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Abstract

p38 mitogen-activated protein kinase (MAPK) is thought to play a central role in acute and chronic inflammatory responses.
Whether p38MAPK plays a pathogenic role in crescentic GN (GN) and which of its four isoforms is preferentially involved in
kidney inflammation is not definitely known. We thus examined expression and activation of p38MAPK isoforms during anti-
glomerular basement membrane (GBM) nephritis. Therefore, p38a conditional knockout mice (MxCre-p38aD/D) were used to
examine the role of p38a in anti-GBM induced nephritis. Both wild type and MxCre-p38aD/D mice developed acute renal
failure over time. Histological examinations revealed a reduced monocyte influx and less tubular damage in MxCre-p38aD/D

mice, whereas glomerular crescent formation and renal fibrosis was similar. Likewise, the levels of pro- and anti-
inflammatory cytokines such as TNF, IL-1 and IL-10 were similar, but IL-8 was even up-regulated in MxCre-p38aD/D mice. In
contrast, we could detect strong down-regulation of chemotactic cytokines such as CCL-2, -5 and -7, in the kidneys of
MxCre-p38aD/D mice. In conclusion, p38a is the primary p38MAPK isoform expressed in anti-GBM nephritis and selectively
affects inflammatory cell influx and tubular damage. Full protection from nephritis is however not achieved as renal failure
and structural damage still occurs.
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Introduction

The MAPK family comprises a large group of protein kinases

that respond for example to growth factors, osmotic stress,

ultraviolet light and cytokines to regulate cell proliferation,

differentiation and apoptosis [1–4]. MAPK regulate three major

pathways: the Jun N-terminal kinases (JNKs), the extracellular

signal-related kinases (ERKs) and the p38 MAPKs [5]. The

p38MAPK pathway was initially identified in macrophages

stimulated with lipopolysaccharide (LPS) and is present in many

cells and tissues [6,7]. Pro-inflammatory cytokines can stimulate

signal transduction through upstream kinases finally resulting in

the phosphorylation and activation of p38MAPK. In turn,

p38MAPK phosphorylates other kinases such as MAPKAPK2

(MK2) and activating transcription factor 2 (ATF2), which

promote transcription of pro-inflammatory genes [8].

p38MAPKs are represented by four different isoenzymes: p38a,
p38b, p38c and p38d [9–14]. Recently, the in vivo functions of the

four isoenzymes could be partially defined. p38b, p38c and p38d
are activated by distinct stimuli in vitro and are expressed in a more

restricted manner. However, mice deficient in either one of these

isoenzymes do not show a major phenotype [15,16]. In contrast,

p38a plays an important role in tissue homeostasis and is widely

expressed. In fact, p38a-deficient mice are not viable due to

placental defects [17–19]. Recently, the use of mice conditionally

deficient for p38a revealed specific roles of this isoenzyme in

erythropoiesis as well as cardiac and liver regeneration [20].

Besides the developmental and regenerative function of p38a,
a pro-inflammatory role has been proposed based on the

pharmacological inhibition of p38 in several animal models of

acute and chronic inflammation. Neutralization of p38 ameliorates

pro-inflammatory cytokine production and tissue damage in

mouse models of arthritis and other autoimmune disease models

[21–25]. Moreover, p38a inhibitors were successfully used in

a rodent model of crescentic glomerulonephritis (GN) [26,27].

Blockade of p38a was associated with reduction in infiltrating

leukocytes and subsequent tissue damage. However, some of these

previously used p38 inhibitors are not entirely specific for

p38MAPK and block both the a- and b-isoform. Also, such

inhibitors showed only minor and transient efficacy in a clinical

trial in patients with rheumatoid arthritis [28].

Thus, it is yet unclear whether p38a indeed plays a specific role

in crescentic GN and whether its inhibition could emerge as an
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effective treatment for this rapidly progressive autoimmune

disease. In this study, we thus used mice conditionally deleted

for p38a and induced anti-glomerular basement membrane

nephritis (anti-GBM) to test whether p38a is indeed responsible

for tissue damage and leukocyte infiltration in kidneys affected by

crescentic GN.

Materials and Methods

Animals
MxCre-p38aD/D mice and MxCre-p38afx/fx mice (wild type

littermates, genetic background C57Bl/6) were used for the

experiments [20]. The deletion of the floxed alleles was induced by

injecting 13 mg/kg polyinosinic-polycytidylic acid (Sigma-Aldrich)

for 3 times intraperitoneally at week 10 of age. Genotyping of mice

was performed in all mice. (Primers for genotyping are given in

Text S1). All animal experiments were approved by the animal

ethics committee of the government of franconia (permit number

54-2532.1-11/10) and were carried out according to legal

obligations defined by national animal protection laws.

Induction of Anti-glomerular Basement Membrane (GBM)
Glomerulonephritis (GN)
Accelerated anti-GBM GN was induced in MxCre-p38aD/D and

wildtype mice as described previously by Asgeirsdottir et al [29].

Briefly, 11-week-old mice were intraperitoneally immunized with

200 mg of sheep IgG (Sigma-Aldrich) dissolved in complete

Freunds adjuvant. After 6.5 days, mice received an intravenous

injection of sheep anti-mouse GBM antibodies (50 mg/kg) and

200 ng of recombinant mouse tumor necrosis factor a (TNFa) in
a total volume of 200 ml. Mice were sacrificed after indicated time

periods and kidneys were perfused with 0.9% cold sodium chloride

solution. One kidney was fixed in 4% formaldehyde for histology

while the other kidney was divided into 3 parts and snap-frozen in

liquid nitrogen and stored at 280uC for protein and mRNA

analysis.

Blood and Urine Examinations
Blood urea nitrogen (BUN) was measured in serum at days 3, 7

and 14 after inducement of anti-GBM GN. A quantitative

enzymatic colorimetric BUN determination kit (Stanbio Labora-

tory, Boerne, Texas) was used according to the manufacturer’s

protocol. To determine kidney function, mice were placed in

single metabolic cages for 24 h the day before sacrifice. Creatinine

was measured in serum and urine, and creatinine clearance was

calculated according to the following formula: crea[urine] 6
vol[urine]/crea[plasma].

Murine Podocyte Cell Culture
Conditionally immortalized mouse podocyte cell lines were

kindly provided by Prof. Karlhans Endlich (University of

Greifswald). They were isolated from kidneys of Immorto-MouseH
mice (Charles River, St. Louis, MO) and carry a thermosensitive

variant of the SV-40 large T-antigen as a transgene. T-antigen

expression is under control of the H-2Kb promoter and can be

induced by mouse interferon-c (IFNc). Proliferating cells are

cultured under permissive conditions (IFNc) at 33uC. Cells

differentiate within 14 days when grown under non-permissive

conditions (without IFNc) at 37uC 42. Before thawing the cells

a tissue culture flask was coated with collagen from rat tail

(0.1 mg/ml; BD Biosciences, Bedford, MA) in phosphate buffered

saline (PBS) for 1 h at 37uC. Cells were plated and propagated at

33uC in RPMI 1640 medium (Gibco) containing 10% FBS (PAN-

Biotech, Aidenbach, Germany), 100 mg/ml penicillin-streptomy-

cin (Gibco) and 20 U/ml c-interferon (Sigma). For differentiation

growing cells were trypsinized and replated in non-coated flasks in

the medium described above but without IFNc. Cells were used at

a maximum confluence.

To assess p38 MAPK isoform activation, differentiated

podocytes were stimulated with recombinant murine TNFa
(10 ng/ml, Biosource) after starvation for 12 hours. Cells were

stimulated with TNFa for 60, 30, 15, 10, 5 and 0.5 minutes. After

the indicated time points, cells were lysed, lysates were mixed with

26 sample loading buffer (SLB; 4% SDS, 125 mM Tris/HCl

pH 6.8, 10% Glycerol, 100 mM DTT, 0.002% bromphenolblue),

boiled and stored at 220uC until western blot analysis.

Primary Antibodies
The following antibodies were used: rabbit anti-phospho

p38MAPK (1:300; Cell Signaling Technology, Beverly, MA),

rabbit anti-p38MAPK (1:300; Cell Signaling), rabbit anti-

p38MAPKa (1:300; Cell Signaling), rabbit anti-p38MAPKb
(1:300; Abgent, San Diego, CA), rabbit anti-p38MAPKc (1:300;

Cell Signaling), rabbit anti-p38MAPKd (1:300; Abgent), rabbit

anti-phospho MK2 (1:300; Cell Signaling), rabbit anti-MK2

(1:300; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-

phospho ATF-2 (1:300; Cell Signaling), rabbit anti-ATF-2 (1:300;

Santa Cruz), rabbit anti-phospho MKK3/6 (1:300; Santa Cruz),

rabbit anti-MKK3 (1:300; Santa Cruz), rabbit anti-MKK6 (1:300;

Santa Cruz), rabbit anti-bActin (1:400; Sigma-Aldrich, St. Louis,

MO). Antibodies against macrophages (anti-F4/80; 1:100; Ser-

otec), neutrophils (1:300; MorphoSys), T lymphocytes (anti CD3;

1:100; NeoMarkers) and B cells (anti-CD20; 1:100; Sigma) were

used for immunohistochemistry.

Western Blotting
In vitro cultured podocytes were lysed, lysates were mixed with

26SLB, boiled and separated by SDS-PAGE followed by transfer

onto nitrocellulose membrane. After blocking with 106 Tris-

buffered saline (TBS), 0.1% Tween 20 and 5% non fat dry milk,

membranes were incubated with primary antibodies. Appropriate

secondary horseradish peroxidase-conjugated antibodies (Dako,

Glostrup, Denmark) and a chemoluminescent detection system

(Pierce, Rockford, IL) were applied. The phosphorylated MAPKs

were analyzed by normalization to total amount of kinase. For

western blotting analysis of kidneys, protein lysates from frozen

tissues were prepared. Tissues were dissolved in buffer containing

urea (7M), glycerol (10%), SDS (1%), Tris pH 6,8 (10 mM),

phosphatase inhibitors (Sigma) and protease inhibitors (Roche,

Mannheim, Germany). Each piece of tissue was homogenized with

an Ultra Turrax and centrifuged for 15 min with 15.000 g at 4uC
to get rid of tissue debris. The supernatant was transferred and

protein concentration determined (BCA protein assay kit, Pierce).

Western Blotting was performed as described above.

Immunoprecipitation
To determine p38 MAPK isoform phosphorylation in cultured

podocytes and whole kidney tissues, immunoprecipitation was

performed. For precipitation of cells, differentiated growth

arrested podocytes were used after 15 min stimulation with TNFa
(10 ng/ml). Cells were lysed in buffer (NP40 1%, sodium chloride

150 mM, Tris/HCl pH 7,5 25 mM, EDTA 1 mM, EGTA

1 mM, sodium fluoride 1 mM, ß-glycerophosphat 1 mM, sodium

pyrophosphate 2,5 mM, vanadate 1 mM, PMSF 1 mM) for 20

minutes on ice, followed by 10 min centrifugation at 10.000 g at

4uC. After determination of protein concentration, samples were

mixed with 30 ml of immobilized protein A plus sepharose (Pierce)

and antibody against phospho-p38 MAPK (1:50) and incubated at

p38a in Murine Glomerulonephritis
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4uC for 2 h while gently shaking. After 3 washing steps with lysis

buffer (5 min, 1.000 g, 4uC) the pellet was resuspended, boiled in

16 SLB and stored at 220uC. As controls two further

immunoprecipitations were performed: One without lysate (neg-

ative control) and one with an isotype matched control antibody

for phospho-p38 MAPK. Immunoprecipitation of kidney tissue

taken at day 3 after injection of nephrotoxic serum was done by

homogenizing the frozen tissue with an Ultra Turrax in buffer at

4uC as described above with addition of sodium dodecylsulfate

(0.1%). After centrifugation (20 min, 10,000 g, 4uC) the superna-

tant was taken and the same procedure followed as described

above. For western blot analysis each gel pocket was loaded with

the full IP preparation or 50 mg of cell or tissue lysate.

Quantitative Real-time RT-PCR
RNA was isolated from cells and tissue with peqGold TriFast

reagent (Peqlab, Erlangen, Germany). RNA was isolated following

standard laboratory procedures with chloroform and alcoholic

precipitation. Purity was measured by photometery (Eppendorf).

1 mg of RNA was reversely transcribed using MuLV reverse

transcriptase (Darmstadt, Germany) and random hexamer

primers. Quantitative PCR amplifications were performed accord-

ing to manufacturer’s protocol on an ABI Prism 7300 sequence

detection system (Applied Biosystems). Primer sequences are given

in Text S1. The RT2 ProfilerTM PCR Array System (SABios-

ciences, Frederick, MD, USA) for mouse chemokines and

receptors was used to analyze the expression of a focused panel

of genes. To this end we isolated RNA from five wild type and five

MxCre-p38aD/D mice 14 days after induction of anti-GBM induced

nephritis. RNA isolation, cDNA preparation and PCR were done

according to the manufacturers protocol. Thermal cycling was run

in an ABI Prism 7300 sequence detection system (Applied

Biosystems).

Histology
To determine the extent of crescent formation, tubular di-

latation and scarring, paraffin embedded sections were stained

with Sirius red, periodic acid-Schiff reagent (PAS) and hematox-

ylin and eosin (HE). To assess the percentage of crescents, all

glomeruli of a section were counted. Afterwards the ratio of

glomeruli affected by crescents to unaffected glomeruli was

determined. The tubular damage index (0 to 3) was determined

by assessing inflammation, fibrosis, tubular dilatation and tubular

atrophy. Fibrosis scoring was performed semiquantitatively on

Sirius red stained sections by evaluating the extent of fibrotic tissue

vs. normal kidney tissue. All analyses were done with an Olympus

CX41 microscopy and a fence ocular in 2006magnification.

Immunohistochemistry
To determine immune cell infiltration of kidneys, serial sections

(2 mm) of paraffin-embedded murine kidneys were used for

immunohistochemistry. Slides for detection of T cells, neutrophils

and macrophages were pretreated with recombinant protease K

(Roche, Mannheim), whereas B-cell detection required no pre-

treatment. Non-specific binding was blocked by addition of

a mixture (1:1 vol) of 10% goat serum and Roti-Immunoblock

(Carl Roth, Karlsruhe, Germany). Sections were incubated with

primary antibodies for 1 h at room temperature, followed by

30 min incubation with specific biotinylated immunoglobulin

(Vector, Burlingame, CA). Vectastain ABC reagent (Vector) and

3,39-diaminobenzidine (DAB, Sigma-Aldrich) as chromogen were

used for final detection. Sections were counterstained with

haematoxylin was done. Scoring of infiltrated immune cells was

as follows: 20 lens coverages were counted all over the section

(mark and cortex) and indicated in positive cells/mm2.

Statistical Analysis
Results were analyzed for statistical differences either with one-

way ANOVA and Tukeys multiple comparison test or unpaired t-

test. P#0.05 was considered statistically significant. Data are

presented as the mean6SEM.

Results

Selective Activation of p38a during Anti-GBM Nephritis
To determine whether p38MAPK signalling is active during

crescentic GN, we used an established anti-GBM model and

evaluated gene and protein expression during the disease course.

To this end, we immunized mice with sheep IgG and then

challenged the sensitized mice with sheep anti-GBM antibodies in

conjunction with a single TNFa injection as previously described

[29].

To demonstrate the functionality of our model, we performed

histological analysis during different time points. As shown in

Fig. 1A–D, injection of anti-GBM antibodies causes glomerular

inflammation, glomerular crescent formation and tubular damage

during the course of disease. We then analyzed expression of pro-

inflammatory (TNFa, IL-1, IL-8) and anti-inflammatory (IL-10,

TGFb1) cytokines by quantitative real-time PCR (qPCR) to gain

insight into the molecular changes during the inflammatory

response (Fig. 1E). TNFa and IL-1b mRNA were up regulated

during the first 7 days of disease. In contrast, IL-8 was found to be

over-expressed during later stages of disease. We also found early

up-regulation of the counter-regulatory cytokine IL-10 during

anti-GBM induced nephritis. Interestingly, TGFb1 was over-

expressed at late stages of anti-GBM nephritis, which might

correlate to crescent formation occurring at the same time.

We next analyzed the expression and activation of the

p38MAPK pathway in this model. We therefore investigated

early (35 min) and late (14 days) time points after injection of anti-

GBM antibodies. First, we determined expression of the four

known p38MAPK isoforms during the course of disease and could

detect mRNA expression of all four p38MAPK isoforms in kidney

lysates. Expression of all four isoforms was however not different

during the disease course (data not shown). We then performed

Western Blot analysis to confirm these findings. In support of the

mRNA data, we could detect p38a, p38b, p38c and p38d in

kidneys injected with anti-GBM antibodies. In line with results

from qPCR, protein expression remained stable throughout the

observation period (data not shown).

After assuring the expression of p38MAPK isoforms in anti-

GBM induced nephritis, we asked whether the p38MAPK

pathway is active during disease. As shown in Fig. 2, p38MAPK

is phosphorylated and thus active throughout the observation

period of anti-GBM induced nephritis. In addition, we found that

the upstream kinase MKK3/6 and the downstream transcription

factor ATF-2 is also phosphorylated indicating a functional

p38MAPK signalling pathway in inflamed kidneys. To investigate,

which p38MAPK isoform is preferentially activated during anti-

GBM induced nephritis we analyzed the activation status of the

p38MAPK isoforms using an activation-specific anti-phospho

p38MAPK antibody. Interestingly, we found a clear activation of

the a-isoform, but not the other p38MAPK isoforms (Fig. 2).

Thus, p38MAPK is expressed and the only active p38MAPK

isoform during anti-GBM induced nephritis is the a-isoform of

p38.

p38a in Murine Glomerulonephritis
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Pro-inflammatory Cytokine Stimulation Specifically
Activates p38a in Podocytes in vitro
We next investigated whether the p38MAPK pathway is

functional in podocytes in vitro as these cells are critically involved

in experimental nephritis and crescent formation [30,31]. As

described previously, we therefore cultured undifferentiated and

differentiated immortalized podocytes in vitro and stimulated them

with TNFa [32]. Analysis of mRNA abundance of the four p38

MAPK isoforms and up- and downstream kinases revealed

expression of the p38 a and c isoform as well as of MKK3,

MKK6, MK2 and ATF-2 (Fig. S1A–B). These findings were

supported by western blot analyses for the four isoforms (Fig. S1C):

p38MAPK a and c but not b and c were detectable especially in

differentiated podocytes. Next, we stimulated differentiated

podocytes with TNF-a (10 ng/ml) to mimic an inflammatory

condition. Western blot analyzes revealed enhanced signalling as

early as 5 minutes (p-p38) to 10 minutes (p-MK2, p-ATF-2) after

stimulation (Fig. S1D) suggesting that podocytes turn on

p38MAPK signalling within minutes after cytokine exposure.

We then addressed which of the p38MAPK isoform is activated.

Immunoprecipitation using an activation-specific anti-phospho

p38MAPK antibody (Fig. S1E) showed very clearly that only p38a

Figure 1. Functionality of the anti- GBM nephritis model and differential cytokine activation. Periodic acid-Schiff reagent (PAS) stain of
a control kidney (A) and kidneys affected by crescentic GN over time are shown. BC =Bowmans capsule, CL = capillary loop, BM=basement
membrane, Pod=podocyte, U = urinary space. Development of full crescents occurs within 14 days (B–D). Mice were sacrificed at indicated days
(original magnification 206). (E) Expression analyses of pro- (TNFa, IL-1, IL-8) and anti-inflammatory (IL-10, TGFb1) cytokines by qPCR in kidneys of
control mice (white bars) and anti GBM-IgG treated mice (black bars). RNA was isolated from whole kidney lysates. Data are the mean value 6 SEM
(n = 4 for each time point).
doi:10.1371/journal.pone.0056316.g001

p38a in Murine Glomerulonephritis
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is detectable and thus active. Thus, we conclude that pro-

inflammatory stimuli preferentially activate the a-isoform of

p38MAPK further supporting the use of MxCre-p38aD/D mice in

the anti- GBM induced nephritis model.

Effects of Conditional p38a Deletion on Anti-GBM
Nephritis
First, we determined whether p38-gene deletion is evident in the

p38aD/D transgenic mice [20]. As represented in Fig. 3A there is

a full knockout in tissue like spleen and liver and an approximately

50% deletion in the kidney. This is due to the MxCre-flox model

and confirmed by other studies. Nevertheless this model is suitable

for the investigation of anti-GBM nephritis, because the deletion

occurs in areas, which are of interest in this study, e.g. vascular

endothelium, glomerulus, distal convoluted tubule and collecting

duct [33,34]. We found significant reduction of p38 phosphory-

lation in kidney lysates. In support of these data, downstream

activation of MK2 was also strongly reduced. Indeed other MAP

kinases like ERK and JNK are also activated in this model, but

there is no further regulation detectable in the case of p38aD/D

(Fig. 3B). After p38a deletion, we induced anti-GBM nephritis as

described above. We then determined survival of wild type and

MxCre-p38aD/D mice during the course of nephritis. Unexpectedly,

we found no difference in the survival curve as shown in Fig. 3C.

Also, serum urea levels increased both in wildtype (day 14: mean

66.6618.3 mg/dl) and MxCre-p38aD/D mice (day 14: mean

58.4610.5 mg/dl, p = ns vs. wild type) similarly compared to

healthy mice (Fig. 3D). Creatinine clearance revealed a decrease in

both wildtype (134.4629.70; n= 8) and MxCre-p38aD/D

(97.79616.15; n= 8) mice (Fig. 3E) in contrast to healthy control

mice (195.8641.88; n= 4) suggesting impaired filtration function

of the kidney. Thus, deletion of p38a does not protect from kidney

failure in this nephritis model.

Deletion of p38a Ameliorates Tubular but not Glomerular
Damage during Anti- GBM Nephritis
To determine the effects of the absence of p38a on structural

damage during anti- GBM nephritis, we performed qualitative and

quantitative histological scoring. We first analyzed tubular damage

using a semi-quantitative score (Fig. 4A–C). Interestingly, p38a
deletion significantly diminished tubular damage (mean score

0.660.1, p,0.05) as compared to wildtype mice (mean score

0.960.1). KIM-1 and Vimentin mRNA levels corroborated these

data, as these are also markers of tubular damage (Fig. 4D–E). In

both cases mRNA levels in the knockout mice were significantly

reduced in contrast to wild type mice (KIM-1: wildtype

84.23632.57; n= 4 vs. p38aD/D 2.67561.248; n= 4; Vimentin:

wildtype 2.90060.1732; n = 4 vs. p38aD/D 1.37560.3497; n= 4).

Next, we analyzed glomerular crescent formation semi-quantita-

tively (Fig. 4F–H), revealing that similar amounts of glomeruli

revealed crescent formation in wild type and MxCre-p38aD/D mice

(wild-type: mean 3.361.2% vs. MxCre-p38aD/D: 4.261.5, p = ns).

Likewise, no difference was observed for the fibrotic score (Fig. 4I–

K). A slight tissue remodelling occurred in both wildtype and

MxCre-p38aD/D mice (wild-type: mean 1.460.1 vs MxCre-p38aD/D:
1.660.2, p = ns). Although the glomerular deposition of mouse

IgG is generally very low there is a remarkably decrease in the

p38aD/D group (0.08260.0396; n = 5) in contrast to wildtype mice

(0.2560.035; n= 5; Fig. 4L–N). Thus, deletion of p38a protects

from tubular damage in murine anti-GBM nephritis, whereas

glomerular crescent formation and fibrosis is not affected.

Recruitment of Leukocytes to Kidneys in Anti-GBM
Nephritis is p38a-dependent
We next analyzed the role of p38a in leukocyte recruitment into

the kidneys affected by anti-GBM nephritis. We thus performed

immune phenotyping of leukocytes in kidney sections using

immunohistochemistry and quantitatively scored leukocyte in-

filtration. We first asked whether macrophage infiltration is p38a-
dependent. F4/80 staining to detect macrophages clearly revealed

a prominent infiltration in the kidneys of wildtype mice (mean

155.4658.6 cells/mm2). In contrast, MxCre-p38aD/D mice showed

dramatically lower macrophage numbers (mean 25.763.3 cells/

mm2, p,0.05 vs. wild type; Fig. 5A–C). A similar, although less

strong difference was observed, when we evaluated the invasion of

neutrophils. Whereas wild-type mice showed prominent neutro-

phil infiltration (mean 43.865.5 cells/mm2), this was less severe in

MxCre-p38aD/D mice (mean 26.266.6 cells/mm2, p,0.05 vs. wild

Figure 2. Selective activation of p38a during anti- GBM nephritis. (A) p38MAPK phosphorylation during anti-GBM induced nephritis was
investigated at early (35 min) and late (14 days) time points after disease induction using phospho-specific antibodies (left graph). Control lane shows
no p38 phosphorylation before injection of anti- GBM antibodies. (B) Co-Immunoprecipitation (IP) was used to determine which p38 isoform is
activated during anti- GBM nephritis. Kidney tissue was retrieved three days after induction of glomerulonephritis. IP was performed with buffer only
(2) or with kidney lysates and anti-phospho p38MAPK antibody, or with kidney lysates using an isotype-matched control antibody (Iso). IPs and
positive control lysate (+) were separated by SDS-PAGE, blotted onto nitrocellulose and probed with specific antibodies against p38 isoforms
(arrows). HC: heavy chain of the precipitating antibody (right graph).
doi:10.1371/journal.pone.0056316.g002

p38a in Murine Glomerulonephritis

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e56316



type; Fig. 5D–F). We then stained renal sections for B and T cells

with anti-CD19 and anti-CD3 antibodies, respectively. Whereas

we could not detect relevant B cell numbers in renal tissues, we

clearly found T cell infiltration in wildtype mice injected with anti-

GBM antibodies (mean 5.061.5 cells/mm2). In contrast to

macrophages and neutrophils, the number of T cells was not

different among wild type and MxCre-p38aD/D mice (mean

9.162.1 cells/mm2, p= ns vs. wildtype; Fig. 5G–I). These data

indicate that p38a is critical for full activation of the innate

immune response during anti-GBM nephritis.

Inflammatory Gene Expression during Anti-GBM
Nephritis is Partially p38a-dependent
As we have observed a reduced renal influx of macrophages and

neutrophils, we next determined whether the altered recruitment

of leukocytes is associated with a change in the expression of pro-

and anti-inflammatory cytokines in the affected kidneys. We

therefore performed qPCR from renal tissue of wildtype and

MxCre-p38aD/D mice 14 days after injection with anti-GBM

antibodies. Whereas the mRNA expression of the pro-inflamma-

tory cytokines TNF, IL-1b and IL-6 was unaltered by p38a-
deletion, we detected a significant downregulation of IL-8 as well

as up- regulation of IL-12 and IL-18 in p38- deficient mice. In

contrast, the expression of anti-inflammatory cytokines such as IL-

10, IL-13 and TGFb1 was not affected by p38a-deletion (Fig. 6A).

In accordance with the data of macrophage staining, MCP-1

(monocyte chemoattractant protein 1) is clearly downregulated in

MxCre-p38aD/D mice.

Because of the prominent phenotype of MxCre-p38aD/D mice

revealing less macrophage and neutrophil influx as compared to

wildtype mice, we analyzed mRNA expression of chemokines in

more detail. As shown in Fig. 6B-C, chemokines associated with

macrophage attraction were generally strongly down- regulated.

Especially Ccl2, -4, -5 and -8 were massively suppressed in MxCre-

Figure 3. Effects of conditional p38a deletion on anti-GBM nephritis. (A) p38MAPKa deletion is depending on tissue and reaches from 50–
100%. (B) Western blot experiments reveal significant reduction of p38 phosphorylation in kidneys of MxCre-p38aD/D transgenic mice at day 14 after
induction of anti-GBM nephritis. Downstream activation of MK2 is also strongly reduced. Three representative animals are shown in each group. (C)
Survival of wild type and MxCre-p38aD/D mice during anti-GBM nephritis shows no difference (controls n = 10, continuous line; wild type n= 16,
spotted line; MxCre-p38aD/D mice n= 18, dashed line). (D) Serum urea levels in wild-type (day 14: mean 66.61618.33 mg/dl; n = 9) and MxCre-p38aD/D

mice (day 14: mean 58.43610.46 mg/dl, p = ns vs. wild-type; n = 9). (E) Creatinine clearance decreases in both wild type (134.4629.70; n = 8) and
MxCre-p38aD/D (97.79616.15; n = 8) mice.
doi:10.1371/journal.pone.0056316.g003
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Figure 4. Deletion of p38a ameliorates tubular but not glomerular damage during anti-GBM nephritis. (A) Semi-quantitative scoring of
tubular damage. p38a deletion significantly diminishes tubular damage (mean score 0.660.1, p,0.05 vs. control; n = 7) as compared to wild type
mice (mean score 0.960.01; n = 7). Tubules of wild type mice (B) are dilated, whereas tubules of MxCre-p38aD/D (C) mice are still tightly packed. (D)
KIM-1 mRNA level is dramatically increased in wild type mice (wild type 84.23632.57; n = 4 vs. p38aD/D 2.67561.248; n = 4) indicating high tubular
damage. (E) Vimentin shows clear upregulation of its mRNA in wild type mice (2.90060.1732; n = 4) whereas it is reduced nearly to the baseline level
in MxCre-p38aD/D mice (1.37560.3497; n = 4). Dashed line indicates RNA base level of control mice. (F–H) Analysis of crescent formation during anti
GBM nephritis. Similar amounts of glomeruli revealed crescent formation in wild type (n = 6) and MxCre-p38aD/D mice (n = 6) (wild type: mean
3.361.2% vs. MxCre-p38aD/D: 4.261.5, p = ns). (I–K) Fibrotic tissue remodelling occurred in both wild type (n = 7) and MxCre-p38aD/D mice (n = 7) (wild-
type: mean 1.40960.1132 vs MxCre-p38aD/D: 1.61560.1617, p = ns). Sirius red staining was performed 14 days after induction of anti-GBM nephritis.
(L–M) p38a deletion affects the immune response to sheep IgG by decreased murine IgG depositions in the glomeruli.
doi:10.1371/journal.pone.0056316.g004

Figure 5. Recruitment of leukocytes to kidneys in anti-GBM nephritis is p38a-dependent. (A–C) F4/80 staining to detect macrophages
clearly reveals a prominent infiltration in the kidneys of wild-type mice (mean 155.4658.6 cells/mm2), whereasMxCre-p38aD/D mice show dramatically
reduced macrophage numbers (mean 25.763.3 cells/mm2, p,0.05 vs. wild type). (D–F) Wild type mice show prominent neutrophil infiltration (mean
43.865.5 cells/mm2). There is a similar infiltration but less severe in MxCre-p38aD/D mice (mean 26.266.6 cells/mm2, p,0.05 vs. wild type). (G–I) In
contrast to the other lymphocytes the number of T cells is not different among wild type (mean 5.061.5 cells/mm2) and MxCre-p38aD/D mice (mean
9.162.1 cells/mm2, p =ns vs. wild-type). Staining was performed 14 days after induction of anti-GBM nephritis (n = 7/group).
doi:10.1371/journal.pone.0056316.g005

p38a in Murine Glomerulonephritis

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e56316



p38aD/D mice. We also found that chemokines attracting

neutrophils such as Cxcl1, -4, -5 and IL-8 were down regulated

by p38a during anti-GBM nephritis. However, we could not

detect such general changes regarding chemokines associated with

lymphocyte influx (Fig. 6D). Taken together these data suggest

that p38a deletion selectively blocks the expression of certain

chemokines during anti-GBM nephritis, which are important for

mononuclear cell influx to inflammatory sites. Despite these

findings, pro-inflammatory cytokine production is not dramatically

altered in these mice.

Discussion

The p38MAPK family consists of four isoforms (p38a, p38b,
p38c and p38d) and it has so far been largely unknown, which of

these isoform is expressed and activated in renal inflammation.

Our results indicate that the a-isoform is the most important one

since we demonstrated only significant p38a activation during

anti-GBM induced nephritis in vivo, while the other three p38

isoforms were not activated. In this study, we demonstrate

accordingly a specific role of p38a in an experimental model of

anti-GBM nephritis. Importantly, we demonstrate a preferential

activation of p38a but not other p38 isoforms during the course of

anti-GBM nephritis. Conditional deletion of p38a partially

inhibited renal damage associated with anti-GBM nephritis by

blocking leukocyte influx and tubular damage, while glomerular

crescent formation and renal fibrosis were not affected.

Several lines of evidence suggested an important role for the

p38MAPK pathway in the pathogenesis of crescentic GN: (i)

p38MAPK is expressed and activated in an established rat model

of crescentic GN [35]. These data have been further supported by

expression studies in human biopsies containing various forms of

crescentic GN including ANCA-associated GN [36]. Recent data

also proved the expression and activation of downstream kinase

MK2 in ANCA-associated GN further suggesting a functional

pathway in vivo [36]. (ii) Phosphorylation and thus activation of

p38MAPK occurs at sites of renal damage. Thus, immunohisto-

chemical studies revealed active p38MAPK in podocytes, glomer-

ular crescents, interstitial mononuclear infiltrates and tubular

epithelial cells. In addition, the localization and extent of

p38MAPK activation correlates with renal injury [37]. (iii)

p38MAPK inhibitors have been successfully used in a rat

crescentic GN model [27].

Inhibition of p38MAPKa and b with a small molecule inhibitor

in a rat model of anti-GBM induced nephritis ameliorated both

acute renal failure, proteinuria and leukocyte influx [38].

Sheryanna and colleagues confirmed these results showing, that

p38MAPKa/b inhibition results in reduced renal expression of

adhesion molecules and chemokines [27]. A concern about the

inhibitors used in these studies is, however, their specificity. The

applied compounds usually block both the a - and the b -isoform

of p38MAPK and sometimes also affect non-p38MAPK, such as

JNK3 [39].

Interestingly, overall survival and glomerular crescent formation

were not significantly reduced in the absence of p38a. This is

surprising, because p38MAPK is considered as crucial for acute

inflammatory responses and, for instance, immune responses to

LPS are highly dependent on intact p38MAPK signalling [40].

One explanation could be that other signalling pathways may

substitute for p38a. This hypothesis is supported by the clinical

Figure 6. Inflammatory gene expression during anti-GBM nephritis is partially p38a dependent. qPCRs from renal tissue of wild-type
and MxCre-p38aD/D mice 14 days after injection with anti-GBM antibodies. There is no difference in the mRNA expression of pro-inflammatory
cytokines like TNF, IL-1b and IL-6. Furthermore there is a significant regulation of IL-8, IL-12 and IL-18. There are no significant changes in anti-
inflammatory cytokines like IL-10, IL-13 and TGFb1. MCP-1 is down-regulated in MxCre-p38aD/D mice. n = 4/group measured in duplicates (A).
Leukocyte infiltration is regulated by corresponding chemokines: Chemokines participating in (B) macrophage and (C) neutrophil
recruitment are remarkably downregulated in MxCre-p38aD/D mice. (D) Chemotactic regulation of T cells is unaffected in MxCre-p38aD/D mice. In each
group the RNA of five mice was pooled and then analyzed by RT-PCR with a RT2 ProfilerTM PCR Array kit. mRNA expression was normalized to beta-
actin of wildtype mice.
doi:10.1371/journal.pone.0056316.g006
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data from p38MAPK inhibition in rheumatoid arthritis (RA)

patients [28]. RA patients did show a transient decrease of

inflammatory parameters but relapsed soon after the initiation of

p38 inhibitor therapy. It was also shown that p38a deficiency

could lead to increased NF-kB activation upon pro-inflammatory

stimulation, which may rescue some of the effects elicited by p38

signalling [25].

We did not study the effect of p38a inhibition in other cell types

involved in glomerular injuries such as mesangial and endothelial

cells in vitro. In the latter, deletion of p38a may cause other effects

in inflammatory pathways than in podocytes. Moreover, podo-

cytes in vivo may react different to inflammatory stimuli in terms

of p38 isoform activation than in an artificial in vitro culture

system, which should be addressed in future studies. Alternatively,

p38a may not be of major importance for glomerular in-

flammation and scarring. Indeed, recent evidence proves against

a major role of p38 in the pathogenesis of rodent ANCA-

mediated glomerulonephritis [41].

An explanation for the selective phenotype induced by p38a-
deletion in anti-GBM induced glomerulonephritis emerges when

looking more closely at the histological changes in the kidneys and

cytokine expression profiling. Whereas glomerular crescent

formation and interstitial scarring were not affected by p38a-
deletion, suggesting that the fibrotic response in the anti-GBM GN

model is not dependent on p38a, a significant amelioration of

tubular damage was observed by us. The latter is in agreement

with previous studies using p38 inhibitors [27]. Reduced tubular

damage was associated with reduced leukocyte migration into the

kidneys. Especially macrophage and neutrophil infiltration was

significantly reduced, while T cell infiltration was comparable to

wild type mice injected with anti-GBM antibodies.

Interestingly, p38a is the dominant p38MAPK isoform

expressed and activated in macrophages and podocytes, which

are regarded as crucially involved in the pathogenesis of crescentic

glomerulonephritis. Moreover, we could not detect any reduction

of renal expression of several pro- and anti-inflammatory cytokines

such as TNF, IL-1, IL-6, IL-10 and TGFb1. In contrast, we could

even detect increases in renal mRNA expression of IL-12 and IL-

18 indicating that p38a over time may also have a regulatory

activity to limit inflammation in addition to its well-known pro-

inflammatory role.

The reduced macrophage and neutrophil immigration into

inflamed kidney tissue could be due to different chemokine

expression. In fact, while chemokines responsible for lymphocyte

influx were not generally altered, we could detect massive down-

regulation of macrophage and neutrophil- attracting chemokines

such as Ccl2, -4, Cxcl1, -4 and others. The latter finding may

therefore explain the reduced influx of neutrophils and cells of the

monocyte/macrophages into the kidneys during anti-GBM in-

duced nephritis. However, these potentially positive effects did not

translate into a major clinical amelioration of the experimental

model.

In conclusion, p38a deletion selectively reduces inflammatory

cell influx and tubular damage in murine anti-GBM nephritis but

does not affect the formation of glomerular crescents and renal

fibrosis. Consequently, full clinical and histological protection

could not be achieved. Inhibition of p38a may therefore not be

a promising strategy for the treatment for crescentic GN. Future

studies could investigate why crescent formation and renal fibrosis

can occur when macrophage infiltration is virtually absent.
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