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Abstract

Most studies on probiotics aim to restore intestinal homeostasis to reduce immune-pathology in disease. Of equal
importance are studies on how probiotics might prevent or delay disease in healthy individuals. However, knowledge on
mechanisms of probiotic actions in healthy individuals is scarce. To gain more insight in how different bacterial strains may
modulate the healthy intestinal immune system, we investigated the effect of the food derived bacterial strains L. plantarum
WCFS1, L. salivarius UCC118, and L. lactis MG1363, on the intestinal regulatory immune phenotype in healthy mice. All three
bacterial strains induced an upregulation of activity and numbers of CD11c+ MHCII+ DCs in the immune-sampling Peyer’s
Patches. Only L. salivarius UCC118 skewed towards an immune regulatory phenotype in the small intestinal lamina propria
(SILP). The effects were different in the large intestine lamina propria. L. salivarius UCC118 induced activation in both CD4
and CD8 positive T-cells while L. plantarum WCFS1 induced a more regulatory phenotype. Moreover, L. plantarum WCFS1
decreased the Th1/Th2 ratio in the SILP. Also L. lactis MG1363 had immunomodulatory effects. L. lactis MG1363 decreased
the expression of the GATA-3 and T-bet in the SILP. As our data show that contradictory effects may occur in different parts
of the gut, it is recommended to study effects of probiotic in different sites in the intestine. Our strain-specific results
suggest that unspecified application of probiotics may not be very effective. Our data also indicate that selection of specific
probiotic strain activities on the basis of responses in healthy mice may be a promising strategy to specifically stimulate or
suppress immunity in specific parts of the intestine.
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Introduction

Intestinal microorganisms are of essential importance for the

development and maintenance of homeostasis of both the

intestinal and peripheral immune system [1,2]. This is illustrated

by the fact that an altered microbiota is associated with the

development of intestinal infections and inflammatory bowel

disease (IBD) [3,4]. Modification of the intestinal microbiota by

administration of probiotic bacteria, such as Lactobacillus or

Bifidobacterium species, is a promising strategy to prevent or

overcome excessive intestinal inflammation and to restore immune

homeostasis [5–9]. The efficacy of probiotics in the treatment of

intestinal inflammation has been demonstrated in a range of

experimental disease models [10–12], as well as in patients

suffering from intestinal inflammatory diseases [13–17].

Besides the beneficial effects of probiotics in inflammatory

disease, the disease-preventing potential of probiotic bacteria is

gaining attention [18–21]. Probiotic treatment may benefit

individuals who are not yet receiving medical treatment, but are

at risk of developing disease due to age- [22], obesity- [23],

malnutrition- [24], or stress-related [25] deterioration of immune

homeostasis. Surprisingly, the number of studies describing the

immunomodulatory effects of probiotic bacteria in non-diseased

individuals is small [18–21]. Most studies have focused on the

diseased situation to demonstrate the efficacy of probiotic

treatment [5–9,13–17]. However, due to immune pathology

[26,27] and a disruption of the intestinal barrier [28], these

studies may not reflect or predict the immunomodulatory effects of

probiotics in healthy individuals or persons with sub-optimal

immune health. Studying how different bacterial strains influence

the immune system in the healthy intestine will provide insight in

the mechanisms of beneficial effects of probiotics in the intestine.

Further, it will provide insight in the strain dependency of

probiotic treatment, their safety, as well as potential applications

for improving or maintaining immune health. For these reasons,

we decided to investigate the immunomodulatory effects of

probiotic bacteria in healthy, non-diseased mice.

It is hypothesized that in the intestine, probiotics influence the

intestinal immune response through several different pathways: i)
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probiotic sampling in the Peyer’s Patches (PP), influencing

dendritic cell (DC) and T cell responses in and beyond the PP;

(ii) probiotic-interaction with small intestine lamina propria (LP)

DCs, of which at least two specialized subsets can be discriminat-

ed, CD103+CX3CR1
2 DCs and CD1032CX3CR1

+ DCs [29],

influencing LP T cell responses; and (iii) probiotic-interaction with

epithelial cells, influencing DC and T cell responses in the LP

through the secretion of cytokines [30,31]. Although most of the

research on probiotic-induced immune signaling has focused on

the small intestine [32], also the large intestinal LP is an

immunological effector site [33] in which changes are associated

with the development of inflammatory bowel diseases, such as

ulcerative colitis.

In the present study we investigated the distribution of DC and

T cell subsets at different intestinal induction and effector sites

[peyers patches (PP), small intestinal LP (SILP) and in the large

intestinal LP (LILP)] after administration of L. plantarum WCFS1

[21], L. salivarius UCC118 [20], and L. lactis MG1363 [34] to

healthy mice. The bacteria were administered over 5 days,

covering the period required for mice to develop an adaptive

immune response [18,35]. In this study, we demonstrated strain-

dependent effects of the bacterial treatments on DC and T cell

activation in the PP, SILP and LILP, as well as reduction of the

Th1/Th2 ratio in the small intestinal LP. We demonstrated that L.

salivarius UCC118 and L. plantarum WCFS1 have the strongest

immunomodulating capacities of the three tested bacterial strains.

L. salivarius UCC118 skews the balance between effector and

regulatory T cells towards an immune regulatory phenotype in the

small intestinal LP while simultaneously activating T-cells in the

large intestinal LP. L. plantarum WCFS1 skews the balance towards

an immunoregulatory phenotype in the large intestinal LP, while

at the same time this probiotic shifted the Th1/Th2 balance

towards Th2 in the small intestine LP. This warrants caution in

drawing conclusions about the type of immunomodulating

capacity of a specific strain when only one location in the intestine

is studied. Although less pronounced, also L. lactis MG1363 had

immunomodulating effects.

Materials and Methods

Bacterial Strains and Growth Conditions
L. plantarum WCFS1 [36] and L. salivarius UCC118 [37] were

cultured at 37uC in Man, Rogosa, and Sharpe (MRS) broth. L.

lactis MG1363 [38] was cultured at 30uC in M17 broth containing

0.5% glucose. All bacterial cultures were grown overnight until the

stationary phase of growth was reached. Subsequently, the cultures

were diluted 1:1000 in fresh medium and cultured for a second

night. The optical density at 600 nm was measured and the

number of colony forming units (CFU) was calculated based on

standard growth curves. For all cultured bacterial strains, an

OD600-value of 1 corresponds to 1–26109 CFU/mL, which was

confirmed by plating serial dilutions on MRS or M17 agar plates.

To avoid bacterial alteration and cell death, extensive washing and

centrifugation was avoided. After overnight growth, bacteria were

diluted in fresh, sterile MRS and immediately administrated to the

animals. The mice received either sterile MRS as a control or 1–

26108 CFU bacteria in 200 mL MRS via intragastric gavage,

daily.

Animals and Tissue
Wild-type male Balb/c mice were purchased from Harlan

(Harlan, Horst, The Netherlands). The animals were fed standard

chow and water ad libitum. All animal experiments were performed

after receiving approval of the institutional Animal Care

Committee of the Groningen University (DEC5644B). All animals

received animal care in compliance with the Dutch law on

Experimental Animal Care.

To study the effect of three bacterial strains on the systemic

immune system (L. lactis MG1363, L. salivarius UCC118, and L.

plantarum WCFS1) or that of MRS broth, a 200 ml volume sample

was administered by intragastric gavage of once daily for five

consecutive days [18]. At day six, the mice were sacrificed, after

which the intestine was removed for further analysis. A tissue

sample from the middle of the small intestine (i.e. ileum) was snap

frozen in liquid nitrogen for RNA isolation and quantitative real-

time PCR. Due to restrictions in the cellular yield, only the PP,

SILP and the large intestine were used for cell isolations. The

LILP cell yield was not high enough to allow accurate analyses of

(activated) (CD103+) dendritic cell frequencies. Therefore, only T

cell subsets were analyzed in the LILP.

Cell Isolation
After sacrificing the mice, the intestine was removed and rinsed

with ice cold PBS. PPs were removed from the tissue and single

cell suspensions were made by mechanical disruption of the tissue

between two glass slides in 1 mL of ice cold RPMI containing 10%

heat inactivated fetal calf serum (FCS). Subsequently, a cell

strainer was used to remove remaining cell clumps.

The small and large intestine were cut in small pieces and rinsed

three times in ice cold Phosphate Buffered Saline (PBS). Epithelial

cells were removed by incubation of the tissue in PBS containing

10% heat inactivated FCS, 1 mM Sodium Pyruvate, 10 mM

Ethylenediaminetetraacetic (EDTA) and 20 mM 4-(2-hydro-

xyethyl)-1-piperazine-ethanesulfonic acid (HEPES) (pH 7.4) for

30 minutes at 37uC. Subsequently, the tissue was washed in ice

cold PBS. The LP was removed by incubation of the tissue in

RPMI 1640 medium, containing 10% heat inactivated FCS,

1.5 mg/mL Collagenase D (Sigma Aldrich), and 10 mg/mL

Table 1. Antibodies used for flow cytometry.

Specificity
Clone
Name Fluorochrome Dilution Supplier

CD3 17A2 Pacific Blue 200x BioLegend

CD4 RM4–5 PerCP 200x BioLegend

CD8 53-6.7 Alexa700 50x BioLegend

CD25 3C7 APC 100x BioLegend

CD69 H1.2F3 PE 200x BioLegend

FoxP3 FJK-16S FITC 100x eBioscience

Rat IgG2b N/A APC 100x BioLegend

Hamster IgG N/A PE 200x BioLegend

Rat IgG2a N/A FITC 100x eBioscience

CD11c N418 APC 25x BD Biosciences

MHC II 2G9 Biotin +
streptavidin PerCP

150x BD Biosciences

CD19 6D5 PE-Cy7 100x BioLegend

CD80 16-10A1 PE 50x BioLegend

CD86 PO3 Alexa700 50x BioLegend

CD103 2E7 Pacific Blue 25x BioLegend

Hamster IgG N/A PE 50x BioLegend

Rat IgG2b N/A Alexa700 50x BioLegend

Hamster IgG N/A Pacific Blue 25x BioLegend

doi:10.1371/journal.pone.0068952.t001

Probiotics and Immune Activation in Intestine
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DNAse I (Sigma Aldrich), for 60 minutes at 37uC. The reaction

was terminated by the addition of EDTA to a final concentration

of 10 mM. The cell suspension was washed in ice cold PBS. A cell

strainer was used to remove remaining cell clumps.

Lymphocytes were enriched and dead cells were removed from

the PP and LP mixtures by resuspension in 20% percoll and

loading on a 55%, 45%, and 35% percoll gradient (GE

Healthcare, Eindhoven, the Netherlands). Gradients were centri-

fuged at room temperature for 30 minutes at 800 g. The interface

containing live cells was collected and washed in ice cold PBS,

before cell counting and staining. After density gradient centrifu-

Figure 1. Dendritic cells were gated in the forward side scatter plot, based on size and granularity. CD19+ B-cells were excluded from
analysis and the frequency of MHC II+ CD11c+ cells was determined. Within the DC populations CD80, CD86, or CD103 isotype controls were used to
set the gate to 99% negative cells. This gate was copied to the samples stained for CD80, CD86, and CD103 and the frequency of positive cells was
determined.
doi:10.1371/journal.pone.0068952.g001

Table 2. Primer sequences used for quantitative real-time PCR.

Transcript Forward Primer Reverse Primer

T-bet GCCAGGGAACCGCTTATATG GACGATCATCTGGGTCACATTGT

GATA-3 AGGCAAGATGAGAAAGAGTGCCTC CTCGACTTACATCCGAACCCGGTA

RORcT CACGGCCCTGGTTCTCAT CAGATGTTCCACTCTCCTCTTCTCT

IL4 ACAGGAGAAGGGACGCCAT GAAGCCCTACAGACGAGCTCA

IL5 AGCACAGTGGTGAAAGAGACCTT TCCAATGCATAGCTGGTGATTT

IL10 GGTTGCCAAGCCTTATCGGA ACCTGCTCCACTGCCTTGCT

IL12p40 GGAAGCACGGCAGCAGAATA AACTTGAGGGAGAAGTAGGAATGG

IL17 ATCAGGACGCGCAAACATGA TTGGACACGCTGAGCTTTGA

IL23p19 TGTGCCCCGTATCCAGTGT CGGATCCTTTGCAAGCAGAA

IFNc TCCTGCAGAGCCAGATTATCTC CTCGGATGAGCTCATTGAATGC

TGFb GGGCTACCATGCCAACTTCTG GAGGGCAAGGACCTTGCTGTA

doi:10.1371/journal.pone.0068952.t002

Probiotics and Immune Activation in Intestine
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gation, more than 90% of the cells were vital, which was

confirmed by propidium iodide staining.

Cell Staining
T cell stainings were performed on single cell suspensions

retrieved from the Peyer’s patches (PP), small intestinal LP (SILP),

and large intestinal LP (LILP). DC stainings were performed on

cells retrieved from the PP and SILP. The T cell cocktail

contained monoclonal antibodies directed against CD3, CD4,

CD8, CD25, CD69, FoxP3, or appropriate isotype controls

(Table 1). The DC cocktail contained monoclonal antibodies

directed against CD11c, MHC II, CD19, CD80, CD86, CD103,

or appropriate isotype controls (Table 1).

Briefly, 16106 cells were incubated in FACS buffer (PBS

containing 2% heat-inactivated FCS) containing 10% normal

mouse serum for 30 minutes to prevent non-specific antibody

staining. Subsequently, the cells were incubated with a cocktail of

primary antibodies for 30 minutes, in the dark, after which the

cells were washed in ice cold FACS buffer twice. Tubes stained for

T cells were subsequently fixed in ice cold 16FACS Lysing

solution (BD Biosciences) for 30 minutes in the dark and washed

twice in permeabilisation buffer (eBioscience). Subsequently, the

cells were incubated with the anti-FoxP3 antibody or the isotype in

permeabilisation buffer containing 2% rat serum for 30 minutes in

the dark. Then the cells were washed twice in ice cold

permeabilisation buffer and resuspended in FACS buffer until

FACS analysis. Tubes for DC staining were washed twice in ice-

cold FACS buffer, after which the cells were incubated with the

secondary step for 30 minutes in the dark. Subsequently, the cells

were fixed in ice cold FACS Lysing solution for 30 minutes in the

dark followed by washing twice in ice cold FACS buffer and

resuspended in FACS buffer until FACS analysis (within 24 hours).

The whole procedure was performed on ice.

Flow Cytometry
At least 56105 cells were analyzed by flow cytometry. Flow

cytometry was performed using the LSR II Flow Cytometer

system (BD Pharmingen), with FACS Diva software. Analysis was

performed using FlowJo 7.6.2 software.

Dendritic cells were gated in the forward side scatter plot, based

on size and granularity, CD19+ B-cells were excluded from

analysis and the frequency of MHC II+ CD11c+ cells was

determined (Figure 1). Within the DC populations CD80,

CD86, or CD103 isotype controls were used to set the gate to

99% negative cells. This gate was copied to the sample stained for

CD80, CD86, and CD103 and the frequency of positive cells was

determined (Figure 1). DCs were defined as CD11c+MHC II+

cells. Intestinal DCs are depicted as the frequency of CD103+ cells

within the CD11c+MHC II+ population. CX3CR1
+ DCs were

defined as CD11c+ MHC II+ CD1032 DCs. Also the frequency of

activated DCs was determined and expressed as the frequency of

Figure 2. Effects of three bacterial strains on Peyer’s Patch dendritic cells. Frequency of CD11c+ MHC II+ dendritic cells (A), CD103+
dendritic cells (B), CD80+ dendritic cells (C), or CD86+ dendritic cells (D) in the Peyer’s Patches following treatment with culture medium (white bars)
(N = 6), L. lactis MG1363 (dashed bars) (N = 6), L. plantarum WCFS1 (grey bars) (N = 6), or L. salivarius UCC118 (black bars) (N = 6). CD103, CD80, and
CD86 frequencies are expressed as the frequency of cells within the CD11c+ MHC II+ population. Results are expressed as the mean6 standard error
of the mean (SEM). Statistical significance was calculated using the Students t- test. * represents P-values ,0.05.
doi:10.1371/journal.pone.0068952.g002
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CD80+ or CD86+ cells within the CD11c+MHC II+ cell

population.

Lymphocytes were gated in the forward side scatter plot and the

frequency of CD3+ T cells was determined. Within the T cell

population the frequency of CD8+ T cells and CD4+ T cells was

determined. Within both the CD4 and CD8 T cell population the

isotype controls for CD69 or CD25 were used to set the gate to

99% negative cells. This gate was then copied to the sample

stained for CD69 or CD25 and the frequency of positive cells was

determined.

Regulatory T cells are defined based on the expression of CD25

and the transcription factor FoxP3. For this, FoxP3+ cells were

gated within the CD4 T cell population (within the CD4 T cell

population the FoxP3 isotype control was used to set the gate to

99% negative cells). It has been shown by us and others that these

cells express regulatory cytokines [39,40]. This gate was copied to

the sample stained for FoxP3 and the frequency of positive cells

was determined. The expression of CD25 in these cells was

confirmed. All CD4+FoxP3+ cells consistently demonstrated CD25

expression. Results are expressed as the frequency of

Figure 3. Effects of three bacterial strains on Peyer’s Patch T cells. Frequency of CD69+ CD4 T cells (A), regulatory T/effector T cell ratio (B),
CD25+ FoxP3- effector CD4 T cells (C), CD25+ FoxP3+ regulatory T cells (D), or CD69+ CD8 T cells (E) in the Peyer’s Patches following treatment with
culture medium (white bars) (N= 6), L. lactis MG1363 (dashed bars) (N = 6), L. plantarum WCFS1 (grey bars) (N = 6), or L. salivarius UCC118 (black bars)
(N = 6). Results are expressed as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Students t-test. *
represents P-values ,0.05.
doi:10.1371/journal.pone.0068952.g003

Probiotics and Immune Activation in Intestine

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68952



CD25+FoxP3+ cells within the total CD4 T cell population

(CD4+CD3+ cells). Effector T cells are defined as the frequency of

CD25+FoxP32 or CD69+ cells within the CD4+CD3+ (T helper

cells) or CD8+CD3+ (cytotoxic T cells; CTLs) population.

qRT-PCR
mRNA of immunological genes was detected by quantitative

reverse transcribed PCR (qRT-PCR). The tissues (N=6 per

group) were lyzed in Trizol lysing buffer (Invitrogen). Total

RNA was extracted by chloroform-isopropanol extraction. cDNA

was prepared from isolated RNA using SuperscriptTM II Reverse

Transcriptase according to the kit protocol (Invitrogen). Quanti-

tative real time RT-PCR was performed on the ABI7900 Taqman

(Applied Biosystems) using a two-step amplification protocol. PCR

reactions contained 10 ng/mL of cDNA as template, 1.5 mM
forward and reverse primer and SYBR Green PCR master mix

(Applied Biosystems) in a total reaction volume of 20 mL. All PCR
reactions were performed in triplicate. Relative gene expression

was normalized to the GAPDH expression (DCt=CtGENE OF

INTEREST- CtGAPDH) of the same sample and depicted as inverted

relative expression levels [1/DCt (A.U.)]. Primer sequences are

described in Table 2. All PCR reactions were optimized using

RNA isolated from the spleens of untreated Balb/c mice.

Statistics
Flow cytometry data results are expressed as the mean 6

standard error of the mean (SEM). Normal distribution of the data

sets was confirmed by the Kolmogorov-Smirnov test. The two-

sided Students t-test was used to determine changes in immune cell

populations after probiotic treatment. Gene expression data are

expressed as the median (range). The Th1/Th2 ratio was

evaluated by dividing the gene expression of T-bet by gene

expression of GATA-3. The two-sided Mann Whitney U-test was

used to determine changes in expression profiles after probiotic

treatment in vivo. P-values ,0.05 (*) were considered statistically

significant.

Figure 4. Effects of administration of three types of bacterial strains on the small intestinal LP (SILP) dendritic cells. Frequency of
CD11c+ MHC II+ dendritic cells (A), CD103+ dendritic cells (B), CD80+ dendritic cells (C), or CD86+ dendritic cells (D) in the SILP following treatment
with culture medium (white bars) (N = 6), L. lactis MG1363 (dashed bars) (N = 6), L. plantarum WCFS1 (grey bars) (N = 6), or L. salivarius UCC118 (black
bars) (N = 6). CD103, CD80, and CD86 frequencies are expressed as the frequency of cells within the CD11c+ MHC II+ population. Results are
expressed as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Students t- test. * represents P-values
,0.05.
doi:10.1371/journal.pone.0068952.g004

Probiotics and Immune Activation in Intestine
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Results

Probiotic Treatment Induces DC and T cell Activation in
the Small Intestinal PP
We evaluated the immunomodulatory properties of L. plantarum

WCFS1, L. salivarius UCC118, and L. lactis MG1363 in vivo. These

strains were selected for their high IL10 inducing potential in

murine bone marrow derived dendritic cells as shown in a

previous study from our group [18]. We first focused on the

Peyer’s Patches (PP), the mucosal sites for induction of adaptive

immune responses [41]. The mice (N=6 per group) received the

bacteria, or culture medium alone as a control, for 5 consecutive

days.

In the PP, the first immune cells to respond to transcytosed

antigens are the dendritic cells in the dome area, underlying the

follicular epithelium [41]. All bacteria-treated groups demonstrat-

ed increased CD11c+ MHC II+ dendritic cell frequencies in the PP

as compared to the medium treated mice (Figure 2A). The

percentage of CD103+ intestinal DCs was increased, while the

percentage of CD103- intestinal DCs (i.e. CX3CR1
+ DCs; results

not shown) was decreased, but both only reached statistical

significance after L. salivarius UCC118 administration (Figure 2B).

Figure 5. Effects of administration of three types of bacterial strains on the small intestinal LP (SILP) T cells. Ratio of regulatory T/
effector T cells (A), frequency of CD25+ FoxP3- effector CD4 T cells (B), CD25+ FoxP3+ regulatory T cells (C), CD69+ CD4 T cells (D), CD69+ CD8 T cells
(E) in the SILP following treatment with culture medium (white bars) (N = 6), L. lactis MG1363 (dashed bars) (N= 6), L. plantarum WCFS1 (grey bars)
(N = 6), or L. salivarius UCC118 (black bars) (N = 6). Results are expressed as the mean 6 standard error of the mean (SEM). Statistical significance was
calculated using the Students t- test. * represents P-values ,0.05.
doi:10.1371/journal.pone.0068952.g005

Probiotics and Immune Activation in Intestine
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Although no effect of probiotic treatment was observed on %

CD80+ DCs in the PP (Figure 2C), the treatment with L. plantarum

WCFS1 and L. salivarius UCC118, but not L. lactis MG1363 did

increase the activation status of the dendritic cells in the PP as

demonstrated by increased frequencies of CD86+ DCs (Figure 2D).

These changes in the DC compartment of the PP coincided with a

twofold increase in early activated CD4 T cells, as demonstrated

by increased CD69+ CD4 T cell frequencies following L. plantarum

WCFS and L. salivarius UCC118 (fig 3A) and L. lactis MG1363

treatment (Figure 3A) and increased percentage of CD25+ cells

after L. salivarius UCC118 treatment as compared with medium

treatment (Figure 3C). The balance between effector CD4 T cells

and regulatory T cells in the PP (Figure 3B and 3D) was not

changed. The frequency of early-activated CD69+ CD4 T cells in

the CD8+ compartment was strongly increased by L. plantarum

WCFS and L. salivarius UCC118 treatment but not by L. lactis

MG1363 treatment (Figure 3E).

L. salivarius UCC118 but not L. plantarum WCFS or  

Phenotype in the Small Intestinal LP
Next, we questioned whether the intestinal effector sites are

altered by the bacterial treatments. For this, we studied the

distribution of immune cell populations in the small intestinal LP

(SILP). In addition to analysis of DC and T cell subsets by flow

cytometry, the expression levels of T cell polarizing cytokines were

determined by quantitative real-time RT-PCR as a measure for

specific T effector cell responses.

None of the bacterial treatments significantly altered the

frequency of total DCs (Figure 4A), CD103+ (Figure 4B) or

CD1032 (not shown) DCs in the SILP. We did observe however a

strong reduction of the CD80+ dendritic cells in the SILP after L.

plantarum WCFS and L. salivarius UCC118 treatment. This

however only reached statistical significant differences with L.

salivarius UCC118 (Figure 4C) in the SILP. These effects were less

pronounced on the CD86+ expressing DC compartment

(Figure 4D).

L. salivarius UCC118 treatments skewed the balance between

effector and regulatory T cells to a more regulatory phenotype

(Figure 5C). In the L salivarius UCC118 treated animals, this

altered balance was caused by a pronounced decrease of effector T

cell frequencies (Figure 5B), combined with an increased

regulatory T cell frequencies (Figure 5A).

The frequency of activated CD69+ CD4 T cells and activated

CD8 T cells (Figure 5D, 5E) increased in most cases but was

variable and did, therefore, not reach statistical significant

differences.

L. lactis MG1363 and L. plantarum WCFS1 Treatment
Decreases Th1 and Th2 Specific Cytokine Expression in
the Small Intestinal LP
By PCR we quantified the expression of T-bet, GATA-3,

RORcT, IL4, IL5, IL10, IL12p40, IL17, IL23p19, IFNc, TGFb
in the SILP. We found only statistical significant changes in T cell

polarization transcription factors. The expression of the Th2-

specific transcription factor GATA-3 was significantly decreased in

response to L. lactis MG1363 and L. plantarum WCFS1 treatment

(P,0.05) (Table 3). Although, these 2 bacterial strains also

decreased the expression of the Th1 transcription factor T-bet

(P,0.05) (Table 3), the resulting Th1/Th2 ratio was decreased in

both cases, illustrating a more pronounced skewing towards Th2.

This Th1/Th2 ratio decrease only reached statistical significance

after treatment with L plantarum WCFS1.

Th17 transcription factor RORcT transcripts were abundantly

present in the SILP, but the expression levels were not changed by

the probiotic treatments (Table 3). Similarly, IL17 expression was

not influenced by probiotic treatment (data not shown). Expression

of the Th1 cytokines IL12p40 and IFNc was low. The regulatory

IL10 and FoxP3 transcripts were low and not altered by the

treatments (data not shown). TGFb, which is involved in both T

cell skewing towards a regulatory phenotype as well as skewing

towards a Th17 phenotype [42], was abundantly present in the

SILP (Table 3) but not altered by the probiotic treatments. The

expression levels of the cytokines IL-4 and IL-5 were not detected

or in very low levels and were not affected by probiotic treatment

(results not shown).

Probiotic Treatment Induces T cell Activation in the Large
Intestinal LP
Although the mucosal interface of the large intestine is much

smaller than that of the small intestine, the LP of the large intestine

(LILP) is also considered an immune effector site. On average,

746,00067875 cells were retrieved from the LILP, which was too

low to allow for reliable quantification of changes in the small DC

compartment. Therefore, only changes in the T cell compartment

were analysed.

The effects were strain dependent. The frequency of regulatory

T cells was significantly enhanced by L. plantarum WCFS1

treatment (Figure 6A). As a consequence the regulatory-effector

balance after L. plantarum WCFS1 treatment showed a trend

towards a more regulatory environment in the LILP (p = 0.07)

(Figure 6C). However, both L. plantarum WCFS1 and L. salivarius

UCC118 treatment enhanced CD4 and CD8 T cell activation, as

demonstrated by increased frequencies of CD69+ expressing cells

(Figure 6D and 6E respectively). L. lactis MG1363 treatment had

no effect on LILP CD4 and CD8 T cells (Figure 6).

Table 3. Gene expression levels in the small intestine lamina propria.

Transcript Medium L. lactis MG1363 L. plantarum WCFS1 L. salivarius UCC118

T-bet 0.09371360.007254 0.04503460.016484* 0.02641460.017406* 0.05855660.025691

GATA3 0.0858460.01587 0.03508660.018961* 0.03216160.016688*

Th1/Th2 ratio 1.24472760.226619 1.18964460.555112 0.39656560.25265* 0.86435360.333015

RORcT 0.17344560.028785 0.18539960.018323 0.18425960.006646 0.20905860.036537

TGFb 0.13074560.05392 0.13649160.024243 0.13161360.007886 0.19800260.068527

Of all primer sequences shown in Table 2, only T-bet and GATA-3, RORcT and TGBb were detected and are shown in this table. By dividing T-bet through GATA-3
expression the Th1/Th2 ratio is calculated.
*represents P-values ,0.05.
doi:10.1371/journal.pone.0068952.t003
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Discussion

The majority of probiotics are marketed for consumption by

healthy individuals to prevent disease. However, to date most

experimental studies have focused on specific intestinal disease

models to demonstrate the efficacy of probiotics [10–12]. In these

models, the intestinal immune barrier may be compromised,

altering the contact between the probiotic bacteria and the

intestinal immune cells [28,43,44]. Moreover, in these models,

immune homeostasis is strongly perturbed and playing a role in

the pathophysiology of the disease [26,27]. Although these models

provide valuable insight into the efficacy of the probiotic

treatment, they do not reflect or predict the immunomodulatory

properties in the healthy situation. For this reason, we decided to

study the intestinal immunomodulatory effects of different

bacterial strains in healthy mice. The chosen strains are food-

derived bacteria [20] with confirmed immunomodulating effects in

the murine systemic circulation [18,40] and on ex vivo dendritic

cells [40,45–47].

To our knowledge, this is the first report on differential location-

specific immune changes in the intestine following short-term

treatment with probiotics. After administration of the three

bacterial species we always observed an upregulation and

increased activity of DC’s in the PP illustrating an enhanced

Figure 6. Effects of administration of three types of bacterial strains on the large intestinal LP (LILP) T cells. Frequency of CD25+
FoxP3+ regulatory T cells (A), CD25+ FoxP3- effector CD4 T cells (B), ratio of regulatory T/effector T cells (C), CD69+ CD4 T cells (D), or CD69+ CD8 T
cells (E) in the LILP following treatment with culture medium (white bars) (N = 6), L. lactis MG1363 (dashed bars) (N = 6), L. plantarum WCFS1 (grey
bars) (N = 6), or L. salivarius UCC118 (black bars) (N = 6). Results are expressed as the mean6 standard error of the mean (SEM). Statistical significance
was calculated using the Students t- test. * represents P-values ,0.05.
doi:10.1371/journal.pone.0068952.g006
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activity in this immune sampling site. L. salivarius UCC118

treatment skewed the adaptive immune balance towards a

regulatory phenotype in the SILP, but not in the LILP (both

immune effector sites). This was different with L. plantarum

WCFS1. L. plantarum WCFS1 had almost no effects on regulatory

cells in the SILP but shifted the Th1/Th2 balance towards Th2 in

the SILP as GATA-3 suppression was less pronounced than T-bet

suppression in the SILP. The effects of L. plantarum WCFS1 were

different in the LILP as here L. plantarum WCFS1 induced an

upregulation of regulatory cells. This was different with L. salivarius

UCC118 where in the LILP only enhanced activation of T-cells

was observed.

Up to now, we and others explained immunomodulatory effects

of probiotics by direct host-probiotic interactions [20,48]. This

explanation was supported by the identification of several effector

molecules on probiotics that can interact with pattern recognition

receptors found on gut epithelial cells or on intestine-bound

immune cells [45]. Although plausible, this theory cannot explain

that the same probiotic has a principally different effect in the

small and large intestine. This observation does fit however in the

theory of the pioneer strategy of probiotic administration.

According to this theory a probiotic does not necessarily become

a residential part of the host microbiome but may benefit other

bacteria in the intestine [49]. As the microbiome composition is

different in the small and large intestine also different effects of

probiotic administration may be expected with, consequently,

different effects on the host immune system. This however should

not be interpreted as a suggestion that direct interaction with the

host is not involved in immunomodulation. We have shown in

previous studies that short-term administration of probiotics, that

cannot induce shifts in the composition microbiota, does result in

immediate host-responses [20]. However, with longer administra-

tion periods such as in the present study location specific changes

in microbiota may occur as well.

In a previous study we showed that probiotics might skew the

peripheral immune response away from Th2 responses in healthy

mice [18,47]. Our present study showed that locally in the SILP

only two of the three strains attenuate Th2 responses. However,

this did not results in a higher Th1/Th2 ratio since in case of L.

plantarum WCFS1 the T-bet expression was more profoundly

suppressed resulting in a threefold decrease in Th1/Th2 ratio. As

the same strains were being used in our previous study and this

study [18] it has to be concluded that local effects on T-cells are

not necessarily reflected in the systemic circulation. This should be

explained by the fact that as shown in our previous study [18]

many processes are activated in the mesenterial lymph nodes and

spleen after probiotic induced immune activation.

Also L. lactis MG1363 had a decreasing effect on GATA-3 and

T-bet, but this did not result in a significant change in the Th1/

Th2 ratio. This effect of L. lactis MG1363 is surprising as L. lactis

MG1363 is not generally considered to be a probiotic strain. This

should change as in addition to effects on Th1 and Th2

differentiation, it also activated dendritic cells in the PP. The

probiotic effects of this strain have also been found in the systemic

circulation in previous studies [18,47].

Sampling of luminal contents may occur through DCs in the PP

[50], goblet cells [51], and LP DCs that exert their dendrites into

the intestinal lumen [41,50]. However, all these studies on

immune sampling focus on luminal particles and not on full

bacteria such as probiotics. It is still largely unknown where

probiotics are sampled. Most likely probiotics are sampled in our

study in the PP as we found increased frequencies of antigen-

presenting DCs and DC activation in the PP and not that

outspoken for all strains in the LP. However, subtle changes in the

LP (CD103+) DC population may be responsible for the previously

observed changes in systemic immunity [18]. However, we should

again emphasize that this might be different in (experimental)

disease models, in which the barrier function is disrupted [28] and

direct contact between the probiotics and immune cells is possible

[44,52].

It might be suggested that advanced in vitro tools [35,46,53–56]

might have been helpful in understanding and predicting the

effects of the strains in the present study. However, we have

applied many of those systems in previous studies [18,40,46,56]

but we had to conclude that the majority of the systems are poor

predictors as the systems focus on the secretion of only one or a

few pro- and anti-inflammatory cytokines from PBMCs or DCs as

a model for immunomodulation in vivo [35,46,53–56]. As shown in

the present study the composition of the gastrointestinal immune

system is very complex as a consequence of which contradictory

effects can be found in different parts of the intestine. To our best

knowledge there are no in vitro models available that have been

designed to mimic the different parts of the intestine.

The decreased Th1/Th2 ratio after L. plantarum WCFS1

treatment in the SILP may suggest that L. plantarum WCFS1

may be effective in the prevention or slowing down the

development of Th2 skewed intestinal diseases [27] in still healthy

individuals. L. salivarius UCC118 may be less effective in this

respect but might theoretically be beneficial for preventing or

slowing down chronic, low grade intestinal immune disorders

which require only a modest adjustment in the Th1/Th2 balance,

or intestinal food allergies that require enhanced immunosuppres-

sion rather than an altered Th1/Th2 balance [57]. However the

differential effects in the SILP and LILP warrant caution in

suggesting the application of L. salivarius UCC118 in disease

models. Especially the enhanced inflammatory responses in the

LILP may be problematic when the barrier is disturbed. This

dualistic effect of L. salivarius UCC118 in different parts of the gut

may also explain the variable performance of L. salivarius UCC118

in disease models [58–60].

In summary, in the current study we demonstrated intestinal

immunomodulation following short-term oral administration of

three bacterial strains in healthy mice. The observation that these

effects on the immune system are strain dependent supports the

need to select probiotics for specific groups of individuals with

different needs instead of generalized application of probiotics for

prevention of any type of disorder. Our data suggest that it may be

mandatory to select strains and test specific probiotics to prevent

allergy (i.e. suppressing Th2 responses) and others for preventing

infection in still healthy individuals (i.e. stimulating Th1 respons-

es). This however should be carefully defined as we show that some

probiotics may have desired effects in the small intestine while

inducing responses of a proinflammatory nature in other parts of

the intestine. Although further research is required, our results

suggest that the selection of specific probiotic strains on the basis of

responses in healthy mice may be a promising strategy to improve

health and prevent specific intestinal immunological disorders.
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