targeting of p8 induces merely negligible adaptations on the model

parameters. Figure 8 shows to what extent the catabolism capacity

should be targeted in order to maintain a hepatic triglyceride

content within the normal range. Such information can subse-

quently be used to design specific target interventions to achieve

this. One option could be to increase mitochondrial fatty acid

oxidation, thereby increasing triglyceride catabolism. Several

therapeutic strategies to achieve this have been proposed in recent

years [71–73]. Another strategy would be to inhibit Acetyl-CoA

carboxylase (ACC), the enzyme that catalyzes malonyl-CoA

synthesis. malonyl-CoA acts as an allosteric inhibitor of mito-

chondrial fatty acid oxidation. ACC inhibition will therefore

reduce malonyl-CoA levels, hence releasing the inhibitory effect

on fatty acid catabolism [74,75].

In conclusion, we presented ADAPT, a new modeling approach

to evaluate the consequences of a pharmacological intervention.

The calculated trajectories of metabolic states, parameters and

fluxes can be used for a wide range of analytical techniques to

study the molecular adaptations. They provide insight in the

affected underlying biological systems and identify the molecular

events that should be studied in more detail to unravel the

mechanistic basis of treatment outcome.
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