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Evaluation of an Intranasal Virosomal Vaccine against
Respiratory Syncytial Virus in Mice: Effect of TLR2 and
NOD2 Ligands on Induction of Systemic and Mucosal
Immune Responses
Muhammad Shafique, Tjarko Meijerhof, Jan Wilschut, Aalzen de Haan*

Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands

Abstract

Introduction: RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to
prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies,
capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for
intramuscular injection with intrinsic adjuvant properties mediated by an incorporated lipophilic Toll-like receptor 2 (TLR2)
ligand. However, it has not been investigated whether this virosomal RSV vaccine candidate would be suitable for use in
mucosal immunization strategies and if additional incorporation of other innate receptor ligands, like NOD2-ligand, could
further enhance the immunogenicity and protective efficacy of the vaccine.

Objective: To explore if intranasal (IN) immunization with a virosomal RSV vaccine, supplemented with TLR2 and/or NOD2-
ligands, is an effective strategy to induce RSV-specific immunity.

Methods: We produced RSV-virosomes carrying TLR2 (Pam3CSK4) and/or NOD2 (L18-MDP) ligands. We tested the
immunopotentiating properties of these virosomes in vitro, using TLR2- and/or NOD2-ligand-responsive murine and human
cell lines, and in vivo by assessing induction of protective antibody and cellular responses upon IN immunization of BALB/c
mice.

Results: Incorporation of Pam3CSK4 and/or L18-MDP potentiates the capacity of virosomes to activate (antigen-presenting)
cells in vitro, as demonstrated by NF- B induction. In vivo, incorporation of Pam3CSK4 in virosomes boosted serum IgG
antibody responses and mucosal antibody responses after IN immunization. While L18-MDP alone was ineffective,
incorporation of L18-MDP in Pam3CSK4-carrying virosomes further boosted mucosal antibody responses. Finally, IN
immunization with adjuvanted virosomes, particularly Pam3CSK4/L18-MDP-adjuvanted-virosomes, protected mice against
infection with RSV, without priming for enhanced disease.

Conclusion: Mucosal immunization with RSV-virosomes, supplemented with incorporated TLR2- and/or NOD2-ligands,
represents a promising approach to induce effective and safe RSV-specific immunity.
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Introduction

Respiratory Syncytial Virus (RSV) is the major cause of lower

respiratory tract infections, particularly in infants and children.

According to the WHO reports, RSV causes 64 million infections

annually, leading to the hospitalization of 18,000–75,000 children

in the USA alone with an estimated mortality of 160,000 [1]. Most

children are infected at least once by the age of 2 and reinfection

may occur throughout life due to incomplete immunity to RSV

[2,3]. RSV, therefore, remains a threat at older age, particularly in

risk groups such as the elderly and immuno-compromised

individuals. Despite the burden of RSV disease, there is still no

licensed vaccine against RSV infection.

New candidate non-replicating RSV vaccines should induce

protective immunity without priming for enhanced respiratory

disease (ERD) upon natural infection, as did the formalin-

inactivated and alum-adjuvanted whole RSV vaccine (FI-RSV)

used in a clinical trial in the 1960s [4]. Possible factors involved in
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priming for ERD by non-replicating vaccines include disruption of

protective epitopes by the chemical inactivation of the virus, poor

innate receptor activation by the vaccine resulting in induction of

poorly neutralizing antibodies and excess Th2-type responses

[5,6]. Recent studies indicate that addition of Toll-like receptor

(TLR) ligands, used as vaccine adjuvants, improve antibody

affinity and Th1-skewing and prevent priming for ERD [7,8].

Furthermore, mucosal (i.e., intranasal, IN) immunization prevents

induction of this complication and additionally induces secretory

IgA (S-IgA) responses in the respiratory tract, which can act as a

first line of defense against RSV [8,9]. Thus, new candidate RSV

vaccines should induce Th1-skewed immune responses with

induction of protective systemic and mucosal antibodies without

priming for enhanced pathology upon natural infection. Mucosal

vaccines that include TLR-ligands for activation of innate

receptors could be promising in this respect.

Virosomes are non-replicating virus-like particles consisting of

reconstituted membranes of enveloped viruses [10]. The produc-

tion of virosomes does not use chemicals (e.g. formalin) that could

possibly modify protective epitopes. Upon production, virosomes

allow the incorporation of lipophilic adjuvants, such as lipophilic

TLR-or NOD-like receptor (NLR)ligands, in their membranes.

We previously reported on the feasibility of inclusion of lipophilic

TLR-ligand adjuvants (i.e. TLR2-ligand Pam3CSK4 and TLR4-

ligand Monophosphoryl Lipid A; MPLA) in RSV virosomes and

demonstrated that such adjuvant-supplemented virosomes have

the capacity to induce protective antibodies after parenteral

administration to mice or cotton rats, without priming for

enhanced disease [11,12]. However, we have not yet investigated

whether such virosomal RSV vaccine candidates are suited for use

in mucosal immunization strategies.

TLR ligands have been reported to have the capacity to

potentiate immune responses against mucosally delivered anti-

gens[13]. In this respect, we found that a TLR9 ligand (i.e. CpG

DNA), alone or co-formulated with a NOD2 ligand (i.e. L18-

MDP), could boost mucosal and systemic antibody responses to

admixed inactivated RSV whole virions upon IN administration to

mice [8]. However, lipophilic TLR ligands like Pam3CSK4 or

MPLA can be much more efficiently incorporated in virosomes

compared to CpG DNA [11,12]. The latter also would need

additional incorporation of cationic lipids in the virosomal

membrane in order to bind the negatively charged DNA

molecules [14]. We therefore chose to explore the use of

Pam3CSK4 as a TLR ligand adjuvant in virosomes. The TLR

for Pam3CSK4, i.e. TLR2, is abundantly expressed on many cell

types in mucosal tissues and does not need additional co-receptors

like those described for the receptor of MPLA (TLR4), i.e. CD14

and MD2, that have low expression levels in mucosal tissues [15].

Also, other TLR2 ligands have shown promise as mucosal

adjuvants [16–18].

In this study, we explored the use of the TLR2 ligand

Pam3CSK4 in RSV-virosomes for potentiation of immune

responses. We further investigated the use of a NOD2 ligand

with possible mucosal immuno-adjuvant properties, i.e. L18-MDP

[19,20], and its combined use with the TLR2 ligand, Pam3CSK4.

The rationale for the combined use is that NOD2 ligands may

synergistically enhance immune activation induced by TLR-

ligands [21–23], which would result in a better immunopotenti-

ation by the mucosal virosomal RSV-vaccine.We demonstrate that

incorporation of TLR2 ligands and/or NOD2 ligands in

virosomes potentiates their capacity to activate a mouse macro-

phage cell line and human TLR/NOD2-expressing cells in vitro. In

vivo, incorporation of a TLR2-ligand in virosomes boosted RSV-

specific serum IgG and mucosal IgA responses after IN

immunization of mice. While virosome incorporation of NOD2-

ligand alone did not potentiate antibody responses, incorporation

of NOD2 ligand in virosomes carrying a TLR2 ligand further

stimulated local IgA and serum IgG responses. Adjuvantation of

RSV virosomes with TLR2/NOD2 ligands also primed for a Th1-

skewed response. Finally, RSV virosomes adjuvanted with TLR2/

NOD2 ligands protected mice against challenge with infectious

RSV without inducing enhanced disease.

Materials and Methods

Ethics statement
All animal experiments were evaluated and approved by the

Committee for Animal Experimentation (DEC) of the University

Medical Center Groningen, University of Groningen, The

Netherlands, according to the guidelines provided by the Dutch

Animal Protection Act (permit number DEC 5239B). Immuniza-

tions and challenges were carried out under isoflurane anesthesia

and every possible effort was made to minimize suffering of the

animals.

Virus production and cell culture
RSV strain A2 (ATCC VR 1540) was kindly donated by

Mymetics BV (Leiden, The Netherlands). The virus was grown in

roller bottles on HEp-2 cells (ATCC, CL-23, Wesel, Germany) in

HEp-2 medium: DMEM (Invitrogen, Breda, The Netherlands)

supplemented with Pen/Strep, L-Glutamine, Sodium bicarbonate,

HEPES, Sodium pyruvate, 16non-essential amino acids (all from

Invitrogen) and 10% FBS (Lonza-Biowhittkar, Basel, Switzerland),

and purified by a combination of differential and rate zonal

ultracentrifugation on sucrose gradients. Purified virus was snap-

frozen in liquid nitrogen and stored at 280uC in 20% sucrose in

HNE buffer (5 mM Hepes, 145 mM NaCl, 1 mM EDTA,

pH 7.4).

RAW-Blue (Mouse Macrophage Reporter Cell Line), HEK-

Blue TLR2, HEK-Blue Null1, HEK-Blue NOD2, HEK-Blue

Null2 cell lines, were purchased from Invivogen (Toulouse,

France) and maintained according to the manufacturer’s instruc-

tions. The abbreviation HEK stands for Human Embryonic

Kidney.

Preparation of vaccine formulations
Virosomal RSV vaccine was produced as described earlier [11].

Briefly, purified virus was pelleted by ultracentrifugation for

30 min at 40, 000 rpm at 4uC, and the pellets were suspended in

sterile HNE buffer. Then, this suspension was mixed with an equal

volume of 200 mM 1,2-dihexanoyl-sn-glycero-3-phosphocholine

(DCPC) resulting in dissolution of the viral envelopes. The viral

nucleocapsid was removed by ultracentrifugation at 50,000 rpm

for 30 min at 4uC. Then, the supernatant containing the viral

envelopes was added to a thin film of lipids prepared in a glass

tube of 2:1 molar mixture of egg phosphatidylcholine (PC) and egg

phosphatidylethanolamine (PE) (Avanti Polar Lipids, Alabaster,

AL, USA) in 2:1 chloroform/methanol at 850 nmol/mg of viral

envelop proteins. The lipid mixture was evaporated to dryness on

the wall of a glass tube and traces of the solvents were removed at

a high vacuum. The lipopeptide adjuvant, N-pamitoyl-S-[2,3-

bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl -[S]-seryl-[S]- (lysyl)3 -

lysine (Pam3CSK4,EMC Microcollections GmbH, Tubingen,

Germany, lyophilized from the HCl solution), and/or L-18

muramyldipeptide (L18-MDP) (6-O-stearoyl-N-Acetyl-muramyl-

L-alanyl-D-isoglutamine; Invivogen, Toulouse, France) were

dissolved in 100 mM DCPC in HNE, pH 7.4 and the solution

was filtered through a 0.22 mm filter. To prepare virosomes,
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supernatant containing the viral envelopes and DCPC was

combined with a thin film of lipid mixture, while to prepare

adjuvanted virosomes, the lipopeptide solutions (Pam3CSK4) and/

or L18-MDP were added separately or together (1 mg of

adjuvant(s) per mg of viral protein). The mixture was incubated

for 15 min at 4uC, filtered through 0.22 mm filter and dialyzed

against 462 liters of HNE buffer pH 7.4 in a sterile slide-A-lyzer

(10 kD cut-off; ThermoScientific, Etten, Leur, the Netherlands)

for 48 h. The buffer was changed 4 times. The virosomes were

harvested and protein concentration was determined by Bio-Rad

Bradford protein assay.

FI-RSV vaccine was prepared according to the protocol, which

was used for the 1960s FI-RSV vaccine preparation as reported in

[24]. This vaccine was diluted in HNE buffer to contain 5 mg of

RSV protein in 25 ml.

In vitro analyses
The virosomal formulations were analyzed by equilibrium

density gradient centrifugation on 10–60% sucrose gradients in

HNE. The gradients were centrifuged for 60 h in an SW55 Ti

rotor at 50000 rpm and the samples from the gradients were

analyzed for protein, phospholipid and density (by refractometry).

Later, each fraction was dialyzed against HNE in a slide-A-Lyzer

MINI Dialysis device (Thermo Scientific, Geel, Belgium) over-

night to remove the sucrose. Then, samples were corrected for

increase in volume due to dialysis and 100 ml of the samples were

used to stimulate each cell line i.e. Mouse Macrophage Reporter

Cell Line (RAW-Blue cells) and Human Embryonic Kidney cell

lines (HEK-Blue TLR2, HEK-Blue Null1, HEK-Blue NOD2,

HEK-Blue Null2). RAW-Blue cells were used to measure vaccine/

innate receptor ligand-induced NF-kB activation. These cells

express all TLRs (except TLR5) as well as RIG-I, MDA5, NOD1

and NOD2 and carry a NF-kB responsive-gene encoding secreted

alkaline phosphatase. RAW-Blue Cells (16105 cells/well in 100 ml)

were incubated with 100 ml sample overnight at 37uC in a 96-well

flat bottom plates in triplicate. Alkaline phosphatase was

quantified by incubating 20 ml cell supernatants with 180 ml

Quanti-Blue (Invivogen, Toulouse, France) for 30 min at 37uC.

Next, absorbance was measured at 630 nm through plate reader.

Next, the relative amount of NF-kB induced by the gradient

(virosomal) fractions was calculated by comparing to the NF-kB

induced by CpG ODN, which was used as positive control. To

study the stimulating capacity of the (virosomal) fractions to

activate human TLR, HEK-Blue cells (HEK-TLR2, HEK-Null1,

HEK-NOD2 and HEK-Null2; 56104 cells/well) were incubated

with 100 ml of the (virosomal) fractions in a 96-well flat bottom

plate overnight at 37uC, 5% CO2 atmosphere. Secreted alkaline

phosphatase was assayed as indicated above. The relative amount

of NF-kB induced in TLR2/Null1 and NOD2/Null2 cells was

calculated by comparing to NF-kB induced by TNFa (100 ng/ml)

stimulation, used as positive control.

Immunization schedule and RSV challenge
Female specified-pathogen-free BALB/c OlaHsd mice (6–8

weeks old) purchased from Harlan, Zeist, The Netherlands, were

used for all immunization experiments. Mice were immunized

either with RSV virosomes (5 mg) alone or with incorporated

innate receptor ligands, i.e. TLR2 (Pam3CsK4) and/or NOD2-

ligands (L18-MDP) present at a 1:1 weight ratio of ligand to

vaccine antigen, respectively. Mice (6 mice per group) were

immunized on days 0 and 21, under 3–4.5% isoflurane anesthesia

in O2 by IN inoculation of 50 ml. One group of mice was

immunized with FI-RSV vaccine by intramuscular (IM) injection

of 25 ml of FI-RSV absorbed to aluminium hydroxide (see above)

and served as a control for vaccine-induced ERD. Another group

of mice was immunized by IN inoculation with live-virus (16106

TCID50) and served as a control for optimal anti-viral immunity.

On day 28, all mice were challenged with live-virus (16106

TCID50) by administration of 5610 ml of virus in the nose under

isoflurane anesthesia.

Collection of blood samples and mucosal washes
Blood samples were drawn twice during the experiment: on day

28 before challenge by orbital puncture and day 32 by heart

puncture. Sera were obtained after centrifugation of coagulated

blood at 12,000 rpm for 10 min, and samples were stored at

220uC until further analysis. Bronchoalveolar lavages (BAL) and

nasal washes were performed as previously described [25]. Briefly,

lung lavages were performed by gentle injection of 1 ml PBS into

the lungs with a syringe connected to the trachea, followed by

subsequent aspiration of 1 ml of the wash fluid. Nasal washes were

done by injection of 1 ml PBS retrograde via the trachea into the

naso-pharynx and the lavage fluid was collected at the nostrils.

The cellular components in the washes were removed by low-

speed centrifugation. The supernatants were stored at 220uC until

further analysis.

Antibody titer determination through ELISA
The antibody response to RSV was determined using enzyme-

linked immunosorbent assay (ELISA). ELISA plates (Greiner Bio-

one, Alphen a/d Rijn, The Netherlands) were coated with beta-

propiolactone (BPL) inactivated whole RSV (BPL-RSV) at 0.5 mg

protein per well in coating buffer (0.05 M carbonate–bicarbonate,

pH 9.6–9.8) overnight at 37uC. Plates were washed three times

with coating buffer and blocked with a 2.5% solution of milk

powder (Protifar Plus, Nutricia, Zoetermeer, The Netherlands) in

coating buffer for 45 min at 37uC, then washed twice with coating

buffer and three times with PBS Tween (PBST), containing 0.05%

Tween 20 (Merck, Schiphol-Rijk, The Netherlands). Serial two-

fold dilutions of serum samples (for IgG, IgG1 and Ig2a, IgA, IgE)

and BAL and nasal wash samples (for IgA, IgG determination)

were applied to the plates and incubated for 90 min. Plates were

washed three times with PBST and incubated with a 1:5000

dilution of horseradish-peroxidase conjugated goat anti-mouse

IgG, IgG1, IgG2a or IgA; Southern Biotech, Birmingham, AL,

USA) for 60 min at 37uC. Subsequently, the plates were washed

three times with PBST and three times with PBS. After aspiration,

O-Phenylenediamine (OPD; Sigma-Aldrich, St Louis, MO, USA)

in 50 mM phosphate buffer pH 5.6 with 0.02% H2O2 was added

and wells were incubated for 30 min. Then, the reaction was

stopped by adding 50 ml 2 M H2SO4 per well and the optical

densities (OD) of the wells at 490 nm was determined. IgA levels

were expressed as OD-values of undiluted samples. IgG levels

were expressed as titers and defined as the reciprocal of the highest

dilution that gave an OD value of at least 0.2.

IFN-c and IL-5 detection in stimulated splenocyte
supernatants

Four days after the virus challenge, mice were sacrificed and

spleens were harvested separately in 15 ml tubes containing

Iscove’s Modified Dulbecco’s Medium (IMDM; Invitrogen, Breda,

The Netherlands) supplemented with 1% Penicillin/Streptomycin

and 0.1% beta-mercaptoethanol (Invitrogen, Breda, The Nether-

lands) and 10% FCS (Lonza-Biowhittaker, Basel, Switzerland).

Then, spleens were processed individually for in vitro stimulation.

Briefly, washed spleens were passed through a 70 mm mesh (BD

Biosciences, Heidelberg, Germany) using sterile 3 ml syringe

A Mucosal Virosomal RSV Vaccine
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plungers. Subsequently, erythrocytes were lysed by incubating

with hypotonic medium (0.83% NH4Cl, 10 mM KHCO3,

0.1 mM EDTA, pH 7.2) for 5 min on ice. The cells were washed

with IMDM, counted and brought to appropriate concentrations.

Fresh spleen cells were seeded into 96-well plates at a concentra-

tion of 26106 cells/ml and stimulated with BPL-RSV (10 mg/ml)

in IMDM/10% FCS in triplicates and incubated at 37uC in a 5%

CO2 atmosphere for 72 hrs. Supernatants were harvested and

stored at 220uC until further analysis. IFN-c and IL-5 cytokines

were measured in supernatants of these stimulated splenocytes.

For this, mouse IFN-c- and mouse IL-5- high sensitivity ELISA

kits (eBioscience, Vienna, Austria) were used according to the

manufacturer’s instruction. Detection limits were 15 pg/ml and

4 pg/ml for IFN-c and IL-5, respectively.

Lung virus titration
Lungs were removed aseptically from all mice following

euthanasia and washed in Dulbecco’s Modified Essential Medium

(DMEM), (PAA Laboratories, Colbe, Germany), supplemented

with 2% FCS and transferred into 4 ml tubes containing 1 ml

medium. Then, the lungs were homogenized individually with an

automated Potter homogenizer Polytron-AggregateH (Thomas

Scientific, Swedesboro, NJ, USA), centrifuged at 1400 rpm for

10 min at 4uC and supernatants were separated. Virus titers were

determined, by titration of the tissue-culture infectious dose

(TCID50). Briefly, a serial two fold dilutions of these samples were

made in 96-well plates in quadruplicates with 1:5 starting dilution.

Hep-2 cells, (20,000 per well) were seeded to the virus dilutions

and incubated for 5 days at 37uC in a 5% CO2 atmosphere. Then,

supernatants were removed and plates were washed with PBS.

The cells were then fixed with 1% para-formaldehyde in PBS for

1 h. After blocking cells with 2% milk powder (Protifar plus,

Nutricia, Zoetermeer, The Netherlands) in PBS for 45 min at

37uC, plates were stained with 50 ml 1:400 dilution of FITC-

labeled goat anti-RSV antibody (Meridian life science Inc, Saco,

ME, USA) at 37uC overnight. The next day, plates were washed

with PBS and analyzed under fluorescent microscope. Wells were

considered positive for infection when $1 fluorescent syncytium

was detected. Finally, TCID50 titers were calculated by the Reed-

Muench method using an Excel spreadsheet.

Figure 1. In vitro analysis of RSV virosomes and RSV virosomes adjuvanted with TLR2 and/or NOD2ligands. RSV virosomes and RSV
virosomes adjuvanted with TLR2 and/or NOD2 ligands were spun on an equilibrium density sucrose gradient. Subsequently, density, phospholipids
and protein concentrations of each fraction was determined. Panel A shows a representative profile of a virosome purification gradient. Fractions
(1,5,10; representing bottom, virosomal and top gradient fractions, respectively) were analyzed to determine their capacity to activate NF-kB in
mouse macrophages (RAW-Blue cells; panel B) and human embryonic kidney cells (HEK-BlueTLR2 & HEK-Blue NOD2 cells; panel C). The level of NF-kB
induced in RAW-blue cells was expressed as values relative to levels of NF-kB induced by CpG ODN, the positive control. To assess non-specific NF-kB
activation by TLR2 and NOD2 ligand-carrying virosomes in HEK cells, control cells (HEK-Blue Null1 & HEK-Blue Null2 cells, respectively) were incubated
with the same fractions and these values were subtracted from values obtained with HEK-BlueTLR2 & HEK-Blue NOD2 cells, respectively. As a control,
HEK-Blue TLR2 and HEK-Blue NOD2 cells were stimulated with 100 ng/ml TNF-a. Bars represent the NF-kB activation relative to TNF-a control.
doi:10.1371/journal.pone.0061287.g001

Figure 2. RSV-specific systemic IgG antibody responses after IN immunization of mice. BALB/c mice were immunized IN with RSV
virosomal vaccine formulations (5 mg of protein) or HNE. Control mouse groups were either immunized IM with FI-RSV or IN with live-RSV (L-RSV) on
day 0 and 21. Six mice were used in each group. One week after the booster immunization, RSV-specific IgG responses in serum (A) and IgG-subtypes
(IgG2a/IgG1) (B) were determined by ELISA. Panel A: Bars represent the geometric mean titer and standard deviation. Panel B: Bars represent the
ratios of IgG2a/IgG1. The data shown are representative of at least 3 separate experiments. Data was analyzed by a Mann-Whitney U test and a p-
value of#0.05 was considered to represent a significant difference. * p#0.05, ** p#0.01.
doi:10.1371/journal.pone.0061287.g002
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Lung Histopathology
The lung lobes were harvested four days post infection, inflated

with 4 % formalin in PBS for overnight and subsequently

embedded in paraffin. Then, four mm slices were prepared, stained

with standard hematoxylin and eosin (H & E) and were

photographed using Nanozomer (Hamamatsu). Each lung section

was analyzed for one of the following four parameters of

pulmonary inflammatory changes: peribronchiolitis (inflammatory

cells surrounding a bronchiole), perivasculitis (inflammatory cells

surrounding a small blood vessel), alveolitis (inflammatory cells

within alveolar spaces), and interstitial pneumonitis (increased

thickness of alveolar walls associated with inflammatory cells) by

light microscopic analysis of slides.

Data analysis
All statistical analyses were performed using Graphpad Prism

v5.0 (Graphpad Software, San Diego California, USA). Statistical

significance was determined using unpaired Mann-Whitney U test.

P values # 0.05 were considered statistically significant.

Results

Characterization of virosomal formulations
Virosomal RSV formulations were prepared according to the

protocol described in the Materials and Methods section. For all

virosomal RSV-preparations, protein and phospholipids were

found to co-migrate in the density gradients, indicating the

successful formation of virosomes (Figure 1A). To investigate

whether the lipophilic adjuvants were associated with the RSV

virosomes, gradient fractions containing the virosomes, and top

and bottom gradient fractions without virosomes (as controls),

were tested for their capacity to induce NF-kB in TLR or NOD2

receptor-expressing mouse macrophage cell lines in vitro. Non-

adjuvanted RSV virosome fractions poorly induced NF-kB

expression in this assay (Figure 1B). Incorporation of Pam3CSK4

or L18-MDP in RSV virosomes clearly potentiated the capacity of

the virosomes to induce NF-kB (Figure 1B). Incorporation of both

ligands in virosomes enhanced NF-kB induction compared to the

NF-kB induction by single incorporated ligands, although not in a

synergistic fashion (Figure 1B). Top and bottom gradient fractions

induced low NF-kB levels, suggesting that most of the added

ligands was efficiently incorporated in the virosomal membranes.

Virosomal RSV formulations were also added to human cell

lines that express single human innate receptors. Non-adjuvanted

RSV virosomes again poorly induced NF-kB expression in TLR2

or NOD2-expressing cell lines (i.e. HEK-TLR2- or HEK-NOD2)

cells, respectively (Figure 1C). RSV virosomes with incorporated

Pam3CSK4 enhanced NF-kB expression in HEK-TLR2 cells, but

not in HEK-NOD2 cells. Similarly, RSV virosomes with

incorporated L18-MDP enhanced NF-kB expression in HEK-

NOD2 cells, but not in HEK-TLR2 cells. Some residual

bioactivity of L18-MDP was seen in the top fraction from the

RSV-L18-MDP virosome density gradient, suggesting that most,

but not all ligand was incorporated into the viral membranes.

Since a large proportion of the lipophilic ligands was found to be

incorporated into the viral membranes, we used non-fractionated

virosomes for all subsequent immunization experiments.

Figure 3. RSV-specific mucosal IgA and IgG antibody responses in nasal washes and BAL after IN immunization of mice. BALB/c mice
were immunized IN with RSV virosomal vaccine formulations (5 mg of protein) or HNE. Control mouse groups were either immunized IM with FI-RSV
or IN with L-RSV on day 0 and 21. Four days after challenge with live RSV (day 32), RSV-specific IgA responses in nasal washes (A), BAL (C) were
determined by ELISA. RSV-specific IgG responses in nasal washes (B) and BAL (D) were also determined. For nasal washes, the data from 6 mice per
group is shown and for BAL, data from 3 mice per group is shown. Panels A-D: Bars represent the mean absorbance (490 nm) and standard deviation.
The data shown are representative data of at least 3 separate experiments. Data was analyzed by a Mann-Whitney U test and a p-value of # 0.05 was
considered to represent a significant difference. * p#0.05, ** p#0.01.
doi:10.1371/journal.pone.0061287.g003
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In vivo immunogenicity
To evaluate the immunogenicity of the virosomal preparations

upon mucosal administration, mice were immunized intranasally

(IN) with RSV virosomes alone or RSV virosomes with

incorporated Pam3CSK4 and/or L18-MDP. Control groups

included non-immunized mice (HNE group), and mice immu-

Figure 4. RSV-specific serum IgA and IgE antibody responses. BALB/c mice were immunized IN with RSV-virosomal vaccine formulations
(5 mg of protein) or HNE. Control mouse groups were either immunized IM with FI-RSV or IN with L-RSV on day 0 and 21. RSV-specific serum IgA (A)
and IgE (B) were determined by ELISA. Data from 6 mice per group is shown. Panel A: Bars represent the geometric mean titer and standard deviation.
Panel B: Bars represent the mean absorbance (490 nm) and standard deviation. The data shown are representative data of at least 2 separate
experiments. Data was analyzed by a Mann-Whitney U test and a p-value of #0.05 was considered to represent a significant difference. * p#0.05, **
p#0.01.
doi:10.1371/journal.pone.0061287.g004
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nized by live virus infection. One group of mice was immunized

IM with FI-RSV vaccine to represent the mirror image of the FI-

RSV vaccine used in 1960s clinical trial mentioned above.

Mice immunized with RSV virosomes with incorporated

Pam3CSK4 showed significantly higher IgG antibody responses

compared to responses induced by non-adjuvanted RSV viro-

somes (Figure 2A). Incorporation of L18-MDP in virosomes also

induced increased IgG antibody responses. Moreover, additional

incorporation of L18-MDP into the Pam3CSK4-containing

virosomes further enhanced IgG antibody responses.

In order to analyze the phenotype of the immune responses,

Th1-signature IgG2a and Th2-signature IgG1 subtype antibodies

were determined. Incorporation of Pam3CSK4 alone or combined

with L18-MDP into RSV virosomes resulted in a significant

increase of IgG2a/IgG1 ratios after IN-immunization of mice

(Figure 2B). Incorporation of L18-MDP alone did not result in an

increase of IgG2a/IgG1 ratios. As expected, live RSV induced

higher IgG2a/IgG1 ratios than FI-RSV (Figure 2B). Thus,

incorporation of TLR2/NOD2 ligands in IN-administered RSV

virosomes significantly stimulates systemic RSV-specific IgG

antibody responses with a more pronounced production of Th1-

signature IgG2a antibodies.

To characterize the humoral immune response in more detail,

we analyzed RSV-specific serum IgA and IgE antibody levels.

Significant levels of RSV-specific serum IgA were induced after

immunization with live virus and RSV-virosomes containing

Pam3CSK4, but not after immunization with FI-RSV or virosomes

with L18-MDP (Figure 3A). Induction of serum IgE antibodies, a

hallmark of atopic responses, was only observed after immuniza-

tion with FI-RSV (Figure 3B). Thus, RSV-virosomes with

incorporated TLR2/NOD2-ligands induce local as well as serum

RSV-specific IgA and IgG antibody responses upon mucosal

immunization and no IgE antibody responses.

In order to determine mucosal immune responses, nasal washes

and BAL samples were taken upon sacrifice of challenged animals

for analysis of IgA and IgG antibody levels. We found a significant

induction of nasal and BAL RSV-specific IgA antibodies in mice

immunized IN with RSV virosomes with incorporated Pam3CSK4

or live virus (Figure 4A,C). Incorporation of L18-MDP in the

Pam3CSK4-virosomes further boosted mucosal IgA antibody

responses (Figure 4A,C). We also determined IgG antibody levels

in nasal washes and BAL. Nasal RSV-specific IgG was observed in

all immunized groups, but the highest levels were seen in the

groups immunized IN with virosomes adjuvanted with both

ligands (Figure 4B). Immunization with adjuvanted virosomes

induced BAL IgG to similar levels as FI-RSV or live virus

immunization. Again, additional incorporation of L18-MDP in

Pam3CSK4-adjuvanted virosomes further boosted IgG levels

(Figure 4D).

RSV-specific cell-mediated immune responses
As excess Th2-skewed T cell responses may contribute to ERD,

we investigated whether the RSV-specific T cell responses had

Th1-/or Th2-skewed phenotypes. To this end, we analyzed IFN-c
and IL-5 levels in ex vivo RSV-restimulated splenocytes from

immunized mice that were challenged by IN inoculation of live

virus, one week after the booster immunization. Restimulated

splenocytes from non-immune mice that received HNE buffer only

produced considerable levels of IFN-c (Figure 5), which may be

explained by activation of innate immunity (i.e. NK cell activation)

as a result of administration of a high dose of challenge virus, in

the absence of specific immunity. Incorporation of Pam3CSK4in

virosomes induced Th1-skewing: it significantly increased IFN-c

Figure 5. Ex vivo cytokine production by splenocytes in response to stimulation with RSV. IFN-c (Panel A) and IL-5 (Panel B) production in
splenocyte cultures after stimulation with inactivated RSV was determined by cytokine ELISA. Cytokines in the culture supernatants were assayed
after 3 days of culturing. Data from 6 mice per group is shown. Bars and error bars represent means 6 SD. The data shown are representative of at
least 3 separate experiments. Data was analyzed by a Mann-Whitney U test and a p-value of # 0.05 was considered to represent a significant
difference. * p#0.05, ** p#0.01, *** p#0.001.
doi:10.1371/journal.pone.0061287.g005
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responses while IL-5 responses were significantly reduced

(Figure 5). Clear-cut Th2-skewed responses, indicated by high

IL-5 but low IFN-c responses, were induced by FI-RSV and by

L18-MDP-adjuvanted RSV virosomes (Figure 5). Incorporation of

L18-MDP in Pam3CSK4-adjuvanted virosomes did not lead to

Th2-skewing, but appeared to further increase the Th1-skewing by

enhancing IFN-c secretion (Figure 5). This, however, did not

reach a statistically significant difference. Thus, RSV virosomes

supplemented with TLR2/NOD2 ligands efficiently prime for safe

Th1-phenotype responses upon mucosal immunization in mice.

Protection from live RSV challenge
In addition to immune parameters, protection against viral

challenge was investigated. For this, immunized mice were

challenged and four days later, lung viral titers were measured.

All immunized mice showed significantly reduced viral titers

compared to viral titers seen in non-immunized mice (Figure 6).

Only mice immunized with RSV-virosomes with both ligands

incorporated had undetectable viral titers (Figure 6).

Lung pathology
To examine possible occurrence of ERD upon challenge of

immunized mice, lungs were collected four days post-challenge

virus and lung slices were examined. Mice immunized with FI-

RSV showed clear signs of ERD, i.e. alveolitis and infiltration of

cells in peribronchial and perivascular regions (Figure 7C), while

non-immunized mice or mice immunized with live virus did not

show any signs of ERD (Figure 7A, B). Lungs from mice

immunized with non-adjuvanted virosomes, or virosomes with

Pam3CSK4 and/or L18-MDP, did not show signs of ERD either

(Figure 7D-G), although some areas with minor infiltration were

observed (Figure 7E, F). Thus, unlike IM injection with FI-RSV,

IN immunization with (adjuvanted) RSV virosomes does not

prime for ERD.

Discussion

Mucosal delivery of vaccines has been explored as a non-

invasive and highly acceptable route of administration and can

induce mucosal antibody responses, in addition to systemic

antibody responses. Since RSV enters through the respiratory

mucosal site, mucosal immunity at these sites would contribute to

prevention of infection [26,27]. However, non-replicating virus

vaccines administered through the mucosal route generally induce

poor immune responses. This poor immunogenicity may, howev-

er, be overcome by co-administeration of mucosal adjuvants with

the vaccine [13,28–30]. TLR2-ligands, like MALP-2 (macro-

phage-activating lipopeptide-2) and zymosan, for example, have

been reported to have good mucosal immunoadjuvant properties

[16,17]. Here, we show that the TLR2-ligand Pam3CSK4,

incorporated in RSV virosomes, also has mucosal immuno-

adjuvant properties. No clearcut in vivo immunoadjuvant activity

was observed when the NOD2 ligand L18-MDP was incorporated

in virosomes. However, when it was incorporated in virosomes

carrying TLR2-ligand, a further increase in in vivo antibody

responses and Th1-skewing was observed. This points to a

synergistic activity of the ligands in immunopotentiation, leading

to increased RSV-specific immunity upon IN administration of the

virosomal RSV vaccine. From the above data we conclude that

Pam3CSK4, alone or in combination with L18-MDP, shows

promise for use as a mucosal adjuvant in a non-replicating

virosomal RSV vaccine.

We have previously shown that mucosal immunization with

inactivated RSV, supplemented with TLR9 (CpG DNA) and

NOD2 (L18-MDP) ligands, is an effective approach for induction

of RSV-specific antibodies and Th1-skewed T cell responses [8].

In this study, we investigated the virosome platform as a candidate

RSVvaccine, and chose to include the TLR2-ligand Pam3CSK4,

alone or together with L18-MDP. Pam3CSK4 is a synthetic

triacylated lipopeptide that, unlike CpG DNA for example, readily

associates with virosomes by partitioning into the virosomal

membrane during the reconstitution process (Figure 1) [11]. When

incorporated in RSVvirosomes, Pam3CSK4 enhances RSV-

specific serum IgG and Th1 responses upon intramuscular

immunization [11]. One way by which it potentiates immune

responses is through induction of proinflammatory cytokines,

which is initiated after binding to a heterodimeric TLR2/1

receptor and engagement of the MyD88-mediated signaling

pathway [31]. A recent study showed that Pam3CSK4 not only

upregulates pro-inflammatory genes, but also genes involved in

leukocyte transendothelial migration at the site of vaccine

administration [32]. Another possible factor contributing to the

adjuvant activity of Pam3CSK4 could be its cationic nature. This

property has been shown to enhance binding and uptake of RSV

viral particles by target cells [33]. In a similar fashion, it could

enhance binding and uptake of RSV virosomes that contain

Pam3CSK4 by, for example, antigen-presenting cells. Besides this,

a number of other activities of TLR2 ligands have been described

that could contribute to enhancement of mucosal responses. These

Figure 6. Protection of mice from challenge with live RSV. BALB/
c mice were immunized IN with RSV-virosomal vaccine formulations
(5 mg of protein) or HNE. Control mouse groups were either immunized
IM with FI-RSV or IN with L-RSV on day 0 and 21. Mice were challenged
with live-RSV on day 28 and four days after challenge (day 32), lung viral
titers were determined. Data from 6 mice per group is shown. Viral
titers are expressed as TCID50. Bars and error bars represent means 6
SD. The data shown are representative of at least 2 separate
experiments. Data was analyzed by a Mann-Whitney U test and a p-
value of # 0.05 was considered to represent a significant difference.
Asterisks indicate groups that had significantly lower viral titers
compared to titers in the non-immune HNE group. Horizontal lines
compares differences in titers in different immunized groups. * p#0.05,
** p#0.01.
doi:10.1371/journal.pone.0061287.g006
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include the induction of increased antigen uptake by M cells

[34,35], induction of T-cell-independent B-cell activation and

maturation leading to enhanced antibody secretion [16], and

enhancement of IgA secretion by B cells [18]. Thus, TLR2-

ligands, including Pam3CSK4, seem highly suited for immunopo-

tentiation of vaccine-induced systemic and mucosal immune

responses upon mucosal administration.

Although the NOD2 ligand L18-MDP has been reported to

have mucosal immunoadjuvant activity [19], we observed no

enhancement of mucosal antibody responses by virosome-incor-

porated L18-MDP upon IN immunization of mice. We did,

however, observe a strong Th2- skewing by L18-MDP (Figure 5), a

feature which has been described before [36]. Both FI-RSV and

L18-MDP-adjuvanted virosomes induced Th2-skewed T cell

responses, but the latter did not prime for ERD (Figure 7F).

Notably, in contrast to FI-RSV, L18-MDP-adjuvanted virosomes

do not induce RSV-specific IgE antibodies (Figure 4B), despite the

strongly Th2-skewed responses. IgE is an important mediator of

hypersensitivity responses including ERD and this may be why

mice immunized with L18-MDPvirosomes did not show ERD.

The lack of IgE induction may be explained by the active

suppression of IgE responses by MDP or its derivatives upon

mucosal administration [37]. Thus our data suggest that, on their

own, Th2 responses do not readily cause ERD in mice but when

associated with RSV-IgE responses contribute to ERD.

L18-MDP did not display Th2-skewing properties when

combined with TLR-ligands, such as CpG DNA [8] or

Pam3CSK4 (Figure 5). Rather, L18-MDP enhances the TLR-

ligand-mediated activation leading to more pronounced RSV-

specific IFN-c secretion by splenocytes and significantly increased

mucosal antibody responses. These data are in line with other

studies showing that ligands for NOD-like receptors (NLR), such

as NOD2, enhance TLR-ligand-induced activation. For example,

the TLR-ligand induced activation, proliferation and survival of B

cells was further enhanced by addition of NOD-ligands [23]. Also,

TLR-ligand induced (Th1-skewing) cytokines in dendritic cells are

further enhanced by supplementing with NOD1/NOD2-ligands

[21]. Thus, RSV-specific serum and mucosal antibody responses

and Th1 responses boosted by Pam3CSK4can further be increased

by addition of the NOD2-ligand L18-MDP.

As the respiratory tract is the port of entry for RSV, mucosal

antibodies in the respiratory tract could significantly contribute to

protection. It is likely that mucosal antibodies are important in

protection of the upper respiratory tract, while serum antibodies

mainly protect the lungs, as has previously been demonstrated for

influenza infection [38]. In support of this notion, studies on RSV

infection in adult humans and the elderly have shown that nasal

Figure 7. Immunopathology after challenge. BALB/c mice were immunized as described above. One week after the booster immunization, mice
were challenged with live RSV (1*106 TCID50). Four days after challenge, one lobe of lung was harvested, sliced and stained with H&E for pathology
analysis using light microscopy. Panels are representative pictures of the lungs of mice immunized with (A) HNE, (B) L-RSV, (C) FI-RSV, (D) RSV
virosomes, (E) RSV virosomes + TLR2-L, (F) RSV virosomes + NOD2-L and (G) RSV virosomes + TLR2-L + NOD2-L immunized mice. Black arrows indicate
alveolitis, red arrows indicate peribronchiolitis and blue arrows indicate perivasculitis.
doi:10.1371/journal.pone.0061287.g007
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antibodies are a better correlate of protection against RSV

infection than serum antibodies [39]. On the other hand, high

RSV-specific serum IgG has been shown to correlate with reduced

disease severity upon RSV infection [40], which points to a role of

serum IgG in protection of the lungs. A contribution of the

adjuvants on induction of protective immunity is possible, for

example through activation of innate immunity. It should be noted

however that the RSV-F protein, besides being a major vaccine

antigen, is also a TLR4 and TLR2 ligand [41,42], and thus also

has the capacity to activate the innate immunity. To underline the

antigen-specific component in the protection afforded by an IN

RSV vaccine, we previously found that RSV-specific IgG

antibodies induced by IN immunization showed a clear negative

correlation with lung viral titers (Spearman r 20.5965, p = 0.0003;

[8]). This suggests that serum antibodies are the main contributors

to protection of the lower respiratory tract in mice. In line with

these data, we earlier found that intramuscular (IM) injection of

RSV virosomes adjuvanted with a TLR4 ligand (i.e. MPLA)

induced RSV-specific serum IgG capable of protecting the lungs of

mice [12]. Like in the present study, that explored the IN route,

incorporation of a TLR ligand in IM-injected virosomes similarly

enhanced serum IgG levels, IgG2a antibody levels and protection

[12]. However, while IN-administered adjuvanted virosomes

induced mucosal antibodies, IM-injected adjuvanted virosomes

did not (unpublished results).

In conclusion, IN-immunization with RSV-virosomes with

incorporated Pam3CSK4 alone, or combined with the NOD2-

ligand L18-MDP is a promising strategy to induce RSV-specific

immunity that includes serum and mucosal antibody responses

and safe Th1-skewed cellular immune responses, without priming

for enhanced disease.
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